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Preface

The fixed point theory is a very important branch of mathematics. It has a lot of
applications in several areas of mathematics and other sciences. It is a very powerful
and important tool in the study of nonlinear phenomena. In particular, fixed point
techniques have been useful in investigations connected with the theories of differen-
tial equations, integral equations, functional integral equations, and in optimization
theory as well as in several diverse fields such as biology, chemistry, economics,
engineering, game theory, and physics.

The present book contains a comprehensive treatment of fixed point theory and its
applications. The book is addressed to the large audience of mathematical community
applying the methods and tools of nonlinear analysis and investigating a lot of topics
connected with that important branch of mathematics. This book can also serve as a
source of examples, references, and new approaches associated with the fixed point
theory and its applications. Apart from Preface, the present book consists of 20
chapters on various topics of fixed point theory and its applications. Each chapter is
self-contained and contributed by specialists using their researches.

In Chap. 1 “The Relevance of a Metric Condition on a Pair of Operators in
Common Fixed Point Theory”, the authors study the following two problems:

I. Which are the metric conditions on f and g which imply all the following
conclusions:

(1) Fgn = Fgn = {x*} for each n > 0;

(2) for each xp € X and n > 1, the sequence {x,} defined by

Xop = (gf)n(-XO)v Xon+1 = f(x2n)

converges to x* € X;
(3) for each yp € X and n > 1, the sequence {y,} defined by

Yo = ()" (0)s Yaus1 = 8(y2n)

converges to x* € X;
(4) for each xy € X and n > 1, the sequence { /" (x()} converges to x* € X
(5) for each xg € X and n > 1, the sequence {g" (xo)} converges to x* € X.
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II. In the above context, they study the data dependence phenomenon for the
common fixed point set of two given operators.

In Chap. 2 “Some Convergence Results of the K* Iteration Process in CAT(0)
Spaces”, the authors prove some strong and A-convergence theorems of the K*
iteration process for two different classes of generalized nonexpansive mappings in
a CAT(0) space. The results presented here extend and improve some recent results
announced in the current literature.

In Chap. 3 “Split Variational Inclusion Problem and Fixed Point Problem for
Asymptotically Nonexpansive Semigroup with Application to Optimization Prob-
lem”, the authors deal with the study of an iterative process to approximate a common
solution of the split variational inclusion problem and the fixed point problem for
an asymptotically nonexpansive semigroup in real Hilbert spaces. Further, we prove
that the sequences generated by the proposed iterative method converge strongly to
a common solution of the problems for an asymptotically nonexpansive semigroup.
As applications, these results are used to study the split optimization problem and
the split variational inequality.

In Chap. 4 “Convergence Theorems and Convergence Rates for the General
Inertial Krasnosel’skii-Mann Algorithm”, the authors discuss the convergence
analysis of the general inertial Krasnosel’skii-Mann algorithm [13] with the
control conditions «, € [0,1], B, € (—00,0] and «, € [—1,0],
Bn € [0,400), respectively. Also, the convergence rate for the general
inertial Krasnosel’skii-Mann algorithm under mild conditions on the inertial
parameters and some conditions on the relaxation parameters, respectively, are
provided. Finally, authors give a numerical experiment that compares the choice
of inertial parameters.

In Chap. 5 “Digital Space-Type Fixed Point Theory and Its Applications”, which
is a survey paper, the author studies the fixed point property (FPP, for short) and
the almost fixed point property (AFPP, for short) for digital spaces whose structures
are induced by a digital graph in terms of the Rosenfeld model (or digital metric
space), the Khalimsky (K-, for short), or the (extended) Marcus-Wyse (M-, for
short) topology. Furthermore, the author investigates various properties of digital
isomorphic (or homeomorphic), digital homotopic, retract, and product properties
of the FPP and the AFPP.

In Chap. 6 “Existence and Approximations for Order-Preserving Nonexpansive
Semigroups over CAT (k) Spaces”, the author discusses the fixed point property for an
infinite family of order-preserving mappings which satisfy the Lipschitzian condition
on comparable pairs. The underlying framework of the main results is a metric space
of any global upper curvature bound « € R, i.e., a CAT (k) space. In particular,
the existence of a fixed point for a nonexpasive semigroup on comparable pairs is
proved. Further, the author proposes and analyzes two algorithms to approximate
such a fixed point.

In Chap. 7 “A Solution of the System of Integral Equations in Product Spaces via
Concept of Measures of Noncompactness”, the authors deal with the role of measures
of noncompactness and related fixed point results to study the existence of solutions
for the system of integral equations of the form
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xi(t) = a;(t) + fi(t, x1 (1), X2(8), -+, X (1))
gt xi (1), x2(0), -+, 0 (O) [0 (it 5, %1 (5), x2(8), -+, %, (5)))ds

forallt € Ry, x1,x,-+- ,x, € E = BC(R;) and 1 <i < n. Moreover, they
study a system of fractional integral equations when k; is defined in a fractal space.

In Chap. 8 “Fixed Points That Are Zeros of a Given Function”, the author
presents a discussion on (ordered) S- F-contractions in the setting of complete metric
spaces, with and without the ordered approach. S- F-contractions are generalizations
of (F, ¢)-contractions and 2 -contractions. These two types of contractions have
encountered a great success among the scientific community due to their versatility
and usefulness in overcoming different practical situations. A fundamental charac-
teristic of such a kind of contractions is the possibility to be hybridized with other
existing conditions to obtain control hypotheses with best performances.

In Chap. 9 “A Survey on Best Proximity Point Theory in Reflexive and Busemann
Convex Spaces”, the author presents some best proximity point theorems for Kannan
cyclic mappings in the setting of Busemann convex spaces which are reflexive. To
this end, the authors recall some results obtained in the framework of the fixed point
theory for Kannan self-mappings and generalize them to cyclic mappings in order to
study the existence of best proximity points. It is done from two different approaches.
The first one is based on a geometric property defined on a nonempty and convex
pair in a geodesic space called proximal normal structure, and the other one is done
by considering some sufficient conditions on the cyclic mappings. Also, the structure
of minimal sets for Kannan cyclic nonexpansive mappings is studied in this chapter.

In Chap. 10 “On Monotone Mappings in Modular Function Spaces”, the authors
deal with the existence and construction of fixed points for monotone nonexpansive
mappings acting in modular functions spaces equipped with a partial order or a graph
structure.

In Chap. 11 “Contributions to Fixed Point Theory of Fuzzy Contractive
Mappings”, the author proves some fixed point theorems for fuzzy contractive type
mappings in fuzzy metric spaces. The results presented in detail are selected to illus-
trate the direction research in the field has taken from the last six decades up to the
most recent contribution in the subject.

In Chap. 12 “Common Fixed Point Theorems for Four Maps”, the authors prove
some coincidence and common fixed point theorems for four mappings satisfying
Ciric type and Hardy-Rogers type (¢, F')-contractions on «-complete metric spaces.
They apply the main results to infer several new and old corresponding results in
ordered metric spaces and graphic metric spaces. The results also generalize some
results obtained previously. An example and an application to support these results
are also illustrated.

In Chap. 13 “Measure of Noncompactness in Banach Algebra and Its Application
on Integral Equations of Two Variables”, the authors introduce a class of measure
of noncompactness satisfying certain conditions. The obtained results are applied to
establish a few theorems on the existence of solution of integral equations in two
variables and also they give some examples to illustrate the results.
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In Chap. 14 “Generalization of Darbo-Type Fixed Point Theorem and Applica-
tions to Integral Equations”, the authors present a new notion of p-set contractive
mappings for two class of functions involving measure of noncompactness in Banach
space and Darbo-type fixed and n-tuple fixed point results. These results include
and extend the results of Falset and Latrach [Falset, J. G., Latrach, K.: On Darbo-
Sadovskii’s fixed point theorems type for abstract measures of (weak) noncompact-
ness, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 797-812]. The results are also
correlated with the classical generalized Banach fixed point theorems. Finally, these
results are applied to two different Volterra integral equations in Banach algebras.

In Chap. 15 “Approximating Fixed Points of Suzuki (¢, 8)-Nonexpansive
Mappings in Ordered Hyperbolic Metric Spaces”, the authors discuss the class of
monotone («, §)-nonexpansive mappings and prove that they have an approximate
fixed point sequence in partially ordered hyperbolic metric spaces. They also prove
A and strong convergence of the C R-iteration scheme.

In Chap. 16 “Generalized J S-Contractions in b-Metric Spaces with Application
to Urysohn Integral Equations”, the authors deal with the notion of a-G-J S-type
contractions for two pairs of self-mappings in b-metric spaces. Coincidence points,
common fixed points, their uniqueness as well as periodic points are studied for these
mappings under a-compatible and relatively partially «-weakly increasing condi-
tions on a-complete b-metric spaces. The results are verified through an example
in order to check their effectiveness and applicability. Also, the results are used to
obtain the existence of solutions for a system of Urysohn integral equations.

In Chap. 17 “Unified Multi-tupled Fixed Point Theorems Involving Monotone
Property in Ordered Metric Spaces”, the authors introduce a generalized notion of
monotone property and prove some results regarding the existence and uniqueness
of multi-tupled fixed points for nonlinear contraction mappings satisfying monotone
property in ordered complete metric spaces. The main results unify several classical
and well-known n-tupled fixed point results existing in literature.

In Chap. 18 “Convergence Analysis of Solution Sets for Minty Vector Quasivaria-
tional Inequality Problems in Banach Spaces”, the authors deal with the convergence
analysis of the solution sets for vector quasi-variational inequality problems of the
Minty type. Based on the nonlinear scalarization function, a key assumption (H},)
by virtue of a sequence of gap functions is obtained. The necessary and sufficient
conditions for the Painlevé-Kuratowski lower convergence and Painlevé-Kuratowski
convergence are also established.

In Chap. 19 “Common Solutions for a System of Functional Equations in
Dynamic Programming Passing Through the J C L R-Property in S,-Metric Spaces”,
the authors present a new concept of the joint common limit in the range property
in Sp-metric spaces and prove some common fixed point theorems by using the
J C L R-property in Sj-metric spaces without the completeness of S,-metric spaces.
As applications of these results, they show the existence of common solutions for a
system of functional equations in dynamic programming.

In Chap. 20 “A General Approach on Picard Operators”, the authors present the
recent investigations concerning the existence and the uniqueness of fixed points for
the mappings in the setting of spaces which are not metric with different functions of
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measuring the distance and in consequence with the various concepts of convergence
the sequences. In this way, they obtain the systematized knowledge of fixed point
tools which are in some situations more convenient to apply than the known theorems
with an underlying usual metric space. The appropriate illustrative examples are also
presented.

The editors would like to express their gratitude to the contributors who have
submitted chapters to this volume.

Jinju, Korea (Republic of) Yeol Je Cho
Riyadh, Saudi Arabia Mohamed Jleli
Aligarh, India Mohammad Mursaleen
Riyadh, Saudi Arabia Bessem Samet

Palermo, Italy Calogero Vetro
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Chapter 1 ®)
The Relevance of a Metric Conditionona |4
Pair of Operators in Common Fixed

Point Theory

A. Petrusel and I. A. Rus

Abstract Let (X, d) be acomplete metric space and f, g : X — X be two operators
satisfying some metric conditions on f and g. We denote by F, the fixed point set
of f. In this paper, we will study the following problems.

I. What are the metric conditions on f and g which imply that all the following
conclusions hold?

1. Fpn = Fgn = {x*} for each n € N*;
2. for each xy € X, the sequence (x,),cy defined by

Xon = ()" (x0),  X2ug1 = f(x24), Vn >0,

converges to x* € X;
3. for each yy € X, the sequence (y,),cy defined by

v = (f8)"0),  Yans1 = gam), Yn >0,

converges to x* € X;
4. for each xy € X, the sequence (f"(xg)),en converges to x* € X;
5. for each xy € X, the sequence (g" (x¢)),en converges to x* € X.

II. Under which assumptions does the data dependence phenomenon for the com-
mon fixed point problem hold? Other problems, such as well-posedness, Ostrowski
property and Ulam-Hyers stability for the common fixed point problem are also
considered.

Keywords Common fixed point - Weakly Picard operator - Well-posedness *
Ostrowski property + Ulam-Hyers stability + Open problem
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2 A. Petrugel and I. A. Rus

1.1 Introduction and Preliminaries

1.1.1 The Purpose of the Paper

Let X be anonempty set and f, g : X — X be two given operators. We consider the
following fixed point equation for f:

x = f(x). (1.1)

We denote by F the fixed point set of f,i.e., Fy:={x € X | f(x) = x}.
In the same context, we can consider the common fixed point equation for f and
g as follows:

x = f(x) =g). (1.2)

We denote by C F P( f, g) the common fixed point set of f and g, i.e.,

CFP(f,g)={xeX|x=f(x) =g}

Notice that CFP(f, g) = Fy N F.

Let (X, d) be a complete metric space and f, g : X — X be two operators satis-
fying some metric conditions on f and g. We will denote by f” the nth iterate of f,
ie., f"= fo fo---o f (n-times). In this paper, we will study the following two
problems.

I. What are the metric conditions on f and g which imply that all the following
conclusions hold?

(1) Fpn = Fgn = {x*}, forn € N¥;
(2) for each x( € X, the sequence (x,),cn defined by

Xon = (&) (x0),  Xong1 = f(x20)

converges to x* € X;
(3) for each yy € X, the sequence (y,),en defined by

yan = ()" 0)s  Yang1 = 8(y2n)

converges to x* € X;
(4) for each x( € X, the sequence (f"(xp)),en converges to x* € X;
(5) for each x( € X, the sequence (g" (xp)),en converges to x* € X.

I1. Under which assumptions does the data dependence phenomenon for the common
fixed point problem hold?
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The structure of this paper is as follows:

. Introduction and preliminaries;

. A variant of Kannan’s common fixed point theorem: a new research direction;
. Pairs of operators on a set endowed with two metrics;

. Contraction pairs of operators on ordered metric spaces;

. Pairs of operators on R -metric spaces;

. Data dependence for the common fixed point problem;

. Other problems and research directions.

~N N B W N =

1.1.2 Notations

In this paper, we use the usual notations and symbols in Nonlinear Analysis.

Throughout this paper, N stands for the set of natural numbers, N* is the set of
natural numbers except 0, while R is the set of all real numbers. We also use the
same symbol < on R” for the component-wise ordering.

Let X be a nonempty set. A mapping d : X x X — R is called an R} -metric
on X if all the classical axioms of the metric are fulfilled, with respect to the above-
mentioned partial ordering. A nonempty set X endowed with such a vector-valued
metricd : X x X — R is called a generalized metric space.

The notions of convergent sequence, Cauchy sequence, completeness, open and
closed balls are defined in a similar way to the case of metric spaces.

We denote by .#,, » (R;) the set of all m x m matrices with positive elements,
by I, the identity m x m matrix and by O,, the null m x m matrix.

Definition 1.1 A square matrix A € .#,, » (R;) is said to be convergent to zero if
A" —> O, asn — oo.

A classical result in matrix analysis is the following theorem (see [47]).
Theorem 1.1 Let A € M, R,). The following assertions are equivalent:

(1) A is convergent to zero;
(2) The spectral radius p(A) of A is strictly less than 1;
(3) The matrix (I,, — A) is non-singular and

Un =AD" =L +A+- + A+

(4) The matrix (I,, — A) is non-singular and (I,, — A)~" has non-negative elements.
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1.1.3 Picard Operators

Itis well known that Banach’s contraction principle asserts that any k-contraction f :
X — X onacomplete metric space (X, d) has a unique fixed point. If the contraction
condition

d(f(x), f(y)) <kd(x,y), V(x,y) € X x X

holds (for some k €]0, 1[) on the graphic of the operator, i.e.,

d(f(x), f7(x)) < kd(x, f(x)), Vx € X,

then the operator is called a graphic k-contraction.
A continuous graphic k-contraction in a complete metric space (X, d) has at least
one fixed point.

These two mathematical phenomena gave rise (see [36, 39]) to the following very
important abstract concepts:

If (X, d) is a metric space, then, by the definition, f is a weakly Picard operator
if, for each x € X, the sequence (f"(x)),en converges in X and its limit x* (which
may depend of x) is a fixed point for f. This definition generates a set retraction
givenby [ : X — Fp, f®x) = nli)ngo fr(x).

For example, a continuous graphic k-contraction on a complete metric space is a
weakly Picard operator.

By the notation F; = {x*}, we understand that f has a unique fixed point denoted
by x*. A weakly Picard operator with a unique fixed point is, by the definition, a
Picard operator. Notice that a k-contraction on a complete metric space is a Picard
operator. A Picard operator for which there exists ¢ > 0 such that

d(x,x*) <cd(x, f(x)), Vx € X,

is called a c-Picard operator.

It is easy to see that a k-contraction on a complete metric space is a ﬁ-Picard
operator. For some more details on the Picard and weakly Picard operator theories,
see also [9, 43] and others.

1.1.4 Graphic Contractions That are Picard Operators

Let (X, d) be a complete metric space and f : X — X be a graphic k-contraction.
If f has a closed graph, then f has at least one fixed point. In general, we cannot
say too many things about the fixed point set of a graphic contraction. Actually, for
each Y C X, there exists a graphic contraction f : X — X such that 'y =Y. For
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a better understanding of the results of this work, the following theorems are very
useful.

Theorem 1.2 Let (X, d) be a metric space and [ : X — X be an operator. We
suppose that

(a) there exists k €]0, 1] such that
d(f(x), f7(x)) < kd(x, f(x)), Vx € X;
(b) Fr={x*};
© f*'(x)—>x*asn— oo, Vx € X.
Then the following conclusions hold:

) d(x,x*) < ﬁd(x, f(x)) foreveryx € X, i.e, fisa ﬁ-Picard operator;

2) ifk < % then d(f(x), x*) < ﬁd(x,x*) for every x € X, i.e, f is a quasi-
contraction.

Proof (1) We have

d(x,x*) <d(x, f(X)) +d(f(x), f2x) +---+d(f"(x), x")
(I4k+-+ k" Dd(x, £f) +d(f"(x), x")

1
Tl f@))+ d(f"(x), x*).

IA

IA

Letting n — oo, we obtain the first conclusion.
(2) Suppose that k < % Then, by (1), we obtain

d(f(x),x") = ﬁd(f(xx ) < lkad(x, f @)

k
= 1T—% (d(X, x*) +d(f (x), X*)) .
Thus we have

d(f(x),x*) < d(x,x"), Vx e X.

1 -2k
This completes the proof.

Theorem 1.3 Let (X, d) be a metric space and f : X — X be a c-Picard operator.
Then the fixed point problem for f is well-posed, i.e., Fy = {x*} and for any sequence
(Up)nen in X with d(uy, f(u,)) — 0, we have that u, — x* asn — oo.

Proof Let (u,),en be a sequence in X such that

d(uy,, f(u,)) > 0 asn — oo.
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Since f is a c-Picard operator, we have

d(u,, x*) < cd(u,, f(u,)), VneN.
Letting n — oo, we get that u,, — x*. Hence the fixed point problem for f is well-

posed. This completes the proof.

Theorem 1.4 Let (X, d) be ametric spaceand [ : X — X be ak-quasi-contraction
such that Fy = {x*}. Then f has the Ostrowski property, i.e., Fy = {x*} and for any
sequence (Vy)nen in X withd (Vy41, f(v,)) — 0, we have that v, — x* asn — oo.

Proof Let (v,)qen be a sequence in X such that
d(pa1, f(v,)) => 0 asn — oo.
Since f is a k-quasi-contraction, we have

d(anrlv X*) = d(anrlv f(vn)) + d(f(vn)v X*)
f d(vn-H ) f(vn)) + kd(vna x*)

< das1, £ (W) + kd(y, x*) + - - + K"d(v1, f(v0)) +K"d (s, x¥).
By the Cauchy-Toeplitz lemma, it follows that v, — x* as n — oo, which proves
that f has the Ostrowski property. This completes the proof.

Remark 1.1 For the well-posedness of the fixed point problems and the Ostrowski
property of an operator, see [9, 41-43]. For an extensive study of the fixed point
equation with graphic contractions, see [29].

1.2 A Variant of Kannan’s Common Fixed Point Theorem:
A New Research Direction

In 1969, Kannan [22] proved the following common fixed point result.
Theorem 1.5 Let (X, d) be a complete metric space and f,g: X — X be two

operators for which there exists o €]0, %[ such that

d(f(x),g(y) =ald(x, f(x))+d(y,g(y)], VYx,yeX.

Then, f and g have a unique common fixed point, i.e., there exists a unique x* € X
such that x* = f(x*) = g(x™).

There are many variants and generalizations of Kannan’s theorem (see [17, 31-33,
38, 43, 45].
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Following some ideas from [34, 35], we present now a new variant of this theorem.

Theorem 1.6 Let (X,d) be a complete metric space and f,g: X — X be two
operators for which there exists a €]0, %[ such that

d(f(x),g(y)) =ald(x, f(x))+d(y,g(y)], Vx,yeX. (1.3)
Then we have the following conclusions:

(@) Fr=F,={x"}
(b) for each xy € X, the sequence (x,)nen defined by

Xon = (g o f)”(x()), Xon+1 = f(XZn)a Vn € N»

converges to x* as n — 00;
(c) foreach yy € X, the sequence (y,)nen defined by

Y = (f08)" (), Yum+1 =80wm), VneN,

converges to x* as n — oo;
(d) the operators [ and g are graphic contractions,

(e) the operators f and g are quasi-contractions;
1—

I 2a
(g) the fixed point problem for f and the fixed point problem for g are well-posed;

(h) the operators [ and g have the Ostrowski property.

(f) the operators f and g are -Picard operators;

Proof (a) Note that Fy = F,. Indeed, let, for example, x* € Fy. Then, by (1.3), we
have
d(x*, g(x")) < ad(x*, g(x")).

Thus x* € F,. Also, we have Card(F; N F,) < 1. Indeed, let x*, y* € Fy N F,.
Then, by (1.3), we have

d(x*, y") =d(f(x"), g(x") < a [dx*, f(x") +d(y*, g(y)] =0.

Hence x* = y*.
(b) Consider x¢ € X arbitrarily chosen and the sequence (x,),cn as in (b). Then,
since

d(x1, x2) =d(f(x1), g(x1) < ald(xo, x1) +d(x1, x2)],

we have o
d(x1,x) < md(xo, x1).

By induction, we get
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d(Xp, Xpt1) < <1L> d(xo, x1), Vn eN. (1.4)
—

By the above relation, using a classical approach, it follows that (x,),cn is a Cauchy
sequence. Let x* € X be its limit. We have

d(x*, f(x™) < d(x", x2,) + d(x20, f(x7))
< d(x*, -x2n) + d(g(x2n71» f(x2n))
< d(x*, x) +a [dx*, f(&*) 4+ d(xau-1, x20)] -

Letting n — oo, we get d(x*, f(x*)) = 0. Moreover, if we denote 8 := ﬁ <1,
by (1.4), we obtain

n

d(xg,x1), VneN, p e N*,

d(xns xn+p) S 1

Letting p — oo and taking n = 0, we obtain the following retraction-displacement

relation:

1 l—«
d(xo, x1) =
1-8 1 -2«

d(xg, x*) <

d(xo, f(x0)). (1.5)

By a similar procedure, we can show that the sequence (y,),cn converges to x* as
n — oo and a similar retraction-displacement relation holds.

(d) We prove that f is a graphic contraction. For arbitrary x € X, we have
d(f2(x), f(0)) < d(f2(x), g(x™) +d(f (x), g(x*))
= o [d(F200, () + A, g (@)
+a [d(x, f(x) +d(x*, g(x*))]
= o [d(/2 @), F0) +dx, F)].

Thus we have

d(f2(x). f(x)) < %d(x, £,

which proves that f is a graphic contraction.
(e) We have

d(f(x),x*) <d(f(x), g(x") < ad(x, f(x)) < a[dx,x*)+dx*, f(x)].

Hence o
d(f(x),x*) < l—d(x,x*),Vx €X.
-«
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This shows that f is a quasi-contraction. Since the condition (1.3) is symmetric with
respect to f and g, we get that g is also a quasi-contraction.

(f) We prove now that f is a Picard operator. By (d), using the graphic contraction
principle (see [29]), it follows that, for every x € X, the sequence (f"(x)),en 18
convergent. Denote by x7} its limit. Then we can prove that x} = x*. Indeed, we
have

d(xy, x™) <d(xy, f"(0) +d(f" (x), §(x*))
<d(xj, f"@) +ad(f" (@), f(x), ¥neN.

Letting n — o0, we get that x} = x*.
(g) It follows from (f), while (h) follows from (e). This completes the proof.

By the above theorem, the following open problems arise.

Problem A. There exists, in the literature, a large class of metric conditions on a pair
of the operators f, g : X — X. We recall here some of these conditions:

(1) [Chatterjea (1979)] there exists a €]0, %[ such that

d(f(x),g(y)) = ald(x, g(y)) +d(y, f())],

for every x, y € X;
(2) [Rus (1973)] there exist «, B, ¥y € Ry with @ + 28 + 2y < 1 such that

d(f(x),g(y) <ad(x,y)+Bldx, f(x))+d(y, gD+ ydx, g(») +d(y, fFO))],

for every x, y € X;
(3) [Ciri¢ (1974)] there exists @ €]0, 1[ such that

1
d(f(x), g(y) = amax{d(x, y), d(x, f(x)),d(y, g(y)). 3 [d(x, () +d(y, fF(x)],

for every x, y € X.

The problem is for which of the above conditions we can get similar conclusions
to those in Theorem 1.6.

Problem B. Let (X, d) be a metric space and f : X — X be an operator. It is known
that the following statements are equivalent:

(1) there exist o, B, y € Ry with @ + 28 + 2y < 1, such that
d(f(x), f(»)) edx,y)+Bldx, f(x)+dQy, fFON+yIdx, f(3)+d(y, f(x)]

forevery x, y € X.
(2) there exist o, B, v, 8, n, € Ry witha + 8+ y +8 +n < 1 such that

d(f(x), f(y) < ad(x,y)+ Bd(x, f(x)) +yd(y, f(¥) +8d(x, f(y)) +nd(y, f(x))
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for every x, y € X.

In the case of a pair of operators f, g : X — X, the condition

(2’) there exist «, 8, y,8,n, € Ry with « + 8+ y + 8 +1n < 1 such that, for
eachx,y € X,

d(f(x),g(y) <ad(x,y) + Bd(x, f(x)) +yd(y, g(y)) +8d(x, g(y)) +nd(y, f(x))

is more general than the condition:
(1) thereexista, B, y € Ry witha + 28 + 2y < 1suchthat, foreachx, y € X,

d(f(x), g(y) <ad(x,y) + pldx, f(x))+d(y, gD+ vy [d(x,g(») +d(y, f(xX)].

Notice also that all the conclusions of Theorem 1.6 can be obtained by the
assumption (1”). The problem is in which conditions on e, 8, v, 8, n, the assumption
(2”) implies the conclusions in Theorem 1.6.

Remark 1.2 For related results and applications in common fixed point theory, see
[2, 4,7, 23, 24, 26, 44, 48, 48, 49] and others.

1.3 Pairs of Operators on a Set with Two Metrics

In this section, we extend Theorem 1.6 to the case of a set endowed with two metrics.

We have the following results.

Theorem 1.7 Let X be a nonempty set, d, p be two metricson X and f, g : X - X
be two operators. Suppose that

(a) there exists a > 0 such that d(x, y) < ap(x, V), foreveryx,y € X;
(b) (X, d) is a complete metric space;

(¢c) the operators f, g : (X,d) — (X, d) are continuous,

(d) there exists a €]0, %[ such that

p(f(x),g(y) =alplx, f(x)+p(y,g(¥)], VYx,ye€X. (1.6)
Then we have the following conclusions:

(1) Fp=F,={x"};
(2) for each xy € X, the sequence (x,),en defined by

Xon = (g o f)n(xo), Xong1 = f(x22), Vn €N,

converges to x* with respect to the metric d as n — oo;
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(3) foreach yy € X the sequence (y,)nen defined by

v = (f08)" (), Yum+1 =8Wwm), VneN,

converges to x* with respect to the metric d as n — 00;
(4) the operators f, g : (X, p) — (X, p) are graphic contractions;
(5) the operators f, g : (X, p) = (X, p) are quasi-contractions;
(6) the operators [ and g are Picard operators with respect to d and p;

(7) the fixed point problem for f and the fixed point problem for g are well-posed
with respect to the metric p;

(8) the operators [ and g have the Ostrowski property with respect to p.

Proof (1)-(3) Similar to the proof of Theorem 1.6, condition (d) implies that Fy =
Fg and Card(Fy N Fg) < 1. The assumption (d) also implies that the sequences
(xn)nen and (y,)nen defined in (2) and in (3), respectively, are Cauchy sequences in
(X, p). By (a) and (b), the sequences are convergent in (X, d). By (c), it follows that
their limits are fixed points for f and g. Thus, Fy = F, = {x*}.

(4) and (5) follow in a similar way to the proof of Theorem 1.6.

(6) By the above considerations, it is obvious that f and g are Picard operators
in (X, p). By (a), f and g are Picard operators in (X, d) too.

(7) The conclusion follows by the fact that f and g are c-Picard operators in
(X, p).
Finally, (8) follows from (5). This completes the proof.

By the above result, the following problem arises.

Problem C. For which metric conditions in (X, p) do we obtain similar conclusions
as in Theorem 1.7?

Remark 1.3 For various Maia type theorems for pairs of operators, see [17, 31] and
others.

1.4 Contraction Pairs of Operators on Ordered Metric
Spaces

Let (X, <) be a partially ordered set. In this framework, we denote
Xoi={(x,y)e X xX:x <yory <ux},
[a,b] . ={x e X :a <x <Xb},

fora,b € X witha < b.
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If f: X — X, then the lower fixed point set and the upper fixed point set are
denoted by

L) =xeX: x=xfx)}, WUF)f:={xeX: f(x)=x},

respectively. If X, Y are two nonempty sets and f: X — X, g:Y — Y are two
mappings, then the Cartesian product of f and g, which is denoted by f x g :
X x Y — X x7Y,is defined by

(f x&)x,y) = (f(x), g(y), V(x,y)e X xY.

Also, we denote the set of all nonempty invariant subsets of f by

I(fy={YyrcX:f(Y)cCr}

We have the following common fixed point theorem for a pair of two operators.

Theorem 1.8 Let (X, d) be a complete metric space and < be a partial order on X.
Let f, g : X — X be two operators for which the following assumptions take place:

(a) there exists xo € X such that f(xo) € (LF)g U (UF),;
(b) there exists B €]0, %[ such that

d(f(x),g(y)) = Bld(x, f(x)) +d(y,g(y)], Y(x,y) € Xx; (1.7)

() X<el(fxg)and X< e€l(gx f);
(d) one of the following conditions is satisfied:
(dl) f or g has a closed graph;
or
(d2) if (Xp)nen is a sequence in X such that x, — x* as n — oo and
(Xn, Xnt1) € X< foreveryn € N¥, then at least one of the subsequences (X2, ) neN
or (Xop+1)nen has all the terms comparable to x*.

(1) Then there exists x* € X suchthatx* = f(x*) = g(x*),i.e., CFP(f,g) #
<.
(2) Additionally, if for any x,y € CFP(f, g), we have that (x,y) € X<, then
CFP(f,8) = {x"}.
Proof (1) Let xo € X such that f(xg) < g(f(xp)). For the reverse inequality, the
proof runs in a similar way. We denote x; := f(xg), x2 := g(x1), x3 := f(x2),
x4 = g(x3). In general, we have

Xop41 = f(x2n)s Xop42 = g(X2n+1), Vn e N.

Then, by (c), we get that (x,, x,+1) € X< for every n € N*. We have the following
estimations:
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L. For every n € N*, we have

d(Xont1, X2n42) = d(f (x20), §(X2n+41))
< Bd(xan, f(x20)) 4+ d(X2nt1, g (X2n41)) ]
= B [d(xon. X2n11) + d (X211, Xon12)] -

Thus we have 5
d(Xon41, Xopy2) < md(xzm Xon41)- (1.8)

I1. For every n € N*, we have

d(X2n 42, X2n43) = d(§(X2041), f (X2042))
< BdGani2. f(xani2) +d (i1, §(x2n11))]
= B [d(xan42, Xon43) + d (Xoug1, Xons2) ] -

Thus we have

B
d(xap425 X2n+3) < md(x2n+lvx2n+2)~ (1.9)
By (1.8) and (1.9), we get
B
A0ins1,342) = =5 d G Xas), Vi €N (1.10)
Since o := % < 1, by a classical approach, we obtain that the sequence (x,),cn 1S

Cauchy in X. By the completeness of the metric space (X, d), there exists x* € X
such that x,, — x* asn — oo.

Next, we show that x* € CFP(f, g). If f or g has a closed graph, then the
conclusion follows by the relations x,,+1 := f(x2,) and x5, 42 := g(x2,41) for every
n € N.

If (d2) takes place, then we first notice that

d(x*, f(x") < d(x*, x2p42) +d(x2042, f(X7))
< d(x*, xon42) + d(g(x2041), f(x7))
< d(x*, xon42) + B [d(x*, f(X) 4 d(x2nr1, §(X2n41)) ]
= d(x*, Xonq2) + B[d(x*, f(x) +d(x2up1, X2012) ]

< d(x*, xong2) + B[dF, fF(x) +@”d(x1, x2)] .

Thus we have
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dx*, f(x™) < L [d(x*, xon42) + ﬁozz"d(xl,xz)] — 0 asn — oo.

1-8

Hence x* € Fy. Now, let us observe that
d(x*, g(x") =d(x*, g(x*) < B[dx*, fF(x¥) +d(x*, g(x*)] = Bd(x*, g(x¥)).

Since 8 < %, we obtain that d(x*, g(x*)) = 0. Hence x* € F,. As a conclusion, we
proved that x* € CFP(f, g).

(2) Now, if x*, y* are two common fixed points, then (x*, y*) € X< and so we
have

d(x*,y") =d(f(x*), g(y") = B[dx*, f(x*) +d(y*, g(y)] =0,
which proves the uniqueness of the common fixed point. This completes the proof.

Remark 1.4 For the fixed point theory in ordered metric spaces, see [28] and the
references therein. See also [46] for a recent survey.

1.5 Pairs of Operators on R’?-Metric Spaces

Let (X, d) be a generalized metric space with d(x, y) € RY.

The following result is an extension of Theorem 1.6 for pairs of operators defined
on such generalized metric spaces.

Theorem 1.9 Let (X, d) be a complete generalized metric space (with d(x, y) €
R%) and f,g: X — X be two operators, for which there exists A € My, ,(Ry)
such that the matrices A and A(I,, — A)~" are convergent to zero and the following
property holds:

d(f(x),g(y) = Ald(x, f(x)) +d(y, g, Vx,yeX. (1.11)
Then we have the following conclusions:

(1) Fr=F,={x"};
(2) for each xy € X the sequence (x,),cN defined by

Xon = (g o f)”(x())a Xon+1 = f(XZn)a Vn e N»

converges to x* as n — 00;
(3) foreach yy € X the sequence (y,)nen defined by

yon = (f08)"(3), Yoam+1 =&(wm), YneN,



1 The Relevance of a Metric Condition on a Pair of Operators ... 15

converges to x* as n — 00;
(4) the operators f and g are graphic contractions;
(5) the operators f and g are quasi-contractions;
(6) the operators [ and g are Picard operators;
(7) the fixed point problem for f and the fixed point problem for g are well-posed;
(8) the operators [ and g have the Ostrowski property.

Proof (1) Notice first that Fy = F,. Indeed, let, for example, x* € F;. Then, by
(1.11), we have

d(x*, g(x") =d(f(x"), g(x") < Ad(x", g(x")) < --- < A"d(x™, g(x™)).

Since A" — 0 as n — o0, we obtain that x* € F,. We also have that Card(Fy N
Fg) < 1.Indeed, let x*, y* € Fy N F,. Then, by (1.11), we have

d(x*, y*) =d(f(x"), g(x*) < A[d(x*, f(x™) +d(y*, g(y" )] = 0.

Hence x* = y*.

(2) For the second conclusion, consider xo € X arbitrarily chosen and the
sequence (x,),en constructed as in (2). Notice that the matrices A and (I — A)~!
commute. Then, since

d(x1, x0) =d(f(x1), g(x1)) < Ald(xo, x1) +d(x1, x2)],

we have
d(x1,x2) < AL, — A)~'d(xg, x1).

Denote B := A(l,, — A)~'. Then B is convergent to zero. By induction, we get
d('xnv xl’l+l) S Bnd('x07 xl)9 Vn e N'

By the above relation, using a classical approach, we get that the sequence (x,),eN
is Cauchy. Let x* € X be its limit. We have

d(x*, f(x*) < d(x", x2n) +d (X2, f(x7))
= d(x*9 x2n) + d(g(x2n71)v f(-x2n))
< d(r", x0) + A[dG", FGD) +d (ki %20).] -

Lettingn — oo, we getd(x*, f(x*)) = 0. By a similar procedure, we can show that
the sequence (¥, ).en defined in (3) converges to x* as n — o0.

(4) We prove that f is a graphic contraction. For arbitrary x € X, we have
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d(f (). F) = (20, g6 +d(F (). g(6)
= A[d(200. () +dGF gD |+ A, F0) +d, g ()]

= A[d(F20, f0) +dCx, f0)].

Thus we have

d(f2(x), f(x) < AL, — A~ 'd(x, f(x)),

which proves that f is a graphic contraction.
(5) We have

d(fx), x*) =d(f(x), g(x") < Ad(x, f(x)) < A[d(x,x*) +d(x*, f(x)].
Hence we have
d(f(x), x*) < AL, — A)~'d(x, x*), VxeX.

This shows that f is a quasi-contraction. Since the condition (1.11) is symmetric
with respect to f and g, we get that g is also a quasi-contraction.

(6) We prove now that f is a Picard operator. By (4), using the graphic contraction
principle (see [27]), it follows that, for every x € X, the sequence (f"(x))en is
convergent. Denote by x7 its limit. Then we can prove that x} = x*. Indeed, we
have ' '

d(xy, x*) <d(x}, f*(x) +d(f"(x), g(x"))
<d(x}, f"(0)) + Ad(f" (%), f"(x)), ¥neN.
Letting n — oo, we get that x} = x*.
(7) follows from (6), while (8) follows by (5). This completes the proof.
In connection to the above results, we present now some open questions.

Problem D. Let (X, d) be a complete generalized metric space (d(x, y) € RY) and
f» g : X — X. We suppose there exist two matrices A, B € 4, »(R;) such that

d(f(x),8(y)) = Ad(x, f(x)) + Bd(y,g(y)), Vx,y€X.

In which conditions on A and B do we have similar conclusions as in Theorem 1.9?
See the papers [35, 43].

Problem E. Another open question is to extend Theorem 1.6 to a generalized metric
spaces (X, d) with d(x, y) € s(R;), where s(R}) is the space of infinite sequences
of real non-negative numbers.

See the papers [15, 43].
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Problem F. A more general problem is to extend Theorem 1.6 to cone metric spaces.

See the papers [3, 30, 38, 43].

1.6 Data Dependence for the Common Fixed Point Problem

In this section, we discuss the data dependence phenomenon for the common fixed
point problem with a pair of operators. More exactly, if (X, d) is a metric space and
f, &, f,&: X — X are the operators such that

d(f(x), fx) <m, d(gx), §(x) <m, VxeX,

the problem is to study the distance between the fixed points of the pairs f, g and

/.8

Now, we have the following result.

Theorem 1.10 Let (X, d) be a complete metric space and f, g : X — X be two
operators for which there exists o €]0, %[ such that

d(f(x),g(y) =ald(x, f(x))+d(y,g(y)], Vx,yeX.

Let f, g : X — X be two operators such that Fy # @, Fy # @& and there exists
N1, N2 > 0 satisfying the relations

d(f(). f) <m. d(g(),§) <m, VxeX.
Then Fy = F, = {x*} and the following estimations hold:

dx,x) <A +a)n, du,x*)<A+a)n,, Vxe Fi, u € Fg.

l—a
12«

Proof Since f and g are
1.6.

-Picard operators, the conclusions follow by Theorem

Remark 1.5 Since, in the conditions of Theorem 1.10, f and g are c-Picard opera-
tors, we obtain that the fixed point equations x = f(x) and x = g(x) are Ulam-Hyers
stable. Recall that, a fixed point problem x = f(x),x € X (where f : X — X) is
said to be Ulam-Hyers stable if there exists ¢ > 0 such that, for every ¢ > 0 and any
z € X with d(z, f(2)) < ¢, there exists x* € Fy withd(z, x*) <c-e.
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1.7 Other Problems

1.7.1 Common Fixed Point Set as a Fixed Point Set

Let X be a normed space, Y be a nonempty, closed and convex subset of X, and let
f, g :Y — X be two operators. In which conditions on the above data does there
exist an operator 4 : ¥ — X such that F;, = Fy N F,?

Commentaries. (1) An answer to the above problem is the following well-known
result:

Theorem 1.11 (Bruck’s Theorem) We suppose that

(a) X is a strictly convex Banach space and Y is a closed and convex subset of X;
(b) f,g:Y — X are nonexpansive;
() FrNFy #0.

Then, for each A €]0, 1[, we have
Fy, = Fy N Fy,
where h; = Af + (1 — A)g.

(2) Let Y be a nonempty, compact convex subset of X and f, g : ¥ — X be two
nonexpansive operators such that Fy N F, # &. By Schauder’s fixed point theorem,
we have that Fj,, # & forevery A €]0, 1[. Thus, in general, Fj,, is nonempty, but this
does not imply that Fy N F, # &.

(3) Another problem is to consider, instead of the assumption (c) in Bruck’s
theorem, the following condition:

@) fX)CY, g¥)CY, Fr #9, Fe #9, fog=gof.

(4) A more general variant of our problem is the following: Let X be a Banach
space, Y be a nonempty and closed subset of X and G : Y x Y — Y be such that

(@) G(x,x) =xforeveryx € Y;
b Gx,y)=x = y=ux;
(© Glx,y)=y=x=y.

Let f, g : Y — Y be two operators. In which conditions do we have that

G(f(x),8(x)) =x = x € Fy N Fy?

See the papers [1, 5, 6, 8, 11-14, 21, 25, 33, 36, 40] and others.
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1.7.2 Lipschitz Pairs on Compact Convex Subsets

Let X be a Banach space, Y be a nonempty, compact and convex subset of X,
and f, g : Y — Y be two operators with f o g = g o f, for which there exists L ¢,
L, > 0 such that

If )= FOI = Lyllx =yl 1g(x) =gl < Lglix — yll, Vx,yeY.

In which conditions on L s, L, do we have that Fy N F, # &7
In this direction, the following result is well known:

Theorem 1.12 (De Marr’s Theorem) Let I C R be a compact interval and f, g :
I — I two commuting mappings having the Lipschitz property with constants L ¢
and L, respectively. If LyL, — Ly — L, < 1, then Fy N\ Fy # &.

See the papers [10, 17-20, 33, 37] and others.

1.8 Conclusion

In this paper, we proved existence, uniqueness and approximation theorems for the
common fixed point problem with single-valued operators in various metric-type
frameworks. Then, some stability results (data dependence of the common fixed
point on the operators’ perturbation, well-posedness, Ostrowski’s property and Ulam-
Hyers stability) for the common fixed point problem are presented. Finally, other open
questions and new research directions are pointed out.

Author’s contribution. All authors contributed equally and significantly in writ-
ing this paper. All authors read and approved the final manuscript.
Conflicts of interest. The authors declare no conflict of interest.
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Chapter 2 ®)
Some Convergence Results of the K* st
Iteration Process in CAT(0) Spaces

Aynur Sahin and Metin Basarir

Abstract In this paper, we prove some strong and A-convergence theorems of the
K* iteration process for two different classes of generalized nonexpansive mappings
in CAT(0) spaces.

Keywords CAT(0) space - Iteration processes * A-convergence * Strong
convergence * Nonexpansive mappings

2.1 Introduction

A CAT(0) space X is a metric space which it is geodesically connected and every
geodesic triangle in X is at least as “thin” as its comparison triangle in the Euclidean
plane (see [1, p. 159]). The term “CAT” is due to Gromov [2] and it is an acronym
for E. Cartan, A. D. Alexanderov, and V. A. Toponogov. The CAT(0) spaces play a
fundamental role in various branches of mathematics (see Bridson and Haefliger [1]
or Burago et al. [3]). Moreover, there are applications in computer science, biology
and graph theory as well (see, e.g., [4—6]). Fixed point theory in CAT(0) spaces was
first studied by Kirk [7, 8]. He showed that every nonexpansive mapping defined on
abounded closed convex subset of a complete CAT(0)space always has a fixed point.
Since then, the fixed point theory in CAT(0) spaces has been rapidly developed and
many papers have appeared (see, e.g., [9-15]).

Let C be a nonempty subset of a metric space (X, d) and T be a self-mapping on
C. A point p € C is called a fixed point of T if Tp = p and F(T') denotes the set of
all fixed points of T. The mapping T is called nonexpansive if
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d(Tx,Ty) <d(x,y), Yx,y eC,
and quasi-nonexpansive if
d(Tx,p) <d(x,p), YVxeC, pe F(T).

The mapping T is said to be uniformly L -Lipschitzian if there exists a constant
L > 0 such that

d(T"x,T"y) < Ld(x,y), Vx,yeC,n=>1.

In 2006, Alber et al. [16] introduced the notion of total asymptotically nonexpan-
sive mappings as follows:

Definition 2.1 (see [16, Definition 1.4]) Let (X, d) be a metric space and C be a
subset of X. A mapping 7 : C — C is called rotal asymptotically nonexpansive it
there are non-negative real sequences {k{"} and {k®} foreachn > 1 withk(V, k? —
0 as n — oo and strictly increasing and continuous function ¢ : [0, o0) — [0, c0)
with ¢ (0) = 0 such that

d(T"x, T"y) <d(x,y) +kVpd(x, y) + kP, Vx,yeC. 2.1)

Remark 2.1 (see [16, Remark 1.5]) If ¢ (1) = A, then the inequality (2.1) takes the
form
d(T"x, T"y) < (1 +kMyd(x, y) + k2, Vx,y e C.

In addition, if £ = 0 foralln > 1, then total asymptotically nonexpansive map-
pings coincide with asymptotically nonexpansive mappings defined by Goebel and
Kirk [17]. Ifk{" = 0 and k® = Oforalln > 1, then we obtain the class of uniformly
1-Lipschitzian mappings from (2.1).

Theorem 2.1 (see [18, Corollary 3.2]) Let (X, d) be a complete CAT(0) space and
C be a nonempty bounded closed convex subset of X. If T : C — C is a continuous
and total asymptotically nonexpansive mapping, then T has a fixed point.

In 2008, Suzuki [19] introduced a new condition on a mappings, called condition
(C), which is weaker than nonexpansiveness. A mapping 7 : C — C is said to satisfy
the condition (C) if, forall x, y € C,

1
Ed(x, Tx) <d(x,y) implies d(Tx, Ty) < d(x, y).

The mapping T satisfying the condition (C) is called Suzuki generalized nonex-
pansive mapping.

In 2011, Garcia-Falset et al. [20] introduced a new generalization of nonexpansive
mappings which in turn includes Suzuki generalized nonexpansive mappings.
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Definition 2.2 (see [20, Definiton 2]) Let T be a mapping defined on a subset C of
a metric space (X, d) and u > 1. Then T is said to satisfy the condition (E M) if, for
allx,y e C,

dx,Ty) < ud(x, Tx) +d(x,y).

The following example shows that the class of mappings satisfying the condition
(E u) is larger than the class of Suzuki generalized nonexpansive mappings.

Example 2.1 (see [20, Example 1]) In the space C ([0, 1]), consider the set
K:={xeC(0,1]):0=x(0) <x() <x(1)=1}.
Take a function g € K and generate a mapping F,, as follows:
Fo: K — K, Fox(t) == (gox)(t) = g(x(1)).

Then the mapping F, satisfies the condition (E), but it fails to be a Suzuki gener-
alized nonexpansive mapping.

Proposition 2.1 (see [20, Proposition 1]) Let T : C — C be a mapping satisfying
the condition (E /4) on C. If T has some fixed point, then T is quasi-nonexpansive.

Recently, Ullah and Arshad [21] introduced a new iteration process called K*
iteration process in Banach spaces as follows:

x| € C,

Zn = (1= Bu)xu + BT X,

Yo =TI —ay)z, +a,Tz,),
Xpyr1 = Ty,, Vn>1.

With the help of a numerical example, they showed that this iteration process is
faster than the Picard S-iteration [22] and S-iteration [23] for Suzuki generalized
nonexpansive mappings.

In this paper, we study the convergence of the K* iteration process in CAT(0)
spaces. This paper contains four sections. In Sect. 2.2, we recollect basic definitions
and a detailed overview of the fundamental results. In Sect. 2.3, we prove the strong
and A-convergence theorems of the K* iteration process for the class of mappings
satisfying the condition (E M). In Sect. 2.4, we prove the strong and A-convergence
theorems for total asymptotically nonexpansive mappings by using the K* iteration
process.
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2.2 Preliminaries and Lemmas

Let (X, d) be a metric space. A geodesic path joining x € X to y € X (or, more
briefly, a geodesic from x to y) is a map ¢ from a closed interval [0,/] C R to
X such that ¢(0) = x, c(l) =y and d(c(t), c(t')) = |t —t'| for all £, " € [0,]]. In
particular, ¢ is an isometry and d(x, y) = [. The image of c is called a geodesic (or
metric) segment joining x and y. If it is unique, this geodesic segment is denoted
by [x, y]. The space (X, d) is called a geodesic space if every two points of X are
joined by a geodesic. Furthermore, X is called uniquely geodesic if there is exactly
one geodesic joining x to y for each x, y € X. A subset Y C X is said to be convex
if Y includes every geodesic segment joining any two of its points.

In a geodesic metric space (X, d), a geodesic triangle A(x, x;, x3) consists of
three points x1, x», x3 in X (the vertices of A) and a geodesic segment between each
pair of vertices (the edges of A). A comparison triangle for the geodesic triangle
A(xy, X2, x3) in (X, d) is a triangle A = A(X], X2, X3) in the Euclidean plane E?
such that dg2 (X;, X ;) = d(x;, x;) foreach i, j € {1, 2, 3}.

Comparison Axiom. Let (X, d) be a geodesic metric space and A be a comparison
triangle for a geodesic triangle A in X. Then A is said to satisfy the CAT(0) inequality
if

d(x,y) =dp(X,)

for all x, y € A and all comparison points X,y € A.

A geodesic metric space is called a CAT(0) space [1] if all geodesic triangles of
appropriate size satisfy the comparison axiom. A complete CAT(0) space is called
“Hadamard space”.

If x, y1, ¥, are points in CAT(0) space and yy is the midpoint of the segment
[v1, ¥2], then the CAT(0) inequality implies

2 _ 1 2 1 » 1 2
d(x,y0)” < zd(x, y)© + Ed(x’ ) - Zd()’u y2)~. ((CN))
This is the (CN) inequality of Bruhat and Tits [24]. In fact, a geodesic metric space
is a CAT(0) space if and only if it satisfies the (CN) inequality (see [1, p.163]).

The following lemmas are some elementary facts about CAT(0) spaces:

Lemma 2.1 Let X be a CAT(0) space. Then we have the following:

(1) (see[10,Lemma2.1(iv)]) Forallx,y € X andt € [0, 1], there exists a unique
point z € [x, y] such that

d(x,z)=td(x,y)andd (y,z) = (1 —t)d(x, y). 2.2)

The notation (1 — t)x @ ty is used for the unique point 7 satisfying (2.2).
(2) (see [10, Lemma 2.4]) Forall x,y,z € X and t € [0, 1], one has
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d((1-txdty,z) < (1 -0d(x,z)+1td(y, 2).

Lemma 2.2 (see [25, Lemma 3.2]) Let X be a CAT(0) space, x € X be a given
point and {t,} be a sequence in [b, c] with b,c € (0,1) and 0 < b(1 —¢) < % Let
{x,} and {y,} be any sequences in X such that

limsup d (x,,x) <r, limsupd (y,,x) <r, lim d((1 —1t)x, ®t,y,,x)=r
n—oo n— o0 n—oo

for some r > 0. Then lim,,_, oo d (x,, y,) = 0.

Now, we give the concept of A-convergence and collect some of its basic proper-
ties.

Let {x,} be a bounded sequence in CAT(0) space X. For all x € X, we set

r(x, {x,}) = limsup d(x, x,).
n—00

The asymptotic radius r({x,}) of {x,} is given by
r(fx,}) = inf {r(x, {x,}) : x € X}.
The asymptotic center A({x,}) of {x,} is the set
A(fxn}) = {x € X r(x, {x,}) = r({x, D}

It is known that in a Hadamard space, A({x,}) consists of exactly one point (see
[26, Proposition 7]).

Definition 2.3 (see [27, 28]) A sequence {x,} in CAT(0) space X is said to be A-
convergent to a point x € X if x is the unique asymptotic center of {u,} for every
subsequence {u,} of {x,}. In this case, one can write A-lim,_, , X, = x and call x
the A-limit of {x,}.

Lemma 2.3 Let X be a Hadamard space. Then we have the following:

(1) (see [28, p.3690]) Every bounded sequence in X has a A-convergent subse-
quence.

(2) (see [29, Proposition 2.1]) If K is a closed convex subset of X and {x,} is a
bounded sequence in K, then the asymptotic center of {x,} is in K.

(3) (see[10,Lemma?2.8]) If{x,}is a bounded sequence in X with A({x,}) = {x}and
{u,} is a subsequence of {x,} with A({u,}) = {u} and the sequence {d(x,, u)}
converges, then x = u.

Lemma 2.4 (see [30, Lemma 2]) Let {a,}, {b,} and {r,} be three sequences of non-
negative real numbers such that a,+, < (1 +ry)a, + b, foralln > 1. Ifzzozl Ty <
oo and y o2 b, < 00, then lim,_, « a, exists.
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2.3 Some Convergence Results for the Class of Mappings
Satisfying the Condition (E,)

In this section, we prove some strong and A-convergence theorems of a sequence
generated by the K™ iteration process for the class of mappings satisfying the con-
dition (E, ) in the setting of CAT(0) spaces.

Theorem 2.2 Let C be a nonempty closed convex subset of a Hadamard space X
and T : C — C be a mapping satisfying the condition (Eu) with F(T) # &. Let
{x,} be an iterative sequence generated by

X] € C,
in = (] - IBn)xn @ ,BnT-xns

Yo =T (1 —0,)z, © T zy),
Xpt1 =Ty, Yn>1,

2.3)

where {o,} and {B,} are real sequences in [a, b] for some a,b € (0, 1) with 0 <
a(l-»>) < % Then the sequence {x,} is A-convergent to a fixed point of T.

Proof We divide our proof into three steps.
Step 1. First, we prove that, for each p € F(T),

lim d(x,, p) exists. 2.4)
n—o00
Step 2. Next, we prove that
lim d(x,, Tx,) =0. (2.5)
n—00

Step 3. Finally, to show that the sequence {x,} is A-convergent to a fixed point

of T, we prove that
WA(xn) = » }LCJ{)C }A({Mn}) - F(T)

and Wy (x,,) consists of exactly one point.
Step 1. By Proposition 2.1 and Lemma 2.1 (2), we have

d(xpq1, p) =d(Ty,, p) <d(u, p), (2.6)

d(yn, p) = d(T((1 — ap)zn ® @, Tzy), p)
<d((1 —ay)zy ® T2y, p)
< (I —an)d(zn, p) + and(Tzy, p)
< (A —ayd(zs, p) + @nd(zn, p)
= d(zu, p) (2.7)
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and

d(zp, p) = d((1 = Bu)Xn © BuTXn, p)
= (I = Bw)d(xn, p) + Bnd (T xn, p)
= (1 = Bd(xn, p) + Bnd(xn, p)
=d(xp, p). (2.8)

Using (2.6), (2.7) and (2.8), we obtain
d(xp+1, p) < d(xn, p).

This implies that the sequence {d(x,, p)} is non-increasing and bounded below.
Hence lim,,_, o, d(x,,, p) exists for all p € F(T).

Step 2. It follows from (2.4) thatlim,,_, o, d(x,,, p) exists for each given p € F(T).
Let

lim d(x,, p)=r > 0. (2.9)
n—o0
Since
d(T.Xn, p) S d(-xnv p)v
we have
limsup d(Tx,, p) <r. (2.10)

On the other hand, it follows from (2.8) that

lim sup d(z,,, p) <r. (2.11)

By using (2.6) and (2.7), we get
d(xn-H’ P) = d(Zn’ P)

which yields that
r < liminf d(z,, p). (2.12)
n—0oQ

Hence, from (2.11) and (2.12), we have that lim,,_, o, d(z,,, p) = r. This implies that
lim d((1 = B,)x, ® BuTxy, p) =r. (2.13)
n—0oQ

From (2.9), (2.10), (2.13) and Lemma 2.2, we get lim,,_, o, d(x,,, Tx,,) = 0.

Step 3. Let u € Wa(x,). Then there exists a subsequence {u,} of {x,} such that
A ({u,}) = {u}. By Lemma 2.3 (1) and (2), there exists a subsequence {v,} of {u,}
such that A-lim,,_, , v, = v € C. By (2.5), we have
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lim d(v,, Tv,) = 0. (2.14)

Now, we have to show that v is a fixed point of 7. Since T is a mapping satisfying
the condition (E,,), then there exists a u > 1 such that

d(v,, Tv) < pud(v,, Tv,) +d(v,, v).

Taking the limit supremum on both sides of the above estimate and using (2.14), we
have

r(Tv, {v,}) =limsup d(Tv, v,)

n—oo

< limsup d(v, v,) = (v, {v,}).
n—oo

By the uniqueness of asymptotic center, we get Tv = v. Thus v € F(T). By (2.4),
lim,_, » d(x,, v) exists. Hence, by Lemma 2.3 (3), we have u = v. This implies that
Walx,) € F(T).

Finally, we prove that W, (x,) consists of exactly one point. In fact, let {u,} be a
subsequence of {x,} with A ({u,}) = {u} and let A ({x,,}) = {x}. We have already
seen that u = v and v € F(T). From (2.4), we know that {d(x,, u)} is convergent.
In view of Lemma 2.3 (3), we have x = u € F(T). This shows that W (x,,) = {x}.
This completes the proof.

Next, we prove the strong convergence theorem.

Theorem 2.3 Let X, C, T and {x,} be the same as in Theorem 2.2 and C be a
compact subset of X. Then {x,} converges strongly to a fixed point of T

Proof By (2.5), we have lim,,_, o, d(x,, Tx,) = 0. Since C is compact, there exists a
subsequence {xnk} of {x,} such that {xnk} converges strongly to some p € C. Since
T satisfies the condition (E,), we have

d(x,,, Tp) < pd(x,,, Tx,) +d(x,, p). (2.15)

Letting k — oo, we get Tp = p,ie, p € F(T). By (2.4), lim,,_, . d(x,, p) exists
forevery p € F(T) and so the sequence {x,} converges strongly to p. This completes
the proof.

Example 2.2 Let R be the real line with its usual metric and let C = [—4, 1]. Then
X is a Hadamard space and C is a compact, closed and convex subset of X. Define
amapping 7 : C — C by

x| .

=2, ifx e[—4,1),
Tx=I41 T

-7, ifx =1
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In order to see that 7 satisfies the condition (E,) on C, we consider the following
(non-trivial) cases:

(1) Letx € [—4,0) and y € [—4, 1], then |x — Tx| = 3 |x| and
1 5 1
x =Tyl < x|+ -y <-lxl+-lx =y <2 |x =Tx|+[x—y|.
4 4 4
(2) Letx €[0,1) and y € [—4, 1], then |x — Tx| = 2 |x| and
1 3 1
Ix—TyI§|x|+Z|yI§5IX|+Z|x—y|§2lx—Tx|+|x—y|-

(3) Letx = landy €[4, 1), then [l — T'1| = 3 and

1— |yl
4

=<

1
|1—T1|+Z|1—y|§2|1—T1|+|1—y|.

| W

[1-T |—3+
=]
In summary, for all x, y € C, we have
x =Tyl =2|x = Tx[+|x =y,

that is, T satisfies the condition (E5) on C. Clearly, F(T) = {0}. Set

n n

=" Vn > 1. 2.16
w1 P " (2.16)

T3yl T

Op

Therefore, the conditions of Theorem 2.3 are satisfied. So, the sequence {x,}
generated by (2.3) is strong and A-convergent to 0.

In [31, p. 375], Senter and Dotson introduced the concept of the condition (1) as
follows:

A mapping T : C — C is said to satisfy the condition (I) if there exists a non-
decreasing function f : [0, c0) — [0, co) with f(0) =0 and f(r) > O forall r €
(0, 00) such that

d(x,Tx) > f(d(x, F(T))), Vx €C, (2.17)
where d(x, F(T)) =inf{d(x, p) : p € F(T)}.

By using this definition, we prove the following strong convergence theorem:

Theorem 2.4 Under the same assumptions of Theorem 2.2, if T satisfies the condi-
tion (1), then {x,} converges strongly to a fixed point of T.

Proof By (2.5) and (2.17), we have

lim f(d(x,, F(T))) < lim d(x,, Tx,) =0.
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This implies thatlim,, . o, f(d(x,, F(T))) = 0. Since f is anon-decreasing function
satisfying f(0) = Oand f(r) > Oforallr€(0, 00), we have lim,,_, o, d(x,,, F(T)) =
0. The rest of the proof follows the lines of Theorem 3.4 in [32]. This completes the
proof.

2.4 Some Convergence Results for Total Asymptotically
Nonexpansive Mappings

Now, we give the A-convergence theorem of K* iteration process for total asymp-
totically nonexpansive mappings in CAT(0) spaces.

Theorem 2.5 Let C be a nonempty bounded closed convex subset of a Hadamard
space X and T : C — C be a uniformly L-Lipschitzian and total asymptotically
nonexpansive mapping. Suppose that the following conditions are satisfied:

(@ Y02 kD <ocoand Y 02 kP < oo;

n=1 n=1"n
(b) thereexists constantsa, b € (0, 1) with0 < a(l —b) < %such that{a,}, {B,} C
[a, D];
(¢) there exists a constant M > 0 such that ¢ (r) < Mr forallr > 0.

Then the sequence {x,} defined by

x1€C,

Zn = (1= Bp)xn @ BuT"xp,

Yo =T"((1 —an)zn ® a0, T"z5),
Xpt1 =Ty, Yn>1,

(2.18)

is A-convergent to a fixed point of T.

Proof Since T is uniformly L-Lipschitzian, we conclude that T is continuous. By
using Theorem 2.1, we get F(T) # @. Let p € F(T). Since T is a total asymptoti-
cally nonexpansive mapping, by the condition (c), then we obtain

d(zn, p) = d((1 — B)xy ® BuT" Xy, P)
< (1= B)d(xn, p) + Bud(T"x,, p)
< (1 = B)d(xn, ) + Buld(xn, p) + kP (d(xn, p)) + kP
< (1= B)d(xn, p) + Bud (xu, p) + B Mk d (x4, p) + Buk'?
= (1 + B Mk{)d (x,, p) + ik (2.19)

and
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d(yn, p) = d(T"((1 —an)zn ® anT"zp), p)
< d((1 = an)zn ® an Tz, p) + kS (@((1 — an)zn ® anT"zn, p)) + kY
< (I —ap)dzn, p) + and(T" zn, p)
+ MV = an)dGa, p) + and(T"zn, p)] + kS
< (1 - an)d(zn, p) + anld(zn, p) + kP $d(zn. p)) + k1
+MISV[( = an)d(zn, p) + anld@n. p) + kb (zn, p)) + kO] + kS
< (1— an)d(zn, p) + and(n. p) + an M d(zn, p) + anky
+(1 = an) Mk d (@, p) + an My d(n, p) + o M2 (D) 2d . p)
o MK kS + kP
= (14 U +a Mk + M K)?)d (n, p)
(1 + ap + an M. (2.20)

Substituting (2.19) into (2.20) and simplifying it, we get

d(yn p) < (1+ (1 + ) MK + o, M> (&) [(1 + B MED)d (x, p) + ik ]
+(1 + o + o, MED)KP

_ [1 + (1t o+ BIMD + (@ + Bo + ) M (kD)

+ot, B M? (kf,”)ﬂd(xn, p)
+[1 4 ay + Bu + (@ + Bu + 0B MY + 0, B M? (kD) kP (2.21)

Also, we have

d(Xpt1, p) =d(T"y,, p)
< d(yu, p) + ko d(yn, p)) + kP
< (1 + Mk{")d (. p) + k. (2.22)

Combining (2.21) and (2.22), we conclude that
d(-anrlv P) < (1+rn)d(xns p)+bn» Vl’lZ 1s (223)
where

o =14 Q4+ an + BIMED + (1 + 20, + 2B, + ) M*(k(V)?
+(05n + ﬂn + zan.Bn)M3 (k,gl))3 + anﬂnM4(kf(11))4

and



34 A. Sahin and M. Basarir

by =12+a,+ ,311 + (1 + 20, + 2/311 + an,Bn)Mk,gl)
e + Bu + 200 B) M (k") + 0 M3 (V) TKD.

By the condition (a), we have that Y .- r, < oo and > -, b, < co. Hence, by
Lemma 2.4, lim,,_, o, d(x,, p) exists for each p € F(T). Without loss of generality,
we may assume that

r:= lim d(x,, p). (2.24)
n— o0
From (2.19), we conclude that
limsup d(z,, p) <r. (2.25)
n—0oQ

Now, using (2.25) and the fact that T is a total asymptotically nonexpansive mapping,
we obtain

limsup d(T"z,, p) < limsup [d(z,, p) + k"¢ (d(za. p)) + k]

< limsup [(1 + Mk{")d(z,, p) + k7]
n—o00o
<r (2.26)
Similarly, we get
lim sup d(T"x,, p) <r. (2.27)
n—o00

Now, we can write

d(xai1, p) < (1 + MED)d (v, p) + k2

< (14 MkV) [(1 + (1 + o) MED + a, M* (kD)) d (2, p)

+(1 + o + aanﬁ”)k;”} +k2

=[1+ Q@+ )Mk + (1 + 20,) M* (k") + 0, M° (k) ]d (20, p)
+[@ + ) + (1 +20,) MED + o, M* (kD) [P

Taking limit infimum on both sides in the above inequality, we have
liminf d(z,, p) > r.
n—o0
Combining with (2.25), it yields that lim,,_, o, d(z,, p) = r. This implies that

lim d((1 = B)xn @ BuT"%n, p) =1 (2.28)
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By using Lemma 2.2 with (2.24), (2.27) and (2.28), we get

lim d(x,, T"x,) =0.

n=o0
From (2.21) and (2.22), we conclude that

limsup d(y,, p) <r, liminfd(y,, p) >r,
n—oo

n—oo

respectively. Hence, we have
lim d(y,, p) =r.
n—o00

On the other hand, since

lim d(y,, p)
n—00
= IL%d(Tll((l — )20 ® anTnZn)a P)

IA

IA

lim [(1+ Mk (1 = @)z, @ anT" 20, p) + 5]
n—oQ
= lim d((1 — ay)zx ® 0, T"zp, p)

n—00

Tim [(1 = an)d zn p) + 0ad (T" 20, p)]
lim [(1 = )d(zn, p) + 0nd (zn, p) + Mk d (2, p) + uk” ]

n—0o0

= lim d(zn, p),
n—00

IA

IA

we have
lim d((l - an)Zn @anTnva p) =r.

n—oo

Again, by using Lemma 2.2 with (2.25), (2.26) and (2.31), we get
lim d(z,, T"z,) = 0.
n—0oQ

By (2.29), we obtain

d(z,, T"xy) = d((1 — Bp)xn @ B T"x,, T"x;,)
= (1 - IBn)d(xnv Tn-xn) + ﬂnd(Tnxm Tnxn)

— Oasn — oo.

It follows that

35

(2.29)

(2.30)

llm |:d((1 - an)zn @ anTnva P) + kr(Ll)Qs(d((] - an)zn @ anTnva P)) + k512>i|
n—oo

(2.31)

(2.32)
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d(T"z,, T"x,) <d(T"zn, 20) +d(2n, T"x,) = 0asn — oo. (2.33)
By (2.32), we have

d(yll7 TnZVl)

d(T"((1 — )20 ® anT"2,), T"24)

d((1 — o)z ® anT" 24, 20)

VDA ((1 — )20 B 0 T" 20, 7)) + k2

(1 + M)A = )20 & 0, T" 20, 20) + kP

< (1+ MK [(1 = 0)d . 20) + 0ad (T" 20, 20) ] + &P

— Oasn — oo. (2.34)

A

IA

From (2.32) and (2.34), we get

d(T"y,, T"2,) < dn, 20) + kPP A, 7)) + kP
< (1+MkM)d (v, 20) + kP
< (1 + M) [dn. T"z0) + d(T" 20, 20)] + K
— Qasn — oo. (2.35)

By using the triangle inequality, (2.33) and (2.35), we conclude that
d(T"x,, T"y,) < d(T"x,, T"2y) +d(T"2,, T"y,) — Oasn — oo.  (2.36)
From (2.29) and (2.36), we obtain
dxXps1, x,) <d(T"y,, T"x,) +d(T"xp, x,) — 0asn — oo. (2.37)
Since T is uniformly L-Lipschitzian, therefore we have

d(xy, Txy)
S d(X,l, xn+l) + d(xn+1» Tn+1xn+l) + d(TnJrler—la TnJrlxn) + d(TnJrlxn’ Txn)
S (1 + L)d(xnv xn+l) + d(xn-H l} T’Hlxnﬁ-l) + Ld(Tnxnv xn)-

Hence, (2.29) and (2.37) imply that

lim d(x,, Tx,) =0. (2.38)
n— 00

The rest of the proof follows the pattern of Theorem 1 in [33]. This completes the
proof.

Example 2.3 Consider X = R with its usual metric, so X is a Hadamard space. Let
C = [—1, 1] which is a bounded, closed and convex subset of X. Define a mapping
T:C— Cby
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2sin3, ifx €[-1,0),
Tx = . .
—2sin%, ifx [0, 1].

27

It was proved in [33] that T is uniformly L-Lipschitzian and total asymptotically
nonexpansive mapping with L = 1, k) = k® =0 for all n > 1 and ¢ (¢) = ¢ for
allt > 0. Clearly, F(T) = {0}. Let {«,} and {B,,} be the same as in (2.16). Thus, the
conditions of Theorem 2.5 are fullfilled. Therefore the sequence {x,} generated by
(2.18) is A-convergent to O.

Next, we give some characterizations of the strong convergence for the sequence
{x,} defined by (2.18) in CAT(0) spaces as follows:

Theorem 2.6 Let X, C, T, {«a,}, {B,} and {x,} satisfy the hypotheses of Theorem
2.5. Then the sequence {x,} converges strongly to a fixed point of T if and only if

liminf d(x,, F(T)) =0.

Proof 1f {x,} converges strongly to p € F(T), then lim,_, d(x,, p) = 0. Since
0 <d(x,, F(T)) <d(xy, p), we have liminf d(x,, F(T)) = 0.
n—0oQ

Conversely, suppose that lim inf,,_, o, d(x,,, F(T)) = 0. By (2.23), we have
d(xXnt1, p) = (L +ra)d(xp, p) + by, Vp € F(T).
This implies that
d(xpt1, F(T)) < (1 +ry)d(xn, F(T)) + by.

Since Y 2 r, <ooand Y o, b, < 00, then, by Lemma 2.4, lim,,_, o d(x,, F(T))
exists. Thus, by the hypothesis, we get lim,,_, o d(x,, F(T)) = 0. The rest of the
proof is similar to the proof of Theorem 2 in [33] and therefore it is omitted. This
completes the proof.

Remark 2.2 In Theorem 2.6, the condition lim inf,_, . d(x,, F(T)) = 0 may be
replaced with lim sup,_, ., d(x,, F(T)) = 0.

Now, we give the following theorem related to the strong convergence of the
sequence {x,} defined by (2.18).

Theorem 2.7 Let X, C, T, {a,}, {B,}and{x,} satisfy the hypotheses of Theorem 2.5
and T be a mapping satisfying the condition (I). Then the sequence {x,} converges
strongly to a fixed point of T.

Proof As proved in Theorem 2.6, lim,_, o, d(x,, F(T)) exists. By (2.38), we have
lim,, o0 d(x,,, Tx,) = 0. It follows from the condition () that

lim f(d(x,, F(T))) = 0.
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Hence, by the properties of f, we getlim,,—,» d(x,, F(T)) = 0. The conclusion now
follows from Theorem 2.6. This completes the proof.

Finally, we give an example of a mapping which satisfies all the assumptions of
T in Theorem 2.7, i.e., T is a uniformly L-Lipschitzian and total asymptotically
nonexpansive mapping satisfying the condition (7).

Example 2.4 Let T : [0, 2] — [0, 2] defined as

{1, ifx € [0, 1],
Tx =

=2 ifx e (1,2].

Note that 7"x = 1 for all x € [0,2] and n > 2 and F(T') = {1}. Clearly, T is both
uniformly L-Lipschitzian and total asymptotically nonexpansive mapping on [0, 2].
Additionally, it was shown in [34, Example 3.7] that T satisfies the condition (7).

2.5 Conclusions

In the above sections, we study the strong and A-convergence of the K* iteration
process introduced by Ullah and Arshad [21] for two different classes of generalized
nonexpansive mappings in CAT(0) spaces.

Theorems 2.2, 2.3, 2.4 generalize some results of Ullah and Arshad [21] in two
ways:

(1) from the class of Suzuki generalized nonexpansive mappings to the class of
mappings satisfying the condition (E M) ,

(2) from Banach space to Hadamard space.

Theorems 2.5, 2.6, 2.7 contain the corresponding theorems proved for asymp-
totically nonexpansive mappings when k{*) = 0 for all n > 1 and ¢ (1) = A for all
A>0.
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Nonexpansive Semigroup with

Application to Optimization Problem

Shih-sen Chang, Liangcai Zhao, and Zhaoli Ma

Abstract The purpose of this paper is, by using the shrinking projection method,
to introduce and study an iterative process to approximate a common solution of the
split variational inclusion problem and the fixed point problem for an asymptotically
nonexpansive semigroup in real Hilbert spaces. Further, we prove that the sequences
generated by the proposed iterative method converge strongly to a common solution
of the problems for an asymptotically nonexpansive semigroup. As applications, we
utilize the results to study the split optimization problem and the split variational
inequality.
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3.1 Introduction

Throughout the paper, unless otherwise stated, let H, H;, H, be three real Hilbert
spaces, C be a nonempty closed and convex subset of H.

Recall that a mapping T : C — C is said to be asymptotically nonexpansive it
there exists a sequence {k,} C [1, co) with k,, — 1 such that
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T"x = T"yl| < kallx = yll, Yn>1,x,y€C.

A family T : = {T'(s) : 0 < s < oo} of mappings from C into itself is called an
asymptotically nonexpansive semigroup on C (resp., nonexpansive semigroup on C)
if it satisfies the following conditions:

(@) T(O)x =xforallx € C;

(b) T(s+1t)=T(s)T(¢t) forall s,t > 0;

(c) there exists a sequence {k,} C [1, o0) (resp., {k, = 1} ) such that k, — 1 and
satisfying the following condition:

HT"(s)x = T"()yll < kallx = yll, Vx,y€C, n>1, 5 >0;
(d) forall x € C, s +— T (s)x is continuous.
The set of all common fixed points of a semigroup ¥ is denoted by Fix(%), i.e.,

Fix(T) :={x e C: T(s)x=x, 0<s <oo}= [ Fix(T(s)).

0<s<oo

where Fix(T (s)) is the set of fixed points of T'(s), s > 0.
Recall that a mapping 7 : H; — H, is said to be

(1) monotone if
(Tx —Ty,x —y) >0, Vx,y e Hj.

(2) a-strongly monotone if there exists a constant o > 0 such that
(Tx =Ty, x —y) = allx — yII’, ¥x,y € Hi.
(3) firmly nonexpansive if
|Tx —Ty||> <(Tx —Ty,x —y), Vx,ye€ H. (3.1)

Remark 1 It is easy to see that the definition of firmly nonexpansive mapping is
equivalent to the following:

(3) A mapping T : H; — H, is said to be firmly nonexpansive if

Tx —Tyl* <llx =yl = (x —y,(x = Tx) — (y = Ty)), Vx,yeC.
(3.2)

(4) A multi-valued mapping M : H; — 2% is said to be monotone if, for all x, y €
Hy,u € Mx and v € My such that
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(x—y,u—v)>0.

(5) A monotone mapping M : H, — 2 is said to be maximal if the Graph(M) is
not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping M is maximal if and only if, for any (x, u) €
H, x H, (x —y,u —v) > 0 forevery (v, v) € Graph(M) implies that u € Mx.

Let M : H; — 2 be amulti-valued maximal monotone mapping. Then the resol-
vent mapping JM . Hy — H, associated with M is defined by

JM(x) =T +AM) "' (x), Vx e H (3.3)

for some A > 0, where I stands the identity operator on H;.

Note that, for all A > 0, the resolvent operator JAM is single-valued, nonexpansive
and firmly nonexpansive.

Recently, Moudafi [1] introduced the following split variational inclusion problem
(in short, SVIP): Find x* € H; and y* = Ax* € H, such that

0 € Bi(x*) and 0 € By(y"), 3.4)

where A : H) — H,; is a bounded linear operator, By : H] — 2% and B, : H, —
2 are multi-valued maximal monotone mappings.

From the definition of resolvent mapping J¥, we have the following technical
lemma:

Lemma 1 The problem SVIP (3.4) is equivalent to the problem: Find x* € H, and
y* = Ax* € H, such that

x* e Fix(J,\B') and y* € Fix(JABZ) for some A > 0. (3.5)

In the sequel, we denote the solution set §2 of the problem (3.4) or (3.5) by

2:={x*€ H :y*= Ax* € H, suchthat x* € Bl_l(O), Ax* € BZ_I(O)}

= (x* € H, : y* = Ax* € H, such that x* € Fix(J”"), Ax* € Fix(J?)}.

(3.6)

Moudafi [1] also introduced an iterative method for solving the problem SVIP
(3.4), which can be seen as an important generalization of an iterative method given
by Censor et al. [2] for split variational inequality problem. As Moudafi noted in
[1], the problem SVIP (3.4) includes as special cases, the split common fixed point
problem, the split variational inequality problem, the split zero problem, and the split
feasibility problem (see [1-6]), which have already been studied and used in practice
as a model in intensity-modulated radiation therapy treatment planning (see [5, 6]).
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This formalism is also at the core of modeling of many inverse problems arising for
phase retrieval and other real-world problems, for instance, in sensor networks in
computerized tomography and data compression (see, for example, [7, 8]).

In 2012, Byrne et al. [4] studied the weak and strong convergence of the following
iterative method for the problem SVIP (3.4): For any xo € H;, compute the iterative
sequence {x,} generated by the following scheme:

X1 = I (0, + Yy AT — D Ax,) (3.7)

for some A > 0, where y > 0 is a constant and A is a linear and bounded operator.

Very recently, Kazmi and Rizvi [9] studied the strong convergence of the following
iterative method for split variational inclusion problem and the fixed point problem
for a nonexpansive mapping:

! Uy = JP (xp + y A* (I — D Ax,), 38)

Xp41 = f (X)) + (1 — o) Suy,

for some A > 0, where S is a nonexpansive mapping and f is a contractive mapping.

Motivated by the work of Moudafi [1], Byrne et al. [4], Kazmi and Rizvi [9],
Deepho et al. [10] and Sitthithakerngkiet et al. [11], the purpose of this paper is, by
using the shrinking projection method, to introduce and study an iterative process
to approximate a common solution of split variational inclusion problem and fixed
point problem for an asymptotically nonexpansive semigroup in real Hilbert spaces.
Further, we prove that the sequences generated by the proposed iterative method
converge strongly to a common solution of the split variational inclusion problem
and the fixed point problem for an asymptotically nonexpansive semigroup. The
results presented in this paper are an extension and generalization of the previously
known results to some related topics.

3.2 Preliminaries

In this section, we recall some concepts and lemmas which will be used in proving
our main results.

Let C be a nonempty closed and convex subset of H. Foreach x € H, the (metric)
projection Pc : H — C is defined as the unique element Pcx € C such that

llx — Pcx|| = inf [lx — y]|.
yeC

It is well known that, for any x € H, y = Pc(x) if and only if
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(y=2,x=» 20, VzeC 3.9)

and Pc is a firmly nonexpansive mapping from H onto C, that is,
IPcx = Peyl® < (Pex — Pcy,x — ), Vx,y €C. (3.10)

Recall that a mapping 7 : C — H is said to be a-inverse strongly monotone if
there exists & > 0 such that

a|Tx —Ty|*> < (x—y, Tx —Ty), Vx,yeC. (3.11)

This implies that each firmly nonexpansive mapping is 1-inverse strongly monotone.
Also, it is easy to prove that the following result holds:

Lemma 2 ([12]) If T : C — H is o -inverse strongly monotone, then, for each
A € (0,2a], I — AT is a nonexpansive mapping of C into H.

Lemma 3 Let H be a real Hilbert space, then the following result holds:
lex + (1= 0yl? = tllxl* + A = D)lyl> — (1 = D)lx — yl?

forallx,y € H andt € [0, 1].

Lemma 4 ([13]) Let H be a real Hilbert space, C be a nonempty closed convex
subset of H and S : C — C be an asymptotically nonexpansive mapping. If the
set of fixed points Fix(S) of S is nonempty, then it is closed and convex and the
mapping I — S is demiclosed at zero, that is, for any sequence {x,} in C such that,
if {x,} converges weakly to x and ||x, — Sx,|| = O, thenx € Fix(S).

3.3 Main Results

In this section, we prove a strong convergence theorem based on the proposed iterative
method for computing a common approximate solution of the problem SVIP (3.4)
and a common fixed point of the asymptotically nonexpansive semigroup T = {7 (s) :
0<s < oo}

Throughout this section we assume the following:

(Al) H, and H, are two real Hilbert spaces;
(A2) A: Hy — H, is a bounded linear operator, A* is the adjoint of A and it is
strongly positive, i.e., there exists a constant y > 0 such that

(A%, y) = ylIxllllyll, Vy € Hy, x € H;
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(A3) B, : H — 2" and B, : H, — 2™ are two maximal monotone mappings;

(A4) J,\B '+ H — H; and JAB > . H, — H, are the resolvent mappings associated
with By and B, defined by (3.3), respectively,

(A5) T={T(s) : 0 <s < o0} : HA — H, is an asymptotically nonexpansive semi-
group.

First, we give the following lemma:

Lemma 5 Let Hy, H>, A, A*, By, B», JAB‘, JABZ be the same as above. Let L be
the spectral radius of the operator A*A and y € (0, %). Then (I — yA*(1 — sz)A)
and JAB' I —yA* — JfZ)A) both are nonexpansive mappings.

Proof Since sz is firmly nonexpansive, (I — sz) is also firmly nonexpansive.
Hence it is 1—inverse strongly monotone. So we have

I — J2)Ax — (1 — I Ayl
= |Ax — Ay|® = 2(Ax — Ay, J2Ax — I Ay) + |72 Ax — I Ay|?

< llAx — Ay|)* — (Ax — Ay, J2 Ax — 1 Ay) G2
= (Ax — Ay, (I — JP)Ax — (I — JP)Ay), Vx,y € H,.
It follows from (3.12) that
IA*(I — I Ax — A*(I — T Ay|)?
< LI — I Ax — (1 — ) Ay|? .

< L{Ax — Ay, (I — JP)Ax — (I — 1P Ay)

=Lix —y, A"(I — JP)Ax — A*(I — JP)Ay), Vx,y e H,.
This implies that A*(1 — J ABZ)A isa %—inverse strongly monotone mapping. Since
y € (0, %), by Lemma 2, I — yA*(I — JABz)A is a nonexpansive mapping. So is
JAB‘ I—-yA* I — J)\BZ)A). This completes the proof.

Theorem 3.1 Let H,, H,, A, A*, By, B>, Jf‘, J)\B2 be the same as in Lemma
5. Let T = {T'(s) : 0 < s < 00} be an asymptotically nonexpansive semigroup of
mappings from H, to itself with the sequence {k,} C [1, 00) and k,, — 1 asn — oc.
Denote by I' : =Fix(%)() 2, where §2 is the solution set of the problem (3.4) defined
by (3.6). For any initial point xo € H,, C\ = Hj, x; = Pc,xo, let {x,} be the sequence
generated by
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g = JP(I — y A*(I = JP)A)x,,

e
Yo = it + (1 — ) f T (s)unds,
Sn Jo

3 (3.14)
Cos1 ={z2€Cy: llyn —zl* < lxn — zlI* + 6,),

Xp+1 = Pcn+])C(), Vn >1,

where 0, = (1 — otn)(kﬁ — 1) sup{||x, — ull>:u e}, {s.} is a sequence of positive
numbers, 0 <a <o, <c<1foralln>1,0<b<r, <+ andye(O,%),
where L is the spectral radius of the operator A* A. If the following conditions are
satisfied:

(@) I :=Fix(%)( 2 # & and is bounded;
(b) limsup,_, o, ||$ OS T"(s)x,ds — T(h)(é fos T"(s)x,ds)|| =0 for each h >
0,

then the sequence {x,} generated by (3.14) strongly converges to a point x* €

Fix(T)N 2.

Proof We divide the proof of Theorem 3.1 into five steps as follows:

Step 1. We show that C,, is closed and convex for each n > 1. In fact, since the
inequality ||y, — z||> < [|x, — z||* + 6, is equivalent to

200 = Yur 2) < [1xall? = lIyall* + 6, Vn > 1,

and z — 2(x, — y,, z) is a continuous and convex function. Therefore, for each
n > 1, C, is a convex and closed subset in H;.

Step 2. Now, we prove that Fix(%)() £2 C C,, Vn > L.Infact,let p € Fix(%)() £2,
then p =T(s)p for all s >0, JP'p=p, JPAp=Ap and so (I —yA*(I —
Ter)A)p = p. Itis obvious that Fix(%)() §2 C C;. Let Fix(%)( 2 C C, for some
n > 2. Then, by induction, we prove that Fix(T)(] 2 C C,41. In fact, it follows from
(3.14) and Lemma 5 that

lun = pll = 12T =y AL = J2)A)x, = J2 (L =y A1 = J2)A)p]|

Tn

< (I = y AU = IE)A)x, — (I — y A*(I = JP)A)p]

=[x, — pll.
(3.15)
Also, it follows from (3.14), (3.15) and Lemma 3 that
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ly. — plI* =

where
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ax, + (1 — an)(sl /OS" Tn(s)u,lds) _ pH2

n

= llx, — plI* + (1 —a,)

1 Sn 2
= [ - pas|
Sn Jo

1 Sn 2
Xp — —f T"(s)u,ds H
Sn Jo

- 2
[ s, = plias)

Sn Jo

—a,(1 —ay)

< ayle, — I+ (1 =)

1[5 2 (3.16)
— o, (1 —a,)|lx, — —/ T”(s)u,,ds”
Sn Jo
< oullxn — pI* + (1 — ks llu, — plI?
L[ 2
— o, (1 —a,)|x, — —/ T"(s)u,,ds”
Sn Jo
< aullxy — pI* + (1 — a)kalx, — plI?
= [lx, — plI* + (1 — &) (k2 — Dllx, — plI?
< Ix, — pII* + 6,
6, = (1 —a,) (k2 — 1) sup{||x, — ul]*}. (3.17)

uel’

This implies that p € C,41, so is Fix(%)() £2 C C,+1. The conclusion is proved.

Step 3. Now, we prove that {x,} is a Cauchy sequence. In fact, it follows from

(314) that Xp+1 = PC

X0, X, = Pc,x9 and C,1 C C,. By (3.9), we have

n+1

(XO — Xn+1> Xn+l — y) > 0; Vy S Cn+l~

Since I' = Fix(%)() 2 C C,+1, we have

This shows that

(X0 = Xut1, Xny1 — p) =20, Vpel.

0 =< <.X() — Xn415 Xn+1 — X0 + xo — P)

2
< —Ixng1 = Xol[7 + [1xn41 = Xol[l[xo = Pl

Simplifying, we have

X041 — X0l < [lx0 — pll,

i.e., {x,} is bounded and so are {u,} and {y,}. Also, since

(X() — Xny Xn _xn+1> > Oa
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we have
0 < (x0 — Xp, Xu — X0 + X0 — Xuy1)

2
—1xn = X0l I” + [1Xn11 = Xoll[1x0 = xal,

IA

ie., ||x, — xol] < ||xn41 — Xol|. Since {x,} is bounded, this implies that the limit
lim,_, » ||x, — xo|| exists. Hence, for any positive integers n, m, it follows from
(3.14) that x,, = Pc,, xo and x, = Pc,x¢. By the well-known property of the projec-
tion, we have
2 2 2
xn — Xml1” + X — x0lI” < llxp — X0ll°, Vn,m > 1.
Since the limit lim,,_, o, ||x,, — x| exists, we have
2 2 2
X0 = 2Xm |17 < [lxn — x0l1” — [lXm — x0l|” — 0
as n, m — oo. This implies that {x,} is a Cauchy sequence. Without loss of gener-

ality, we can assume that
lim x, =x* € C,. (3.18)

n—00

Therefore, since {x,} is bounded and I is bounded, it follows from (3.17) that
0, — 0 (3.19)

as n — OQ.

Step 4. Next, we prove that
lim ||T (h)x, — x,|| =0, Vh > 0. (3.20)
n—0o0
In fact, since x,,+; € C,+1 C C,, by the construction of C,,;, we have

2 2
”yn — Xn+1 ” = ”xn — Xn+1 ” + en

and so
”yn — Xn+1 ” < ”xn — Xn+1 ” + \Y% 9n~

This together with (3.18) and (3.19) shows that

lim ”yn — Xn+41 | = 0.

n—oo

Therefore, we have

yn = Xnll < Y0 = Xpg1ll + X0 — Xngal = O (3.21)
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asn — 00. Since Jrf' is firmly nonexpansive, by (3.13), A*(1 — J,fz)A isa %—inverse
strongly monotone mapping. If p € I', then we have

B B B B
lun — pI? = 192" Gon — y A*( = J22)Axn) — J2 (p — y A*UT = J22)Ap) |12

< I =y A* (I = JP) Az — (I — y A* (I = 2 A)pI?
— I =I5 =y A* T = I Axn — (1 — 15U — y AT — 1) A)p)?
= llxn — p — Y(A* (T = IE) Axy — A*(1 = TP AP)I? = llzn — J2 20112
= Il — pI? =2y {xn — p, A*( — I Axy — A*(I — 12 Ap)
+Y2IARU = I Axy — AU — T2 APIP — llzn — I 2

2 B B
< lon = pI2 + v (v = 2)IA™U = I Axal? = llzw = I 2l

(3.22)
where z, = (I — yA*(I — J,’jz)A)x,,. This together with (3.16) shows that
2 1 o n 2
n = pIP = Jawsa + A= (= [ T"0ouads) = p
n J0O
< aullxy = pII* + (1 — a)ky|lun — plI
<yl = pI+ (1= k2| I, — pI®
2
+7(r = 2 A U = IP) AP = Nz = Pz ).
After simplifying and using the condition 0 < a < &, < ¢ < 1, we have
2
A =0k[y (T =¥)IA°U = I A%l + Nz = I 201
2
= A —ak2[y (5 = )IAU = I AP + 2 = I 2
L n n
2 ) R (3.23)
< (an + (I —ak)llx, — pll” — Iy, — pll
= eyl = pI* = llyw = plI*> + (1 — a)k; 1%, — plI?
< (Ixa = pll+ lyn = 2IDIx0 = yull + (4 = ) (ky — Dlx, — plI*.
This together with (3.21) shows that
lim [|A*(1 — JB)Ax,|| =0, lim |z, — JPz,| =0. (3.24)
n—00 " n— 00 n

By the assumption that A* is a strongly positive linear bounded operator, we can get
that
lim [|(/ — J”*)Ax,|| = 0. (3.25)



3 Split Variational Inclusion Problem and Fixed Point Problem ...
Therefore, it follows from (3.14) and (3.24) that

ity — xall = 175 20 — x4
<1520 = zall + llzw — xall
=722 — zall + 11U — y A*(T = J2) A)xy — x|
=105 20 — zall + Y IA*U = TP Ax,|| = 0

Tn
as n — oo. Now, we prove that

1 Sn
—/ T"(s)x,ds — x,
0

Sn

—0

as n — oo. Indeed, it follows from (3.14) that

1 Sn
Xy + (I —ap)(— / T"(s)u,ds) — x,
S, 0

n

Iyw = 3l = |

1 S
=1~ an)”_/ T"(s)unds — xp|l.
Sn Jo

n

Hence, from (3.21), it follows that

IR
_/ Tn(S)MndS — Xn

Sn Jo

1
= 1 ”))n_-xn”_)o
—a,

as n — oo. This together with (3.26) shows that

|

1 Sn
— / T"($)x,ds — x,,
0

Sl‘l

=<

| |
—/ T"(s)x,ds — —/ T"(s)u,ds H +
0 Sn Jo

Sn

1 Sn
S;/HW®M—W®MW+
n JO

IR
/ T"($)upds — x,

Sn Jo

I
S—M/IM—MWH- =0
0

sil

1 Sn
—/ T"(s)u,ds — x,
0

sil

as n — oo. By the condition (b) and (3.28), for any & > 0, we have

1 Sn
— / T"(s)u,ds — x,
Sn Jo

51

(3.26)

(3.27)

(3.28)



52 S. Chang et al.

lim sup ||x, — T (h)x,]||

n—oo
1 [
< limsup |[x, — —/ T"(s)x,ds H
n—o0 Sn Jo
i 1 [ 1 [
+ lim sup —/ T"(s)x,ds — T(h)(—/ T”(s)xnds)H
n—oo Sn Jo Sn Jo

+iimsup [T [T 6)ds) — T, (3.29)
n JO

n—0o0

< limsup(l + k)

n—0oo

1 Sn
Xp — —/ T"(s)x,ds H
Sn Jo

- 1 [
- / T (s)x,ds — T(h)(— f T”(s)x,,ds)
Sn Jo § 0

n

+ lim sup

n—oo

=0.

This implies that, for each &2 > 0,

lim ”T(h)xn — x| = 0.
n—00

Thus the conclusion (3.20) is proved.

Step 5. Finally, we prove that the limit x* in (3.18) is a solution of the problem
SVIP (3.4) and it is also a fixed point of the asymptotically nonexpansive semigroup
T={T(s):0<s < o0}, i.e., x* € Fix(%)() 2. In fact, since x, — x* and ||x, —
T (h)x,|| — 0 for each h > 0, it follows from Lemma 4 that x* € Fix(T (h)) for
each h > 0, i.e., x* € Fix(%).

Now, we show x* € £2. In fact, by (3.14), we have u, = Jrlj‘(l —yA* (I —
JP)A)x, and so

(on = Y A" = J2)A)x, € (I + 1, B1) (). (3.30)

Since {u,} is bounded, there exists a subsequence {u, } C {u,} such that u,, —
w € H,. Since ||x, — u,|| - 0and x, — x*, this implies that x* = w. Simplifying
(3.30), we have

1
— (X, =ty — Y AL = TP A)x,, € Bi(uy,)- (3.31)

ng

By passing to limit k — oo in (3.31) and by taking into account (3.24), (3.26) and
the fact that the graph of a maximal monotone operator is weakly-strongly closed,
we obtain 0 € Bj(x*), i.e., x* € Fix(JAB'). Furthermore, since {x,} and {u,} have
the same asymptotical behavior, {Ax,, } weakly converges to Ax*. Again, by (3.25),
Lemma 4 and the fact that the resolvent Jf ’ is nonexpansive, we obtain that 0 €
B,(Ax*),i.e., Ax* € Fix(sz). Thus x* € Fix(%)() £2, i.e., x* is not only a solution
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of the problem SVIP (3.4) but also a fixed point of the asymptotically nonexpansive
semigroup T = {T'(s) : 0 < s < oo}. This completes the proof.

Example Next, we give an example of asymptotically nonexpansive semigroup
which satisfies the condition (b) in Theorem 3.1 (see [14]).

Let H be areal Hilbert space and L (H) be the space of all bounded linear operators
on H.Forany ¢ € L(H),defineT={T(s) : 0 < s < oo}ofbounded linear operators
by using the following exponential expression:

o]

1\
T@t)=e "V = Z ﬂtkw’i

!
— K

Then the family T = {T'(s) : 0 < s < oo} satisfies the asymptotically nonexpansive
semigroup properties. Moreover, this family forms a one-parameter semigroup of
self-mappings of H satisfying the condition (b) in Theorem 3.1.

Now, we consider the cases of nonexpansive semigroup. First, we give the fol-
lowing lemma:

Lemma 6 ([15]) Let C be a nonempty bounded closed and convex subset of a real
Hilbert H and let ¥ ={T (s) : 0 < s < 00} be a nonexpansive semigroup on C. Then,
forany h > 0,

lim sup H; f T(xds — T(h) (% / T(t)xds) H —0. (332
0 0

—>00 xeC

By using Lemma 6, we can obtain the following result:

Theorem 3.2 Let H,, H,, A, A*, B|, B, Jf‘, sz be the same as in Lemma 5.
Let T) = {T(s) : 0 < s < oo} be an nonexpansive semigroup of mappings from H,
to itself. Denote by I : =Fix(%,)() §2, where $2 is the solution set of the problem
(3.4) defined by (3.6). For any initial point xo € H,, C1 = Hj, x; = Pc,xo, let {x,}
be the sequence generated by

uy = JPUI — y A1 = JP) A)x,,

1 Sn
Yn = X, + (1 — an)_/ T(s)unds,
0

n

(3.33)
Cop1 =1z € Cyt lyn — zl* < llxw — 2lI*),

Xpyl = PC”H)C(), Vn > 1,

where {s,} is a sequence of positive real numbers with s, — 00,0 <a <o, <c < 1
foralln >1,0<b<r, <+oocandy € (0, %), where L is the spectral radius of
the operator A*A. If I1 # O, then the sequence {x,} generated by (3.33) strongly

converges to a point x* € Fix(T)() £2.
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Proof Infact,since T; ={T(s) : 0 < s < oo} is a nonexpansive semigroup, we have
k, = 1. Hence we have

6, = (1 — 0, (k2 — 1) sup{[|x, —ull* :u € I} = 0.

The condition “I'7 being bounded” is not used. On the other hand, it follows from
Lemma 6 that

lim sup
n—00

1 Sn 1 Sn
—/ T (5)xnds — T(h)(—/ T(s)xnds)H =0, Vi>0.
0 Sn Jo

Sil

By the same way, as given in the proof of Theorem 3.1, we can prove that the
conclusion of Theorem 3.2 is true. This completes the proof.

3.4 Applications

3.4.1 Applications to Split Optimization Problems

Let H;, H, be two real Hilbert spaces and A : Hy — H, be a bounded and lin-
ear operator. The “so-called” split optimization problem (SOP) with respect to the
functions f : H; — R and g : H, — Ris as follows ([16, 17]):

Find points x* € H; and Ax* € H, such that
f(x*) > f(x) forall x € H and g(Ax*) > g(y) forall y € Hy. (3.34)

We denote by £2, the set of solutions of the split optimization problem (3.34).

Let f: H — R and g: H, - R be two proper convex and lower semi-
continuous functions. Denote by B; = df and B, = dg, where df and dg are sub-
differentials of f and g, respectively. Then 0f : H; — H; and dg : H, — H, both
are maximal monotone mappings. Denoting by Jff and Jf ¢ the resolvents associ-
ated with df and dg defined by (3.3), respectively, then the problem (SOP) (3.34) is
equivalent to the following split variational inclusion problem:

Find points x* € H| and y* = Ax*™ € H, such that
0e€df(x*) and 0 € dg(Ax™). (3.35)

Therefore, by Theorem 3.1, we have the following:

Theorem 3.3 Let Hy, H,, A, A*, f, g, df, g, Jff, Jfg be the same as above. Let
T={T(s) : 0 <5 < oo} be an asymptotically nonexpansive semigroup of mappings
from H, to itself with the sequence {k,} C [1,00) and k,, — 1 as n — oco. Denote
by I : =Fix(%)() £2,, where §2, is the solution set of problem (3.35). For any initial
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point xo € Hy, C; = Hy, x1 = Pc,xo, let {x,,} be the sequence generated by
ty = 01—y AL = J$) A)xs,

1 [
Yn = QpXp + (1- an)_/ Tn(S)MndS,
0

n (3.36)
Cor1 ={z € Cot llyn —2I* < llxy — 2I” + 64},
Xn+1 = PC,,+].X(), vn > l,
where 6, = (1 — otn)(krzl — 1) sup{||lx, — ull?> 1 u e Iy, {s,) is a sequence of positive
numbers, 0 <a <o, <c<l1foralln=>10<b<r, <+ andye(O,%),
where L is the spectral radius of the operator A* A. If the following conditions are
satisfied:

(a) I; # @ and is bounded;
(b) Timsup, , |13 f5" T"($)xuds — T(h) (- fo" T"(s)xads)|| = O for each h >
0,

then the sequence {x,} generated by (3.36) strongly converges to a point x* €
Fix(%)( $2.

Theorem 3.4 Let H), Hy, A, A%, f, g,df, 0g, Jff, Jfg be the same as in The-
orem 3.3. Let T3 = {T (s) : 0 < s < 00} be an nonexpansive semigroup of mappings
Sfrom Hj to itself. Denote by I'y : =Fix(%3)(") §23, where §23 is the solution set of the
problem (3.35). For an initial point xo € H,, C; = H,, x; = P¢,xo, let {x,} be the
sequence generated by

uy = J (I =y A*(I — J)%)A)x,,

L[
Yn =Xy + (1 — ozn)—/ T(s)u,ds,
Sn Jo

n

(3.37)
Cot1 =1{z€Cp: llyn —zl* < llxn —zl?},

Xpt1 = Pc,, X0, Vn =1,

where {s,} is a sequence of positive real numbers with s,, — 00,0 <a <o, <c <1
foralln>1,0<b<r, <+ooandy € (0, %), where L is the spectral radius of
the operator A*A. If I'; # @, then the sequence {x,} generated by (3.37) strongly
converges to a point x* € Fix(%3)() £2.

3.4.2 Applications to Split Variational Inequality Problems

In [2], Censor et al. proposed the following split variational inequality problem
(SVIP):
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Find a point x* € C and y* = Ax™ € Q such that

(f(x*), x —x*) >0 forall x € C and (g(y*),y—y*) >0 forall y € Q,
(3.38)
where A : C — Q is a bounded linear operator, f : C — C and g: Q — Q are
a-inverse strongly monotone mappings, where « is a positive constant.
The solution set of split variational inequality problem (3.38) is denoted by £24.

It is obvious that the problem SVIP (3.38) is equivalent to the following split fixed
point problem:

Find a point x* € C and y* = Ax™ € Q such that

x* € Fix(Pc(I — Af)) and Ax* € Fix(Po(I — Ag) forall A € (0,2a).
(3.39)

Next, we prove that Pc(I — Af) and Po(I — Ag) for all A € (0, 2«) both are
firmly nonexpansive. In fact, since P is firmly nonexpansive, by (3.2), we have

[|Pc(I — Af)x — Pc(I — Af)yll
< I = xf)x — (I = rf)yII? (3.40)
—I(I = Pc(I = Af)x — (I — Pc(I — Af)y|I%.

Also, since

I = 2f)x — (I = 2f)yl)?

= |lx = yIP + 2% fx — fyIIP —2x(x — y, fx — fy)

< lx = yIP+ 221 fx — fylIF = 2ral| fx — fyl)? (3.41)
= |lx — yII> + A = 2)[| fx — fyII?

< |lx — y||? (since » € (0, 2c)),

substituting (3.41) into (3.40), we have

[|Pc(I — Af)x — Pc(I — Af)yll

5 5 (3.42)
<llx=ylI" =l = Pc(I =Af)x = = Pc(I = Af))yII".
This shows that Pc(I — Af), X € (0, 2«) is firmly nonexpansive.

Similarly, we can also prove that Po(/ — Ag) forall A € (0, 2«) is firmly nonex-
pansive.

These show that the mappings Pc (I — Af) and Po (I — Ag) in the split variational
inequality problem (3.39) have the similar properties as the mappings Jf "and Jf ?
in the split variational inclusion problem (3.5). Consequently, by Theorem 3.1, we
have the following result:
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Theorem 3.5 Let H;, Hy, A, A*, f, g, be the same as above. Let ¥ = {T (s) :
0 < s < 00} be an asymptotically nonexpansive semigroup of mappings from H,
to itself with the sequence {k,} C [1,00) and k, — 1 as n — oco. Denote by I';:
=Fix(%)() §24, where $24 is the solution set of the split variational inequality problem
(3.39). For any initial point xo € H,, C; = Hy, x; = Pc,xo, let {x,} be the sequence
generated by

up = Pc(I =2 YU =y A1 — Po(I — An8))A)Xy,

1 Sn
Yn = X, + (1 — an)_/ T"(s)u,ds,
Sn Jo

n

(3.43)
Coy1 =1{2€Co: llyn —zl* < X0 — zII* + 6.},

Xntl = PC,H,IXO’ Vn 2 17

where 6, = (1 — a,,)(kﬁ — Dy sup{llx, — ull® : u € Iy}, {s.} is a sequence of positive
numbers, 0 <a <o, <c < 1foralln > 1, A, € (0,2a) and y € (0, %), where L
is the spectral radius of the operator A* A. If the following conditions are satisfied:

(a) I'y # @ and is bounded;
(b) limsup, ., ||$ o T (s)xnds — T(h)(é Jo T"(s)xds)|| = O for each h >
0)

then the sequence {x,} generated by (3.43) strongly converges to a point x* €
Fix(%)() $24.

Especially, if T ={T'(s) : 0 < s < oo} : Hi — H; is a nonexpansive semigroup,
then we have the following:

Theorem 3.6 Let H), H,, A, A*, f, g, be the same as in Theorem 3.5 Let ¥ =
{T(s) : 0 <s < oo} be a nonexpansive semigroup of mappings from H, to itself.
Denote by I's: =Fix(%)( ) §2s, where §2s is the solution set of the split variational
inequality problem (3.39). For any initial point xo € H,, Ci = Hj, x1 = Pc¢,xo, let
{x,} be the sequence generated by

up = Pc(I =y YU —y A1 — Po(I — An8))A)Xy,

1 5n
Yn = apX, + (1 — (xn)s_/ T(s)unds,
0

n

(3.44)
Cor1 ={z2€Cp llyn =zl < llxn — zlIP},

Xpt1 = Pc,, X0, Yn>1,

where {s,} is a sequence of positive numbers with s, — 00,0 <a <o, < ¢ < 1 for
alln > 1,1, € (0,2a) and y € (0, %), where L is the spectral radius of the operator
A*A. If I's # O, then the sequence {x,} generated by (3.44) strongly converges to a

point x* € Fix(T)() £2s.
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3.5 Conclusions

In this paper, by using the shrinking projection method, an iterative process to approx-
imate a common solution of the split variational inclusion problem and the fixed point
problem for asymptotically nonexpansive semigroup in real Hilbert spaces was con-
structed. We proved that the sequences generated by the proposed iterative process
converge strongly to a common solution of the problems for an asymptotically non-
expansive semigroup. Finally, some applications were presented to study the split
optimization problem and the split variational inequality problem.

Acknowledgements The authors would like to express their thanks to the Editors and the Referees
for their helpful comments and advises. This work was supported by the Scientific Research Fund
of Sichuan Provincial Department of Science and Technology (No. 2018JY0334).

References

1. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283
(2011)

2. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer.
Algorithms 59, 301-323 (2012)

3. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse
Probl. 26, 055007 (6pp) (2010)

4. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for
the split common null point problem. J. Nonlinear Convex Anal. 13, 759-775 (2012)

5. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: Unified approach for inversion problems in
intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)

6. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product
space. Numer. Algorithms 8, 221-239 (1994)

7. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse
probl. 18, 441-453 (2002)

8. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron
Phys. 95, 155453 (1996)

9. Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed
point problem for a nonexpansive mapping. Optim. Lett. 8, 1113-1124 (2014)

10. Deepho, J., Kumam, P.: The hybrid steepest descent method for split variational inclusion and
Constrain convex minimization problems. Abstr. Appl. Anal. 2014, Article ID 365203, 13 pp

11. Sitthithakerngkiet, K., Deepho, J., Kumam, P.: A hybrid viscosity algorithm via modify the
hybrid steepest descent method for sloving the split variational inclusion and fixed point prob-
lems. Appl. Math. Compu. 250, 9861001 (2015)

12. liduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse
strongly monotone mappings. Nonlinear Anal. 61, 341-350 (2005)

13. Lin, PK., Tan, K.K., Xu, H.K.: Demiclosedness principle and asymptotic behavior for asymp-
totically nonexpansive mappings. Nonlinear Anal. 24, 929-946 (1995)

14. Sunthrayuth, P., Kumam, P.: Fixed point solutions of variational inequalities for a semigroup
of asymptotically nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2012,
Article ID 177 (2012)

15. Shimizu, T., Takahashi, W.: Strong convergence to common fixed points of families of nonex-
pansive mappings. J. Math. Anal. Appl. 211, 71-83 (1997)



3 Split Variational Inclusion Problem and Fixed Point Problem ... 59

16. Chang, S.S., Quan, J., Liu, J.A.: Feasible iterative algorithms and strong convergence theorems
for bi-level fixed point problems. J. Nonlinear Sci. Appl. 9, 1515-1528 (2016)

17. Chang, S.S., Wang, L., Tang, Y.K., Wang, G.: Moudafi’s open question and simultaneous
iterative algorithm for general split equality variational inclusion problems and general split
equality optimization problems. Fixed Point Theory Appl. 2014, 215 (2014)



Chapter 4 M)
Convergence Theorems and Convergence |
Rates for the General Inertial
Krasnosel’skii-Mann Algorithm

Qiao-Li Dong, Shang-Hong Ke, Yeol Je Cho, and Themistocles M. Rassias

Abstract The authors [13] introduced a general inertial Krasnosel’skii-Mann algo-
rithm:

Yn = Xp + an(xn - xn—l)s

Zn = Xy + ﬂn(-xn — Xn-1),

Xn4l = (1 - )‘n)yn + )"nT(Zn)

for each n > 1 and showed its convergence with the control conditions «,, 8, €
[0, 1). In this paper, we present the convergence analysis of the general inertial Kras-
nosel’skii-Mann algorithm with the control conditions «, € [0, 1], B, € (—o0, 0]
and o, € [—1,0], B, € [0, +00), respectively. Also, we provide the convergence
rate for the general inertial Krasnosel’skii-Mann algorithm under mild conditions
on the inertial parameters and some conditions on the relaxation parameters, respec-
tively. Finally, we show that a numerical experiment provided compares the choice
of inertial parameters.

Keywords Nonexpansive * Fixed point - Inertial Krasnoselski-Mann algorithm
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4.1 Introduction

Let .77 be a Hilbert space and C be a nonempty closed convex subset of 7. A
mapping T : C — C is called nonexpansive if, for all x, y € C,

ITx =Tyl < llx = yl.

Further, let Fix(T) = {x € C : Tx = x} denote the set of all fixed points of 7" in C.
In this paper, we consider the following fixed-point problem:

Problem 1 Supposethat7 : C — C isanonexpansive mapping with Fix(T) # &.
Find a point x* € C such that
T(x*) = x*.

The fixed-point problems for nonexpansive mappings have a variety of specific
applications since many problems can be seen as a fixed point problem of nonexpan-
sive mappings such as convex feasibility problems, monotone variational inequalities
(see [4, 5, 31] and references therein).

Recently, Chen et al. [11, 12] showed the convergence of the primal-dual fixed-
point algorithms with aid of the fixed-point theory of the nonexpansive mappings.
A great deal of literature on the iteration methods for fixed-point problems of non-
expansive mappings has been published (see, for example, [17, 19, 21, 27, 29, 30,
32, 35, 38)).

One of the most used algorithms is the Krasnosel’skii-Mann algorithm [22, 25]
as follows:

Xnt1 = AnXy + (1 - )\n)Txn (41)

for each n > 0. The iterative sequence {x,} converges weakly to a fixed point of T
provided that {A,,} C [0, 1] satisfies

ikn(l — Jp) = +00.

n=1

Some methods for the structured monotone inclusion problems can be casted
as the Krasnosel’skii-Mann algorithm, such as the forward—backward method, the
Douglas—Rachford method, and the primal-dual method [4, 23].

In general, the convergence rate of the Krasnosel’skii-Mann algorithm is very
slow, especially for large-scale problems. To accelerate the convergence of the Kras-
nosel’skii—~Mann algorithm, Tutzeler and Hendrickx [20] recently focused on the two
main modification schemes: relaxation and inertia. He et al. [ 18] presented the opti-
mal choice of the relaxation parameter A, for the Krasnosel’skii-Mann algorithm.

In 1964 and 1987, Polyak [33, 34] first introduced the inertial extrapolation
algorithms as an acceleration process. The inertial extrapolation algorithm is a two-
step iterative method and its main feature is that the next iterate is defined by making
use of the previous two iterates.
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In 2000, Alvarez [1] proposed an inertial proximal algorithm for convex min-
imization and, in 2001, Attouch and Alvarez [3] extended its maximal monotone
operators. In 2003, Moudafi and Oliny [28] introduced the forward-backward iner-
tial procedure for solving the problem of finding a zero of the sum of two maximal
monotone operators. They also proposed an open question:

“How to investigate, theoretically as well as numerically, which are the best
choices for the inertial parameter in order to accelerate the convergence?"

Since the open problem was proposed, there has been a little progress except for
some special problems. In 2009, Beck and Teboulle [6] introduced the well-known
fast iterative shrinkage-thresholding algorithm (shortly, FISTA) to solve the linear
inverse problems, which is an inertial version of the iterative shrinkage-thresholding
algorithm (shortly, ISTA). They proved that the FISTA has the global rate 0(,}2)
of the convergence, where n is the iteration number, while the global rate of the
convergence of the ISTA is O (%).

The inertial parameter oy in the FISTA is chosen as follows:

t, — 1

o, =
Iny1

foreachn > 1, where t; = 1, and

1+ /14412
2

Iy =

for each n > 1. In 2015, Chambolle and Dossal [10] took ¢, as follows:

t, = nta-1 4.2)
a
foreachn > 1, where a > 2, and showed that the FISTA has the better property, i.e.,
the convergence of the iterative sequence when ¢, is taken as in (4.2).

The work of Beck and Teboulle [6] revives the study of some inertial-type algo-
rithms. Recently, some researchers constructed many iterative algorithms by using
the inertial extrapolation, such as the inertial forward—backward algorithm [3, 8, 24],
the inertial extragradient methods [7, 14, 15], and the inertial forward—backward—
forward primal-dual splitting method [9].

Recently, in 2017, Stathopoulos and Jones [36] introduced an inertial parallel
and asynchronous fixed-point iteration by bringing together the inertial acceleration
techniques with asynchronous implementations of a rather wide family of operator
splitting schemes.

By using the technique of the inertial extrapolation, 2008, Mainge [26] introduced
the classical inertial Krasnosel’skii-Mann algorithm:

Yn = Xp + (X, — Xp_1),

4.3)
Xne1 = (L= X)) yn + 2, T (yn)
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for each n > 1. He showed that the sequence {x,} converges weakly to a fixed point
of T under the following conditions:

(B1) a, €[0,«) foreachn > 1, where a € [0, 1);
(B2) Y o2 cullxn — Xp—i|I* < 400;
(B3) inf,>; A, > 0 and sup,.; A, < 1.

For satisfying the summability condition (B2) of the sequence {x,}, one need to
calculate o, at each step (see [28]).

In 2015, Bot and Csetnek [8] got rid of the condition (B2) and substituted (B1)
and (B3) with the following conditions, respectively:

(C1) foreachn > 1, {a,} C [0, «] is nondecreasing with; = 0and 0 < @ < 1;
(C2) foreachn > 1,

2 _
>a(1+a)+aa’ 0<A§An§8 ot[a(1+a)+a8+o]’
1 —«? S[1+a(l +a)+ad + 0]

where A, 0,8 > 0.

Letting A, = 1 in (4.3) and assuming that 7 is an averaged mapping, in 2018,
Tutzeler and Hendrickx [20] presented the online inertial method and the online
alternated inertia method, which automatically tune the acceleration coefficients {c, }
online.

Very recently, the authors [13] introduced a general inertial Krasnosel’skii-Mann
algorithm as follows:

Yn = Xp + O{n(xn - xl‘l—l)v
In = Xp + ﬂn(—xn - xn—l)s (44)
Xnt+1 = (l - )"n)yn + )VnT(Zn)

for each n > 1, where {«,} C [0, 1], {8,} C [0, 1] and {X1,,} C (0, 1].

Remark 1 In fact, the general inertial Krasnosel’skii-Mann algorithm is the most
general Krasnosel’skii-Mann algorithm with inertial effects. Itis easy to show that the
general inertial Krasnosel’skii-Mann algorithm includes other algorithms as special
cases. The relations between the algorithm (4.4) with other works are as follows:

(1) o, = Bu,ie., vy, =z, foreachn > 1:thisis the classical inertial Krasnosel’skii—
Mann algorithm (4.3) in [26];

(2) B, = 0foreachn > 1: this becomes the accelerated Krasnosel’skii—-Mann algo-
rithm [16]:

Yn = Xn + ap (xy — Xp-1),
Xnt1 = )"nyn + (I =A)Tx,

foreachn > 1;
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(3) a, = 0foreachn > 1:itbecomes the reflected Krasnosel’skii-Mann algorithm

Zn = Xn + ,Bn(xn - xn—l)’
Xpe1 = (I = Ap)xp + 2, T (20)

foreachn > 1.

Also, they presented the convergence of the general inertial Krasnosel’skii-Mann
algorithm (4.4).

Theorem 1 SupposethatT : 7 — S isnonexpansive with Fix(T) # @. Assume
that {a,}, {B.} and {X,,} satisfy the conditions:

D1) {a,} C[0,a] and {B,} C [0, B] are nondecreasing with oy = B = 0 and
a, B €[0,1);
(D2) forany A,o0,8 > 0,

aé(1+§&)+ao
>—
1 —«?

C0<r<n, < S—a[$(1+§)+a8+a]’ .5)
S[1+&(0+8)+ad+o]

where £ = max{«a, B}.

Then the sequence {x,} generated by the general inertial Krasnosel’skii-Mann algo-
rithm (4.4) converges weakly to a point of Fix(T).

Note that, in Theorem 1, the inertial parameters «,, and g, are nonnegative. In this
paper, we relax the choices of «, and §, and give further results on the parameters
a, and B,, which can be taken negative. We mainly consider two cases as follows:

Cases 1: o, € [0, 1] and B, € (—o0, 0] foreach n > 1;
Cases 2: «, € [—1,0] and B, € [0, +00) for eachn > 1.

Also, we provide the convergence rate for the inertial Krasnosel’skii-Mann algo-
rithm when T is a nonexpansive mapping and / — T is a quasi-strongly monotone
mapping. To our knowledge, we have not seen such convergence results in the liter-
ature.

The contents of the paper are as follows. In Sect. 4.2, we present some lemmas
which will be used in the main results. In Sect. 4.3, we present the convergence of
the general inertial Krasnosel’skii-Mann algorithm with negative inertial parameters.
In Sect. 4.4, the convergence rate is provided for the inertial Krasnosel’skii-Mann
algorithm. Finally, we give a numerical example to compare with different inertial
parameters.
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4.2 Preliminaries

‘We use the notations:

(1) — for weak convergence and — for strong convergence;
(2) w,(x*) = {x : Ix* — x} denotes the weak w-limit set of {x*}.

The following identity will be used several times in the paper (see Corollary 2.15
of [4]):

lox + (1 —a)yl* = allx|I* + 1 —a)IyI* — a1 —a)|x — y|* (4.6)

foralla € R and (x, y) € 57 x 3.

Definition 1 A mapping T : 5 — J is called an averaged mapping if it can be
written as the average of the identity / and a nonexpansive mapping, that is,

T=(1-a) +as, 4.7

where « is a number in ]0, 1{ and S : J# — ¢ is a nonexpansive mapping. More
precisely, when (4.7) holds, we say that T is «-averaged.

It is obvious that the averaged mapping is nonexpansive.

Definition 2 A mapping T : 3¢ — ¢ is called quasi--strongly monotone, where
u > 0,if
(x =y, Tx) = pllx — yl?

forall x € 5 and y € zerT := {y € 5¢ : Ty = 0}. When the inequality holds for
u =0, T is quasi-monotone.

Lemma 1 ([4, Proposition 4.33]) The operator T : 7 — F is nonexpansive if
andonly if S=1—T is %—cocoercive (also called %—inverse strongly monotone),
ie.,

1
(x =y, Sx = Sy) = S]1Sx — Syl’
forallx,y e 7.

Lemma 2 ([2]) Let {{,,}, {5,,}, and {c,,} be the sequences in [0, +00) such that

Ilfn-&-l S wn +0‘n(wn - wn—l) + 8n

for each n > 1, Z::il 8, < 400 and there exists a real number o with 0 < «,, <

o < 1 foralln € N. Then the following hold:

(1) anl[‘(/fn - ‘(/fn—l]-i— < +007 Where [t]+ = maX{t, 0}
(2) There exists ¥* € [0, 400) such that lim,_, 1o V¥, = U™,
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Lemma 3 ([4]) Let D be a nonempty closed convex subset of 7€ and T : D —
be a nonexpansive mapping. Let {x,} be a sequence in D and x € € such that
X, ~xand Tx, —x, = 0asn — +oo. Then x € Fix(T).

Lemma 4 ([4]) Let C be a nonempty subset of ¢ and {x,} be a sequence in 7
such that the following two conditions hold:

(@) forall x € C, lim,_, o ||x, — x|| exists,
(b) every sequential weak cluster point of {x,} is in C.

Then the sequence {x,} converges weakly to a point in C.

4.3 The General Inertial Krasnosel’skii-Mann Algorithms
with Negative Inertial Parameters

In this section, we present the weak convergence of the general inertial Kras-
nosel’skii-Mann algorithms with negative inertial parameters.

431 a, €[0,1]and B, € (—o0, 0]

Now, we divide 8, € (—o00, 0] into two cases: 8, € (—oo, —1] and B, € [—1, 0]
for each n > 1. Firstly, we establish the convergence of the general inertial Kras-
nosel’skii-Mann algorithms for 8, € (—oo, —1] for each n > 1.

Theorem 2 Suppose that T : 7 — F is a nonexpansive mapping with Fix(T) #
. Assume that {o,}, {B,}, and {1} satisfy the following conditions:

(D3) oy =p1 =0, {an} Cle, @] and {B,} C [B, B are nondecreasing, «, @ €
[0, 1) and B, B € (—o0, —1];

(D4) forany A, A,0,6 > 0,

(& +o0)

S >
1 —a?

where & = max{@(1 +@), B(1 + B)} and

T—mnl & S-¥E+a‘sto)| (4.9)
a—B SE+asto+ 1)

Then the sequence {x,} generated by the general inertial Krasnosel’skii-Mann algo-
rithm (4.4) converges weakly to a point of Fix(T).
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The techniques of proof of Theorem 2 are similar to those in [13]; however, for
completeness reasons, we supply an argument.

Proof Take arbitrarily p € Fix(T). From (4.6), it follows that

%01 — PIF = (1= Ay — PI? 4+ Ml T 20 — pIF = (1 = AT 20 — Yull?

< (L =2)lyw = pIP + Aallza — I = a1 = AT 20 — yull*.
(4.10)
Using (4.6) again, we have

e — PI? = 11 + @) (X — p) — @y (xaer — P12

= (1 +a)llx, — plI* = anllxu1 — pII* + o (1 + @) 1%, — x,1 1%
4.11)

Similarly, we have

lze — pI* = (14 B)lIxa — PI* = Ballxuzt — pI* + Ba(1 + Bu)llxn — xui |12
4.12)
Combining (4.10), (4.11), and (4.12), we have

%01 — PIF = (L4 60)1%0 — pI* + Oullxue1 — pII?
< —d(1 = 2T 20 — yull? (4.13)
+ [(1 = A (1 + ) + A B (1 + B)1lIXn — X1 1%

where
0, = o, (1 —Ay) + Bk (4.14)

From (4.9) and {A,} € [A, A, it fgllows that 6, C [0, 8] C [0, 1) is nondecreasing
with 6 = 0and 6 = o(1 — A) + BA. Using (4.4), we have

2
n

1 a
172 = yall = | 5= Gt = 2 + 2 Gt = )
* Y

n

2

2, @ 2
= )\_nz”x’H—l — X"+ r}||xn—l — Xl

(07

+2kn2 (xn-H — Xpy Xn—1 _xn) (415)

n
1 2 o? )

= )an l%n+1 — xall” + )Lnnz ll%0—1 — Xl

%n 2 1 2
5 (= ol = 5l = — s = ),
An Ln

+
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1

where we denote p, 1= ;=57

. From (4.13) and (4.15), we can derive the inequality

%01 — PI? = (L4011, — plI* + Gullxa—s — pII?

1 —=x)(ppn — 1) (4.16)
= P =P il — |
where
1- Pnly
Un = (1 - )Ln)an(l + an) + )Ln/gn(l + ,8}1) + an(l - )Ln)—' (417)

n’*n

From B, < —1, it follows B,(1 + 8,) = 0. Due to p,a, <1 and X, € (0, 1), we

have u,, > 0. Again, taking into account the choice of p,, we have

1 - PMnWn
§ = P (4.18)

Pnn

and, from (4.17), it follows that

MUn = (] — A (1 +ay) + )‘*nﬁn(l + ﬂn) + o,

<&t (4.19)

for each n > 1. In the following, we apply some techniques from [3, 8] adapted to
our setting. Define the sequences {¢,} and {¥,} by

Gn = 11%0 — P>y W = dn — Ot + tnllXn — X1

for eachn > 1. Using the monotonicity of {6, } and the fact that ¢, > Oforalln € N,
we have

Wil — W < b1 — (14 0)n + Ondu—1 + it 1Xnt1 — xnll> — snllxn — xp—1 1%
By (4.16), we know

(1 - )‘n)(anpn - 1)
An

Yo =¥ = ( it ) [t = a1 (4.20)

Now, we claim that

(1 - )\n)(anpn - 1)
An

+ Unt1 < —0 4.21)

for each n > 1. Indeed, by (4.17), we have
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(1 - )‘-n)(anpn - 1)

+ Upy1 < —0

An
ﬁ)"n n +0'+1_)¥n (67 n_lfo
(Un1+0) +( )(atnp ) 422)
2 ( + ) 8)‘%(1 _)\n) <
o)y— ——
= An(Mn+1 @ +6h, -

— (ay +8A) (U1 +0) + 84, <4
Employing (4.19), we have
(ot + 81n) (pnt1 +0) + 04y < (@ +0X,)(§ + a8 +0) + Ay <6,

where the last inequality follows by using the upper bound for the sequence {},} in
(4.8). Hence, the claim in (4.21) is true. It follows from (4.20) and (4.21) that

Wiy — Wy < —0 || Xpp1 — X2 (4.23)

for each n > 1. The sequence (¥,),>1 is nonincreasing and the boundness for the
sequence {6, } delivers

_Qd)nfl =< ¢n - 0¢n71 = "I/n =< "I/l (424)

for each n > 1. Thus, we obtain

n—1

b <O0"do+ W1 Y _0F < 0"y +
k=1

¥
1-6

(4.25)

for each n > 1, where we notice that ¥; = ¢; > 0 (due to the relation 6; = o; =
B1 = 0). Using (4.23)—(4.25), it follows that, for all n > 1,

S '
o Z X1 — xk|? < W — W < W) + 09, <0 ¢y + ; —16’
k=1
which means that
D lngr = xal* < oo (4.26)
n=1
Thus, we have
lim ”xn-H - xn” =0. “4.27)

From (4.4), we have

Ve — Xp1ll < %0 — Xt Il + o llxn — X1

< xn — X1l +@llxy — 201l
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which with (4.27) implies that

lim [y, — xp41] = 0. (4.28)
n—oQ

Similarly, we obtain
’11Lrg10 lzn — Xp41ll = 0. (4.29)

For arbitrary p € Fix(T), by (4.16), (4.19), (4.26) and Lemma 2, we derive that
lim,_ » ||x, — p|| exists (we take into consideration also A,, € (0, 1) in (4.16)).

On the other hand, let x be a sequential weak cluster point of {x,}, that is, there
exists a subsequence {x, } which converge weakly to x. By (4.29), it follows that
Zn, — X as k — oo. Furthermore, from (4.4), we have

ITzn = zall < 1T20 = yull 4 110 = 2zl

1
= ol =yl A llyn = Xaia 4 120 = Xosl
n

1
= (14 3B = 2l 4+ 20 = Xl

Thus, by (4.28) and (4.29), we obtain ||T'z,, — z,, || = 0 as k — oco. Applying now
Lemma 3 for the sequence {z, }, we conclude that x € Fix(T). Therefore, from
Lemma 4, it follows that {x,, } converges weakly to a pointin Fix (7). This completes
the proof. U

o

Remark 2 From (4.9), we get A < a7

have A < 0.5.

Since o € [0, 1] and é € (—o0, —1], we

Next, we analyze the convergence of the general inertial Krasnosel’skii-Mann
algorithm (4.4) for 8, € [—1, 0] foreachn > 1.

Theorem 3 Supposethat T : 7 — I is a nonexpansive mapping with Fix(T) #
. Assume that {o,}, {B,}, and {1} satisfy the following conditions:

(D5) o1 = p1 =0, {ay} C [e, overlinea], {B,} C [B, Blarenondecreasing, o, @ €
(0.1) and B, B € [-1,0);
(D6) for any A, 2,0,8 >0,

alo(l +@) + o]

1 —a? ’

S > O<&§X,,§X, (4.30)

where

- . o a(l+a+8) s—al@(l+a+s) +ol
A = min , S — — (4.31)
a—B al+a+d)—n dladl+a+48) +o+1]
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and
n= min {B(1+ B)}.
BelB.B]

Then the sequence {x,} generated by the general inertial Krasnosel’skii-Mann algo-
rithm (4.4) converges weakly to a point of Fix(T).

Proof Following the proof line of Theorem 2, we obtain

%01 — PIP—(1 4+ 0)11%0 — pII* + 6ullx0—1 — pII?

(1 —-1)(x -1 (4.32)
= P s =l s — o I,
: 1
where 6, is defined by (4.14), p, := ™ and
Mn = (1 - )\'I‘L)all(l + an) + )"nlgn(l + ﬂn) + an(l - )Vn)& (433)
From (D6), it follows that
pn = (1= Na(l+a) +in+a(l —21)8 > 0. (4.34)
Using (D5), we have
wy, <a(l+a—+596). (4.35)
Next, we claim that
1—A) (0,0, — 1
A= t)Cnon =D ) i <0 (4.36)

An
for each n > 1. Similarly with (4.22), we have

(1 - )‘n)(anpn - 1)
An

+ Mn+1 S —0
= (o +0A) (Upy1 +0) + 84, < 6.

Employing (4.35), we have
(an + S)Ln)(/vl‘n+l + U) + 3)\71 = (a + ‘Skn)[a(l + o+ 3) + U] + S}Ln = 59

where the last inequality follows by using the upper bound for (%,) in (4.31). Hence,
the claim in (4.36) is true. The rest proof is similar to the proof of Theorem 2. This
completes the proof. (]

Remark 3 In the analysis in [20, Sect. 3.2.2 (i)], Iutzeler and Hendrickx concluded
that inertia has a negative effect on the negative side of the spectrum. The condition
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based on which the authors got the conclusion is the nonnegativity of the inertial
parameters (see Lemma 3.2 in [20]). According to their analysis, it is easy to show
that negative inertia satisfying some conditions has a positive effect on the negative
side of the spectrum. So, our choices for inertial parameters in Theorems 2 and 3
may have an advantage for the negative side of the spectrum.

4.3.2 a, €[-1,0]and B, € [0, +00)

In this subsection, we consider «,, € [—1, 0] and 8,, € [0, +00) for the inertial Kras-
nosel’skii-Mann algorithm (4.4).

Theorem 4 Suppose thatT : 7€ — F is a nonexpansive mapping with Fix(T) #

. Assume that {o,}, {B,}, and {1} satisfy the following conditions:

D7) o1 = p1 =0, {an} C e, @, {Bs} C [B. B1are nondecreasing, a, @ € (—1, 0]
and B, B € (0, +00);

(D8) for any A, 20,8 >0,

21+ B
8>max{l+&,W}, O<A=<A, <A, 4.37)
o —
where
o
A>—, (4.38)
a-p
and

(4.39)

- |1-@ s4+aBA+B) —as+0]
A =min{ = , —— — .
{ﬁ—& 5[/3(1+/3)—g8+o+1]}

Then the sequence {x,} generated by the general inertial Krasnosel’skii-Mann algo-
rithm (4.4) converges weakly to a point of Fix(T).

Proof Following the proof line of Theorem 2, we have

%041 — PI? = (L4 0)[1%0 — PI* + Oullxuey — pII?
< =2 =2 )T 20 — yull? (4.40)
+ [(1 = A)an (1 + o) + A B (1 + B)1IIX, — Xua 1%

where

O, Zan(l _)\n)"i_/gn)“n' (441)
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From (DS), _it foll_ozvs that {6,} C [0, 8) C [0, 1) is nondecreasing with 6; = 0 and
0 = a(l — A) + B A. Similarly, with (4.15), we have

1 ) 9% 2
”Tzn - yn” > _2||xn+1 - -xn” + _2||-xn71 - xn”
b n (4.42)
X 2, | 2
+ T2 PullXng1 — xull” + —lx0—1 — X117 ),
An Pn

where we denote p, := ﬁ From (4.40) and (4.42), we can derive the inequality

%01 = pIF = (14 0)11%0 — PI* + Oullxaer — pII?

(1 - )‘-n)(l + anpn) (443)
< - Y ||xn+l _anZ + tnllx, _xn—l”z:
where
1+ pyo,
Mn = (1 - )\,,1)01,1(1 + an) + }“nﬁn(l + ,Bn) - an(l - )‘«n)p—i' (444)
Taking into account the choice of p,, we have
L+ ppoy
§= ———. (4.45)
Pnhn

From (4.37), it follows that 1 +«, —8 <14+« —§ <0 and, consequently, we

obtain
n =0 =2, (1 +a, —8) +A,8,(1+ B,)

> 0. (4.46)

Using (D7), we have
tn = (1 = Ap)an (1 + o) + ApBu (1 + By) — @y (1 — 1) (4.47)

<BU+p)—as '
foreachn > 1.
Next, we claim that
1— )‘-n 1 + Ay Pn

B k) e 7. P (4.48)

An

for each n > 1. By (4.47), we have
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1_)Ln 1+an n
( )( p)+m+1§_g

An
= M(pr1+0)— A =2)A+0a,0,) <0
8)\11(1 - )"n)
— M(ppy1 +0)—— =<0
SA, — o

> (8An — @) (Upg1 +0) + A, < 4.
Employing (4.45), we have
(5)\'}1 - an)(/’LnJrl + U) + 5)% = (S)Vn - Q)[E(l +B) - QS + 0] + 8)»,1, = J

where the last inequality follows by using the upper bound for (4,) in (4.39). Hence,
the claim in (4.48) is true. The rest proof is similar to the proof of Theorem 2. This
completes the proof. g

Remark 4 In Theorem 4, there is an additive restriction on A in (4.38). Furthermore,

from (4.38) and (4.39), it follows that @, &, B, B satisfy

o 1—«a
g >

a-B 7 B-a

Remark 5 To use Lemma 2 in the proof of the convergence theorems, we restrict
0, = a, (1 — Xy) + Bury € (0, 1). Therefore, at most one of the two inertial param-
eters o, and B, is negative. On the other hand, to guarantee § > 0, we have to take
o, € [—1, 1]. So, in Theorems 2, 3, and 4, we only discuss two cases on the inertial
parameters:

(1) a, €[0,1]and B € (—00,0] foreachn > 1;
2) a, € [—1,0]and B € [0, +00) foreachn > 1.

4.4 Linear Convergence

Let S = I — T.Inthis section, we consider the general inertial Krasnosel’skii-Mann
algorithms with the following form:

Yn = Xp + an(xn - xn—l)s
Zn = X + Bu(Xp — Xu—1), (4.49)
Xn1 = Yo — AaS(20)

for each n > 1. Rearranging the above (4.49) yields

ap — )Lnﬂn

n ={-2, n
Xnp1 = ( )(x+ Ty

(xn - xn—l)) + )LnTZn»
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which is the general inertial Krasnosel’skii-Mann algorithm (4.4).

In this section, we establish a linear convergence for the general inertial Kras-
nosel’skii-Mann algorithms (4.49) under the assumption that S is quasi-strongly
monotone.

First, we present a key lemma for the main result.

Lemma 5 LetT : 7 — 5 beanonexpansive mapping. Assume thata,, € [—a, o]
and{B,} C [—B, Blwithay = 1 =0andpB > 0,a € (0, #) andthe relaxation
parameter is fixed, i.e., ., = A, and satisfies

p—1=2ap(1+ /p)
dp(1+ B+ BJ/P)

1—20— /(0 —2a)2— 1-2 1—-2a)2— .
M W ’ “+W ) Then it follows that, for all

0<A<h:= (4.50)

for some p € (
n>1,
[0 — Xn—11* < pllXuts — xall% 4.51)

Furthermore, we have
%0 — X1 11 < Dllxnsr — yall® (4.52)

for some n > ﬁ?)'

Proof Now, we prove (4.51) by induction. Lemma 1 shows that S is %—cocoercive.

Based on the inequality ||a||> — ||b]|> < 2|la]||||b — a||, we observe that, foranyn > 1,
2 2
”xn - xn—l” - ||xn+l - xn”
=< 2”xn - -xn71||||(xn+l - -xn) - (-xn - xnfl)”
=< 2||-xn - xn71|||| [an(xn - xnfl) - O5}'t71(xn71 - xn72)] - )‘«(Szn - Sanl)”
= 2||xn — Xn—1 ” [|an|||xn — Xn—1 ” + |an—l|||xn—l - xn—2|| + )\'”SZH - Szn—l ”]

< 2lxp — X1l [|an| %0 — Xp—1ll + l@n-11l1Xn—1 — Xu—2ll + 2Allz0 — Zn—1 ”] )
(4.53)
where the final inequality comes from the cocoercive property of S. Applying the
triangle inequality and (4.49) yields

lzn = zn—1ll < lzw = Xl + 110 — Xa1ll + 1 X0—1 — Zn—1l

(4.54)
< A+ 1BuDlxn = xu1ll + 1Ba1lllxXa—1 — Xp—2]l.

Letn = 1 in (4.54) and using By = 0, we have

lz1 = zoll = (A + B)llx1 — xoll,
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which, with (4.53) and «p = 0, implies

2 2 2
lx1 — xoll” — llx2 — x1[I” < 2[e|lxy — xoll” + 2Allx1 — Xollllz1 — zoll]

4.55
< [20 + 411 + B)1]|x1 — xoll% #23

Rearranging the above inequality yields

2 2
X1 — X < X — X
lxr — xoll” < 1—[2a+4k(1+ﬂ)]|| 2 — x|

2
< pllxs —x1I%,

where the second inequality comes from (4.50). For the induction step, i.e., n > 1,
from (4.53) and (4.54), it follows that

2 2
lxn = Xn—1ll” = lXns1 — Xall

< 2[a 4+ 22(1 + A Ixy — X1 1* + 20 + 228111x0 — X1 l1X0—1 — Xp—2 .
(4.56)
By the assumption that (4.51) holds for 1,2, ..., n — 1, we have

I, — Xp—1llllXn—1 — Xp—2ll < «/E”xn — Xn—1 ”2 (4.57)
Combining (4.56) and (4.57) yields

1 = Xut 1 = g1 = l? < 2 [ +24(1+ B) + (o + 248) /P 10 — 1 1%

(4.58)

Finally, rearranging the above inequality and using (4.50) lead to (4.51). Using
the inequality [|a||®> — ||b]|> < 2|la||||b — a|| again, we obtain

2 2
X — Xngt 17 = v — Xng 17 < 2020 = Xt 11 — X)) — (U — Xng) |l

< 2a|lxp = Xnrrlllxe — X1l
2
= 2“\/5”)% = Xpp1ll%

(4.59)
which yields
[P g T
n n+ = 1 — 205\/5 n n+ .
Combining the above inequality with (4.51) yields
_ 2 o P _ 2
1y — xu—1ll” =< m”)’n Xn1l (4.60)

which leads to (4.52). This completes the proof. (]
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Remark 6 Note that, from (4.50), it follows that
p—1—=2ap(1+.,/p) > 0. (4.61)
Due to p > 1, we have p > ,/p. So, to obtain (4.61), we may let
p—1—2ap(1+ p)>0. (4.62)

After a simple calculation, we have

and

(4.63)

1 —2a — /(1 —20)? — 8u 1 —20+ /(1 —2a)?—8a
<p< " .

4o

Note that 122~V (1720)" 8« W > 1. Itis easy to show that 1 — 2a,/p > 0if p satisfies
(4.63).

Theorem 5 Assume that T : 7€ — € is a nonexpansive mapping and S : 7 —

FC is a quasi-j-strongly monotone mapping with > 0. Let v satisfy n € (0, 1)
and 0 € (0,1). Let a € (O, min { 3’%‘5, (17”)(;79)’” }) and {x,} be the sequence
generated by the algorithm (4.49) with a constant relaxation parameter A €

(0, min{A1, >}, where X, is given in (4.50) and

~  —b+b—dac 2,22
ho=——— ——— a=21-0puvn, (4.64)
b:(l—@)uv[1+m’l+2(°‘+ﬂ)\/ﬁ]’ c=an—{1—-v)(I =6)uv.

Then, we have
2, — x*[1* < (1 — 0pv)" [lxg — x* 1. (4.65)

Proof From (4.49), we have

2 2
ln1 = x*17 = llyn — ASzy — x|

. . (4.66)
= [lyn — x*1* + A2152al1* + 2A(Sz0, x* = ).

Using (4.49), we have
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) 20 — yull*

allx, — x| (4.67)

e —x* 17 < (L +€)llx, —x*1* + ( 1+

1+

M= N = N =

N—— ———

s(1+e>||xn—x*||2+(1+

< (4O xy — x| + anllxuer — yall*.

Using (4.49) again, we have
A NSzall® = llx1 — yull*. (4.68)
Note that
(SZn, x* = Yn) = <Szn9 x* - Zn) + <SZVH in — yn>
. 1 (4.69)
= (82, X" —2z,) + X(yn — Xp41sZn — Yn)-

The cocoercive and quasi-strongly monotone properties of .S imply

(Szn, X* — zn) = V(82 x* — 2,) + (1 = V)(Sz,, — Sx*, x* — z,,)

1—v
< —uvllz, — x| - TnSznu2
< * 2 2
= _MV”xn —x + ,B(xn _xn—l)” - 2)\2 ||xn+l yn”
J7AY -V
=< _THxn - X*Hz + ﬂzﬂ‘)”xn — Xn—1 ”2 - 232 lxp4+1 — yn||2
78y, 1—v
= =Sl = XTI+ <ﬂ2uvn — W) a1 — yall®,

4.70)
where the third inequality comes from —|la + b||*> < —1|la||* + ||b||* and the last
inequality follows from Lemma 5. We also have

1 2 Y 2
n = Xnt1s 20 — Yn) < 7=y — Xp1 I + E”Zn = yall

27/
2 v (« +/3)2 2
= —||yn — X + Xy — X
2)/ ly Tl > l 1l @71

IA

1 /1 ) 5
5 —+)/(Ol+,3) n ||yn_xn+1”
Y

= (@ + BVAllyn = xap1 1%,

where we have let y = in the final equality. Combining (4.66)—(4.71) and

: @Hp) i +ﬁ>f
using Lemma 5, we have
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2
o1 — x|l

< (1 — pr +€)llx, — x*|?

1 I—v
- [(1 2)an+1 = —= + 282 pvmr + 2@ + B |lya = 3o P

1 1—v
= (1 =01 ||x, — x*|? [(1 —) | —
(1= bpvm)llxn =571 [ (14 g Jam +
+ 282 vmi + 2@ + )/ |l — s P
< (1= 0pvn)lx, — x*|1%,
(4.72)
where we let € = (1 — 0)uvA in the equality and the last inequality holds because
of the choice of A. Therefore, (4.65) holds. This completes the proof. (|

Remark 7 There are some examples for the quasi-strongly monotone mappings,
such as the gradient of a restricted strongly convex function. See [31] for more
examples.

4.5 Numerical Examples

In this section, we give some numerical examples to compare the numerical results for
the general inertial Krasnosel’skii-Mann algorithm with different inertial parameters.
The codes are written in Matlab 7.0 and run on personal computer.

Problem 2 (see [14]) Consider the classical variational inequality problem, which
is to find a point x* € C such that

(f(x),x =x") >0 (4.73)

forall x € C, where C is a nonempty closed convex subset of a real Hilbert space H
and f : C — H isamapping. Denote by VI(C, f) the solution set of the variational
inequality problem (4.73).

Assume that f be a Lipschitz continuous function with Lipschitz constant L. By
using the properties of the metric projection, it is easy to show that the variational
inequality problem (4.73) equals to the fixed-point problem, that is,

Fix(T) = VI(C, f),
where the mapping T : C — C is defined by
T:=Pc(I-yf), (4.74)

where 0 <y < 2.
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Fig. 4.1 Comparison of different values of the parameters «,,, 8,,, and 1,

Define a function f : R?> — R? as follows:
fx,y) = 2x + 2y +sin(x), —2x + 2y + sin(y))

for all x, y € R. Recently, the authors [14] showed that f is L-Lipschitz continuous
with L = +/26 and strongly monotone. Therefore, the variational inequality (4.73)
has a unique solution (see, for example, [39]) and (0, 0) is its solution.

The fact that f is Lipschitz continuous and strongly monotone implies that f is
inverse strongly monotone. In [37], Xu showed that 7" defined in (4.74) is an averaged
mapping, that is, 7' can be written as the average of the identity / and a nonexpansive
mapping if f is inverse strongly monotone.

LetC = {x € R? : ¢y < x < 10¢;}, where ¢y = (—10, —10) and ¢; = (10, 10).
Take the initial point xo = (1, 10) € R* and y = 5.

First, we tested three ranges for the parameters (o, B4, A,): (0, 1) x (0, 1) x
0,1),(—1,0) x (0,1) x (0, 1)and (0, 1) x (—1,0) x (0, 1) to get the optimal val-
ues in each range. Then we compared these optimal values in Fig. 4.1, which illus-
trates «,, = —0.8, B, = 0.7, and A,, = 0.2 have best behavior.

4.6 Conclusions

In this paper, we first showed the weak convergence of the general inertial Kras-
nosel’skii-Mann algorithm with negative inertial parameters. Also, we provided the
convergence rate for the general inertial Krasnosel’skii~Mann algorithm. Finally, we
gave an example to compare the choice of inertial parameters.
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Chapter 5 m)
Digital Space-Type Fixed Point Theory I
and Its Applications

Sang-Eon Han

Abstract The present paper, as a survey paper, studies the fixed point property (FPP,
for brevity) and the almost fixed point property (AFPP, for short) for digital spaces
whose structures are induced by a digital graph in terms of the Rosenfeld model (or
digital metric space), the Khalimsky (K-, for brevity), or the (extended) Marcus-
Wyse (M-, for short) topology. Furthermore, we also investigate various properties
of digital isomorphic (or homeomorphic), digital homotopic, retract, and product
properties of the FPP and the AFPP of them. This approach can be used in applied
sciences such as some areas of pure and applied topologies, applied analysis, and
computer science such as computer graphics, image processing, pattern recognition,
mathematical morphology, artificial intelligence, and so forth. All digital spaces are
assumed to be connected (or k-connected) unless stated otherwise.

Keywords (Almost) Fixed point property + Marcus Wyse topological space *
Digital metric space - Khalimsky topological spaces - digital contractibility

5.1 Introduction

Let Z, N, and Z" represent the sets of integers, natural numbers, and points in the
Euclidean n-dimensional space with integer coordinates, respectively. Digital topol-
ogy stresses on finding (digital) topological properties of digital spaces in Z" for
eachn € N[16, 40, 45, 46], digitized spaces, tiled spaces, and crystalized spaces of
subspaces of the n-dimensional Euclidean space and so forth. Thus, it has contributed
to the study of some areas of pure and applied topologies, analysis, and computer
science such as computer graphics, image processing, pattern recognition, mathe-
matical morphology, artificial intelligence, and so forth. Up to now, several kinds of
approaches have been used to study digital spaces (or digital images or digital metric
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spaces) [1, 14, 19, 22, 24, 25, 31, 40, 44, 45, 52]. The present paper deals with three
main approaches such as digital graph-based spaces in terms of the Rosenfeld model
(or digital metric space), Khalimsky (K -, for brevity), and (extended) Marcus-Wyse
(M-, for short) topological spaces [20, 36, 52]. Indeed, digital topology mainly stud-
ies these spaces as well as some Alexandroff topological spaces, cellular complexes,
combinatorial topological spaces, and so on. The former three spaces are based on
the set Z" and the latter spaces are related to the Alexandroff topological structure.
Furthermore, methods of studying fixed point theory for digital spaces are different
from the following typical approaches:

(x1) Metric-type fixed point theory [2, 7, 8, 48],
(x2) Topology-based fixed point theory [4, 42, 43, 47], and
(*3) Order theory-based fixed point theory [51].

Thus, in the present paper, we may add one more approach such as
(»4) Digital space-type (or digital topology-based) fixed point theory.

The present paper studies both the fixed point property (FPP, for brevity) and the
almost fixed point property (AFPP, for short) for digital spaces in the corresponding
categories. We say that an object X has the FPP (resp. AFPP) in a category if for any
morphism f of the category there is some element x € X such that f(x) = x (resp.
f(x) =x or f(x)is adjacent to x depending on the associated adjacency structure)
[44]. Since every singleton obviously has the F/PP in a category, in studying the FPP
for spaces, all spaces X (resp. digital images (X, k)) are assumed to be connected
(resp. k-connected) and | X| > 2.

The well-known Lefschetz fixed point theorem [42, 43] as well as algebraic topo-
logical tools strongly contributed to the fixed point theory in such a way as to study
the FPP of a certain topological space X by using homology groups of X [42, 43]. It
is also a homotopy invariant. Hence, the theorem implies that a contractible topolog-
ical space has the FPP from the viewpoint of topology-based fixed point theory (see
(x2)). However, this approach invokes some difficulties in studying digital spaces
(or grid spaces) [37]. To be precise, in digital topology, it turns out that [19, 37]
both the ordinary Lefschetz fixed point theorem and its digital version [9] have some
limitations of studying the FPP of digital spaces, which is not helpful to address
the issue of (5.1). Thus, a digital version of the classical Banach contraction prin-
ciple [2] has been developed [10, 21] to study the FPP for digital metric spaces
[21, 23, 24, 37]. Indeed, the paper [37] corrected and improved many things in [9].
In this paper, we often use the notation: For all a, b € Z, we follow the notation
[a, blz :={x € Z : a < x < b}. Letus now recall the notion of digital space defined
by Herman [38].

Definition 5.1 ([38]) A digital space is arelation set (X, R), where X is a nonempty
set and R is a binary symmetric relation on X such that X is R-connected.

In Definition 5.1, we say that the set X is R-connected if for any two elements x
and y of X there is a finite sequence (x;);c[0,/3, of elements in X such that x = xo,
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y=x;,and (x;,x;11) € R for j € [0,] — 1]z. Besides, we should remind that the
relation set (X, R) in Definition 5.1 need not be either a preordered set or a partially
ordered set. In view of Definition 5.1, we see that not every digital topological space
satisfies the T}-separation axiom [6]. Besides, a relation set without any topological
structure can be a digital space [10, 19, 21]. In addition, the digital space of Definition
5.1 can be generalized into a grid space as follows.

Definition 5.2 ([27]) We say that a grid space is a union of some R-connected
components with the given relation R instead of just an R-connected component in
a digital space.

In digital topology, since fixed point theory deals with only R-connected spaces,
in the present paper, we will use the term “digital space” without any distinction
from a grid space.

Let (X, R) be a digital space (see Definition 5.1 of the current paper). Then we
may pose the following queries:

(a) Are there some relationships between the contractibility of X
and the existence of the FPP of X ?

(b) Does a finite digital metric plane have the FPP or the AFPP ?
(c) Does a compact Khalimsky topological plane have the FPP
or the AFPP?

(d) Are there relationships between the FPP of an M A-space X
and the MA-contractibility of X ? (5.1)
(e) Does a compact Marcus-Wyse topological plane have the FPP
or the AFPP?

(f) What about the product properties of the FPP and the AFPP
for digital spaces ?

(g) What about digital topological invariant properties of the FPP
and the AFPP?

Rosenfeld [46] first came up with the fixed point theorem for digital images (X, k)
in a graph theoretical approach (for more details, see [21, 23, 24]). Indeed, a digital
image (X, k) is one of the digital spaces because (X, k) is a kind of relation set
(X, R) in the following way: for all x, y € X with x # y we say that (x, y) € R if
and only if x and y are k-adjacent (for more details, see Sect.5.2).

As for a theorem related to the FPP for digital images, we have the following.

Proposition 5.1 ([46], see Theorems 3.3 and 4.1 in [46]) A (finite) digital plane (or
digital metric space or digital image) (X, k) in Z* does not have the FPP, where X
is k-connected and | X | > 2.

Although Rosenfeld [46] investigated the non-FPP of a finite digital plane in Z?
as in Proposition 5.1, we can easily generalize the result into n-dimensional digital
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cubes or any digital images because a singleton obviously has the FPP. This means
that only a singleton has the FPP in a graph theoretical approach in terms of the
Rosenfeld model [46].

Motivated by the non-FPP of digital images [46], Rosenfeld [46] further studied
the AFPP for digital images. Thus, the present paper will also study the AFPP for
digital spaces and further propose digital topological invariants of the FPP and the
AFPP for digital spaces [25].

The recent papers [20, 22, 49] (resp. [23-25, 27, 36, 50]) partially studied the
issue of (5.1)(a) from the viewpoint of K- (resp. M-) topology. Thus, it turns out
that not every M A-space with M A-contractibility has the FPP [23]. Furthermore, a
compact M -topological plane is proved not to have the FPP [24]. Thus, we need to
study the questions posed in (5.1) by using only various properties of M -continuous
maps.

The rest of the paper proceeds as follows: Sect. 5.2 provides some basic notions
on digital topology. Section 5.3 introduces four categories for digital spaces such as
DTC, KTC, and MTC. Section 5.4 refers to a digital version of the Banach contrac-
tion principle and its utilities. Section5.5 proposes some relationships between the
contractibility of X and the existence of the FPP of X in terms of the category of
digital M A-spaces, denoted by MAC. Section 5.6 investigates the FPP and the AFPP
for digital planes. Section5.7 studies product properties of the FPP and the AFPP
for digital spaces. Section5.8 investigates some retract properties and digital topo-
logical invariants of the FPP and the AFPP for digital spaces. Section 5.9 concludes
the paper with a summary and suggests further works.

5.2 Preliminaries

To address the issues of (5.1), let us recall basic notions and terminology on digital
topology [13, 14, 16, 33, 34, 41, 45, 46]. Since the present paper also studies both the
FPP and the AFPP for digital spaces associated with the K- and the M -topological
structure, we will also recall some basic facts and terminology on digital topology
such as Z" with digital k-connectivity, and K - and M -topological structures. Besides,
the well-known Tj-Alexandroff topological structure (i.e., semi- T% -space [6]) of the
K- and the M-topologies [1, 6] will be often used in the present paper.

In this paper, we shall often use the symbol *“ :=" to introduce new notions without
proving the fact. Before studying fixed point theory for digital spaces, first of all, we
need to represent the FPP for digital spaces as follows.

Remark 5.1 We say that adigital space (X, R) has the FPP if every relation preserv-
ing self-map f of (X, R) has a point x € X such that f(x) = x, where a self-map f
of (X, R) is arelation preserving map if forany x, y € X with (x, y) € Randx # y,
f(x) = f(y) or (f(x), f(y)) € R. In case a topological space (X, T) related to a
digital space (X, R) such as K- and M-topological spaces as well as Alexandroff
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spaces, we say that (X, T') has the FPP if every continuous self-map f of (X, T)
has a point x € X such that f(x) = x, as usual.

In the relation to the study of n-dimensional digital images in a graph theoretical
approach, we have often used the & (or k(¢, n))-adjacency relations of Z" as follows:
for a natural number ¢ with 1 < ¢ < n, two distinct points p = (p;)ie[i.n], and g =
(gi)ie[1.n), In Z" are called k(t, n)-adjacent (for short, k-adjacent) if

at most ¢ of their coordinates differs by =+ 1, and all others coincide. (5.2)

Indeed, these k(¢, n)-adjacency relations of Z" are determined according to the
two numbers ¢, n € N [13] (see also [16, 17]).

Using the above operator, we can obtain the k-adjacency relations of Z"[13, 16,
17, 29] as follows:

n—1
i n!
k:=k(t,n) = 2"7IC" where C! = ——
(a) (t,n) i:nZ;t ", where C; TR
or, equivalently, (5.3)
t
i, n __ n!
(b)k: k(t,n):EZ Ci,where Ct _(n——l)'l'

Rosenfeld [45] called a set X C Z" with a k-adjacency a digital image denoted
by (X, k) for n € {2, 3}. The paper [13] generalized this approach into the high-
dimensional digital image such as X C Z" with the k-adjacency of Z" for each
n € N. More precisely, using the k-adjacency of Z" suggested in (5.3), we say that
a digital k-neighborhood of p in Z" is the set [45]

Ni(p) :={q € Z" : p is k-adjacent to ¢} U {p}.

For a k-adjacency relation of Z", a simple k-path with [ + 1 elements in Z" is
assumed to be a (injective) finite sequence (x;);cfo,11, C Z" such that x; and x; are
k-adjacent if and only if |i — j | = 1 [41]. If xo = x and x; = y, then the length of
the simple k-path, denoted by /; (x, y), is the number /. A simple closed k-curve with
[ elements in Z", denoted by SCZ'I [13], is the (x;)ief0,i-11,» Where x; and x; are
k-adjacent if and only if |i — j| = £1(mod ) [41].

For a digital image (X, k), as a generalization of Ny(p) [13], a digital k-
neighborhood of xy € X with radius ¢ is defined in X as the following subset [14]
of X:

Ni(xo, &) :={x € X : [k (x0, x) < &} U {xo},

where [ (xo, x) is the length of a shortest simple k-path from xy to x and ¢ € N.
Concretely, for any X C Z", we obtain [17]
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Ni(x, 1) = Nk(x)ﬂx. (5.4)

To study digital spaces in Z" from the viewpoint of fixed point theory, we have
often used K- (resp. M-) topology on Z" (resp. 72 [52]), denoted by (Z", k") (resp.
(Z2, v)). We say that a topological space (X, T) is Alexandroff if each point x (€ X)
has a minimal open neighborhood [1].

Let us now briefly recall some basic facts and terms related to the K -topology. The
Khalimsky line topology on Z, denoted by (Z, k), is induced by the set {[2n — 1, 2n +
1]z : n € Z} as a subbase [1]. Furthermore, the product topology on Z" induced by
(Z, ) is called the Khalimsky product topology on Z" (or Khalimsky n-dimensional
space) which is denoted by (Z", k™). Indeed, (Z", k") is an Alexandroff space. A
point x = (xy, X2, ..., X,) € Z" is called pure open if all coordinates are odd, and
pure closed if each of the coordinates is even [39]. The other points in Z" are called
mixed [39]. Based on this approach, for a point p := (py, p2) in (Z?, k?), its smallest
open neighborhood SNk (p) is obtained [40] as follows:

{p} if p is pure open,

SNy (p) = {(p1 =1, p2), p, (p1 + 1, p2)} if p is closed-open, 5.5)
K {(p1, p» — 1), p, (p1, p> + 1)} if p is open-closed, ’

Nsg(p) if p is pure closed,

where the point p := (py, p>) is called closed-open (resp. open-closed) if p, is even
(resp. odd) and p, is odd (resp. even). In all subspaces of (Z", k™) of Figs.5.1 and
5.2, a black jumbo dot (resp. a square dot) means a pure open point (resp. a pure
closed point) and further an ordinary dot means a mixed point.

Hereafter, for a subset X C Z", we will denote by (X, ky) for eachn>1 a
subspace induced by (Z", ™) and it is called a K -topological space. For a point x
in (X, k%), we often call SN (x) the smallest open neighborhood of x in (X, k).

Definition 5.3 ([35, 40]) For (X, «%), we say that two distinct points x and y in
X are K-adjacent in (X, k%) if y € SNk (x) or x € SNk (y), where SNk (p) is the
smallest open set containing the point p in (X, k).

According to Definitions 5.1 and 5.3, we obtain the following.

Proposition 5.2 A K-topological space (X, k%) is a digital space in terms of the
K-adjacency of (X, k).

Let us now recall basic concepts on M-topology. The M-topology on Z?, denoted
by (Z2, y),is induced by the set {U (p) | p € Z?}in (5.6) below as a base [52], where,
for each point p = (x, y) € Z2,

(5.6)

N4(p) if x 4+ y is even, and
Ulp) =

{p} otherwise.
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Owing to the property (5.6), the set U (p) is the smallest open neighborhood of
the point p in Z2, denoted by SNy (p). In relation to the further statement of a point
in Z2, in the paper, we call a point p = (xy, xp) double even if x| + x; is an even
number such that each x; is even, i € {1, 2}; even if x; + x, is an even number such
that each x; is odd, i € {1, 2}; and odd if x| + x; is an odd number [49].

In all subspaces of (72, y) of Fig.5.2, the symbols ¢ and e mean a double even
point or an even point, and an odd point, respectively. In view of (5.6), we can
obviously obtain the following: under (Z?, y) the singleton with either a double
even point or an even point is a closed set. In addition, the singleton with an odd
point is an open set.

Hereafter, for a subset X C Z? we will denote by (X, yx) a subspace induced by
(Z?, y), and it is called an M -topological space. For a point x in (X, yx), we often
call SNy (x) the smallest open neighborhood of x in (X, yx).

Definition 5.4 ([18]) For (X, yx), we say that two distinct points x and y in X
are M-adjacent in (X, yx) if y € SNy (x) or x € SNy (y), where SNy (p) is the
smallest open set containing the point p in (X, yx).

According to Definitions 5.1 and 5.4, we obtain the following.

Proposition 5.3 An M-topological space (X, yx) is a digital space in terms of the
M-adjacency of (X, yx).

5.3 Some Categories Associated with the Digital
Topological Structures

This section studies several categories for digital spaces associated with Rosenfeld’s
digital topological structure and the K- and the M-topological structures. To map
every ko-connected subset of a digital image (X, ko) into a kj-connected subset of
(Y, k1), the paper [45] established the notion of digital continuity of a map between
digital images.

Motivated by this approach, the digital continuity of a map was represented in the
following way, which can be substantially used to study digital images X in Z".

Proposition 5.4 ([13, 16]) Let (X;, k;) be digital images in Z" with the k;-adjacency
relations of (5.3) for each i € {0, 1}. A function f : (Xo, ko) — (X1, k1) is (ko, k1)-
continuous if and only if for every x € Xy, f(Ng,(x, 1)) C N, (f(x), 1).

In Proposition 5.4, in case ko = k;, the map f is called a k;-continuous map. By
using this concept, we establish the category of digital topological spaces (or digital
images), denoted by DTC, consisting of the following data [13] (see also [16]):

e The set of (X, k), where X C Z", as objects of DTC;
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e For every ordered pair of objects (X;, k;) foreachi € {0, 1}, the set of all (ko, k;)-
continuous maps between them as morphisms of DTC. In DTC, in case kg = k; :=
k, we will particularly use the notation DTC(k) [36].

A digital image (X, k) in Z" can be assumed to be a set (or graph) X in Z" with
one of the k-adjacency relations of (5.3). Thus, in classifying digital images, we
use the concept of a (ko, ki)-isomorphism as in [14] (see also [34]) rather than a
(ko, k1)-homeomorphism as in [3].

Definition 5.5 ([34], see also [14]) For two digital images (X, k) in Z™ and (Y, k)
inZ",amaph : X — Yiscalleda (ko, ki)-isomorphismif & is a (kg, k1)-continuous
bijection and, further, h™': Y — X is (k, ko)-continuous.

In Definition 5.5, in case kg = ki, we call it a ko-isomorphism [14, 34].

Let us now recall the notion of K-continuity of maps between K -topological
spaces. As usual, for two K -topological spaces (X, K;O) := X and (Y, K;l,l) =Y, a
map f : X — Y iscalled continuous at a point x € X if, for any openset Oy C Y
containing the point f(x), there is an open set O, C X containing the point x such
that f(O,) C Of(x).

Owing to the Alexandroff topological structure of a K -topological space, we can
represent the K-continuity of a map at a point x, as follows:

J(SNk(x)) C SNk (f(x))

because each point x in a K-topological space X always has the smallest open set
SNg(x) C X.

By using K-topological spaces (X, k%) := X and K-continuous maps, we have
the category of K-topological spaces, denoted by KTC, consisting of the following
data: [15].

o The setof spaces (X, k), where X C Z", as objects of KTC denoted by Ob(KTC).
e For all pairs of elements in Ob(KTC) the set of all K-continuous maps between
them as morphisms.

To study K -topological spaces, we need to recall a K -homeomorphism as follows.

Definition 5.6 ([15]) For two spaces (X, «y’) := X and (Y, ky') :=Y, amap h :
X — Y is called a K-homeomorphism, denoted by X ~k Y if h is a K-continuous
bijection, and 4! : ¥ — X is K -continuous.

In (Z", k™), we say that a simple closed K-curve with / elements in Z", denoted
by scr! s a path (x;)ief0.1-11, C Z" for each [ > 4 that is K-homeomorphic to a
quotient space of a Khalimsky line interval [a, b]z in terms of the identification of
the only two end points a and b [35], where both of the numbers a and b in [a, b]z
are even or odd. Namely, SC”K'I is a finite set (x;);ef0,/—17, C Z" such that x; and x;
are K -adjacent if and only if |i — j| = £1(mod l).

For instance, let us consider the spaces V and W in Fig.5.1. Then X and Y are
kinds of SC ?(’8 and SC ,254, respectively.
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Letus now set up the category of M-topological spaces and an M -homeomorphism
[31] as follows: owing to the Alexandroff topological structure of M-topology, the
M -continuity of a map between M-topological spaces is defined as follows.

Definition 5.7 ([18]) For two M-topological spaces (X, yx) := X and (¥, yy) :=
Y,afunction f : X — Y issaidtobe M-continuousatapointx € X if f(SNy(x)) C
SNy (f (x)). Furthermore, we say that a map f : X — Y is M-continuous if it is
M -continuous at every point x € X.

Using M-continuous maps, we establish the category of M-topological spaces,
denoted by MTC, consisting of the following data [18]:

e The set of spaces (X, yx), where X C Z?2, denoted by Ob(MTC).
e For every ordered pair of objects (X, yx) and (Y, yy), the set of all M-continuous
maps between them as morphisms of MTC.

Besides, in MT C, for two spaces (X, yx) and (Y, yy), we say that a map f :
X — Y isan M-homeomorphism [18], denoted by X =, Y, if f is an M-continuous
bijection and that f~' : ¥ — X is M-continuous.

The concepts of both an M-continuous map and an M-homeomorphism play
important roles in studying M -topological spaces, as referred to in the paper [18].

Let us now recall the following terminology which has been used to study M-
topological spaces.

Definition 5.8 ([18, 31]) Let (X, yx) := X be an M-topological space. Then we
define the following:

(1) Two distinct points x, y € X are called M-path connected if there is a path
(xi)ie[O,m]Z on X with {XO =X, Xy e Xy = y} such that {xi, xi+|} is M-
connected, i € [0,m — 1]z, m > 1.

(2) A simple M-path in X is an M-path (x;);e[0,m}, such that the set {x;, x;} is M-
connected if and only if |i — j| = 1. Besides, the number m is called the length
of this simple M -path.

(3) Furthermore, we say that a simple closed M-curve with [ elements, denoted by
Swa, is a finite set (x;);ie[0,—11, C 7?2 if and only if |i — j| = £1(mod I).

For instance, let us consider the spaces X, Y and Z in Fig.5.1. Then we see that
[36] X, Y, and Z are kinds of SC8,, SC?V,, and SCZ{}, respectively.

Remark 5.2 ([18]) Let us consider the space (Scjvz = (Xi)ie[0,11 ys%) in Fig.5.1
such as X, Y, and Z. Consider the self-map f of SCf\,, given by f(X;) = Xitom (nod1)»
i €[0,1l]z,m € Z. Then we observe that the map f is an M-continuous map.
Meanwhile, the map f(x;) = Xit2m+1 (nod1), i € [0,1]z for each m € Z is not an
M -continuous self-map of § C,lw.
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Fig. 5.1 An explanation of SC¥' and SC}, such as V := SCE%, W := SCE* [15], X := SC8,,
Y := SC}, [20], and Z := SC}? [36]

5.4 Digital Versions of the Banach Contraction Principle

As mentioned in Proposition 5.1, any k-connected digital plane (or digital image)
(X, k) doesnothave the FPPin DTC, where | X| > 2. Thus, to study the FPP of digital
images, we need some tools similar to the Banach contraction principle in metric-
type fixed point theory. As for the Banach fixed point theorem from the viewpoint
of digital topology, while the recent papers [10, 21] studied a digital version of the
Banach fixed point theorem, some notions and assertions in [ 10] were more simplified
or improved in [21], as follows.

Definition 5.9 ([10, 21]) We say that (X, d, k) := (X, k) is a digital metric space
if X C Z", (X, d) is a metric space inherited from the metric space (R", d) with the
standard Euclidean metric d on R” and (X, k) is a digital image, k := k(¢, n) of (5.3).

Hereafter, we may consider a digital metric space in Z" to be a digital image
(X,d, k) := (X, k) with the standard Euclidean metric function if there is no danger
of ambiguity. In relation to the study of a digital version of the Banach fixed point
theorem, first of all, we need to recall basic properties of a digital image (X, k) from
the viewpoint of digital space-based fixed point theory, as follows.

Proposition 5.5 ([21]) For a digital image (X, k) in Z", consider two k-adjacent
points x;, xj in X, where k := k(t, n) of (5.3). Then they have the Euclidean distance
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d(x;, xj) whichis greater than or equal to 1 and at most \/t depending on the position
of the two points, 1.e., d(x;, x;) € {\/7 e l,t]z}.

According to Proposition 5.5, the notion of “Cauchy sequence” in [10] was
improved as follows.

Proposition 5.6 ([21]) A sequence {x,} of points in a digital image (X, k := k(t, n))
is a Cauchy sequence if and only if there is a € N such that for all n,m > « the
inequality d(x,, x,,) < 1 holds.

Thus, by Propositions 5.5 and 5.6, we observe that the elements x, and x,, satis-
fying d(x,, x,,) < 1 should be equal to each other, as follows.

Theorem 5.1 ([21]) Foradigitalimage (X, k := k(t, n)), ifasequence {x,} C X C
Z" is a Cauchy sequence, then there is o € N such that for all n,m > o, we have
Xa = Xn = Xm.

Owing to Theorem 5.1, the notion of limit in [10] was improved, as follows.

Definition 5.10 ([21]) A sequence {x,} of points of a digital image (X, k := k(z, n))
converges toalimit L € X ifthereiso € Nsuchthatforalln > «,thend(x,, L) < 1.
Finally, we obtain xo, = x4 = Xgq2 =+ = L.

Motivated by the notion of completeness of a sequence in a metric space, its digital
version was established [10], as follows.

Definition 5.11 ([10], for more details, see [21]) A digital image (X, k) is complete
if any Cauchy sequence {x,} C X converges to a point L of (X, k).

According to Definitions 5.10 and 5.11, we obtain the following.

Theorem 5.2 ([21]) A digital image (X, k) := (X, d, k) is complete, where k :=
k(t,n).

To study a digital version of the Banach contraction principle in [2], motivated by
Proposition 5.5 and Theorem 5.2, the notion of digital contraction map introduced
in [10] was improved, as follows.

Definition 5.12 ([21]) Let f : (X, k) — (X, k) be a self-map of a digital image
(X, k) in Z". If there exists y € [0, 1) such that, for all x, y € X,

d(f(x), f(y) = yd(x,y),

then we say that f is a k-DC-self-map. Besides, we say that f has a digital version
of the Banach contraction principle (DBP for short).

According to the property DBP, we obviously obtain the following.

Lemma 5.1 The composition of two k-DC-self-maps is a k- D C-self-map.
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In Definition 5.12, we need to remind that a k- DC-self-map is certainly associated
with both the digital k-connectivity of Z" and a typical contraction map on the metric
space (Z", d) induced by the Euclidean metric space (R", d). Hence, according to
Definition 5.12, we obtain the following.

Proposition 5.7 ([21]) In the category of k-connected digital images (X, k) in 7",
a k-DC-self-map of (X, k) implies a k-continuous self-map of (X, k).

Remark 5.3 The converse of Proposition 5.7 does not hold. For instance, consider
the identity map on (X, k). Whereas the identity map is certainly a k-continuous
map, it is not a k-DC-self-map.

Although the paper [10] proposed a digital version of the Banach contraction prin-
ciple (Theorem 3.7 of [10]), owing to Theorem 5.2, it was improved and simplified,
as follows.

Theorem 5.3 (Digital version of the Banach contraction principle) [21] (cf. [10])
Let (X, k) be a digital image and [ : (X, k) — (X, k) be a k-DC-self-map. Then f
has a unique fixed point.

Example 5.1 (1) For afinite digital line X := [0, /] with 2-adjacency, ! > 2. Con-
sider a 2-DC-self-map f of X. Then it is a constant map, which implies that the
map f has a fixed point in X.

(2) Let SC;’,;I = (X)ie[0.i—11,- Consider a 2n-DC-self-map f of SC;;,’. Then it is a
constant map, which implies that the map f has a fixed point in S C;’,’ll.

(3) Let SC;;I_1 := (xi)ie[0,/—1),- Consider a (3" — 1)-DC-self-map f of SC;’,;I_I.
Whereas it need not be a constant map, the map f has a fixed point in SC g”_ I

(4) Let X(C Z") be a finite digital cube with a k-adjacency of (5.3). Every k-DC-
self-map f of X has a fixed point.

5.5 Relationships Between the M A-Contractibility of an
M A-Space X and the FPP and the AFPP of X

Let us now deal with spaces X (C Z?) with M-adjacency whose cardinalities are
greater than 1 (see Proposition 5.3). Hereafter, each of these spaces is called an M A-
space for short. Indeed, it turns out that an M-topological space (X, yx) induces an
M-adjacency on the space (see Proposition 5.3). Thus, by (X, yx) we may denote
an M A-space if there is no ambiguity. Let (X, yx) := X be an M A-space. Then we
say that an M A-path in X is the (injective) sequence (x;);e[o0,m], such that x; and
x;j are M-adjacent if |i — j| =1 [18]. Besides, an M A-path (x;);c[o,m}, is called
simple if and only if x; and x; are M-adjacent if and only if |i — j| = 1 for each
i, j€l0,m]z. [18]
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Motivated by Schauder’s theorem, we may have the following query.
Does an M A-contractible space have the FPP ? 5.7

To address this question, we need to consider an M A-homotopy (see Definition
5.19). Hence, let M AC be a category (for more details, see the part just below of
Remark 5.4 in the present paper) whose objects, denoted by Ob(M AC), are M A-
spaces and morphisms, denoted by M or (M AC), are M A-maps between M A-spaces.
This section proves that whereas an M A-space does not have the FPP in MAC, a
finite simple M A-path has the AFPP.

Definition 5.13 ([28]) We say that an M A-space X is M A-connected if, for any two
distinct points x, y € X, there is an M A-path in X connecting these two points.

Under (Z?, y) the notions of M-adjacency and M-connectedness are equivalent
[18]. Besides, for a point p € Z? and any point ¢ € N4(p), we can observe that the
subspace ({p, g} := X\, yx,) is both M-connected and M A-connected. Based on
this approach, we now define

MA(p) :={q € 7Z* : q is M-adjacent to p}.

The paper [18] developed an M A-map which can be substantially used to study
geometric transformations of M A-spaces.

For a space (X, yx) := X, we now recall an M A-relation of a point p € X as
follows.

Definition 5.14 ([18]) For (X, yx) := X put MAx(p) :== M A(p) N X. We say that
two distinct points p, g € X are M-adjacent to each other if g € MAx(p) or p €
MAx(q).

In Definition 5.14, we say that the two points p, g have an M A-relation or p is
M A-related to g. It is obvious that an M A-relation is an irreflexive and symmetric
relation [18].

The following M A-neighborhood of a point p € X is substantially used to estab-
lish an M A-map.

Definition 5.15 ([18]) For a space (X, yx) := X and a point p € X, we define an
M A-neighborhood of p in X to be the set M Ax(p) | U{p} := MNx(p).

Hereafter, in (X, yx), we use the notation M N (p) for brevity instead of M Nx (p)
if there is no danger of ambiguity. In view of (5.4) and Definition 5.15, we conclude
that in (X, yx)

MN(p) = Na(p, 1). (5.8)

By Proposition 5.3, for an M-topological space (X, yx) := X and each point
x € X, owing to the Alexandroff topological structure of (X, yx), it is obvious that
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each point x € X always has M N (x) C X so that the paper [18] established a map
sending M N (x) into M N (f (x)) as follows.

Definition 5.16 ([18]) For two M A-spaces (X, yx) := X and (Y, yy) := Y, we say
that a function f : X — Y is an M A-map at a point x € X if

J(MN(x)) € MN(f(x)).

Furthermore, we say thatamap f : X — Y isan M A-map on X if the map f is an
M A-map at every point x € X.

Hereafter, we observe the following.

Remark 5.4 (1) An M-continuous map is an M A-map. But the converse does not
hold [18].

(2) An M A-map is an M-connectedness preserving map [18].

(3) For a bijective M A-map, its inverse map need not be an M A-map [36].

Using M A-maps, we introduce the category of M A-spaces [18], denoted by MAC,
consisting of the following data:

e The set of M A-spaces (X, yx) with M-adjacency, where X C Z2, as objects of
MAC.

e For every ordered pair of M A-spaces (X, yx) and (Y, yy), the set of all M A-maps
f (X, yx) = (¥, yy) as morphisms of MAC.

As referred to in Remark 5.4 (3), since the inverse of an M A-map (resp. M-
continuous map) need not be an M A-map (resp. M-continuous map), we need to
establish the following notion.

Definition 5.17 ([18]) For two M A-spaces (X, yx) := X and (Y, yy) := Y, amap
h:X — Y is called an M A-isomorphism if h is a bijective M A-map (for short,
M A-bijection) and, further, ~' : ¥ — X is an M A-map.

In Definition 5.17, we denote by X =4 Y an M A-isomorphism from X to Y. In
view of Remark 5.4, we obtain the following.

Remark 5.5 Both an M A-map and an M A-isomorphism are generalizations of an
M -continuous map and a M-homeomorphism, respectively, [18] so that these maps
have strong advantages of studying geometric transformations of M-topological
spaces.

Definition 5.18 ([18]) A simple M A-pathin X is the sequence (X;);efo,m], such that
x; and x; are M-adjacent to each other if and only if |i — j| = 1. Furthermore, we
say that a simple closed M A-curve with [/ elements, denoted by SC 5‘/1 4 1s the finite
set (X;)ie[0./—1], 1N 72 such that x; and x; are M-adjacent if and only if [i — j| =
+1(modl).
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Indeed, SCY, , is M A-isomorphic to SC?, , if and only if [ = [ [18]. For SC!, ,,
the number / is an even number such that/ € {2n |n € N\ {1, 3}} [36].

Foran M A-space X let B be asubset of X. Then (X, B) is called a M A-space pair.
Furthermore, if B is a singleton set {x¢}, then (X, xo) is called a pointed M A-space.

By using M A-maps, the paper [36] introduced the notions of M A-homotopy
relative to a subset B C X, M A-contractibility, and an M A-homotopy equivalence,
which will be used to study the FPP and the AFPP for M A-spaces in M AC.

Definition 5.19 ([36]) Let (X, B) and Y be an M A-space pair and an M A-space,
respectively. Let f, g : X — Y be M A-maps. Suppose there exist m € N and a func-
tion F : X x [0, m]z — Y such that

(el) forallx € X, F(x,0) = f(x) and F(x,m) = g(x).

(e2) for all x € X, the induced function F, :[0,m]z — Y given by F,(t) =
F(x,t) forallt € [0, m]z is an M A-map.

(e3) forallt € [0, m]z, theinduced function F; : X — Y givenby F;(x) = F(x,1t)
for all x € X is an M A-map.

Then we say that F' is an M A-homotopy between f and g.

(e4) Furthermore, for all ¢ € [0, m]z, assume that F,(x) = f(x) = g(x) for all
x € B.

Then we call F an M A-homotopy relative to B between f and g, and we say that f
and g are M A-homotopic relative to Bin Y, f 14,5 g in symbol.

InDefinition 5.19,if B = {x¢} C X, then we say that F'is a pointed M A-homotopy
at{xo}. When f and g are pointed M A-homotopicin Y, we use the notation f ~j;4 g
and f € [g] which denotes the M A-homotopy class of g. If, for some xp € X, 1x
is M A-homotopic to the constant map in the space {x(} relative to {x¢}, then we say
that (X, xo) is pointed M A-contractible (for brevity, M A-contractible if there is no
danger of ambiguity).

Let us investigate some properties of the M A-contractibility. Motivated by the
notion of digital homotopy equivalence [12, 34], we develop the following.

Definition 5.20 ([36]) For two M A-spaces (X, yx) and (Y, yy) in M AC, if there
are MA-mapsh : X — Y and!/ : Y — X suchthat/ o his M A-homotopic to 1x and
h ol is M A-homotopic to 1y, then the map i : X — Y is called an M A-homotopy
equivalence and denote it by X ~p4.p. Y.

If a space X € Ob(M AC) is M A-homotopy equivalent to a singleton in MAC,
then it is obvious that the space is M A-contractible.

By using the M A-homotopy F : SC4,, x [0, 2]z — SC3, , described in Fig.5.2
as an example, where SC;‘W 4 =Y, we obtain the following.
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Fig. 5.2 M A-contractibility of SC}‘W n

Lemma 5.2 ([36]) SC?WA is M A-contractible.

Indeed, there are several ways including the method described in Fig.5.2 to pro-
ceed with the M A-contractibility of S Cj‘w A

Let us now study some relationships between the M A-contractibility of an M A-
space X and the existence of the FPP of X in the category M AC, which addresses
the issue (5.7).

Let us now investigate some properties of M A-spaces from the viewpoint of fixed
point theory.

Theorem 5.4 ([23]) For any M A-connected space X (¢ Ob(MAC)) such that | X| >
2, there exists an M A-self-map without a fixed point.

To support Theorem 5.4, we can take two distinct points x, y in X such that
y € SNy (x). Thenitis obvious that SNy (y) is the singleton {y} and |[SNy (x)| > 2,
where SNy (x) is the smallest open set of x. Let us consider the self-map f of X
given by

f&)=x, ¥e€X, x¥#4x and f(x)=y. (5.9)

Then it is obvious that the map f of (5.9) is an M A-map which does not have any
fixed point on X. Indeed, the map f of (5.9) does not imply an M-continuous map.
To be precise, see the M A-map described by using the arrows in Fig.5.3. In (5.9),
we need to point out that the map f need not be an M-continuous map.

In MAC, we say that an M A-isomorphic invariant is a property of an M A-space
which is invariable under M A-isomorphism.

Proposition 5.8 ([23]) In MAC, the FPP is an M A-isomorphic invariant.

Since a digital plane does not have the FPP [46], Rosenfeld [46] studied the AFPP
of a finite digital plane. Before studying this issue, we need to recall the notion of
AFPP in DTC. We say that [46]

a digital image (X, k) in Z" has the AFPP (5.10)
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Fig. 5.3 Explanation of the
non-FPP of the given

M A-spaces (X, yx) and
(Y, yy) in MAC [23]

&O :Xl

(0, 0) (1,0) (00) (1,0)

X Y

if, for every k-continuous map f : (X, k) — (X, k), there is a point x € X such that
f(x) =xor f(x)is k-adjacent to x.

Then Rosenfeld [46] studied the AFPP of a digital plane (or digital image) (X, k)
for k-continuous self-maps f of (X, k). Finally, it turns out that not every digital
plane (or digital image) (X, k) for k-continuous self-maps f of (X, k) satisfies the
AFPP [46].

To study the AFPP in MAC, we need to introduce the notion of AFPP from the
viewpoint of MAC.

Definition 5.21 ([23]) We say that an M A-space X has the AFPP in MAC if, for
every self-M A-map f of X, there is a point x € X such that f(x) = x or f(x) is
M -adjacent to x.

As referred to in Theorem 5.4, while an M A-space X with | X| > 2 does not have
the FPP, we have the AFPP of a finite simple M A-path, as follows.

Given an M A-space X, an M A-map preserves an M A-relation on X, we have the
following.

Theorem 5.5 ([23]) In MAC, a finite simple M A-path has the AFPP.
Motivated by Proposition 5.8, we obtain the following.
Proposition 5.9 ([24]) In MAC, the AFPP is an M A-isomorphic invariant.

To study the AFPP of X in MAC, we oftenuse an M A-retractin [ 18] (see Definition
5.22).

Definition 5.22 ([18]) In MAC, we say thatan M A-map r : (X', yx)) — (X, yx) is
an M A-retraction if

(1) (X, yx) is a subspace of (X', yx');

2) r(a) =aforalla € (X, yx).

Then we say that (X, yx) is an M A-retract of (X', yx:). Furthermore, we say that
the point a € X'\ X is M A-retractable.

In view of Definition 5.22, it is clear that an M A-retract holds the reflexivity and
the transitivity.
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Lemma 5.3 ([23]) If X € Ob(MAC) has the AFPP, then its M A-retract A €
Ob(MAC)

In relation to the question (5.7), we have the following.

Proposition 5.10 ([23]) Not every M A-contractible space in Ob(M AC) has the
AFPP.

To support Proposition 5.10, whereas SC}L 4 = (Xi)ief0,3], 1S M A-contractible

(see Lemma 5.2), we have an M A-map f of SC}‘{M such as f(x;) = Xi+20n0d 4)-
Then we see that the map f can have neither the FPP nor the AFPP.

5.6 FPP and AFPP for Compact (or Finite) Digital Planes

Let us study both the FPP and the AFPP for digital planes in DTC, KTC, or MTC,
which addresses the issues (b)—(d) posed in Sect.5.1. As referred to in the part
around the property (5.10), the paper [46] studied the AFPP of the digital plane with
8-adjacency. Thus, it turns out that not every digital image (X, k) for k-continuous
self-maps f of (X, k) satisfies the AFPP [46], as follows.

Example 5.2 Consider the map f : (Z,2) — (Z,2) given by f(i) =i + t for all
t € Z with |t| > 2. Whereas it is a 2-continuous map, (Z, 2) does not have the AFPP.

The recent paper [23] proved that a compact M-topological plane does not have

the FPP in MTC. We may assume a digital plane in Z2tobeaset P := IT (=4, 6]
ief1,2)

with some /; € N. According to the choice of the digital k-connectivity, a K- and
an M -topological structure, we can concern the FPP and the AFPP of digital planes
with these structures. For instance, we may consider the compact K-(resp. M-)
topological plane as the K-(resp. M-) space which is homeomorphic to the space
(P, K%) (resp. (P, yp)). Besides, it is obvious that the infinite M -topological plane
(Z?, y) does not have the FPP.

Definition 5.23 ([22]) We say that a space (X, k%) := X in KTC has the AFPP if
every K-continuous self-map f of X has a point x € X such that f(x) = x or f(x)
is K-adjacent to x.

It is obvious that SC}"' does not have the AFPP in DTC either. Similarly, we have
the following.

Corollary 5.1 Neither SC';(’I in KTC nor SC', in MTC has the AFPP.

We say that the AFPP is a K-homeomorphic invariant in KTC if, whenever
there exists a K-homeomorphism 2 : (X, k%) — (Y, xy) and (X, «%) has the AFPP,
then (Y, ky) also has the AFPP [22]. Indeed, it turns out that the AFPP is a K-
homeomorphic invariant, as follows.
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Proposition 5.11 ([20]) The AFPP in KTC is a K -homeomorphic invariant.

In view of Corollary 5.1, since S C;’(’l does not have the AFPP, we obtain the
following.

Corollary 5.2 Not every compact and connected K -topological space has the
AFPP.

In relation to the study of the query (5.1) (c), we have the following.
Theorem 5.6 ([22]) Foreverypointx € (Z", k") SNk (x)(C (Z", k")) has the FPP.

Let us study both the FPP and the AFPP of an M-topological space in MTC,
which addresses the issue (e) posed in Sect.5.1.

Definition 5.24 We say that a space (X, yx) := X in MTC has the AFPP if every
M-continuous self-map f of X has a point x € X such that f(x) = x or f(x) is
M-adjacent to x.

Theorem 5.7 ([25]) For every point x € (Z?, y), every M-connected subspace of
SNy (x) has the FPP.

As a generalization of Theorem 5.7, we obtain the following.
Theorem 5.8 ([25]) A compact M -topological plane does not have the FPP.

Proof Unlike the counterexample suggested in [23] (see Fig.3 of [23]), as another
counterexample for Theorem 5.8, let us consider the following self-map f of X in
Fig. 5.4 in the present paper as follows (follow the dot arrows in Fig.5.4):

S {x2, x4, x6, x3}) = {x0};
S{xs, x7}) = {xaiks

S ({x1, x3}) = {x7}; and

S ({xo}) = {xs}.

Then, whereas f is M-continuous, it does not have any fixed point. (]

Let us study some properties of K- and M-retracts related to the FPP and the
AFPP for digital spaces in KTC or MTC.

Definition 5.25 ([20]) In KTC we say that a K-continuous map r : (X', k%) —
(X, k%) is a K -retraction if

(1) (X,«%) is a subspace of (X', k},);

2) r(a) =aforalla € X.

Then we say that (X, k%) is a K-retract of (X', k%,). Furthermore, we say that the
pointa € X'\ X is K-retractable.
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(-1,-1)

Fig. 5.4 Explanation of the non-FPP of a compact M-topological plane

Theorem 5.9 ([22]) In KTC, let (A, k) be a K-retract of (X, k). If (X, k) has
the AFPP, then (A, k') has also the AFPP.

Definition 5.26 ([18]) In MTC, we say that an M-continuous map r : (X', yx/) —
(X, yx) is an M-retraction if

(1) (X, yx) is a subspace of (X', yx);
(2) r(a)=aforalla € X.

Then we say that (X, yx) is an M-retract of (X', yx'). Furthermore, we say that the
pointa € X'\ X is M-retractable.

Theorem 5.10 ([25]) In MTC, let (A, y4) be an M-retract of (X, vx). If (X, vx)
has the AFPP, then (A, ya) has also the AFPP.

Theorem 5.11 ([25]) An M-topological plane (D, yp) does not have the AFPP.

Proof SCj}, does not have the AFPP. Furthermore, SC3, is proved an M-retract of
any M-topological plane. Owing to the contraposition of Theorem 5.11, the proof is
completed. O

5.7 Product Properties of the FPP and the AFPP for Digital
Spaces

To address the queries (5.1)(e), this section proves the following.

Consider M-connected spaces (X, yx,), where X; C Z and 2 < |X;| < oo for
each i € {1, 2}. Then the Cartesian product as an M-topological subspace (X; x
X2, Yx,xx,) does not have the AFPP. Besides, we compare the FPP and the AFPP
for M -topological spaces and those for digital images in a graph theoretical approach
in [46].
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Theorem 5.12 ([25]) Let (X, yx) and (Y, yy) be M-topological connected and
finite, where X, Y C Z and |X|, |Y| = 2. Then (X X Y, yxxy) does not have the
AFPP.

Remark 5.6 ([25]) Let us compare the FPP (resp. AFPP) for M-topological spaces
(X, yx) in MTC with the FPP (resp. AFPP) for digital images (X, k) in DTC, | X| <
oo (see [46]). Assume that all M-topological spaces are M -connected and all digital
images (X, k) are k-connected.

Let us consider a set X C Z? with |X| > 2. Then assume (X, yx) in MTC and
(X, k), k € {4, 8} in DTC. Then we can have the following:

(1) While not every (X, yx) has the FPP (see Theorems 5.7 and 5.8), no digital
image (X, k) has the FPP (see Proposition 5.1).
Let us consider a finite block ¥ C Z2, e.g., Y :=1[0,m]z x [0,n]z,m,n € N.
Then we obtain the following:

(2) Every digital image (Y, 8) has the AFPP [46].

For instance, consider Y := [0, 1]z x [0, 1]z = {(0, 0) := yo, (1,0) := yy,
(1,1 :=y,,(0,1) :=y3} C Z?.In case we take (Y, 4), it is clear that (Y, 4) cannot
have the AFPP. To be specific, consider the map given by f(y;) = Yit+2(moa 4)- Thenit
is clear that f is a 4-continuous map which does not have the AFPP [46]. Meanwhile,
a finite 4-path in Z? has the AFPP.

In case we take (Y, 8), it is obvious that (Y, 8) has the AFPP [46] because every
point y; € Y has Ng(y;, 1) = Y. Owing to the 8-continuity of a map, it is clear that
any 8-continuous self-map of (¥, 8) has the AFPP.

Remark 5.7 Let us consider the finite Cartesian product X; x X, where X; C
Z,i € {1,2} and 2 < |X;| < co. Then we have the following:

(1) Neither (X; x X2, yx,xx,) nor the digital image (X; x X5, k), k € {4, 8} has
the FPP.

(2) While (X; x X5, yx,xx,) does not have the AFPP (see Theorem 6.1 of [25]),
the digital image (X; x X5, 8) has the AFPP (see Theorem 4.1 of [46]).

Indeed, not every compact and connected K -topological space has the AFPP.
Thus, we have the following.

Question 5.1 Does an n-dimensional K -topological cube (D, k},) have the FPP or
the AFPP ?

Conjecture 5.1 A compact K -topological plane has the FPP.

Question 5.2 Assume that each of digital images (X;, k;) has the AFPP for each
i € {1, 2}. Under what k-adjacency of X| x X, does it have the AFPP in DTC ?



106 S.-E. Han

5.8 Digital Topological Invariants of the FPP and the AFPP

Although a digital cube X (C Z") with (3" — 1)-connectivity does not have the FPP,
it has the AFPP. This section studies the FPP and the AFPP of K- (resp. M-)
topological spaces in KTC (resp. MTC). The FPP in KTC has its own feature as
follows.

Let us now investigate some properties of K -topological spaces from the view-
point of fixed point theory.

In KTC, we say that a K -homeomorphic invariant is a property of a K -topological
space which is invariable under K-homeomorphism.

Proposition 5.12 ([22]) The FPP from the viewpoint of KTC is a K -homeomorphic
invariant.

Proposition 5.13 ([22]) The AFPP in KTC is a K -homeomorphic invariant.

Theorem 5.13 ([22]) In KTC, let (A, k'}) be a K -retract of (X, «%). If (X, k%) has
the AFPP, then (A, k}) has also the AFPP.

The FPP in MTC also has its own feature as follows.

Theorem 5.14 ([23]) Not every space X € Ob(MTC) has the FPP, where X is M-
connected and | X| > 2.

Example 5.3 ([23]) Consider the map f : Swa — SCQ,, given by f(x;) =
Xit20mod1y- While it is an M-continuous map, SCﬁW does not have the FPP, where

SCly = (Xiei0, -1,

Let us now study some properties of M-topological spaces from the viewpoint of
fixed point theory. In MTC, we say that an M-homeomorphic invariant is a property
of an M-topological space which is invariable under M-homeomorphism.

Proposition 5.14 ([24]) The FPP from the viewpoint of MTC is an M -homeomorphic
invariant.

Proposition 5.15 ([24]) The AFPP in MTC is an M -homeomorphic invariant.

Theorem 5.15 ([24]) In MTC, let (A, y4) be an M-retract of (X, yx). If (X, vx)
has the AFPP, then (A, ya) has also the AFPP.

By using Theorem 5.15, we obtain the following.

Corollary 5.3 ([23]) Not every compact and connected M-topological space has
the AFPP.
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5.9 Concluding Remarks and a Further Work

Motivated by the study of the FPP and the AFPP in DTC in [46], we have studied
both the FPP and the AFPP for K -topological spaces in KTC, M A-spaces in MAC,
and further those for M-topological spaces in MTC. It turns out that these properties
are quite different from those of the typical metric-type fixed point theory.

As a further work, we can study fixed point theory for some other spaces [28, 32]
related to digital topology, as follows:

(1) The FPP problem of the compactification of the K-(or M-) topological plane.

(2) The FPP problem of the compactification of a new topological plane with the
Alexandroff topological structure.

(3) The FPP of a compact K -topological plane.

(4) The study of some relationships between the contractibility of a given digital
space X and the FPP and the AFPP of X.

(5) Using iterations of a k-DC-self-map of a digital image (X, k), we can estimate
the complexity of the FPP of a digital image (X, k).

(6) After digitizing a space in R" from the viewpoints of K- and M-topologies [5,
11, 26, 31], we can establish some links between the FPP of ordinary metric
spaces and the FPP for their digitized spaces from the viewpoints of K- and
M -topologies.

(7) Fixed point theory for digital spaces with multi-valued functions.

(8) After developing an M-homotopy, an M-homotopy equivalence, and
M -contractibility, we can use them in fixed point theory.

(9) After generalizing all of a K-homotopy, a K-homotopy equivalence, and K-
contractibility, we can use them in fixed point theory.

(10) Development of an Alexandroff topological structure which can be used to
study digital spaces.

(11) The study of an alignment of fixed point sets of digital spaces [30] and appli-
cations.
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Chapter 6 ®)
Existence and Approximations for Qs
Order-Preserving Nonexpansive
Semigroups over CAT (k) Spaces

Parin Chaipunya

Abstract In this paper, we discuss the fixed point property for an infinite family
of order-preserving mappings which satisfy the Lipschitz condition on comparable
pairs. The underlying framework of our main results is a metric space of any global
upper curvature bound « € R, i.e.,, a CAT(x) space. In particular, we prove the
existence of a fixed point for a nonexpansive semigroup on comparable pairs. Then,
we propose and analyze two algorithms to approximate such a fixed point.

Keywords CAT(«) space - Partially ordered metric space + Nonexpansive
semigroup + Fixed point

6.1 Introduction

Metric Fixed Point Theory was assumably started in 1922 by the work of Banach
where he introduced the famous Banach Contraction Principle with an application to
Cauchy differential equations. This well-known principle applies to every complete
metric spaces and has been fruitfully extended to several generalizations of a metric
space as well (see [14] for recent results). To appreciate the principle, let us recall
that not only the existence and uniqueness of a fixed point is guaranteed, but a simple
construction of such fixed point is also provided with a priori error estimates in terms
of the contraction constant and the initial data.

As almost a century past, the subjects and objects in Metric Fixed Point Theory
grows vastly, but the main theme undeniably roams around the notion of the Lipschitz
continuity. Suppose now that (M, d) is a metric space. We say that 7 : M — M is
Lipschitz if there is a constant L > 0 such that

d(Tx,Ty) < Ld(x,y) (6.1)
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holds for any x, y € M. If (6.1) holds with L < 1, we say that T is a contraction,
while we say that T is nonexpansive if (6.1) holds with L = 1.

Although many generalizations of the contraction have been carried out, the naive
extension to nonexpansive mappings seems not as straightforward as it looks. As a
quick glance, we may take X =R and Tx =1 4 x for each x € X. Then T is
nonexpansive with no fixed point. Existence theorems for nonexpansive mappings
officially began in 1965, in Hilbert and certain Banach spaces, after the works of
Browder, Gohde, and Kirk (see [11] as well as [12, 21, 23]). The results were
generalized to a commuting family of nonexpansive mappings by DeMarr [16, 17]
and later improved by Lim [27]. Also note some further generalizations.

Assuming the Lipschitz condition (6.1) only on related elements has set a new
research stream. Ran and Reurings [31] were the first to investigate such situations
in the case L < 1 and the elements are related with a partial ordering, i.e., arelation
which is reflexive, antisymmetric, and transitive. Recall that, if < is a partial ordering
onaset X, then x, y € X are said to be <-comparable if either x < y or y < x. The
results of Ran and Reurings [31] were later refined and improved by Nieto and
Rodriguez-Lépez [28]. These fixed point results were motivated from applications
to solve matrix equations and differential equations.

The studies of nonexpansive mappings endowed with a partial ordering in Banach
spaces were first considered by Bachar and Khamsi [3] and were complemented
with the Mann approximation scheme in [8]. The topic then extended to an order-
preserving nonexpansive semigroup [4] under the setting of both Banach and
hyperbolic metric spaces. Here, the relationship between approximate fixed point
sequences of mappings in the semigroup was thoroughly explained. After that, the
full existence result for such semigroups was given in [5, 26] under the framework
of Banach spaces and, recently, in [6] for the framework of hyperbolic metric spaces.
Finally, an approximation result for this semigroup in Banach spaces was announced
by Kozlowski [25] by using the Krasnosel’skil process. It is important to note that
Espinola and Wisnicki [20] recently gave a general statement that unifies all the
existence results mentioned earlier in Banach spaces. The unification in hyperbolic
metric spaces is not known due to an open problem about weak topologies in such
spaces (see also [1, 7]).

Let us state the main notions for our study now. Suppose that (X, d) is a met-
ric space endowed with a partial ordering < and C C X is nonempty. The family
I' := {T;},c,; of mappings from C into itself, where J is a nontrivial subsemigroup
of [0, 00), is called a <-Lipschitz semigroup on C if the following conditions are
satisfied:

(Sl) T() = Idc;

(S2) Tysy = Ts o T; for any s, t > 0;

(S3) For any x € C, the mapping ¢ > T;x is continuous;

(S4) For any t € J, T; preserves < in the sense that x < y implies T;x < T;y;

(S5) Foreacht > 0, the inequality d(T;x, T;y) < Ld(x, y) holds whenever x, y €
C are <-comparable.
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In this paper, we consider a <-nonexpansive semigroup for which X is a metric
space with curvature bounded above by any « € R, also known as a CAT () space.
Recall that each CAT («) space is a hyperbolic metric space if « < 0. It is, however,
unknown to the case k > 0.

Our main results can be broke down into three parts. First, we establish an exis-
tence result under the assumptions of C being bounded closed and convex. Second,
we propose a Krasnosel’skii approximation scheme, similarly to [25], and show its
convergence property. Note that the assumptions made in this part are only applica-
ble to discrete (i.e., countable) semigroups. This motivates us to study the final part,
where we propose the Browder approximation scheme and show appropriate con-
vergence property. As opposed to the Krasnosel’skii scheme, the Browder scheme is
implicit. However, the assumptions for the convergence are less restrictive and apply
to any semigroups. The techniques used in this last part are adapted and simplified
from [15, 18, 22]. Moreover, to the best of our knowledge, the Browder scheme has
not yet been investigated for ordered version of Lipschitz semigroups even in Banach
or Hilbert spaces.

The organization of this paper is as follows: The next section collects all the
prerequisites of CAT spaces. Sections 6.3—6.5 contain our main materials from Exis-
tence Theorems to Explicit and Implicit Approximation Schemes, respectively. The
final section then concludes all the results and provides additional remarks and open
questions.

6.2 Preliminaries

In this section, we shall recall the prerequisited knowledge for our main results in the
next sections. We begin with the notion of geodesic metric spaces and the defining
properties of CAT spaces.

Suppose that (X, d) is a metric space. A geodesicin X isacurvec : I — X, where
I C R is a compact interval, and d(c(s), c(t)) = |s — t| holds for any s,¢ € I. In
other words, a geodesic is curve in X which is isometry to some compact real interval.
Without loss of generality, always assume that I = [0, T'] for some T'. If ¢(0) = x
and ¢(T) = y, we say that ¢ joins x and y. Let D € (—o0, 400]. If any x,y € X
with d(x, y) < D are joined by a geodesic, then X is said to be D-geodesic. If
such geodesic is unique, then we further say that X is D-uniquely geodesic. In the
latter case, we write [x, y] := c¢(I) to denote the (unique) geodesic segment. If X
is oco-geodesic (or co-uniquely geodesic), we say that X is geodesic (or uniquely
geodesic).

If X is D-uniquely geodesic and ¢ : [0, T] — X joins x and y, we write (1 —
AMx®ry:=c(T) forany A € [0,1]. If C C X and [x,y] C C forall x, y € C,
then C is called convex. A function f : C — R is called convex if C is convex and

FA=MDx@ry) =1 =1 f(x)+Arf(y)
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for any x,y € C and A € [0, 1].

Let .#, be a simply connected Riemannian 2-surface of constant sectional curva-
ture . Denoted by d, the intrinsic distance function on .Z,., A((I") the angle at vertex
q € M, and by D, the diameter of .#Z,. To be precise, we have D, = oo for any
k <0and D, = /\/k for any k > 0. Note that .#, = R? and that .2 = S*. To
see a more detailed explanation of the subject, refer to [10, 13].

Among other things, the following identity, known as the spherical law of cosines,
serves as the main tool for our analysis.

Proposition 6.1 ([10]) Suppose that A is a geodesic triangle in ., with k > 0.
If A has side lengths a, b, c > 0, and y > 0 is the angle opposite to the side with
length c. Then

cos(v/kc) = cos(v/ka) cos(v/kb) + sin(+/ka) sin(+/kb) cos y.

Fix k € R and let X be D,-uniquely geodesic. For any points p, g, r € X, the
geodesic triangle A C X is defined by

A(p,q.7r):=[p.q] U [gq.r] U] p].

The geodesic triangle A := A(p,q,7) with p,q,7 € 4, is said to be a -
comparison triangle (or, simply, comparison triangle) if

de(p.q) =d(p.q), dc(q.r)=d(q,r), dc(r,p)=d(r, p).

Note that the triangle inequality of d implies the existence of such comparison
triangle. Moreover, the comparison triangle of each geodesic triangle in X is unique
up to rigid motions. Suppose that A(p, ¢, r) C X is a geodesic triangle whose com-
parison triangle is A(p, g, 7). Given u € [p, q], the point u € [p, g] is said to be a
comparison point of u if d, (p, u) = d(p, u). Comparison points for u’ € [g, r] and
u" € [r, p] are defined likewise.

Definition 6.1 Given « € R. A D,-geodesic metric space (X, d) is said to be a
CAT (k) space if for each geodesic triangle A C X and two points u,v € A, the
following CAT (k) inequality holds:

d(u,v) <dc(u,v),

where i, vV € A are the comparison points of u and v, respectively, and A C ., is
a k-comparison triangle of A.

Let us give now the following fundamental facts:

Lemma 6.1 ([10, 29]) Suppose that (X, d) is a complete CAT («) space. Then, the
following are satisfied:
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(1) ([10]) X is also a CAT (k') space for all k" > k.

(2) ([10]) For each p € X, the function d(-, p)|gp,p,/2) IS convex.

3) ([29) If «k > 0 and C C X is nonempty, closed, convex, and bounded with
diam(C) < D, /2, then

2 _ _ a2 2 ko
d*(p, (1 =nx @1y) = (I = 0)d"(p, x) +1d°(p. y) = 5t(1 = H)d*(x, y)

for p,x,y € Candt € [0, 1], where k := 2 diam(C) tan(D, /2 — diam(C)).

Next, let ¢, ¢’ be two geodesics in a CAT () space X in which ¢(0) = ¢’(0) = p
and images of both ¢ and ¢’ are not singleton. We define the Alexandrov angle between
c and ¢’ by

£y(e.c) = limsup L% (c(r). (1)),

t,t’'—0t+

where A(p, @, m) is the x-comparison triangle of A(p, c(¢), ¢’(¢)) for each
t,t" > 0 near 0. Note that £ is symmetric and satisfies the triangle inequality when-
ever all the angles are defined (see [10]).

In 2009, Espinola and Fernandez-Le6n [19] studies several results related to fixed
point theory and convex analysis. There are two basic results established in this
paper. One is the generalization of A-convergence to general CAT (x) spaces (the
concept was originally given on CAT (0) spaces earlier in [24]), and the other is the
well-definition of a metric projection. Now, let us recall the notions and properties
of the A-convergence.

Suppose that (X, d) is a CAT(x) space and (x*) a bounded sequence in X.
Put 7(x; (x¥)) := limsup, . d(x*, x) for each x € X and A(x*) := argmin,

(5 ().

Definition 6.2 ([19]) A bounded sequence (x¥) in X is said to be A-convergent to
apointx € X if A®u*) = {x)} for every subsequence (u*) of (x%).

Proposition 6.2 ([19]) Ifinf,cx T(x) < D, /2, then the following are satisfied:
(1) A(x*) is singleton.
(2) (x*) contains a A-convergent subsequence.
(3) If (x*) is A-convergent to x € X, then x € [,y ¢l conv{x", x"*1, .}

Finally, let us give the basic results of a metric projection in the following.

Proposition 6.3 ([19]) Let C C X be nonempty, closed, and convex, and x € X with
inf.cc d(x, ¢) < D, /2. Then, the following are satisfied:

(1) The infimum inf .cc d(x, c) is uniquely attained. The minimizer is denoted by
Proj . (x).

() Ifx ¢ Candy € C\ {Proj(x)}, then Lproj(x)(x, y) = 7/2.
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6.3 Existence Theorems

In this section, we establish our first main result—the existence of common fixed
points. Before we enter the main part, let us give some notes on the partial ordering
first.

6.3.1 Some Introductory Notes

Before we establish the existence of a fixed point of a semigroup I”, we need to make
an additional assumption on the partial ordering <. In particular, we want this partial
ordering < to be compatible with the CAT structure of X in the following sense:

(A1) For each u € X, the <-interval
[u,—) ={zeX|u=xz}

is closed.
(A2) Ifa,b,c,d € X satisfya <b and ¢ <d, then (1 —AN)a® Aic < (1 —A)b &
Ad for any A € [0, 1].

Note that the second assumption implies that <-intervals are convex. Moreover,
we need the following note in our further investigations.

Lemma 6.2 Ifa <band (0 <A <n <1, then
(I=2a®rb < (1 —n)a®nb.

Proof Notice that (1 — A)a & Ab < b. The conclusion simply follows from the fact
that (1 — n)a @ nb € [(1 — 1)a & 1b, D].

If X is anormed linear space, the compatibility with the CAT structure is the same
with compatibility with the norm-topology and the linear structure. In particular,
suppose that E is a normed linear space. Recall that K C E is called a cone in E
if ax € K for all « > 0 whenever x € E. Moreover, a cone K is called pointed if
K N (—K) = {0}. When K is a closed convex pointed cone in E, we subsequently
have a partial ordering = g which is given by

aCkb < b—-ack,

for a, b € E. One can simply notice that C g is compatible with the norm-topology
and the linear structure in the sense given above.

It seems that the compatibility of < on a general CAT () space is less obvious
to be achieved. However, the CAT («) spaces which appears practical are often geo-
metrically embedded or isometrically contained in some appropriate linear spaces,
which makes the situation less complicated.
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As mentioned in the introduction, Espinola and Wisnicki [20] recently gave a gen-
eral mechanism for an order-preserving mapping in a Hausdorff topological space to
have a fixed point. Their results unify several existence theorems for order-preserving
mappings in the literatures assuming similar compatibility including [2, 3, 9]. The
results involving a Lipschitz semigroup from [5, 26] are also similarly unified. The
key ingredient in such unification is the compactness (in some topology) of the order
intervals. In a reflexive normed linear space, every bounded closed convex subset is
compact in the weak topology. However, the question of whether or not there is a
topology which generates A-convergence in CAT spaces is still open (see also [1,
7]). 1t is therefore safe for now to consider similar existence result in the setting of
CAT spaces (or more generally the hyperbolic metric space), as was initiated in [6].

6.3.2 An Existence Theorem

Throughout the rest of this paper, always assume that (X, d) is a complete CAT (k)
space (k € R) endowed with a partial ordering < which is compatible with the
CAT structure. Assume that C C X is nonempty, closed, convex, and bounded with
diam(C) < D, /2.Finally, assume that I" := {T;},c, is a <-nonexpansive semigroup
onC.

In view of Lemma 6.1 and the boundedness of C, we can always assume that
k > 0 so that the «-spherical law of cosines (Proposition 6.1) is applicable. The
following theorem is the main existence result of this section.

Theorem 6.1 The following statements are true:

(1) If there is a point x° € X such that x° < T;x° for all t € J, then there is
w € Fix(I") such that x° < w.

(2) If z1, z2 € Fix(I") are <-comparable, then [z, z2] C Fix(I").

Proof (1) The ‘only if” part is trivial to see. Let us proof the ‘if” part. Suppose that
x% € C satisfies x* < T;x" forallz € J. Set Co := C N ((,,[T:x°, —)). We claim
that Cy is nonempty, closed, and convex. The closedness and convexity of Cy are
obvious since all the sets in the intersection are closed and convex. So we only need to
show that Cy is nonempty. Indeed, suppose that (#) is a strictly increasing sequence
in J with 4 —> 0o as k —> oo. It follows that (7;,x°) is a sequence in C and is
=<-nondecreasing. By the boundedness of C, there is a subsequence (si) of (#;) in
which (7, x°) is A-convergent to some point y € C. In view of Proposition 6.2, we
have y € ﬂn encl conv{TsnxO, T, . x% ... }. Since all the <-intervals are closed and

Sn+l

convex and (Tsuxo) is <-nondecreasing, we further have

yecn (ﬁ cleonv{T, x°, T, x°, ... }) ccn (ﬂ[TsnxO, —>)).
neN neN

Again, since (7;x°),c; is <-nondecreasing, we have the equality (), y[ 7, x°, =) =
N, cJ [T,x°, —) and therefore the set Cy is nonempty.
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Let p : Cyp — R be a function defined by

p(z) :=limsupd*(T;x°, z), Vz e C,.

—>00

Notice that p is convex and continuous. Since Cy is bounded, closed, and convex,
the function p attains a minimizer z* € Cy. We may see that 7,x° < z* forall ¢ > 0.
Lets,t € J. By means of Lemma 6.1 and the <-nonexpansivity, we have

d2 (Tv+txov %Z* @ %Tsz*)

IA

1 1 k
5d2<Ts+,x°, )+ 5d2<Ts+,x°, T,2%) — gdz(z*, T,z%)

IA

1 1 k
EdZ(meO, )+ EdZ(meO, %) — gdz(z*, T,7%),

where k := 2 diam(C) tan(D, /2 — diam(C)) € (0, 2). Passing t — oo, since z*
minimizes p, we obtain

k
p) < p(IT*®iT2") < p@) — gdz(z*, T,z").

This implies z* = T;z* for all s € J. Moreover, since (Tsnxo) is <-nondecreasing
and we have x° < z*.

(2) Suppose that z;, z, € Fix(I") and that z; < z,. We may also assume that
71 # 22, since the conclusion is immediate otherwise. Let ¢ € [0, 1] and put z :=
(1 — ¢)z1 @ cz3. By the assumption on <, we have z; < z < z,. Fort € J, we have

d(Tiz,z1) =d(Tiz, T;z1) < d(z,z21) = cd(z1, 22) (6.2)

and also
d(Tiz,22) = d(Tiz, T120) <d(z,20) = (1 —0)d(z1, 22). (6.3)

Using the triangle inequality, we get
d(z1,22) <d(z1, T1z) +d(Tiz, 22) < cd(z1,22) + (1 — ¢)d(z1, 22) = d (21, 22).

This means d(zy, T;z) + d(T;z, 22) = d(z1, z2), which implies that T;z € [zy, z2].
So T,z=(1—c")z1 ® 'z, for some ¢’ € [0, 1]. Moreover, we have d(T;z, z1) =
c'd(z1,22) and d(T,z,z2) = (1 — ¢)d(z1, z2) for some ¢’ € [0, 1]. Together with
(6.2) and (6.3), we obtain ¢’ < cand 1 — ¢’ < 1 — ¢ which yeilds ¢’ = c. It follows
that 7,z = z for every t € J. Since ¢ € [0, 1] is taken arbitrarily, we conclude that
[[Zl, Z2]] C F]X(F)

We immediately have the following consequence. Note that this consequence is
also new in the setting of a CAT (k) space.
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Corollary 6.1 Suppose that I' is a nonexpansive semigroup. Then Fix(I") is
nonempty, closed, and convex.

6.4 Explicit Approximation Scheme

After we have proved the existence of a fixed point for the semigroup I" in the pre-
vious section, we hereby propose an algorithm to approximate such a solution. The
algorithm presented in this section is a modification of the Krasnosel’skii approxi-
mation scheme.

Let us now give the formal definition of the Krasnosel’skil approximation scheme
associated with I" as follows: Let A € (0, 1) and (#;) be a strictly increasing positive
real sequence such that t —> oo as k —> 0o. Suppose that x° € X has the property
X0 < T,x%forallz € J, generate for each k € N the successive point

= (1 = 0t @ ATt (6.4)

For this section, always suppose that (x¥) is the sequence given by (6.4) from a
point x° € X. We shall also refer to this sequence as the Krasnosel’skil sequence
generated from x°.

We shall decompose the proof for the convergence of (x¥) into a number of

Lemmas as stated in the following.

Lemma 6.3 The following assertions hold for each k € N:
(1) xk =< ans
(2) x* < Tyx* fors € J with s > t.
(3) x* < T,kxk.

Proof Following from x0 < T,Oxo, we get
<1 =0x"@aT x0 < T, x° < Tyx°

for all s € J with s > #,. This shows that x° < x! < T,x? for all s € J with s > 1.
In particular, we have x° < 7; x°. The conclusion follows by the induction process.

Lemma 6.4 [fw € Fix(I") satisfies x0 < w, then the limit limy__, o d(w, x¥) exists

Proof Since T, preserves < and x° < w, we have T,x° < T,w = w foreach ¢ € J.
It follows from Lemma 6.3 that x¥ < T,kx0 < w for all k € N. Next, observe that the
=<-nonexpansivity yields

dw, x**Y = dw, (1 = M)x* @ AT, x5)
< (1 =0dw, x*) 4+ A(w, Tyux")

< d(w,xk).
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Therefore, the sequence (d(w, xk)) is nonincreasing and bounded from below. This
shows that the desired limit exists.

Lemma 6.5 The following limits hold:
(1) limy oo d (x*, T, x*) = 0.
(2) limg_ oo d(x*, x*F1) = 0.

Proof Letw e Fix(I") satisfies x < w.
(1) Observe that, for each k € N,

d*(w, x*y = d*(w, (1 — M)x* @ AT, x5)

k
< (1= Dd>ow, ) +0d> v, Tty = a1 = W (6H, Tyah)

k
< d*(w, x*) — 32/\(1 — Nd2(xk, T, xb).
Letting k —> oo and putting r := lim;__, o d(w, x¥), we get

k
Pt <o 52,\(1 — 2 limsupd®(x*, T, x).

k—>00

It follows that limy__, o d(x¥, T[kxk) =0.
(2) Since d (x*, x**1) = d(x*, (1 — M)xk @ AT, x*) = Ad(x*, T, x¥), the conclu-
sion follows from (1).

From this point, we need to assume additional conditions on the construction
of the sequence (#;) in relation with the overall structure of the semigroup J. This
condition is strong but it allows us to obtain the approximate fixed point sequence.

Lemma 6.6 Assume that s € J has the following property:
There exists a strictly increasing sequence (ji) of positive integers such that
tj,, =S+t forallk € N. (6.5)
Then (x/*) is an approximate fixed point sequence of Ty, i.e.,

lim d(x’, T,x’) = 0.
k—> o0

Proof Suppose that k € N is sufficiently large so that ¢; > s. In view of (6.3) and
the <-nonexpansivity of 7y, we have
d(xjk+1 , Tvxijrl) < d(xjk+l , thHlxij) + d(thkaij , Tvxjk+l)
— d(xijrl’ T’mlxjkﬂ) 4 d(TsTt,-kakH , Tsxjkﬂ)

< d(x]Hl , thH]xij) + d(thkx]Hl , x]k+l)‘
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Letting k —> oo and applying Lemma 6.5, we get limy__, o d (x%, Tyx/*) = 0.
Lemma 6.7 Suppose that s € J has the property (6.5) and assume further that

sup(jrx — k) < oo.
keN

Then, the following assertions hold:
(1) limg_, oo d(x¥, x7) = 0.
(2) (x%) is an approximate fixed point sequence for Ty.

Proof (1)Put P := sup,n(jx — k).If P = 0, then the conclusion is already verified.
Hence, assume that P > 0. Let ¢ > 0 be chosen arbitrarily. From Lemma 6.5, we
know that d (x*, x**1) < ¢/ P holds for any k sufficiently large. For such large k € N,

we have
Ji—1

d(x*, ) <y " d (e, x) < (e — k)

i=k

) €
—_<< .
P~ P

This proves lim;__, o, d(x¥, x/*) = 0.
(2) By Lemma 6.3 and the <-nonexpansivity, we have

d(x*, Tox%) < d (b, x%) + d(x, Tox) + d(Tox™, Tox")
<d(x*, x7) +d (P, Ty +d (x5,

Letting k — oo and applying the earlier fact (1) and Lemma 6.6, we have
lim d(xk, T,x*) =0,
k—> 00

which is the desired result.

After having gathered all the technical lemmas required for the convergence result,
we now state and prove the main theorem of this section.

Theorem 6.2 Assume that all s € J has the property (6.5) with sup,n(jx — k) <
oo. Then, the Krasnosel’skii sequence (x*) generated from x° is A-convergent to a
point w € Fix(I") with x0 < w.

Proof First, note that the boundedness of C implies the boundedness of x*). So
(x*) contains a A-convergent subsequence. Suppose that (yk) and (z¥) be two A-
convergent subsequences of (x*) whose A-limits are y* and z*, respectively. Suppose
that y* # z*.

Since (x*) is <-nondecreasing, we have y* < y* and z¥ < z* for all k € N. Let
s € J. From Lemma 6.7, we have
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limsupd(y*, Tyy*) < limsupd(y*, T,y*) + lim sup d(T,y*, Ty y*)

k—> 00 k—> 00 k—> 00

< limsupd (¥, y*).

k—> 00

Since y* is the unique asymptotic center of (y*), it follows that y* = T,y*. With
the same arguments, we also have z* = T;z*. Since s € J is arbitrary, we have
y*, z* € Fix(I') with x° < y* and x° < z*. Set 7 1= limy__, o d(x*, y*) and r, :=
limg o0 d(x¥, z*), where the existence of such limits follows from Lemma 6.4.
From the fact that (y*) and (z*) are subsequences of (x*) and the uniqueness of the
asymptotic center, we have

ri= lim d(x*,y*) = lim d(y*, y*) < limsupd(y*, z*) = r,
k—> 00 k—> 00 k—>00

and also
r= lim d(x*,z*) = lim d(*, z%) < lim d(, y*) = r.
k—> 00 k—> 00 k—> 00

This gives a contradiction, and therefore it must be the case that y* = z*. In other
words, (x*) has only one A-accumulation point, denoted with w. Similarly, we have
x¥ <wforallk € N. Lets € J. The Lemma 6.7 yields

lim supd(x*, Tyw) < limsupd(x*, Tyx*) + lim sup d(Tyx*, Tyw)

k—> 00 k—> 00 k—> 00

< lim sup d(xk, w).

k—> 00

The uniqueness of the asymptotic center guarantees that w = T,w and further that
w € Fix(I"). Additionally, the fact that (x*) is <-nondecreasing yields x° < w.

6.5 Implicit Approximation Scheme

In the previous section, we deal with the Krasnosel’skil approximation schemel
where the computation of each iterate can be carried out explicitly by a specific
formula. In this section, we present another route to approximate a solution w €
Fix(I") by using the Browder approximation schemes which is of different nature
to the Krasnosel’skif approximation scheme. In the Browder approximation scheme,
there is no specific closed form for each iterate. However, it can be simply computed
by the use of Picard’s procedure.

Also note again that we have not seen Browder approximation in this setting even
when the space is linear. Since a Hilbert space is CAT(0), our next main theorem
applies there.
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The construction and several properties of the algorithm studied in this section
are based on a theorem of Nieto and Rodriguez-Lépez [28].

Theorem 6.3 ([28]) Let (X, d) be a complete metric space that is endowed with a
partial ordering < with the following property:

Ifa < —nondecreasing sequence (x*) in X converges to x*,
then x* < x* for eachk € N. (6.6)

Suppose that T : X — X is a mapping in which (6.1) holds for each x, y € X that
are <-comparable with L < 1. If there is a point x° € X such that x° < Tx°, then
(1) T has a fixed point.
(2) The orbit (T*x°) converges to a fixed point w € Fix(T).
(3) T*x® < w forallk € N.

Recall again that I" := {T;};,c; is a <-nonexpansive semigroup on a bounded
closed convex set C C X, and x° € C is fixed with the property x* < T;x° for all
t € J.Ateacht € J and A € (0, 1), we define T* := (1 — 1) T, ® Ax°.

Let us now give the following simple facts which are essential in our main con-
struction in this section.

Lemma 6.8 For each A € (0,1) andt € J, the following facts hold:
(D) TtA is a <-contraction with constant (1 — ).
(2) T} is <-nondecreasing.
(3) x% < T2x% < T,x".

Proof (1) Letx, y € X with x < y. We have

d(Trx, T'y) =d((1 = MVTix ®ax’, (1 — V) Ty & Ax°)
< (1 =1d(Tx, T,y) <d(x, ).

This shows the <-contractivity of 7;*.
(2) Let x, y € X with x < y. Since T, is <-nondecreasing, it is immediate to see
that
T'x = (1= WTx ®ax’ < (1 —NTy ®ax’ =Ty,

(3) Since x° < T;x% we have x° < (1 — V)T x" @ x° = T,*)c0 < T;x0.

The following fact is obvious from the results aforestated. However, we collect it
here for convenience and explicitly.

Lemma 6.9 Let A € (0,1) and t € J. Then, lim,_, (T/")" = x* € Fix(T}*) with
(T}x°)" < x} foralln € N.

Proof Since all <-intervals are closed, the condition (6.6) is satisfied. Apply Lemma
6.8 and Theorem 6.3 to arrive at the conclusion.
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Now, let us define the Browder approximation associated with I". Suppose that
(A1) a strictly decreasing sequence in (0, 1) and (#) is a strictly increasing sequence
of positive reals. In this situation, we adopt the notions T := T,k“ for each k € N.
Next, generate for each k € N the successive point

K= lim (7MY xO,

n—-oo

In this case, the sequence (x¥) is called the Browder sequence generated from x°.

One may observe from Lemmas 6.8 and 6.9 that for each k € N, x* € Fix(T*!) and
(T x% < x* for all n € N. Also, we can see that ((T™1)"x%) is <-nondecreasing.

For a technical reason, assume throughout this section that t® € J \ {0} and
t*+1 = 2tk for k € N.

Lemma 6.10 The following assertions hold for each k € N:
(D) xk < k1
() x* < T, x*.

Proof (1) Fix k € N. Since T,, is <-nondecreasing, we apply Lemma 6.8 and obtain
T, THx" =T Tkao = T2th0 = TtHle = TtHlT[kJr”xO'
Again, since 7T;, is <-nondecreasing and (A;) is strictly decreasing, we further have

(THMY2x0 = (1 =T, T @ nx® < (1 = 1) T, T X0 @ 2y

< (1= Mg DTy, T @ agp 1 x® = (71240,

Now, let n € N be an integer such that the statement (7¥1)"x? < (T*+11)7x0 holds
true. We may observe using similar facts that

T'tk(T[k])nxO ﬁ T‘tk Y}k(T[k])n—lxo — T}}{H(T[k])n—lxo
< Ek+1(T[k])n_lT[k] 0 _ T[](H(T[k])nxo
5 leH (T[k+1])n.x0.

Similarly, using the facts that 7;, is <-nondecreasing and () is strictly decreasing,
we get

(T Y50 = (1 = )T (T %% @ ax® < (1 — 1) Ty, (T X0 @ 2 x®

< (U= hg) T (T2 @ Agra® = (7110,
Hence, the mathematical induction implies

(T[k])nx() < (T[k+1])nx0 (6.7)



6 Existence and Approximations for Order-Preserving Nonexpansive ... 125

for each n € N.

Next, recall that Theorem 6.3 gives lim,__, o (T")"x% = x* and (T™¥1)"x0 < xk
forall n, k € N. Taking (6.7) into account, we see now that ((T'¥1)"x?) is a sequence
in the <-interval (<—, x**1], which is a closed set. Therefore, the point x* belongs to
(<=, x**1] as the limit of ((T™*)"x%) and we conclude here that x* < x**! for any
k e N.

(2) Fix k € N. Since x* € Fix(T™), we have
xb = (1= 2T x* @ ax”.

Recall that x° < x¥ and x° < T,x" forall s € J. If t € J and ¢ > #, we have x° <
Ttho =< T,kxk, which further yields

=1 =) Tx" @ ax® = (1= 2T x* @ LT x" = T, 2
U

Before we go further, let us consider for a while an ordinary metric space (Y, p)
and a family & := {S;};c; of self-mappings on a bounded subset K C Y, indexed
by a nontrivial subsemigroup J of [0, co). The following notions and lemma are
variants to the similar definition given by Huang [22] for which J is not necessarily
the same as [0, oo). The proof is carried out in the same way so we leave it to the
reader.

Definition 6.3 The family = is called asymptotically regular (or briefly, AR) if for
any h € J and y € K, the following limit holds:

lim d(T,y, T,T;y) = 0.
teJ

—> 00

Moreover, it is called uniformly asymptotically regular (or brieftly, UAR) if for any
h € J, the following limit holds:

lim supd(Tyy, T T;y) = 0.
teJ yEK

—>00
Lemma 6.11 If & is AR and S,Sy = S,y fort,t' € J, then Fix(&) = Fix(S;) for
anyt € J.

Now we get back to our main result.

Theorem 6.4 Assume that (A;) is a strictly decreasing sequence in (0, 1) with the
limit limy__,  ox = 0, and (t;) is a sequence given by tiy1 = 2t; for k € N with
to € J \ {0}. Also suppose that I" is UAR. Then, the Browder sequence converges
stronglyto y € Fix(I') with x° < y. Moreover; ifq € Fix(I") satisfies vF < q at each
k € N for some subsequence (vF) of (x*), then d(x°, y) < d(x°, ¢).
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Proof Note first that if x° € Fix(I"), then x* = x° for all k € N. Now, consider the
case x° ¢ Fix(I"). Since C is bounded, (x*) contains a subsequence (yk) which is
A-convergent to some point y € C. Note that y* <y for any k € N. Suppose that
(Br) and (s;) are respective subsequences of (A;) and (#) for which y* = (1 —
Bi) Ty, y* @ Brx® for all k € N. Fix any ¢ € J. Then, Lemma 6.10 and the convexity
of d on C implies

d(Tyy, y°) < d(Try, Tey*) + d(T,y*, T T y%) + d(T, T y¥, ¥5)
<d(y, Y +dO*, T, y%) + Brd 0, T, T, y5) + (1 = Bod (T y*, Te Ty y%)
=d(y, Y5 + Brd (60, Ty ) + Brd (0, Ti T, y%) + (1 = Br)d (T y*, Ti T, ).

Letting k —> oo, from limy_, o, B = 0 and I" being UAR, we get

limsupd(T,y, y*) < hmsupd(y vh).

k—> 00 k—> 00

By the uniqueness of the asymptotic center, we have y € Fix(7;). Lemma 6.11
implies further that y € Fix(I").

Next, we claim that (y*) contains a strongly convergent subsequence. Let us
suppose to the contrary that lim sup, .. d(y, y*) = o > 0. For k € N, since y* <
y =Ty, we have

d(y, y*) < Brd (v, x%) + (1 — Bd(y, Ty, y*)
< Bd(y, x°) + (1 — Bd(y, y").

Passing k —> 00, one obtain

limsupd(y, Txkyk) =o.

k—> 00

By passing to a subsequence, we assume, without the loss of generality, that y* £ x°
for all k£ € N. Recall that

d(x°,y) = (1= Bd (", 1,) < d(, T y).
Since y* € [x9, T;, y*], we have
d(y*, Ty, y") = d(x°, T, y) = d (. ) > 0.
Note that x° # y since x° ¢ Fix(I"). The uniqueness of the asymptotic center yields

l1msupd(x y ) > hmsupd(y y ) =o > 0. (6.8)

k—> 00 k—> 00
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Again, by passing to a subsequence, we may assume that (y*) has the following
property for all k € N:

d(x°,y) >0, d(y,y") >0, d(y, T,y > 0. (6.9)

For each k € N, let A(x°, 3, Ty, y) be the k-comparison triangle of A(x?, y, Ty, y¥)
that share the common side [x°, ¥]. In view of (6.8) and d (6.9), the x-angles
LC('()()C0 ), A{(K)(xo Tvkyk) and A(K)(y, T, y*) exist, where y* is the correspond-

ing comparison point for y¥. We claim that A(K) (x9, y) > m/2. Let us assume to the

contrary that K(K)(xo y) < m/2. Since A{(K)(xo, T, y¥) = m, this also implies that
4( )(y, T, ¥*) > /2. On one hand, we have

08 v/ (7, T ¥F) = 0 VKde (3, T3P cos ke (3, 7)
+ sin /K 5, Ty Y1) sin /& (5, Y9) cos £ (3, 5)
< cos «/Kkd, (F, Ty y5),

which means d, (y, T, y") <d.(,T. y") On the other hand, the fact that y* <y
gives

de (¥, T, yh) = d(y, T, )") = d(Ty,y, Ty y")
fd(y,)’)de(YvY),
which contradicts the earlier inequality. Therefore, it must be the case that &%) (F, y)

> /2.
Again, by the «-spherical law of cosines (Proposition 6.1), we have

cos /kdy (x0,3) = cos v/kd, (x°, yk) cos v/icd, (¥, 3)
+ sin Vied, (x0, y¥) sin Vicd, (3%, 7) cos 4% (x0, 3)
< cos Vid, (x9, y*) cos Vicd, (YK, 3). (6.10)

Since 0 < d(x°, y*) < d, (F, F), (6.10) further yields
d (R, 7) < de(x, ). (6.11)
By the diameter assumption on C, the point
uk = Projp,o 4 v

is well defined for each k € N. Thus, (u¥) is a sequence in [x°, y]. Since every
geodesic interval is isometry to a compact interval in R, we pass again to a subse-
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quece and assume that (u*) is strongly convergent to a point # € [x°, y]. Using the
definitions of an asymptotic center and a projection, we obtain

o = limsupd(y, y¥) < lim supd(u, 5

k—> 00 k—>00

< limsupd(u, u®) + lim sup du*, y%

k—> 00 k—> 00

= lim sup d (u*, y*)

k—> 00

< limsupd(y, y*) = o.

k—> 00

This shows u = y. Passing again to a subsequence, we may assume that d uk, y*) >
o/2forall k € N. For k € N, let u¥ and u b comparison points for u* and u, respec-

tively, in the comparison triangle A(x?, 7y, y¥) of AR, v, yk). Note that u* * x0
for all k € N. Otherwise, the Proposition 6.3 gives

LOG ) =42,y = /2.

Note that the angles above are defined in view of facts we derived earlier. By the
k-spherical law of cosines (Proposition 6.1), we subsequently get

cos /kdy (7, y¥) = cos /kd, (x0, 7) cos /iy (x0, yF)
+ sin V/id (10, 3) sin y/ied, (x°. yF) cos L7 (7. y5)
< cos Vikd, (x0, ).

This means d, (x, 7) < d, (7, y¥), which contradicts with (6.11). Thus u* # x° for
all k € N. This shows that the angle y; := 4%) (x9, yk) is well defined and the Propo-
sition 6.3 implies that y; > /2 for all k£ € N. Apart from this, we also define for
each k € N the following quantities:

ap = de (X0, uk), b= deWk, Y5, cp = de (x9, yh).

We may see now that -
0/2 < by < ¢ <de(x°,y)

at each k € N. By the «-spherical law of cosines (Proposition 6.1), we obtain

cos v/Kkc; = cos y/kay cos /i by + sin \/kay sin A/k by cos yi
< cos «/Kkay cos \/kby.

The two inequalities above implies
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cos/kcy  cosJid, (x9, )
>
cos /Kby cos /K (a/2)

For convenience, we put

1 de(x0,y
§ := —= arccos (M) .

> cos ikd, (x9, 7).

cos /kay >

JK cos /K (a/2)
Note that § is independent of k € N. Hence, we get a;y < § < d, (F, y) and then

d(y, u") = d. (5, u") = d(x0,5) — d (O, u¥)
>d.(x9,5) =8 > 0.

This shows that (d(y, u*)) is bounded away from 0, which together implies that
u # y. This is a contradiction. Therefore, the sequence (y*) is convergent to y.
Since all subsequence of (x*) contains a subsequent convergent to y, we conclude
that (x*) converges to y € Fix(I"). Since (y¥) is <-nondecreasing, we have x* < y.

Next, we show the second conclusion. Suppose that ¢ € Fix(I") satisfies v < ¢ at
each k € N, for some subsequence (V%) of (x*). Let (B¢) and (s;) be the subsequences
of (Ax) and (1), respectively, in which v¢ = (1 — ,Bk)Tskvk ® Bix® for k € N. We
may also assume that v # x% atall k € N. Foreachk € N, let A(g, x0, m) be the
comparison triangle of A(g, x0, T, v¥) that share the common side [, F]] Observe
that we have d(Tskvk, q) <d(k, g). If &%) (g, W} > /2, then we further have

cos /kd, (q. T, v*) = cos /kd, (., v¥) cos Vicd, (%, T, v¥)
+ sin v/kd, (g, v*) sin Vkcd, V¥, Ty, v¥) cos Aii:) q, T, v
< cos ikd, (@, vF) < cos Vikd, (@, Ty, Vb),

which is absurd. Hence, it must be the case that &%) (q, T, vb) < 7 /2.1f follows that

®), 0 — . . . ..
;ICVT (x9,9) > m/2. Again, from the «-spherical law of cosines (Proposition 6.1), we
ave

cos v/kd (X0, §) = cos /kde (G, vF) cos icd, (x0, v¥)
. — - W) 5 —
+ sin /kd, (g, v¥) sin \/kcd, (x°, v¥) cos 4v7 x%,9)
< cos +/kd, (F, v_").

Subsequently, we may see that
d(x°, vy = d, (x%, vF) < d, (x0,q) = d(x°, q).

The final conclusion follows by letting k — oc.
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6.6 An Example

In this section, we give a validating example to confirm our main results. This example
is a sample application of our explicit algorithm presented in Sect. 6.4.

Example 6.1 Let us consider the model space of constant curvature = 1 which is
represented by the unit sphere S> C R3 endowed with the spherical metric d (x, y) :=
arccos({x, y) forx, y € Sz.Putp :=(1,0,0) € S?and take C := E(p, r), the closed
ball around p of radius r, where 0 < r < 7 /4. Obviously, C is a complete CAT(1)
space with respect the restriction of d. Moreover, we have diam(C) < /2 = D;/2.
Define the partial order < on C by

x <Xy &< xy<yandx; < y3

forall x, y € C, where x = (x1, x2, x3) and y = (y1, ¥2, ¥3). It is not difficult to see
that < is compatible with the CAT structure.
Consider the semigroup J := N U {0}. Define foreach ¢t € J amapping T; : C —

C given by
1 1
T (x) ::< 2,)17695)6

forall x € C. Then the family I" := {T,},c, is a <-nonexpansive semigroup (see [30,
Lemma 3.3]) and Fix(I") = {p}.

Next, we shall verify all the assumptions of Theorem 6.2 and validate the theorem.
Firstly, the semigroup J is seen to satisfy all the requirements in Theorem 6.2 with
s = 1. On the other hand, a point x° € C has the property x* < T;x° for all ¢ € J if
and only if the <-interval [x°, —) contains the point p. Equivalently, if and only if
x§ < 0andxy < Owherex® = (x), x9, x9) € C. We may see that the iterates x* ! :=
(1 — 2)x* @ AT, x* convergesto p € le(F) forany x° € C. However, to obtain the
domination property x* < p, we need to start from x° for which p € [x°, —). The
properties discussed above are all in accordance with the Theorem 6.2. In addition,
we obtain from the construction of (x¥) the following rate of convergence:

k-1

<d@x°, p)H( — A4 )

(1 —x/2)1dx°, p).
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6.7 Conclusions and Remarks

As a quick summary, we have established an existence theorem for the class of
=<-nonexpansive semigroups. Then, we proposed two approximation schemes, the
Krasnosel’skii’s and the Browder’s. The first is explicit but works only with discrete
semigroup while the second is implicit but works in any semigroups. However, there
are still limitations in terms of generality. In the non-ordered case (over both linear
and nonlinear spaces), the choices of parameter sequences (A;) and (#;) are more
freely available. Based on these inspections, we shall pose here the following open
questions:

(Q1) How to generalize parameter conditions on (#;) of the Krasnosel’skii approxi-
mation to any semigroups not necessarily discrete?

(Q2) How to generalize the parameter conditions on (X;) and (#;) in the Browder
approximation?
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Abstract In this chapter, we present the role of measures of noncompactness and
related fixed point results to study the existence of solutions for the system of integral
equations of the form
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0

forallt € Ry, x1,x2,...,x, € E=BC(R;) and 1 <i < n. We mainly focus on
introducing new notion of u — (F, ¢, 1) —set contractive operator and establishing
some new generalization of Darbo fixed point theorem and Krasnoselskii fixed point
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7.1 Introduction

The integral equation creates a very important and significant part of the mathematical
analysis and has various applications into real-world problems. On the other hand,
measures of noncompactness are very useful tools in the wide area of functional
analysis such as the metric fixed point theory and the theory of operator equations in
Banach spaces. These are also used in the studies of functional equations, ordinary
and partial differential equations, fractional partial differential equations, integral and
integro-differential equations, optimal control theory, and others (see [1-7, 12, 19—
23]). In our investigations, we apply the technique of measures of noncompactness
in order to generalize the Darbo fixed point theorem [14], and we also study the
existence of solutions for the following system of integral equations:

xi(1) = a;(t) + fi(t, x1(1), 2(0), ..., X (1))

a(t)
+git, x((1), x2(t), ..., x,(1)) / ki(t,s,x1(5), x2(8), ..., x4 (5)))ds,
0

(7.1)
forallt e Ry, x1,x2,...,x, € E=BCRy)and 1 <i <n.
The present work generalizes the existing related work available in the literature.
Further, we generalize our system into fractal integral equations when k; is defined
in a fractal space.

7.2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this work. Denote R, the set of real numbers and R, = [0, +00).
Let (E, | - ||) be a real Banach space with zero element 0. Let B(x, r) denote the
closed ball centered at x with radius r. The symbol B, stands for the ball B(0, r).
For X, a nonempty subset of E, we denote by X and ConvX, the closure and the
closed convex hull of X, respectively. Moreover, let us denote by g the family of
nonempty bounded subsets of E and by 91 its subfamily consisting of all relatively
compact sets.

In 1930, Kuratowski suggested a new direction for the researchers with the intro-
duction of measure of noncompactness (MNC, for short) [18]. The MNC joins some
algebraic arguments, studies the mathematical formulations and solves the existence
of solutions for some nonlinear problems involving certain conditions [18].

We use the following definition of the measure of noncompactness given in [14].

Definition 7.1 A mapping i : MMz — R, issaid tobe ameasure of noncompactness
in E if it satisfies the following conditions:
(1°) The family kerp = {X € Mg : u(X) = 0} is nonempty and kerp C Ng;
2% X CY = u(X) <),
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(3% nX) = n(X);

(4%) p(ConvX) = pu(X);

(5% X + (1 = 1)Y) < au(X) + (1 — 2u(Y) forall A € [0, 1];

(6% If (X,) is a sequence of closed sets from mg such that X, C X,, (n =
1,2,...) and, if n@oo,u(Xn) = 0, then the set X, = ﬂ;’;l X, is nonempty.

The family keru defined in axiom (1°) is called the kernel of the measure of
noncompactness [i.

One of the properties of the measure of noncompactness is X, € ker . Indeed,
from the inequality u(Xs) < n(X,) forn =1,2,3, ..., weinfer that (X)) = 0.
Further facts concerning measures of noncompactness and their properties may be
found in [13, 14].

The Kuratowski measure of noncompactness is the map o : Mg — RT with

a(2) = inf {8 >0:2C USk, Sk C E,diam(S;) < ek € N)}. (7.2)
k=1

For all & € Mg, the Hausdorff measure of noncompactness

x(2) = inf{e > 0 : 2 can be covered by a finite number of balls of radii ¢}.
(7.3)

A continuous mapping T : X — X is called a densifying map if, for any bounded
set 2 with u(2) > 0,wehave u(T(2)) < u(2D).If w(T(2) < ku(2),0 <k < 1,
then T is a k—set contraction.

If w(T(2) < u(2), then T is said to be 1— set contraction.

A nonexpansive map is an example of 1—set contraction. A contraction map is
densifying and so is a compact mapping. In the history, there are results in fixed point
theory that dealt with combination of two maps, for instance, T} + 75, where T} is a
contraction map and 75 is a compact map.

If both T and T, are continuous functions, then 77 4+ T is also a continuous map
and the fixed point theorem for continuous map is applicable for 71 + T,. However,
if 7 is a contraction map, then Banach fixed point theorem is applied, and if 75 is
a compact map, then Schauder fixed point theorem is applicable. If 7} is densifying
and 7> is densifying, then T; + 7> is also densifying.

Darbo [17] used the notion of MNC for the first time and defined some classes of
operators. He proved the generalized Schauder’s and Banach’s fixed point theorems.
Krasnoselskii combined Schauder’s and Banach’s fixed point theorems together in
one result (see [9-11, 15, 16]).

Theorem 7.1 ([1]) Let C be a closed, convex subset of a Banach space E. Then
every compact, continuous map T : C — C has at least one fixed point.

In the following, we state a fixed point theorem of Darbo type proved by Banas
and Goebel [14]:
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Theorem 7.2 Let C be a nonempty, closed, bounded, and convex subset of the
Banach space E and T : C — C be a continuous mapping. Assume that there exist
a constant k € [0, 1) such that u(T X) < ku(X) for any nonempty subset X of C.
Then T has a fixed point in the set C.

The following concept of &'(f;.) and its examples was given by Altun and
Turkoglu [8]:
Let .%# ([0, 00)) be class of all function f : R, —> R, and let ® be class of all
operators
O(e;): FRy) — FRy), f— O(f;)

satisfying the following conditions:

(@) O(f;t) > 0fort > 0and O(f;0) = 0;

(b) O(f;t) <O(f;s)fort <s;

(©) im0 O(f; t,) = O(f; im0 1);

() O(f; max{t,s}) = max{O(f; 1), O(f;s)} for some f € F(R,).

Example 7.1 If f : R, — R, is a Lebesgue-integrable mapping which is finite
integral on each compact subset of R, non-negative and such that for each ¢ > 0,
fol f(s)ds > 0, then the operator defined by

O(f;1) = /0 F(s)ds

satisfies the above conditions.

7.3 Main Results

In this section, we introduce a new notion of a p-set contraction and establish new
results for said notion.

In the sequel, we fix the set of functionsby F : Ry x Ry — Riandy, ¢ : Ry —
R such that

(a) F is nondecreasing, continuous and F(0,0) = 0 < F(¢, s) foreveryt, s > O;

(b) ¢ is continuous;

(c) ¥ is a nondecreasing function such that nli_r)noo Y"(t) = 0foreachr > 0.

Define F = {F : F satisfies (a)}, @ = {¢ : ¢ satisfies (b)} and & = {¢ : ¢ satis-
fies (¢)}.

As a result, we state the existence of a fixed point for a continuous (but not
necessarily compact) operator satisfying a i (F, ¢, ¥ )-set contractive condition.

Theorem 7.3 Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E, and T : C — C be a continuous and (w(F, @, Vr)-set contractive operator,
that is,
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O(f; FquT (X)), o(u(T X)) = Y[O(f; F(u(X), o(u(XNN]  (74)

for any nonempty subset X of C, where ( is an arbitrary measure of noncompactness,
FeF e ®, O(e;.) €@ andy € W. Then T has at least one fixed point in C.

Proof Let Cy = C, we construct a sequence {C,} such that C,,1; = Conv(TC,),
forn > 0. Then TCy =TC C C = Cy, C; = Conv(T Cp) S C = Cy. Continuing
this process we have

CoDCID- - DC2C D

If there exists a natural number N such that u(Cy) = 0, then Cy is compact. In this
case, Theorem 7.1 implies that T has a fixed point. So we assume that ©(C,) # 0
forn =0,1,2,.... Also, by (7.4), we have

O(f; F(u(Cng1), 9((Crg1)))) = O(f; F(u(Conv(T Cp)), ¢(u(Conv(T Cy)))))
= O0(f; F(u(T Cn), p(u(T Cp))))
=S YLOf5 F(r(Cn), @(u(Cp))))]

< V2O(f; F(u(Cn-1), 9(1t(Cr1))))] (7.5)
< Y"[O(f; F(1(Co), p(1u(Cp))))]
= Y"[O(f; F(u(C), p(n(C)))].

Taking the limit n — oo in (7.5), we have
lim O(f5 F(1(Cri), 9(1(Cain)))) =0
and so

Iim Fu(Cort), 9(W(Cr41))) = 0= lim (1(Cpyy) = 0.

[o¢]
SinceC,, 2 Cpy1andTC, € C, foralln = 1,2, ..., then, from (6%), Xoo = ﬂ X,

n=1
is a nonempty convex closed set, invariant under 7 and belongs to K er . Therefore,

Theorem 7.1 completes the proof.

An immediate consequence of Theorem 7.3 is the following:

Theorem 7.4 Let C be a nonempty bounded closed and convex subset of a Banach
space E, ¢ 1R, —> Ry and T : C — C be continuous functions. Suppose that
there exists a constant 0 < A < 1 such that, for all @ # X C C,

O(f: F(u(T (X)), o(u(T X)) = A[O(f; F(r(X), p(u(X)],
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where w is an arbitrary measure of noncompactness F € F, ¢ € @ and O (e; .) € O.
Then T has at least one fixed point in C.

Taking F (¢, s) =t 4+ s in Theorem 7.3, we obtain the following:

Theorem 7.5 Let C be a nonempty bounded closed and convex subset of a Banach
space E, ¢ : R, —> Ry and T : C — C be continuous functions such that, for all
d#XCC,

O(f; n(T(X)) + (T X)) = Y [O(f; n(X) + (X)),

where ( is an arbitrary measure of noncompactness € ¥, ¢ € @ and O(e;.) € 6.
Then T has at least one fixed point in C.

Theorem 7.6 Let C be a nonempty bounded closed and convex subset of a Banach
space E, ¢ : R, —> Ry and T : C — C be continuous functions such that, for all
g#+XCC,

F(u(T (X)), o(u(T X)) = ¢[F(u(X), p(u(X)],

where W is an arbitrary measure of noncompactness, v € ¥, ¢ € @ and F € F.
Then T has at least one fixed point in C.

The following corollary gives us a fixed point theorem with a contractive condition
of integral type:

Corollary 7.1 Let C be a nonempty bounded closed and convex subset of a Banach
space E and T : C — C be a continuous operator such that, for any @ # X C C,

F(u(X),9(u(X)))

F(u(T(X)),e(u(T X))))
/ F(s) ds < ¥ / F(5) ds),
0

0

where | is an arbitrary measure of noncompactness and f Ry — Ry is a
Lebesgue-integrable mapping which is summable (i.e., with finite integral) on each
compact subset of R,, non-negative and such that, for each ¢ > 0, fog f(s)ds >0,
veVW, pe@and F € F. Then T has at least one fixed point in C.

Next we present a Krasnoselskii type fixed point result.

Theorem 7.7 Let (E, || - ||) be a Banach space and X be a closed convex subsets of
E.Let Ty, T, : X — X be two operators satisfying the following conditions:

@ (I + T)(X) € X;

(b) thereexist F € F, ¢ € @, O(e;.) € © and ¥ € ¥ such that, forallu, v € X,

O (fs FUITiu = Tiol), (I Tiu — Tivl)) < ¢ LO(f; F(lu = vll, ¢(lu —vD)L; - (7.6)

(¢) T, is a continuous and compact operator.
Then ¢ :=T,+ T, : X — X has a fixed point i € X.
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Proof Suppose that M is a subset of X with u(M) > 0. By the notion of Kura-
towski MNC, for each n € N, there exist bounded subsets 47, . . ., €, such that

MC U:”:('f) & and diam(€) < u(M) + % Suppose that w(7T1(M)) > 0. Since
Ty (M) € " T\(%), there exists ip € {1,2,...,m(n)} such that u(T,(M)) <
diam(T,(6,,)). Using (7.6) condition of T} with discussed arguments, we have

O (fs F(u(Ti(M)), (u(T1 M))))
= O(f; F(diam(T\(6;), p(diam(T\(€;,)))))
= YlO(f; F(diam (%), p(diam(%;))))] (7.7)

< w[ﬁ(f; F(M(M) o, ¢<M(M) + %)))}

Passing to the limit n — oo in (7.7), we get

O(f; F(u(T (M), o(u(TiM)))) < yO(f; F(u(M), o(u(M))))].

Using the condition (c), we have, by the notion of u, that

O(f: F(u( 7 (M), o(u( 7 (M)))))
= O(f; F(u(Ti(M) + T2(M)), ¢ (u(T1 (M) + T2(M)))))
= O(f; F(u(Ti(M) + n(F2(M)), p(u(T1 (M) + n(T2(M)))))
= O(f; F(u(Ti(M)), p(u(T1(M)))))
=S YLO(f; F(r(M), (u(M))))].

Thus, by Theorem 7.3, ¢ has a fixed point ## € X. This completes the proof.

Here, we recall a useful theorem concerning the construction of a measure of
noncompactness on a finite product space.

Theorem 7.8 ([14]) Suppose that iy, 2, . .., W, are the measuresin Ey, Es, ...,
E,, respectively. Moreover, assume that the function F : R." — R, is convex and
F(x1,x2,...,x,) =0ifand only if x; = 0 for eachi = 1,2, ...,n. Then

pn(X) = F(ui(X1), n2(X2), ..., in (X))

defines a measure of noncompactness in E; x E, X --- X E,, where X; denotes the

natural projection of X into E; fori =1,2,...,n.

Example 7.2 Let u;(1 <i <n) be the measures of noncompactness in Banach
spaces Ei, E,,..., E,, respectively. Considering Fj(xy,...,x,) =kmax
{x1, 20, ..., x,}and Fo(xy, ..., x,) = k(x) 4+ - -+ 4+ x,),k € Ry forany (xq, ..., x,)

€ R, then all the conditions of Theorem 7.8 are satisfied. Therefore, w =k
max{u(X1), u(X2), ..., n(X,)} and jis == k(u(X1) + - - - 4+ u(X,)) define mea-
sures of noncompactness in the space E; x E, x --- x E,, where X;, i =1, 2,
..., n, denote the natural projections of X into E;.
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Our next main result is the n—tuple Darbo fixed point result in product spaces.

Theorem 7.9 Let C; be a nonempty bounded convex and closed subset of a Banach
space E; i=1,2,...,.n)and T; :C; xCy x---xCy, — C; i=1,2,...,n)
be a continuous operator such that

O(f; F(u(Ti(Xy x Xp X -+ x X)), p(u(Ti (X1 X Xo X - -+ X Xp))))
<ylo(f; F(m]f?lx w(X;), w(mlax n(X ;)]
' (7.8)
for any subset & # X; of C;, where u; is an arbitrary measure of noncompactness on

Ei(i=12,...,n), FeF ¢y eW, 0(e;.) € O, p €D and nondecreasing. Then
there exist (x{,x5,...,x;) € C; x Cy x -+ x C,, such that, forall 1 <i <n,

Ti(xy, x5, ..., x5) =x]. (7.9)
Proof First, note that, from Example 7.2, it defined by

m(X) = max{u(X1), u(X2), ..., u(Xy)},

forany boundedsubset X C E} x E; x --- x E,,where X; (i = 1,2, ..., n)denote
the natural projections of X into E; defines a measure of noncompactness on E; x
E;, x --- x E,. Also,wedefineamapping 7 : C; x C X --- x C, —> C; X Cy X
--- x C, as follows:

T(xt,x2, ..., xn) = (T1(x1,x2, .., Xn), To(x1, X2, ooy Xp)s ooy Tn(x1, X2, 005 Xn)).

It is obvious that T is continuous. Now, we claim that T satisfies all the conditions of

Theorem 7.3. To prove this, let X be any nonempty and bounded subset of C; x C, X
.-+ x C,. Thenby (2°), (7.8) and the fact that ¢ (max{a, b}) = max{¢(a), ¢(b)} and
F(max{a}, max{b}) = maxF(a, b) fora, b € [0, +00), we obtain

O(f; FEU(T (X)), p(E(T (X))
< O(f; F(U(T1 (X1 X X2 X -+ X Xp) X -- X Ty(X1 X X2 X -+ X Xp)),
PE(TI(X] X X X -+ X Xp) X - X Tp(X] X Xa X -+ X Xp))))
=0(f; F(l?ifzn (T (Xy x Xp x -+ x Xp)), w(lgllfliinu(Tk(Xl x Xp x --- x Xp))))
< lglfiin[ﬁ(f; F(u(Tp(X1 x Xo X - x Xp))), @(u(Tp (X1 x Xp x -+ X Xp)))))]
< max Y[O(f; F(max pu(X;), p( max w(X;))))]
1<k=<n 1<i<n 1<i<n

=y[O(f; FX), (@)1

Hence, from Theorem 7.3, T has at least one fixed point, i.e., there exists (x, x3,
., X)) € Cp x Cy x --- x Cy, such that
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):T(xf,x;,... x5

’ n
= (M, x5, x), T, x5, o x0), oo, Ty X3, o, x)

(x5, Xy
which gives (7.9) and the proof is complete.
Taking F(t,s) =t + s and O(f, t) = t in Theorem 7.9, we obtain the following:

Corollary 7.2 Let C; be a nonempty bounded convex and closed subset of a Banach
space E; i=1,2,....,.n) and T; :C; xCy x ---xCp, — C; i=1,2,...,n)
be a continuous operator such that

ITH(X) % Xa - x X)) + (u(Ti(X) % X % - % X,))
< Ylmax (X)) + pmax (X))}

for any nonempty subset X; of C; where |; is an arbitrary measure of noncompact-

nesson E; (i=1,2,...,n), v e ¥, ¢ € ® and nondecreasing. Then there exist
(xf, x5, ..., x5) € Cy x Cy x -+ x Cy such that forall 1 <i <n
Ti(xy, x5, ..., x0) =x].

The following result is a generalization of similar results in [5, 24]:

Corollary 7.3 Let C; be a nonempty bounded convex and closed subset of a Banach
space E; i=1,2,....,.n)and T; :C; xCy x ---xCpy, — C; i=1,2,...,n)
be a continuous operator such that

(T (X X X X -+- x X)) < kmax u(X;)
J

for any nonempty subset X; of C;, where [; is an arbitrary measure of noncompact-
ness on E; and k € [0, 1). Then there exist (x{,x5,...,x;) € C; x Cy x --- x C,
such that forall 1 <i <n

*
i

Fi(x{,x5,...,x))=x
Proof Take ¢ = 0 and v (¢) = kt in Corollary 7.2.
Corollary 7.4 Let C; be a nonempty bounded convex and closed subset of a Banach
space E; i=1,2,....,.n)and T; :C; xCy x ---xCp, — C; i=1,2,...,n)
be a continuous operator such that

m(Ti(Xy x Xp X -+ x Xp)) < W[ml?lXM(Xj))]
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for any subset X; of C; where w; is an arbitrary measure of noncompactness on E;
(i=1,2,...,n)and y € . Then there exist (x{,x5,...,x;) € C; x Cy x -+ X
C, such thatforall1 <i <n

Y

Ti(xy, x5, ..., x)) =x].

7.4 Systems of Ordinary and Fractal Integral Equations

In what follows, we will work in the classical Banach space BC(R,) consisting of
all real functions defined, bounded and continuous on R ; equipped with the standard
norm

[lx]| = supf{lx(®)] : £, s = O}.

Now, we present the definition of a special measure of noncompactnessin BC (R )
which was introduced and studied in [14].

To do this, let X be fixed as a nonempty and bounded subset of BC (R.) and also
fixed a positive number N. For x € X and ¢ > 0, denote by o (x, &) the modulus
of the continuity of function x on the interval [0, N1, i.e.,

o™ (x, &) = sup{|x(t) — x(s)| : t,s € [0, N], |t — 5| < &}.

Further, let us put
o (X, &) = sup{o™ (x,€) 1 x € X},

o) (X) = lim o (X, €)

and
wo(X) = lim w)) (X).
N—o00

Moreover, for a fixed number ¢ € R, let us the define the function & on the family
Mpcm,) by the following formula:

m(X) = wo(X) + a(X),

where
a(X) = limsupdiamX (t), X(t) = {x(t) : x € X}

—>00

and
diamX (t) = sup{|x(#) — y(#)| : x, y € X}.
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In this section, as an application of our results we are going to study the exis-
tence of solutions for the system of integral equations (7.1). Consider the following
assumptions:

(a;) a; : Ry — R, are continuous and bounded with a = sup{a;(¢) : t € R,
1 <i<n};

(ap) ki : Ry x Ry x R® — R are continuous and there exists a positive constant
M such that

a(t)
M = sup{/ ki (t, s, x1(5), x2(8), ..., xp(s))|ds :t e Ry, x; e E, 1 <i < n}
0

(7.10)
Moreover,

a(r)
Jim | [0 [ (0, 5, 61 (50, %205), 5 %0 (5)) = ki 5, 3150, 325)s -+ 3 ()]s = 0
(7.11)

uniformly respect to x;, y; € E;

(a3) o : Ry — R, is continuous, nondecreasing and tl_l)lgo a(t) = oo

(a4) the functions f;, g; : R; x R" — R are continuous and there exists an upper
semicontinuous and nondecreasing function ¢ : R, — R with lim,_, o, ¥"(t) =0
for each t > 0. Also there exist bounded functions b;, ¢; : R, — R with bound

K = max{sup b(¢), sup b2(¥), ..., sup b,(t), sup ci(t), sup c2(t), ..., sup ¢, (1)}

teRy teRy teRy teRy teRy teRy
and a positive constant D such that

bi@y (max |xj — yjl)

I=j=<
[fi @, x1 (@), x2(0), ..., %0 () = fi @, y1(2), y2(0), ..., yu(1))] < D+'/’(1Tf‘§n =)

and

ci (DY ( Tfi(n [xj =yl

18i (2, x1 (1), x2(0), ..., X (1)) — i (2, y1(0), y2 (1), ... ., @)l = DT w(le‘i‘,, % =)

for all t € R, and x;, y; € R. Additionally, we assume that v is superadditive, i.e.,
Y(t)+Y(s) <yt +s)forallz, s € R,. Moreover, we assume that K (1 + M) <
D;

(as) the functions H,, H, : Ry x R, — R, defined by H,(t) = | f(¢, 0,0, ...,
0)| and Hy(t) = |g(z,0,0, ..., 0)| are bounded on R with

Hy = max{sup H(t), sup H,(t)}.

teRy teRy
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Theorem 7.10 [fthe assumptions (ay) — (as) are satisfied, then the system of equa-
tion (7.1) has at least one solution (x1,x3,...,x,) € EXE X --- X E.

Proof Define the operator 7; : E X E X E--- x E — E associated with the inte-
gral equation (7.1) by

Ti(x1, X2, ooy X)) (1) = ai (1) + fi (2, x1(1), x2(0), - . ., Xa (1))

+ gi(t’ xl(t)v XQ(I), LR ] xn(t))E(xlv x27 LR ] xn)(t)7
(7.12)
where

a(t)
Fi(x1, x2,...,x,)(t) :/ ki(t,s, x1(s), x2(5), ..., x,(5)))ds. (7.13)
0

Solving Eq.(7.1) is equivalent to finding a point (x1, x, ..., x,) of the operator T;
defined on the space E X E X --- x E such that T; (xy, x», ..., x,) = x;. For better
readability, we break the proof into a sequence of steps.

Step 1. 7; transforms the space E x E x --- x E into E.

By considering conditions of theorem we infer that 7;(xy, x», ..., x,,) are contin-
uous on Ry x Ry x --- x R,. Now we prove that T;(xy, X2, ..., x,) € E for any
(x1,X2,...,%,) € EXE x---x Eand 1 <i < n.For arbitrarily fixed t € R, we
have

Ti(xy, xa, oo, X)) < ai ()| + | fi(t, x1(2), x2(2), ..., x,(2))]
+ 18 (1, x1(2), x2(2), - . ., Xu (O Fi (X1, X2, .., X)) (D))
Ky (max |x;])
<la;(®)| + D1 w(lrgflfn Ix;1) + Hp

Ky (max |x;])
1<j<n

+[ +H]M.
D+ y(max [x;)
1<j<n
(7.14)
Indeed, we have
[fi(t, x1 (), x2(0), ..., Xn ()]
< filt, x1 @), x2(8), .., xn () — fi(t,0,..., O+ /i, 0,...,0)]
bi(l)W(]Ln%Ué [x; 1) Kw(lr<na)<an lx; 1)
<— 2 iHmo<— 4+ H,
D+ y( max |x;l) D+ ¢ ( max |x;l)
1<j<n 1<j<n
lgi (@, x1(2), x2(), ..., Xn ()]
< |gi(t, x1 (@), x2(1), ..., xn () — gi(1,0,..., O+ g (t,0,..., 0)|
ci ()Y ( max |x;) Kir( max |x;])
1<j<n 1<j<n Ho

<— "+ M) —— 7 +
D +y( max |x;]) 20) D + ¢ ( max |x;|)
1<j<n 1<j<n
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a(t)
< /0 ki (5, x1(s), x2(5), ..., xn(s))lds < M.

Thus we have

K (max x|

T Cxr, X2, .. x| < lall +[D+w(max||x~||) + Hol(1 + M) (7.15)

<llall + (K + Ho)(1 + M).

Therefore, 7; maps the space E x E X --- x E into E. More precisely, from (7.15),

we obtain that T;(B, x B, x --- x B,) C B,, where r = ||a|| + (K + Hy)(1 +

M).

Step 2. We show that map 7 : B, X B, X --- X B, — B, is continuous. For this,

let usﬁx arbitrarily ¢ > 0 and take (x1, x2, ..., X,), (Y1, Y2, .-+, Yu) € B, X B, X
- X B, such that |[(x{, x2, ..., X,) — (V1, ¥2, - - ., Yu)|| < &. Then we have

|T; (x1, x2, .., x)(@) = Ti(vi, y2, -5 yn) (@)]
=1fit, x1(t), x2(0), ..., X (1)) + g (t, x1(2), x2(2), ..., XnO))LF; (x1, %2, ..., Xn) ()]
= fit, y1(®), y2(0), ..., () — & (6, y1(8), y2(), . .., Yn(O)Fi(y1, y2, - - -» yn) O]

< |fit x1(@), x2(), ..o, 20 (1) — fi (8, 1), y2(8), - - -, Yn ()]
+ 18t x1(8), x2(0), .., xn (O Fi (x1, x2, -+, Xu) () — Fi (V15 y2, -5 yn) ()]
+ it x1 (@), x2(t), - oo, 20 () — i (£, y1(8), Y25 -« o, Yu D Fi (Y15 Y25 - - -5 Yu) (D]
bi(t)l/f(lréljién lxj (@) — ()]

= D v (max T, (0 — 3, 0D
Ky (max ;0D

Jr
D+ 'p(le‘fn [x; (@)])

+Ho]|Fi(X1,X2 ,,,,, X)) (1) — Fi(y1, y2, .+ yn) (@)

GO (max () = ;0D

+ M
D+ w(lrgjrtgn [x; () = y; (DD

K(1 +M)1/f(mj’<1XIIXj =;ID

D+W(m]ax||x_f =yl

Ky (max [|x;]])

J
L HFEGL X 5D @) = Fi 51y yas e y) @),
LD wmaxien T |Fi(r 20 ) (0 = 01320 ) (O]

(7.16)
Furthermore, with due attention to the condition (a,) there exists N > 0 such that
fort > N we have
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[Fi(x1, x2, ...y xXn)(0) — Fi(y1, y2, .-+, yn) ()]
alt) 7.17)
= ‘ /0 [ki(t, s, x1(5), x2(8), ..., X (5)) — ki (¢, 5, y1(5), y2(5), ..., yu(s))]ds| < e.
Suppose that #, s > N. It follows (7.16) and (7.17) that
|7‘i('xla X2y enny xn)(t) - Ti()’h Yo, ..., Yn)(t)| < é&. (718)
If ¢, s € [0, N], then we obtain
|E(xlv X2y eeny xn)(t) - Fi()’l, Yo, .., )’n)(t)| S anl(k’ 8)’ (719)
where we denote
ay = supla(t) : t € [0, N]}
and
w (ki, &) =sup{|ki(t,s, x1,x2, ..., Xn) —ki(t, 8,91, Y2, -+, vl :t €[0,N], s €[0,an]
X1, X2, .-, Xns V15 Y25+ oo yn € [=rr] [1(x1, x2, .0 Xn) — (2, -+, y)ll < e}

By using the continuity of k on [0, N] x [0, ay] X [—r, 7] X --- X [—r, r], we have
wi(k, &) — 0 as ¢ — 0. Now, linking the inequalities (7.16) and (7.19) we deduce
that

|Ti(-xlv-x27 cee 7-xn)(t) - Ti()’l, Y2, aeey yn)(t)| <&+ [K + HO]aNa)l(kv 8)'
(7.20)

This conclude that 7; is continuous on B, X B, X --+ X B,.
Step 3. In the sequel, we show that for any nonempty set X, X», ..., X, € B,,

w(Ti (X x Xy X -+ x Xp)) < w(m]?lXM(X_;)).

Indeed, from the assumptions (a;) — (as), we conclude that, for any (x1, x2, ..., x,),
V1, Y2, sy €EX1 X Xox -+ x X,and t € Ry,

|T,'()C1,)C2, e s-xn)(t) - Ti(Yh Y2, .0ey )’n)(f)|
K (L My (max |0 = y,(0) Kd(max [x;0))

H
= T D v O -y 0) 5+ ¥ (max 0D oJpo
Ky (max |x;(®)])
< wr(max |, () =y, 0D + | oo + Ho B,

D +y (max |, (1))

where
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B) = sup | foam[kia, $.2X1(5). X2(5): - (5))
— ki1, 5. 9105 209). - 3 6D | £ i, yi € B
This estimate allows us to derive the following one:
diam(T;(X; x X x -+ x Xp))(1) = W(lrélfl;(n(diaij(l))
Ky (max |x; (1))

53 ¥ (max 0 tolpo

(7.21)
Consequently, from (7.21) and the assumption (7.11) that

limsupdiam(T;(X; x Xo x -+ x X;)))(t) < w(]max (limsupdiamX;(1))).
t—> <Jjsn
> > (7.22)

Next, fix arbitrarily N > 0 and ¢ > 0. Let us choose ¢, s € [0, N] with |t —
s| < e. Without loss of generality, we may assume that s <. Then, for any
(x1,x2,...,x) € X1 X X2 X -+ X X, we get

Lfi(r, x1(0), x2(0), .., X () = fi(s, x1(5), x2(5), - .., Xu ()]
=< |ﬁ([,X1(t),X2(t), ce 7xn(l)) - fi(t’xl(s)v-XZ(s)s o ,.Xn(S))|
+ |.fl(t7 X](S), XZ(S)» ) xn(s)) - ﬁ(s7 .X](S), x2(s)7 ceey xn(s))|
K (max x;(0) = x;5))
= Dy (max 1 (0 — 5,60
+ |fi(t1 )C](S), XQ(S), e )Cn(S)) - fi(sv X](S), XQ(S), cees xn(s))|

—_— Nix N g
= (1+M)W1‘2f‘§‘n“’ (xj, 8) + " (fi, €),

|Fi(x1, x2, ..., Xp)(t) — Fi(x1,x2, ..., Xn) ()]

alt) a(s)

| [ . o= [ k005000
0 0
al(t)

5/0 ki (¢, u, x1(u), x2(u), ..., Xn (W) — ki (s, u, x1(u), x2(u), ..., Xn ()| du

alt) a(t) a(t)
+/ i (5. 4, 30 (0), 220) - 00 1)) |t s/ w”(k,-,s>du+/ KV du
a(s) 0 a(s)

<ay o ki, &) + o (@, &) KV

and
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lgi (t, x1(), x2(8), - .., X, () Fy (X1, X2, ..o, X)) (2)
— i (s, x1(8), x2(8), -+, Xu () Fi (x1, X2, -+ o, X)) (8)]
< |gi(t, x1(2), x2(2), . .., Xn () Fi (x1, X2, - . ., X)) (2)
— 8i(s, x1(5), x2(5), . ., Xu () Fi (X1, X2, - . ., %) (£)]
+ 18 (s, x1(s), x2(8), « - ., X ($)) Fi (x1, X2, - oo, Xn)(F)
— i (s, x1(8), x2(8), - .., Xu () Fi (x1, X2, - -+, X)) (8)]
KI/f(max | (7) —x,(S)I)

"D+ w<max by (0 = ;D
Kt/f(lrg]'eljn o )D)

+ [DW(_JE_??” oD +Ho]|ﬂ(x1,x2, X)) = Fix. . x)())]

| i(-xl’-xZa ’xn)(t)|

< Y(max o" (x;, ) + (K + Ho)lay o ki, &) + 0" (a, &) KV].
14+ M 'i<j=<n

Therefore, we have

IT; (x1, X2, s X)) (@) — Ti (X1, X2, oo, X)) (5)]

<lai(@®) —a; ()| + | fi(t, x1(1), x2(1), . . ., X, (1)) — fi(s, x1(5), X2(8), - . ., X ($))]
+1gi(t, x1(t), x2(8), ..., Xy () Fi (X1, X2, . .., X)) (2)
— 8i(s, x1(5), x2(5), . ., Xu (D) Fi (X1, X2, . . ., %) (5)]

< o"(a;, &) +

(1+M)1/f(mxw (x;, ) + o™ (fi,€)

M N N
+—1//(maxa) (x,,a))+(K+H0)[aNa) (ki,e)+w (o, e) K],

1+ M
(7.23)
where we define

a)N(ﬁ78) = Sup{'ﬁ(t’xla-x21 ---7-xn) - ﬁ(s7x17x2a "'9-xn)| :
t,s €[0,N]. [t =s[ <& x €[-rr]},

" (x;,e) = sup{|x;(t) —x;(s)| : t, s € [0, N], [t —s| <&}, | <j <n,

" (ki &) = sup{|k; (£, u, X1, X2, ..., %) — ki (S, U, X1, X2, ..., Xp)| :
t,s €[0,NL,ue[0,anl, |t —s| <&, x; €[-rr],1 <j<n}

KN = sup{lk;(t, u, x1,x2, ..., x)| : 1 € [0, N],u € [0, an], xj € [-r, 7], 1 < j <n},

" (a;, &) = sup{la;(t) — a;(s)| : 1,5 € [0, N1, |t — 5] < e},
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o (@, &) = sup{la(t) —a(s)| : 1,5 € [0, N], |t — 5] < &).

Since (x1, X2, ..., X,) was an arbitrary element of X; x X, X - -- x X,,, the inequal-
ity (7.23) implies that

oM (Ti (X1 x Xa X -+ x X)), &)

<o, 8) + ——— 1 W(maxw(X,,S))er (fi, )

(1+ M)
M N N
+ H_—Mllf(max oV (X, ) + (K + Hylay o ki, &) + o™ (e, &) K]
=" (g, &) + w(lmax oV (Xj,€) + (K + Ho)lay o (ki, &) + o™ (@, &) KM].
<Jj=<n

(7.24)
In view of the uniform continuity of the functions a;, f; and k; on [0, N]and [0, N] x
[-r, 7] x --- x [—r,r]and [0, N] x [0, an] X [—7, 7] X --- X [—r, ], respectively,
we have that " (a;, &) = 0,0" (fi, &) — 0 and o™ (k;, &) — 0. Moreover, it is
obvious that the constant KV is finite and w” (a, &) — 0 as ¢ — 0 . Thus, linking
the established facts with the estimate (7.24), we get

wo(T; (X1 x Xo x - - x X)) < ‘p(lrilf‘i‘n“"’(xf))' (7.25)

Finally, from (7.22),(7.25) and the definition of the measure of noncompactness
W, we obtain

(T (X x Xp X -+ X Xp))
=wo(T; (X X Xp X --- x X)) + limsupdiam(T; (X x X X --- X X;))(¢)

—00

< 1//(max W (X)) + 1//(max (limsupdiamX ;(t)))

—> 00

< w(max wo(X ;) + max (limsupdiamX;(t)))

I<j=n o
= Y (max n(X;)).
I1<j=n

(7.26)
Finally, applying Corollary 7.4, we obtain the desired result. This completes the
proof.

In another application, we study the existence of the integral system with fractal
order taking the form:

= ai(t) + fi (6, x1(). x2(0), ... xa (1) + g,-(r, x1(0), xz(z), e X () IOk
(7.27)
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forall t € Ry, x1,x2,...,%x, € E=BCRy) and k; € C,[0,b], a(t) <b, 1<
i < n, where Cy, is the local fractional continuous space satisfying |k; (x ) — k; (V)| <
e® when |y — Y| < 8, € > 0,8 > 0. The integral I[‘Z’b] is called the fractal integral
operator satistfying the following property [25]:

Property 7.1 (a) I}, ,,1 = (b —a)? /T (p + 1);
(b) |I[[Z,b]f(x)| = I[bzyb]|f|§
© I ) Lf @)+ g =15 ,, f(x) + 1] ,,8(x).

Consider the function a;, «, f; and g; satisfying the assumptions (a;), (a3) — (as),
respectively. In addition, we consider the following assumption:

(@2) ki € Cyl0, b] which are continuous and there exists a positive constant M o
such that

A

a(t)
My, = sup {ﬁfo ki (£, 5, x1(5), X2(8), ..., X, (SN |(ds)® : r

IGR+,xi€E,1§i§n].

Moreover,

a(t)
lim | /0 [ (5, %1 (), 2205, -2 %0 (5)) = Ki (1,5 315, 926, 3 (D)) = 0

—00
(7.28)
uniformly respect to x;, y; € E. We have the following result:

Theorem 7.11 [f the assumptions (a,), (a3), (a3) — (as) are satisfied, then the sys-
tem of the equation (7.27) has at least one solution (x1, X2, ..., x,) € E X E X -+ X
E.

Proof Define the operator ®; : E X E X E--- x E — E by

O;(x1, x2, ..., Xp)(#) = a;i (1) + fi(t, x1(t), x2(2), ..., Xn (1))

. (7.29)
+gi(t, x1(), x2(t), ..., xp () Fi(x1, x2, ..., X)) (),

where .
Fi(xy, X2, o, x) () = 19ki (X1, X2, ..., X,)(2). (7.30)

Our aim is to apply Corollary 7.4. To show that ®; € E. By using the assumptions of
our theorem, we have ®;(x1, x2, ..., x,) are continuous on Ry x Ry x --- x R,.
We proceed to show that ®; (x1, x2, ..., x,) € Eforany (x1, x3,...,%x,) € E X E X
---x Eand 1 <i < n.Foranyt € Ry we have
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O;(x1,x2, ..., X)) (@) < la; (O] + 1 fi (¢, x1(2), x2(1), ..., X2 (2))]

151

+ |gi(t,x1(t),x2(t), e ,Xn(t))llﬁ}(XI,XQ, AR ] xn)(t)|

Ky (max |x;|)

I<j=n +
D + ¢ (max |x;])
1<j<n
K (max [x;])
1<j<n

] N

+[ + HylM,,.

D-i-lﬂ(lmax |x;1) 0%
<jsn

< lai(®)| +

Hy

In the same manner of Theorem 7.10, we conclude that

K (max 131

161 (x1, 22, - )| < llal |+ |
D+ (max |11

< |lall + (K + Ho)(1 4+ M,).

(7.31)

(7.32)

Therefore, @; maps the space E x E X --- x E into E. Thatis @;(B, X B, X -+ - X

B,) € B, ,where r = ||a|| + (K 4 Ho)(1 + M,,). Moreover, we have

|@i(xlvx27 e »xn)(t) - @i(ylv Y2, ..0y )’n)(t)| <&+ [K + HO]aNa)l(kv 8)7

(7.33)

where all the above parameters are in Theorem 7.10. We obtain that ®; is continuous

onEr X B, X -+ x B,.
Lastly, we show that, for any nonempty set X, X», ..., X, € B,,

m(B; (X x Xo x -+ x X)) < 'ﬁ(m]?lXM(Xj))-

In view of the assumptions (a;) (a3) — (as), we have

©5(x1, X2 X)) = Oy (31 Yo 3) D]
K (L My (max x; (1) = y; () Kyr(max [x; (1))

H
=D (max 0 -y @h 57 ¥ (max 0D o)
Ky (max 1x;(0)])

< Y(max |y — v, + + Ho |p (o).

D+ (max |x; (0D
where

1 a(t)
p(1) = sup{m\ /O [ki (2, 5, 61(5), %25, - ., X (5))

—ki(t, 5, y1(8), y2(8), ... yua(S)(A9)?| : x;, y; € E}.
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Consequently, we obtain
diam(O;(X|; x Xp X -+ x X)) < w(lmax (diamX (1))
<jsn
Ky (max [x;(1)])
1<j<n

+ [D + I//(Eﬂ(n lx; ()]) + HO]P(I).

(7.34)
Combining (7.34) and the assumption (7.28), we attain

limsupdiam(©;(X| x Xy x --- x X,))(t) < W(lmax (limsupdiamX;(1))).
SJSn 0

—>00
(7.35)
Next, fix arbitrarily N > O and ¢ > 0. Let us choose ¢, s € [0, N], with |t — 5| <
. Without loss of generality, we may assume that s < ¢. A calculation implies

[fi(t, x1(8), x2(2), ..., x,(2)) — fi(s, x1(5), x2(5), ..., X (5))]
<|filt,x1(@), x2(8), ..., %, (1)) = fi(t, x1(5), x2(5), ..., X,(5))]
+ 1 fi (8, x1(8), x2(5), ..., X () — fi(s, x1(8), X2(5), . .., X,(5))]
Kw(lrgjagl |x; () — x;(s)])
= Dy (max 10 — 5,60
+1fit, x108), x2(5), ..., x,(5)) — fi(s, x1(5), x2(8), ..., X,(5))]

< ;Aw(max wN(x;, ) + o (fi, 8),
T 1+ My lsis=n ‘

and, using Proposition 7.1, we have

|E; (e, X2, oo, x) () — Fr (a1, xas -, 2,) (5))]
= 1%k (x1, X2, oo, %) (@) — IFki (X1, X2y o0 X)) ()]
o
< a(t)
I'ip+1)
<ay o"(ki, &) + 0" (@, &) KV

Ikillc,. & € (0,1]

= pV.

Thus we obtain
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lgi(t, X1 (1), x2(0), -, Xu (D) Ei (x1, X2, -, X)) (0)
— 8i (5, x1(8), X2(8), + s X0 () E3 (X1, X2, ., %) (5)]
Ky (max |x;(0) —x,<s>|>

B D+1ﬁ(max lx; () — x;(s)])
Kl/f(maX lx; ()

D+ Iﬂ(maX 1x; (s)D)

A

M,
¥ (max o (x;, &) + (K + Ho)p".
1+M I=j=n

|Ei(x1, X2, ey X)) (D))

<

Therefore, we have

|@i(-xla X2y enn, xn)(t) - @i(-xlﬂ X2y enn, xil)(s)|

<lai() —a; ()| + | fi(t, x1(®), x2(2), ..., %, (1)) — fi (5, x1(5), x2(5), ...

+1gi (1, x1(0), x2(0), -+, %0 (D) Fy (x1, X2, -, X)) (2)
- gi(sv X](S), XZ(S)’ LRI ] Xn(S))ﬁ'i(.XI, .Xz, IR ] xn)(s)|

§a)N(ai,8)+;tﬁ(max o (x;,8) + o™ (fi, &)
I+ M, Il=i=n

A

t/f(max o™ (x;,€)) + (K + Hp)p",
1—|—M Jj<n

which implies that
@™ (Oi(X1 % X3 x -+ X X,)), €)

< oN(a;, ) + ;w(max oV (X, ) + " (fi,e)
(1+ M) lsi=n

A

M
E—y(max o™ (X;, ) + (K + Ho)p"
1+ M, Il=j=n

=" (a;, &) + Y (max " (X;, &) + (K + Ho)p".
=j=n

0:||ﬁi(x1’x27 X)) = (g, x0,
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s Xn) (5]

s Xn(5))]

(7.36)

(7.37)

In view of the uniform continuity of the functions a;, f; and k; on [0, N]and [0, N] x
[—r,r] x -+« x [—r,r]and [0, N] X [0, ay] X [—F, 7] X - - - x [—r, r],respectively,
we conclude that " (a;, &) = 0,0" (f;, &) = 0 and oV (k;, &) = 0(p" — 0).
Clearly, the constant KV is finite and o’ (¢, £) — 0 as & — 0 . This leads to

0p(O;(X1 X Xz x -+ x X,)) < g(max wp(X,).
<j<n

(7.38)
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Thus, from (7.35),(7.38) and the definition of the measure of noncompactness u,
we obtain

/’L(@l(Xl X X2 X X Xn))
= wo(O;(X] x Xp x --- x X)) + limsupdiam(©;(X; x Xp x --- X X,,))(¢)

—>00

< tp(lmax wo(Xj)) + w(lmax (limsupdiam X (t)))
<j<n <j<n

—> 00
< ¥ (max w,(X;)+ max (limsupdiamX;(t)))
I<j=n Isjsn —oo
=y (max u(X;)).
1<j=zn
(7.39)
Finally, applying Corollary 7.4, we complete the proof.

7.5 Conclusion

The notion of measures of noncompactness (MNC) has been widely used in func-
tional analysis such as the metric fixed point theory and the theory of operator equa-
tions in Banach spaces. Due to its importance, in this work, we have used MNC
concept to obtain the existence of solutions for the system of integral equations. To
achieve the solution, we have introduced a new notion of u — (F, ¢, ¥)—set con-
tractive operator, and based on Darbo fixed point theorem and Krasnoselskii fixed
point result in generalized sense. We have also discussed the solution of a system of
fractional integral equations when k; is defined in a fractal space.
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Chapter 8 ®)
Fixed Points That Are Zeros of a Given g
Function

Francesca Vetro

Abstract We present a discussion on (ordered) S-F-contractions in the setting of
complete metric spaces, with and without the ordered approach. S-F-contractions
are generalizations of (F, ¢)-contractions and 2°-contractions. These two types of
contractions have encountered a great success among the scientific community due
to their versatility and usefulness in overcoming different practical situations. A
fundamental characteristic of such a kind of contractions is the possibility to be
hybridized with other existing conditions to obtain control hypotheses with best
performances.

8.1 Introduction

This chapter is devoted to the study of sufficient and necessary conditions to estab-
lishing the existence and uniqueness of fixed points for self-mappings, defined in a
metric space or in an ordered metric space. In particular, these fixed points have to
be zeros of a given function. This theory is very interesting in its own right, due to
the fact that fixed point results have constructive proofs, and hence they have nice
applications in industrial fields such as image processing, engineering, physics, com-
puter science, economics, and telecommunication. Indeed, this recognized success
is due to the fact that the basic fixed point problem x = Tx, where 7 : X — X is
a self-mapping of a space X, is a model representative of many practical situations
arising in theoretical and applied sciences. For instance, the solutions of differential
problems can be obtained in terms of fixed points of integro-differential operators.
Also, working with suitable operators, it is possible to approach the solution of equi-
librium problems by searching the fixed points of such operators. These remarks give

F. Vetro (<)
Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnham
e-mail: francescavetro@tdtu.edu.vn

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh, Vietnam

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 157
Y. J. Cho et al. (eds.), Advances in Metric Fixed Point Theory and Applications,
https://doi.org/10.1007/978-981-33-6647-3_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6647-3_8&domain=pdf
mailto:francescavetro@tdtu.edu.vn
https://doi.org/10.1007/978-981-33-6647-3_8

158 F. Vetro

sufficient motivations in order to understand the interest of researchers to establishing
extensions and generalizations of the Banach fixed point theorem [4], which is the
fundamental result of metric fixed point theory. Thus the fixed point theory is a vivid
research field for researchers in mathematics and other disciplines. Of course, the
literature is reach in extensions of the pioneering Banach’s result and so an infinitely
long list could be provided; see, for example [5, 22, 23, 26, 28, 29, 33-35, 38, 43,
45].

Note that, in metric fixed point theory, we study problems which involve concepts
of an essentially metric nature. Successive approximations played a major role in
the study of the metric fixed point theory to establishing, for example, the existence
and uniqueness of solutions. In fact, successive approximations find their roots in
the papers of Cauchy, Fredholm, Liouville, Lipschitz, Peano, and Picard.

As said above, metric fixed point theory furnishes useful methods and notions for
dealing with various problems. In particular, we refer to the existence of solutions
of mathematical problems reducible to equivalent fixed point problems.

In Samet et al. [37], and in Vetro and Vetro [40], discussed fixed point results in
metric spaces by using a contractive condition where is present an additional semi-
continuous function ¢. So, they obtained results of existence and uniqueness of fixed
points that are zeros of ¢. These results generalize and improve many existing fixed
point theorems in the literature. As an application of the presented results, the authors
gave some theorems in the setting of partial metric spaces.

Recently, two new notions of contractions have been introduced by Jleli et al.
and Khojasteh et al. Precisely, in 2014, Jleli et al. [12] introduced the notion of
(F, p)-contraction and, in 2015, Khojasteh et al. [16] introduced the notion of Z-
contraction. (F, ¢)-contractions were used to establish results of existence of p-fixed
points, that is, fixed points that are zeros of a suitable function ¢. We remark that
the notion of (F, ¢)-contraction is associated with a family .# of functions that have
some properties. The concept of Z-contraction was used to prove existence and
uniqueness of fixed points. 2°-contractions are a new type of nonlinear contractions
defined by using a specific function called simulation function. We point out that the
advantage of this new approach is in providing a unique point of view for several
fixed point problems. For results connected to these two new types of contractions,
the reader can see recent results in [1-3, 7-11, 13-15, 17-19, 24, 31, 32, 36, 39,
44].

These two new types of contractions have encountered a great success among the
scientific community due to their versatility and usefulness in overcoming a wide
range of situations. A fundamental characteristic of such kinds of contractions is
the possibility to be hybridized with different other existing contractive conditions
to get new conditions with major performances. Thus, we propose to the reader a
review of (ordered) S-F-contractions in the setting of complete metric spaces with
and without the ordered approach. Clearly, S-F-contractions are generalization of
(F, p)-contractions and Z’-contractions. Furthermore, we have that the fixed points
belong to the zero-set of a given function.
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8.2 (F, ¢)-Contractions

In this section, we recall some definitions and results regarding (F', ¢)-contractions.

In order to obtain a generalization of the “Banach contraction principle”, in [12],
Jleli et al. consider the family .% of functions F : [0, +o00[x [0, +o0[ X [0, +o0[—
[0, 400 satisfying the following conditions:

(F)) max{a, b} < F(a,b,c) foralla, b, c € [0, +o0[;

(F2) F(0,0,0) =0;

(F3) F is continuous.

They use the family .% to introduce the following notion of (F, ¢)-contraction.

Definition 8.1 Let (X, d) be a metric space, ¢ : X — [0, +o0[ be a given function
and F € %. We say thatamapping T : X — X is a (F, ¢)-contraction with respect
to the metric d if there exists a constant k € ]0, 1[ such that

Fd(Tx,Ty), o(Tx), p(Ty)) < kF(d(x,y),p(x),0()) Vx,yeX.

Let (X, d) be a metric space, ¢ : X — [0, +o0o[ be a given functionand T : X —
X be a mapping. Here, we denote by Z, the set {x € X : ¢(x) = 0} and by Fy the
set{x e X:Tx =x}.Letxg e Xandx, = Tx,_, = T"xo foralln € N. Then {x,}
is called the sequence of Picard of initial point at x. We say that the mapping 7 is a
@-Picard mapping if Fr N Z, = {z} and x, — z as n — +o00, whenever {x,} C X
is a Picard sequence starting at a point xg € X.

By using the notion of (F, ¢)-contraction, Jleli et al. give the following general-
ization of the Banach fixed point theorem [4].

Theorem 8.1 ([12], Theorem 2.1) Let (X, d) be a complete metric space, ¢ : X —
[0, +o0[ be a given function, and F € %. Suppose that the following conditions
hold

(H1) ¢ is lower semi-continuous;

(H2) T : X — X isa (F, ¢)-contraction with respect to the metric d.
Then we have the following:

(1) Fr C Z,.

(2) T is a g-Picard mapping.

3) forall x € X andn € N, we have

n

d(T"x,z) <
(Mx9 =17

F(d(Tx,x), p(Tx), p(x)),

where (z} = Fr N Z, = Fr.

It is easy to see that the function F : [0, 400[ %[0, +00[ X [0, +0o[— [0, +o0o[
defined by one of the following rules:

(@) F(a,b,c)=a+b+c foralla, b, c € [0, +0o0[;

(b) F(a,b,c) = max{a, b} +c foralla, b, c € [0, +00[
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belong to .%.

Remark 8.1 Every Banach contraction is a concrete example of (F, ¢)-contraction.
It satisfies Definition 8.1 by taking F'(a, b,c) = a + b + c,foralla, b, ¢ € [0, +o0[
and p(x) =0, forall x € X.

In [19], Kumrod and Sintunavarat use the family .% to introduce the concepts of
(F, ¢, 8)-contraction mapping ([19], Definition 2.4) and (F, ¢, 6)-weak contraction
mapping ([19], Definition 2.8) in the setting of metric spaces. We notice that 6 is a
function with some properties. Furthermore, thanks to the family .%, they establish
@-fixed point results for such mappings ([19], Theorems 2.5 and 2.9).

Finally, we remark thatin [11] Isik et al. use the family .% for establishing the exis-
tence and uniqueness of g-best proximity point (see [11], Theorems 7, 10 and 12) for
non-self-mappings satisfying (F, ¢)-proximal and (F, ¢)-weak proximal contraction
conditions (see [11], Definition 6) in the context of complete metric spaces.

As applications of the obtained results, Isik et al. give some new best proximity
point results in partial metric spaces and discuss sufficient conditions to ensure the
existence of a unique solution for a variational inequality problem (see [11]).

8.3 % -Contractions

In this section, we consider some basic definitions and results on simulation functions
obtained by Khojasteh et al. [16] and Argoubi et al. [2]. In Khojasteh et al. [16], give
the following definition of simulation function.

Definition 8.2 A simulation function is a function ¢ : [0, +00[ X [0, +00[— R sat-
isfying the following conditions:

1) ¢t,s) <s—tforallt,s > 0;

(&) if {t,}, {s,} are sequences in ]0, +oo[ such thatlim,,_, ; oo t, = lim, 1 o 5, =
£ €]0, +o0l, then lim sup,,_, o, ¢ (#,, 5,) < 0;

(£3) ¢£(0,0) = 0.

Further, in [16], they introduce, by using the simulation functions, the class of
% -contractions, as follows.

Definition 8.3 Let (X, d) be a metric space. A mapping T : X — X is a Z-
contraction if there exists a simulation function ¢ such that

¢d(Tx,Ty),d(x,y)) >0 forallx,y € X.

For the class of 2 -contractions they give the next result.

Theorem 8.2 ([16], Theorem 2.8) Let (X, d) be a complete metric space and T :
X — X be a Z-contraction with respect to a certain simulation function ¢, that is,
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¢d(Tx,Ty),d(x,y)) =0 Vux,yeX.

Then T has a unique fixed point. Moreover, for every xo € X, the sequence of Picard
{x,} starting at x( converges to this fixed point.

Remark 8.2 Every Banach contraction is again a concrete example of
Z -contraction. It satisfies the Definition 8.3 by taking ¢(z,s) = ks — ¢ for all
t,s € [0, +oo[ and k €]0, 1[.

Remark 8.3 Every Z-contraction 7 : X — X is a contractive mapping and hence
it is continuous. In fact, if, for some x, y € X with x # y, we have d(Tx, Ty) >
d(x,y) > 0, then, by the property () of the function ¢, it follows that

¢d(Tx,Ty),d(x,y)) <d(x,y) —d(Tx,Ty) <0,

which is a contradiction. This leads us to the conclusion that 7 is a contractive
mapping, thatis, d(Tx, Ty) < d(x,y) forall x, y € X withx # y.

In Argoubi et al. [2], note that the condition (¢3) was not used for the proof of
Theorem 8.2. Taking into account this, Argoubi et al. revised the previous definition
slightly. More precisely, they withdraw the condition (£3) and hence they give the
following definition.

Definition 8.4 A simulation function is a function ¢ : [0, +00[ X [0, +00[— R sat-
isfying the conditions (&) and (&).

In Roldén-Lépez-de-Hierro et al. [31], observed that the condition (&) is sym-
metric in both arguments of the function ¢, but in the proof of Theorem 8.2, this
property is not necessary. In fact, the arguments of the function ¢ have different sig-
nificance and so have a different role. Thus, Rolddn-Lopez-de-Hierro et al. modify
the Definition 8.2 in order to put in evidence the different role of the two arguments
of ¢.

Definition 8.5 ([31], Definition 3.2) A function ¢ : [0, +00[x[0, +o0[— R is a
simulation function if it satisfies the following conditions:

) ¢(,s) <s—tforallt,s > 0;

(¢5) if {t,}, {sn} are sequences in ]0, 4+-o0o[ such that lim,,—, ;o0 £, = lim,—, 100 5, =
£ €]0, +ooland t,, < s, forall n € N, then limsup,_, , ., ¢(t;, 5,) < O;

(&3) £(0,0) = 0.

Example 8.1 Let ¢ : [0, +00[ %[0, +00[— R be defined by

_ f@.s)
g(t,s)

(t,s)=s t forallt,s € [0, +o0],

where f, g : [0, +00o[X[0, +00[—]0, +0o0[ are two continuous functions with
respect to each variable such that f(¢,s) > g(¢,s) for all #,s > 0. Then ¢ is a
simulation function.
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Note that every simulation function in (original) Khojasteh et al. sense (Definition
8.2) is a simulation function in Argoubi et al. sense (Definition 8.4) and in Roldén-
Lépez-de-Hierro et al. sense (Definition 8.5), but the converse is not true (see Example
2.4 of [2] and Example 3.3 of [31]).

The following example shows that there exists a function ¢ : [0, +o0[ x [0, +-00[—
R that satisfies the conditions (£;) and (&), but not the conditions (&) and (¢3).

Example 8.2 Let k£ € [0, 1[ and let ¢ : [0, +00[ X [0, +00[— R be the function
defined by
3(s — 1), ifs <,
ct,s) =131, ifs =¢t=0,
ks —t, otherwise.

Clearly, the function ¢ verifies the condition (¢;). If we choose f, =2 and s, =
2n —

n

foralln € N, then lim,,, 1 oo t, = lim, 10 5, = 2 and

. . 2n —1
limsup ¢ (t,, s,) = limsup 3 —-2)=0.

n—+00 n——+00 n

Consequently, ¢ has not the property (¢»), but has the property (£;). Moreover, it has
not the property (¢3) since ¢ (0, 0) = 1.

Later on, we consider the family . of functions ¢ : [0, +00[x[0, +00[—
R that have the properties (£;) and (&) and the family ./ of functions ¢:
[0, +0o[ [0, +o00o[— R satisfying the conditions (¢;) and (g;). Clearly, .7 C ..

We point out that, in Tchier et al. [39], use the family .¥ to introduce the notions
of & -proximal contraction of the first kind and second kind (see [39], Definitions
3.1 and 3.2) and to establish existence and uniqueness of g-best proximity points (see
[39], Theorems 3.1 and 3.2). Also, in Abbas et al. [1], use the family . to introduce
the notions of proximal simulative contraction of the first kind and second kind (see
[1], Definitions 11 and 12). For these classes of proximal contractions, they establish
existence and uniqueness of best proximity points (see [1], Theorems 1 and 3).

Finally, we remark that Roldan-Lépez-de-Hierro et al. in [31] study the existence
of coincidence points. They explore the existence and uniqueness of coincidence
points of two given mappings defined on a complete metric space (see [31], Theorem
4.8) by introducing the notion of (%, g)-contraction (see [31], Definition 4.1) that
employs the simulation function given in Defintion 8.5.

8.4 Fixed Points for S-F-Contractions

In this section, we start pointing out that the classes of functions .% and .¥” introduced
in Sects. 8.2 and 8.3 are needed to define implicitly the notion of the S- F-contraction.
This is clearly showen by the next definition (see [41]).
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Definition 8.6 Let (X, d) be a metric space. A mapping 7 : X — X is a S-F-
contraction if there exist a function ¢ € .%”, a function F € .% and a function ¢ :
X — [0, +o0[ such that

¢ (F(d(Tx, Ty), p(Tx), p(Ty)), F(d(x,y), (x), 9(y))) =0 forallx,y € X.
(8.1)

Remark 8.4 Every (F, p)-contraction is a concrete example of S-F-contraction.
It satisfies Definition 8.6 by taking ¢(t,s) = ks — ¢ for all ¢, s € [0, +o0[ and k €
10, 1[. Also, each Z-contraction is an example of S-F-contraction. It satisfies the
Definition 8.6 by taking F (a, b, c¢) = a + b + cforalla, b, ¢ € [0, +oo[and p(x) =
Oforall x € X.

The following auxiliary result takes a leading role in the development of the
chapter.

Lemma 8.1 (see [41], Lemma 3.1) Let (X, d) be a metric spaceand T : X — X be
a S-F-contractionwithrespectto ¢ € /', F € % and afunctionp : X — [0, +00[.
If {x,} is a sequence of Picard starting at xo € X such that x,_; # x, foralln € N,
then {x,} is a Cauchy sequence.

Proof Let x( be an arbitrary point in X and let {x, } be a sequence of Picard starting
at xo € X. Assume that x,,_; # x, for all n € N. First, we prove that

lim d(x,_1,%,) =0 and lim @(x,) = 0. (8.2)
n——+00

n——+0o

From x,_; # x, forall n € N it follows that d(x,,_, x,) > 0 for all n € N. Then the
property (F)) of the function F ensures that

F(d(xn—la xn)a (P(Xn—l)a (p(xn)) > d(xn—h xn) >0 foralln e N.

Now, putd,_; = d(x,—1, x,,) for all n € N. Using (8.1) and the property (¢;) of the
function ¢, with x = x,,_; and y = x,,, we get

0 < S(F(dy, o(xn), 9(xp11)), Fdn—1, 9(xn-1), 9(xn)))
< F(dn—l’ (p(xn—l)s (p(xn)) - F(dn’ (p(xn)’ (p(xn+1))

for all n € N. The above inequality shows that

F(dy, (x), 9(xp41)) < F(dy—1, (xn-1), ¢(x,)) foralln e N.

Consequently, {F(d,—1, ¢(x,—1), ¢(x,))} is a decreasing sequence of positive real
numbers. Thus there is some £ > 0 such that

lim F(dnfl» (0()(,171), (p(xn)) ={.
n—+00
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Suppose £ > 0. We notice that from the condition (£}), with t,=F (d,,, ¢ (x,,), ¢ (Xp41))
and s, = F(d,_1, (x,-1), ¢(x,)), it follows that

0 < limsup & (F(dp, ¢(xn), 9(Xnt1)), F(dp—1, 9(xn-1), ¢(x))) <O,

n—+0o

which is a contradiction. Hence we conclude that £ = 0. Now, using the property
(Fy) of the function F, we deduce that

max{dn—la (p(xn—l)} = F(dn—la (p(xn—l)a (p(xn))a foralln € Na

and hence
lim d(x,_1,x,) =0 and liT ¢(x,—1) =0.

n——+o0o

Next, we prove that the sequence {x,} is a Cauchy sequence. Let us assume that
{x,} is not a Cauchy sequence. Then there exist a positive real number ¢ and two
sequences {my} and {n;} such that ny > my >k, d(xm,, x,,) > € > d(Xp,, Xn—1)
for all k£ € N. Hence, by using the first condition of (8.2), we obtain

kEIJPood(xmk ’ -xllk) = kETood(xmk—l ’ xnk—l) =é. (8'3)

Taking into account that the function F is continuous, we further get

lim F(d(xmk—h xnk—l)v (ﬂ(xmk—l), (p(xnk—l))

k—+o00

= lim F(d(-xmw xnk)’ (P(xmk), go(x”k))
k—+o00
=F(g0,0) >¢ > 0.

We notice that, thanks to (8.3), we can assume d (X, —1, Xn,—1) > O for all k € N.
Then, using the property (F;) of the function F, we have

Iy = F(d(xmkaxnk)a (p(xmk)a (p(xnk)) > d(xmkaxnk) >0 forallk e N
and
Sk = F(d(xmk—hxnk—l)» (p(xmk—l)7 ‘P(xnk—l)) > d(xmk—lixnk_l) >0 forallk e N.

Using (8.1) and the property (¢;) of the function ¢, with x = x,,,_; and y = xp,, 1,
we infer

0 < ;(F(d(xmkﬂ xlu)’ (p(xmk)’ (p(xnk))a F(d(xmk—] 5 -xnk—])5 (P(xmk—l)’ §0(xnk—1)))
< F(d(xmk—l’ xnk—l)v (p(xmk—l)a (p(-xnk—l)) - F(d(xmkv xnk)’ (p(xmk)v (p(xnk))
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for all k € N. This proves that #; < s; for all kX € N. Then, by using the property (£;)
of the function ¢, we obtain

0 = limsup ¢ (F(d (X, Xn,), @ (Xm,)s @(Xn,)),

k—+o00
F(d X1, Xng—1)5 @ (Xm,—1), @ (X, 1))
<0,

which is a contradiction. Hence the sequence {x,} is a Cauchy sequence. This com-
pletes the proof.

Lemma 8.2 Let (X, d) be a metric space andlet T : X — X be a S-F -contraction
with respect to ¢ € ', F € F and a function ¢ : X — [0, +oo[. If {x,} is a
sequence of Picard starting at xo € X such that x; = xp41 for some k € N, then
Xy — X and xy. is a fixed point of T such that ¢(x;) = 0.

Proof Let xy be a point of X and let {x,} be a sequence of Picard starting at x.
Furthermore, we assume that x; = x;4 for some k € N. This assures that x,, — x;
and that x;, is a fixed point of 7', in fact, x; = xx41 = T x;. We claim that p(x;) = 0.
We assume, by contradiction, that ¢ (x;) > 0. Using the property (F) of the function
F, we get

0 < o) < Fd(xk, xk11), 9(x%), (X 41)).

Since x, = x; for all n > k, n € N, using (8.1) with x = x; and y = x4 and the
property () of the function ¢, we deduce that

0 < S(F(d(xkt1, Xk12)s 9(Xk1), @Oa42)), F(d (ke xi11)5 (x0), o ( + 1))
< F(d(xx, xk11), 0(x1), 9k 1)) — F(d (g1, Xkq2), (0 + 1), 9 (xk42))
= F(0, o(x), o(xx)) — F(0, o(x1), ¢(xi)) = 0.

Clearly, this is a contradiction, and hence we can affirm that ¢ (x;) = 0. Taking into
account of this, we conclude that if x; = x;4 for some k € N, then x; is a fixed point
of T such that ¢(x;) = 0. This completes the proof.

For the class of S-F-contractions, we have the following result of existence and
uniqueness of a fixed point.

Theorem 8.3 (see [41], Theorem 3.2) Let (X, d) be a complete metric space and
T : X — X bea S-F-contraction with respectto ¢ € ., F € % and alower semi-
continuous function ¢ : X — [0, +o0o[. Then T has a unique fixed point 7 such that
©(z) = 0. Moreover, for every xg € X, the sequence of Picard {x,} starting at xg
converges to Z.

Proof Let xy € X and {x,} be a sequence of Picard starting at xo. We observe that
if xp = x4 for some k € N, then, by Lemma 8.2, it follows that z := x; is a fixed
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point of T such that ¢ (z) = 0 and that {x,, } converges to z. Therefore, we can suppose
that x,, # x,4; for every n € N.

Now, by Lemma 8.1 we deduce that the sequence {x,} is a Cauchy sequence and,
since (X, d) is complete, there exists some z € X such that

lim x, =z. 8.4)

n——+oo

We notice that the second statement of (8.2) and the lower semi-continuity of the
function ¢ give
0 < ¢(z) < liminf (x,) =0,
n——+o0o

that is, ¢(z) = 0.

Now, we claim that z is a fixed point of T'. If there exists a subsequence {x,, } of
{x,,} such that x,, = zor Tx,, = Tzforallk € N, then z is a fixed point of 7. If this
does not occur, then we can assume that x,, # z and T'x,, # Tz for all n € N. Using
(8.1) and the condition (¢;) with x = x,, and y = z, we deduce that

0 < C(Fd(Txp, T2), 9(Txn), 9(Tz2)), F(d(xn,2), 9(xn), 9(2)))
< F(d(xn, 2), 9(xn), 9(2)) — F(d(Txy, T2), 9(Txy), ¢(T2)).

This implies
F(d(Tx,, T2), p(Tx,), p(Tz)) < F(d(xy,2), p(x,), 9(z)) YneN
and, consequently,

d(Z, TZ) =< d(Z, xn-H) + d(Txm TZ)
<d(z, xn41) + F(d(Txn, T2), p(Txy), (Tz2))
< d(z, Xp41) + F(d(xn, 2), 9(xn), 9(2))

for all n € N. Letting n — 400 in the above inequality, since F is continuous in
(0,0, 0), we obtain that d(z, Tz) < F(0,0,0) =0, thatis,z = Tz.

Now, we establish uniqueness of the fixed point. Suppose that there exists w € X
such that w = Tw and z # w. The property (F;) of the function F ensures that
Fd(w,z), p(w), 9(z)) = d(w, z) > 0. Using (8.1) and the property (&) of the
function ¢, with x = w and y = z, we get

0 <¢(Fd(Tw,T2), p(Tw), (Tz2)), Fd(w, z), p(w), ¢(2)))
= (F(d(w, z), p(w), 9(2)), Fd(w, 2), p(w), ¢(2)))
< F(d(w,2),p(w), ¢(2)) — Fd(w, 2), p(w), ¢(2)) =0,

which is a contradiction and hence w = z. This completes the proof of Theorem 8.3
since, by (8.4), the sequence {x,} of Picard starting at xy converges to z.
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We remark that, if, in Theorem 8.3, we choose F € .% defined by F(a, b, ¢) =
a+b+cforalla,b, c € [0, +oo[, then we have the following result.

Theorem 8.4 ([20], Theorem 3.2) Let (X, d) be a complete metric space and T :
X — X be a mapping. Suppose that there exist a simulation function ¢ and a lower
semi-continuous function ¢ : X — [0, +oo[ such that

Cd(Tx,Ty) +o(Tx)+@(Ty),dx,y) +¢x)+¢() >0 Vx,yeX.

Then T has a unique fixed point z such that ¢(z) = 0.

Further, we notice that if we take in Theorem 8.3 the function F defined by
F(a,b,c)=a+b+cforalla,b,c € [0,+oo[ and p(x) =0, for all x € X, then
we obtain Theorem 8.2, that is, Theorem 2.8 of [16].

The following example shows that Theorem 8.3 is a proper generalization, in
the setting of metric spaces, of the Theorem 2.8 of [16] and hence of the Banach
contraction principle.

Example 8.3 ([40], Example 4) Let X = [0, 1] endowed with the usual metric
d(x,y) =|x — y| for all x,y € X. Obviously, (X, d) is a complete metric space.
Fix k € [0, 1[ and define a mapping 7 : X — X by

0, ifx =0,
k 2n — 1 1 1
Tx=1-2 = @nx —1), if— <x <
2]? 5 21 { 2n 2n 11
S kT ok — 1, if <x<—.
2n 2n 2n+1 — 2n
Firstly, we note that if we choose k appropriately, then T is not a contractive mapping.
1
In fact, if, for odd n > 1, we choose x = and y = ——, then we have
2n — 1 n—1
d(Tx, Ty) d dx,y) n <3
X, = an x,y) = < .
S D= w—Den—1 ~5m—1

The previous inequalities ensure that d(T'x, Ty) > d(x, y) wheneverk > 3/5.So0, T
is not a contractive mapping. By Remark 8.3, the mapping 7 is not a 2 -contraction.
So, Theorem 2.8 of [16], that is, Theorem 8.2 cannot be applied to estabishing that T
has a fixed point if k > 3/5. This implies that also the Banach contraction principle
cannot be applied to estabishing that T has a fixed point if k£ > 3/5.

On the other hand, if we consider the function ¢ : X — [0, +o0o[ defined by
@(x) = x for all x € X and the function F € .% defined by F(a,b,c) =a+b+c
for all a, b, ¢ € [0, +00[, then we obtain
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Fd(Tx,Ty), o(Tx),o(Ty)) =d(Tx,Ty) + o(Tx) + o(Ty)
=2max{Tx, Ty} < 2k max{x, y}
=k[d(x,y) + ox)+ o]
=kF(d(x,y), p(x), 9(y))

for all x, y € X. Thus T is a S-F-contraction with respect to { € .’ defined by
¢(t,s) = ks — t. Therefore, taking into account that ¢ is a lower semi-continuous
function, we can apply Theorem 8.3 in order to deduce that T has a unique fixed
point z = 0 in X. Obiviously, ¢(0) = 0.

8.5 Fixed Points for Ordered S-F-Contractions

In this section, we collect some fixed point results involving an ordered S-F'-
contraction defined in a complete ordered metric space. Again, we work with the
families of functions .# and .¥” introduced in Sects. 8.2 and 8.3.

We start fixing the notation. If (X, d) is a metric space and (X, <) is a partially
ordered set, then we say that (X, d, <) is an ordered metric space. Two elements
X,y € X aresaid to be comparable if x < y ory < x holds. The mapping T : (X, <)
— (X, x) is called nondecreasing it Tx < Ty whenever x < y. A sequence {x,} is
nondecreasing if x,_1 < x, foralln € N.

Later on, we will use the following properties of an ordered metric space:

(R) An ordered metric space (X, d, <) is regular if, for every nondecreasing
sequence {x,} C X such that x,, - z € X, we have x,,_; < zforalln € N.

(U) An ordered metric space (X, d, <) has the property (U) if, for each pair of
not comparable elements x, y € X, there exists # € X such that x <u and y < u.

Ran and Reurings in [25] investigate a similar conclusion to the Banach contrac-
tion principle in metric sets endowed with an order. Following the Ran and Reurings’
work many mathematicians got interested into the investigation of the metric fixed
point problem for monotone mappings defined in an ordered metric space. We stress
that the main fixed point result of [25] was discovered investigating the solutions to
some special matrix equations.

Theorem 8.5 (see [25]) Let (X, d, X) be a complete ordered metric space. Let T
X — X be a continuous monotone contraction mapping. Assume that there exists
xo € X such that xo and Tx, are comparable. Then the sequence {x,} of Picard
starting at xo converges to a fixed point z of T. Moreover, if ug € X is comparable
to xg, then we have lim,,_, ;oo ut,, = z, where {u,} is the sequence of Picard starting
at uy. In addition, if every pair x,y € X has an upper bound and a lower bound in
X, then T has a unique fixed point z and lim,,_, . oo u, = z for any up € X.

In [21], Nieto and Rodriguez-Lopez observe that the continuity assumption in
Theorem 8.5 may be relaxed. Thus they formulate the following result.
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Theorem 8.6 (see [21], Theorems 2.2 and 2.3) Let (X, d, <) be a complete ordered
metric space. Let T : X — X be a nondecreasing contraction mapping. Assume that
X is regular and that there exists xo € X such that xo < Txg. Then T has a fixed
point. In addition, if every pair x,y € X has an upper bound or a lower bound in
X, then T has a unique fixed point.

Now, we introduce the notion of ordered S-F-contraction in order to obtain a
generalization of the previous result in the setting of ordered metric spaces.

Definition 8.7 Let (X, d, X) be an ordered metric space. A mapping 7 : X — X
is called an ordered S-F-contraction if there exist a function ¢ € ., a function
F € % and a function ¢ : X — [0, +00[ such that

C(Fd(Tx,Ty), o(Tx),(Ty), Fld(x,y),9(x),0(y))) =0  (8.5)

forall x,y € X withx < y.
Firstly, we give some useful remarks to get our main results.

Remark 8.5 Let (X, d, <) beanordered metric spaceand 7' : X — X be an ordered
S-F-contraction with respectto ¢ € ./, F € Z and¢ : X — [0, +oo[.If 7 € X is
a fixed point of 7', then ¢(z) = 0.

In fact, if we suppose ¢(z) > 0, by the property (F}) of the function F, we obtain

F(d(z,2), 9(2), 9(2)) = ¢(z) > 0.

Using (8.5) with x = y = z and the property (¢;) of the function ¢, we get

0<¢(Fd(Tz,Tz), p(T2), p(Tz2), F(d(z,2), 9(2), 9(2)))
=¢(F(d(z,2),92), 9(2), Fd(z,2), 9(2), 9(2)))
< Fd(z,2),9(2),9(@) — F(d(z,2), 9(), ¢(z)) =0.

Clearly, this is not possible and so ¢(z) = 0.

Remark 8.6 Let (X, d, <) be an ordered metric space and let 7 : X — X be an
ordered S-F-contraction with respectto { € ., F € % and ¢ : X — [0, +0o0l.
If z, w € X are two fixed points of 7', then z # w if and only if z and w are not
comparable. In fact, if z and w are comparable and z # w, then using the property
(Fy) of the function F, we obtain

F(d(z, w), 9(2), p(w)) = d(z, w) > 0.
Using (8.5) with x = z and y = w and the property (¢;) of the function ¢, we obtain

0 <¢(Fd(Tz, Tw), p(Tz), p(Tw)), F(d(z, w), ¢(2), p(w)))
< F(d(z, w), ¢(z), p(w)) — F(d(Tz, Tw), ¢(T2), p(Tw))
= F(d(z, w), ¢(2), p(w)) — F(d(z, w), ¢(2), p(w)) = 0,
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which is a contradiction.
Now, we establish some auxiliary results which will be used in the sequel.

Lemma 8.3 Ler (X, d, <) be an ordered metric space and T : X — X be a non-
decreasing ordered S-F-contraction with respect to { € ', F € % and a func-
tion ¢ : X — [0, +ool. If xg, ug € X are such that xo <X ug and {x,} and {u,} are
the sequences of Picard starting at xo and u, respectively, then d(x,,u,) — 0 as
n — —+oo.

Proof Assume that x, ug are points of X such that xo < ug. The hypothesis that T
is nondecreasing implies x, < u, for all n € N. If x; = u; for some k € N, then the
conclusion is obvious. So, we assume that x,, | # u,_1, thatis, x,_| < u,_; for all
n € N. Consequently, by the property (F;) of the function F, we have

F(d(xp—1, un-1), ¢(Xn-1), 9(tn-1)) = d(xp_1,up—1) >0 Vn €N.

Now, using (8.5) and the property (&) of the function ¢, withx = x,_jand y = u, |,
we get

O Sé‘(F(d(Txn—l ) Tun—l)’ ‘p(Txn—l)v QD(Tun—l))’

F(d(-xnfls M”,l), w(xnfl)s </)(Mn—1)))
<F(d(xn717 unfl)a (p(xnfl)v (P(un—l)) - F(d(xnv un)v (p(xn)v ¢(Mn))

The previous inequality ensures that the sequence

{F(d(xn—1, un-1), 9(xn-1), @(un_1))}

of positive real numbers is decreasing and so there exists a nonnegative real number
£ such that

lim F(d(xn—l’ un—l)7 @(xn—l)a (p(un—l)) ={.

n—-+o0o

If £ > 0, using (8.5) and the property (¢;) of the function ¢ with ¢, = F(d(x,, u,),
@(xn), (un)) and s, = F(d(xp—1, p—1), ¢(xp-1), (us—1)), taking into account
that ¢, < s, for all n € N, we infer

0 < lim sup §(F(d(Txn—l ) Tun—l)’ q)(Txn—l)» ‘P(T“n—l)),
n——+o0o

F(d(x,,,l, un71)9 (p(xnfl)s (P(un—l))) < 07

which is a contradiction. Hence £ = 0. Now, we notice that the property (F)) of the
function F implies

0 < lim d(-xnfl’ Ltn,]) < lim F(d(xnfls I/t,,,l), ‘/)(-xnfl)y ‘P(”nfl)) =0
n—+00 n——+o00

and so the lemma is proved. This completes the proof.
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Lemma 8.4 Let (X, d, <) be an ordered metric space andlet T : X — X be anon-
decreasing ordered S-F -contraction with respect to ¢ € ., F € % and a function
@ 1 X = [0, +oo[. If X has the property (U), then T admits at most one fixed point.

Proof Assume that z, w € X are two distinct fixed points of 7. We notice that
Remark 8.6 assures that z and w are not comparable. Hence, by the property (U)
of the space X, there exists u € X such that z < u and w < u. Let {u,}, {z,} and
{w,} be the sequence of Picard starting at «, z and w, respectively. Since z, = z and
w, = w for all n € N, using Lemma 8.3, we deduce

lim d(z,u,_1) =0 and lim d(w,u,_;) = 0.
n——+0o00 n——+o0o

From
d(z,w) <d(z,up—1) +dWu,—1, w),

letting n — +o00, we get d(z, w) = 0, that is, z = w. This completes the proof.

Lemma 8.5 Ler (X, d, <) be an ordered metric space and T : X — X be a non-
decreasing ordered S-F -contraction with respect to ¢ € ., F € % and a function
¢ 1 X — [0, 4o0l. Ifthere exists a point xo € X such that xo < T xq, then the Picard
sequence {x,} starting at xo is Cauchy.

Proof Let xy € X be such that xy < Tx( and {x,} be the sequence of Picard starting
at xg. If x; = x4 for some k € N, then x, = x; for all n > k and hence {x,} is a
Cauchy sequence. Therefore, we can assume that x,,_; # x, for all n € N. First, we
prove that

Iim d(x,-1,x,) =0 and nETww(xn) =0. (8.6)

n—+00

We notice that from x,,_; # x,, for all n € N, it follows that d(x,_1, x,,) > 0 for all
n € N. Then, the property (F;) of the function F ensures that

F(d(xu-1,Xn), 9(Xu—1), 9(xp)) = d(Xp-1,%,) >0 VneN.
Furthermore, the hypothesis that 7' is nondecreasing ensures that x,,_; < x,, for all

n € N.Now, putd,_; = d(x,—_1, x,,) for all n € N. Using (8.5) and the property (¢;)
of the function ¢, with x = x,_; and y = x,,, we infer that

0 < S(F(dy, 9(xn), 9(xp11)), Fdn—1, 9(xn-1), 9(xn)))
< F(dn—la (p(xn—l)’ (p(-xn)) - F(dm (p(xn)’ (p(xn-H))

for all n € N. The above inequality shows that
F(dy, 9(x), 9(xn+1)) < F(dp_1, 9(x4_1), ¢(x,)) foralln € N.

Consequently, {F(d,—1, ¢(x,—1), ¢(x,))} is a decreasing sequence of positive real
numbers. Thus, there is some ¢ > 0 such that
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im Fdior (-1, ) = L.

We remark that if £ > 0, by using condition (¢,) with t, = F(d,, ¢(x4), ¢(Xn+1))
and s, = F(d,—1, o(x,—1), ¢(x,)), since t, < s, for all n € N, we get

0 = lim SUP§ (F(dn’ §0(Xn), (p(xn-H))a F(dn—ls (p(xn—l)’ (p(-xn))) < 07

n——+o0o

which is a contradiction. Hence we conclude that £ = 0. Now, thanks to the property
(F) of the function F, we deduce that

max{d,_1, 9(x,—1)} < F(dy—1, p(xp-1), ¢(x,)) Vn e N

and hence
lim d(x,_1,x,) =0 and lim ¢(x,_;) =0.
n—-+00 n——+00

Next, we show that the sequence {x,} is a Cauchy sequence. We assume, by way
of contradiction, that {x,} is not a Cauchy sequence. Then there exist a positive real
number ¢ and two sequences {m;} and {n,} such that ny > my; >k, d(x,,,, x,,) >
& > d (X, , Xn,—1) for all k € N. Using the first condition of (8.6), we obtain

kETOOd(xmkv xnk) = kETood(xmkil’ xl‘lk*l) =é. (8'7)

Using the continuity of the function F, we get

lim  F(d(Xp,—15 Xne—1)5 @ Xm—1), ¢ (X 1))

k—+00

= kEToo F(d(xmk’ xnk): @(xmk)v (p(xnk))
=F(,0,0) >¢e>0.

By (8.7), we can assume d(x,,,—1, xn,—1) > 0 for all k € N. Now, thanks to the
property (F)) of the function F, we have

te = F(d s Xn)s @ (Xm ), ©(Xn,)) = d (X, Xn,) >0 VkeN
and
Sk = Fdme—15 Xne—1), @Xmy—1), @ (Xn,—1)) = d (X, —1, Xp—1) > 0V k € N,
We remark that the hypothesis that 7' is nondecreasing ensures that x,, _1 < X, 1

for all k € N. This permits to apply (8.5) with x = x,,,_; and y = x,,,_; and so we
obtain

0 < dXms Xn)s @ m) s @ (Xn )y F(d =15 Xn—) @ (Xm 1), @(Xn—1)) (8.8)
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for all k£ € N. By the property (¢;) of the function ¢, we get

F(d('xmka xnk)7 ¢(xmk)v ﬁo(xn;()) < F(d(xmk—lv xnk—1)7 (p('xmk—l)7 (p(-xnk—]))

forall k € N. This proves that #; < sy for all k € N. Then, by the property (£;) of the
function ¢, we deduce that

llm Sup g(F(d(xmA ’ xnk)v (p('xm/‘)’ (p(xilk))a

k—+o00

F(d('xmk—la xnk—1)7 (p('xmk—l)s (p(xnk—]))) < 07

which is in contradiction with (8.8). Consequently, the sequence {x,} is Cauchy. This
completes the proof.

For the class of ordered S-F-contractions, we have the following result of exis-
tence of a fixed point.

Theorem 8.7 (see [42], Theorem 1) Let (X, d, <) be a complete ordered metric
space and T : X — X be a nondecreasing ordered S-F -contraction with respect to
. €Y F e % andafunctiongp : X — [0, +ool. Ifthere exists a point xy € X such
that xog < Txg and T is continuous, then T has a fixed point z such that ¢(z) = 0.
Moreover, if uy € X is comparable to xy then we have lim,,_, , o u, = z, where {u,}
is the Picard sequence starting at u.

Proof Let xy € X be such that xy < Tx( and {x,} be the sequence of Picard starting
at xo. We stress that, if x; = x4 for some k € N, then x; = x;1; = Tx, that is,
z := xi is afixed point of T'. Thus, by Remark 8.5, we have ¢ (z) = 0 and the proof of
existence of a fixed point is complete. Therefore, it is not restrictive to suppose that
X # x,—1 for each n € N. Thanks to Lemma 8.5, we can affirm that the sequence
{x,} is a Cauchy sequence. Further, the completeness of (X, d, <) ensures that there
exists some z € X such that
lim x, = z.
n——+o00

Now, in order to complete the proof, we notice that the continuity of the mapping
T ensures that 7 is a fixed point of 7' and, further, by Remark 8.5, we have ¢(z) = 0.
Finally, if x¢, ug € X are comparable, thanks to Lemma 8.3, we have d(x,,, u,,) — 0
and hence

0 <d(un,z) <duy, x,) +d(x,,z) = 0,

that is, lim,,_, 1o #, = z. This completes the proof.

Theorem 8.8 (see [42], Theorem 2) Let (X, d, <) be a complete ordered metric
space and T : X — X be a nondecreasing ordered S-F -contraction with respect to
. €., F € F and a lower semi-continuous function ¢ : X — [0, +oo[. If there
exists a point xo € X such that xo < Txg and X is regular, then T has a fixed
point z such that ¢(z) = 0. Moreover, if ug € X is comparable to x,, then we have
lim,, 4 oo 4, = z, where {u,} is the Picard sequence starting at u.
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Proof Let x(be apoint of X such thatxy < T xgandlet {x, } be the sequence of Picard
starting at xy. Following the proof of Theorem 8.7, we say that it is not restrictive to
suppose that x, # x,_; for each n € N. Furthermore, thanks to Lemma 8.5, we say
that {x,} is a Cauchy sequence. Now, we notice that the completeness of (X, d, <)
ensures that there exists some z € X such that

lim x, = z.
n—400

Further, the lower semi-continuity of the function ¢ and the second statement of
(8.6) assure that
0 < ¢(z) < liminf ¢(x,) =0,
n—400

that is, ¢(z) = 0.

Next, we claim that z is a fixed point of 7. Obviously, z is a fixed point of the
mapping T if there is a subsequence {x,,} of {x,} such that x,, =z or Tx,, =Tz,
for all k € N. If such a subsequence does not exist, then we can assume that x,, # z
and Tx, # Tz for all n € N. Consequently, we have

F(d(Txy, T2), o(Txy), 9(T2)), F(d(xn,2), ¢(xn), 9(2)) €]0, +00[ Vn eN.

Now, the hypothesis that T is nondecreasing together with the condition xy < Txg
ensure that the sequence {x,} is nondecreasing. So, the hypothesis that X is regular
implies that x,_; < z for all n € N. Using (8.5) with x = x,, and y = z and the
property () of the function ¢, we get

0<¢(FUTxy,T2), p(Tx,), p(Tz2)), F(d(xp,2), 9(xn), 9(2)))
< F(d(x,,2), 9(x,), () — F(d(Tx,, Tz), o(Txy), o(T2)).

From the previous inequality, we get
F(d(Tx, T2), o(Txy), (T2)) < F(d(xn, 2), p(xn), ¢(z)) Vn € N
and so

d(z,Tz) <d(z,x,11) +d(Tx,, Tz)
<d(z, xp41) + F(d(Tx,, T2), p(Tx,), 9(Tz2))
< d(z, Xp41) + F(d(xy, 2), 0(x), ¢(2))

for all n € N. Letting n — 400 in the above inequality, taking into account that F is
continuous in (0, 0, 0), we deduce that d(z, Tz) < F(0,0,0) =0, thatis, z = Tz.
Finally, if x¢, uo € X are comparable, then, by Lemma 8.3, we have d(x,, u,) — 0
and hence

0<d(up,z) <d(u,, x,) +d(x,,z) = 0,



8 Fixed Points That Are Zeros of a Given Function 175

that is, lim,,—, 4~ 4, = z. This completes the proof.
From Theorem 8.7 and Lemma 8.4 we deduce the following result.

Theorem 8.9 Let (X, d, <) be a complete ordered metric space andletT : X — X
be a nondecreasing ordered S- F-contraction with respectto { € /', F € % and a
function ¢ : X — [0, +00[. If there exists a point xo € X such that xo < Txoand T
is continuous, then T has a fixed point z such that ¢(z) = 0. Moreover if X has the
property (U), then T has a unique fixed point z such that ¢(z) = 0 and, further, for
all uy € X, we have lim,,_, y o u, = z, where {u,} is the Picard sequence starting at
Uup.

Proof The existence of a unique fixed point z such that ¢(z) = 0 is consequence of
Theorem 8.7 and Lemma 8.4. Also, we stress that if lim,,_, , o, d(u,,, x,) = 0, where
{x,} is the Picard sequence starting at x such that x, — z (see Theorem 8.7), from

0 =< d(up, 2) =duy, x,) +d(xn,2) > 0,

we infer the claim lim,_, ;» u, = z. Clearly, if xo and u( are comparable, it holds
thanks to Lemma 8.3. If x¢ and u are not comparable, the property (U) of X ensures
that there exists wg € X such that xy and u( are comparable with wy. If {w,} is the
Picard sequence starting at wy, thanks to Lemma 8.3, we have

lim d(x,,, w,) = lim d(”na w,) = 0.
n——+o00 n—+00

Then lim,,—, 40 d(u,, x,) = 0and hence lim,,_, ; », u, = z. This completes the proof.
From Theorem 8.8 and Lemma 8.4 we deduce the following result.

Theorem 8.10 Let (X, d, X) be a complete ordered metric space and T : X — X
be a nondecreasing ordered S-F-contraction with respect to ¢ € ., F € % and
a lower semi-continuous function ¢ : X — [0, +00[. If there exists a point xo € X
such that xy < Txo and X is regular, then T has a fixed point z such that ¢(z) = 0.
Moreover if X has the property (U), then T has a unique fixed point z such that
©(2) = 0 and, further, for all uy € X, we have lim,_, . oo u,, = z, where {u,} is the
Picard sequence starting at u.

Proof We stress that the existence of a unique fixed point is a consequence of The-
orem 8.8 and Lemma 8.4. Further, if if lim,,_, ,» d(u,, x,) = 0, where {x,} is the
Picard sequence starting at x such that x,, — z (see Theorem 8.8), from

0 S d(ul’H Z) S d(una xn) + d(xn’ Z) - Oa

it follows the claim lim,,_, o u, = z. Clearly, if xy and u( are comparable, then this
is a consequence of Lemma 8.3. If xy and u( are not comparable, taking into account
that X has the property (U), there exists wg € X such that xy and u( are comparable
with wy. If {w,} is the Picard sequence starting at wy, thanks to Lemma 8.3 gives
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lim d(x,, w,) = liIE d(u,, w,) =0.

n—+00

Then lim,,, ;o d(x,, ;) = 0 and thus lim,,_, 4, = z. This completes the proof.

Example 8.4 Let X = [0, 2] endowed with the usual metric d(x, y) = |x — y| for
all x, y € X. Also, X can be equipped with a partial order < given by

15
x,yeX, xxXyif x=y, (xfy, x,ye[O,—]) or (x € [0,2[ and y = 2).

8

Obviously, (X, d, <) is an ordered complete metric space that is regular and has the
property (U). Consider the nondecreasing function 7 : X — X given by

The function T satisfies condition (8.5) with respect to the function ¢ € .’ defined
by

£t s) P42 forall s e [0, +o0of
,s)=s — ——¢ forallz,s , +ool,
1

the function F € .% defined by F(a, b,c) = a + b + cforalla, b, ¢ € [0, +o0o[ and
the lower semi-continuous function ¢ : X — [0, +oo[ defined by ¢(x) = x for all

15
x € X.Indeed,ifx < yandx,y € |:O, §], then we have

C(F(d(Tx, Ty), p(Tx), p(Ty)), F(d(x,y), p(x), p(¥)))
=¢d(Tx, Ty) +o(Tx)+ o(Ty),d(x,y) + o) + o(y)

y+2
=r(y,2y) =2y — —=
¢(y,2y) =2y y+1y
2
y 0
y+1

If x < y with x € [0, 2] and y = 2, then we have

C(Fd(Tx,Ty), p(Tx), p(Ty)), F(d(x,y), p(x), o(¥)))

=¢d(Tx, Ty) +o(Tx)+¢(Ty),dx,y) +ex)+@(y))
5

=:(3,4)=4— Zr3

16 — 15
4

> 0.
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15
Ifx=ye ]g, 2[, then we have

C(F(d(Tx, Ty), p(Tx), p(Ty)), F(d(x,y), p(x), p(¥)))
=¢d(Tx, Ty) +o(Tx)+o(Ty), d(x,y) + o) + o(y)
=7(3,2x) =2x — 23

8x — 15
= >
4 =

0.

Since all the conditions of Theorem 8.10 are satisfied, 7 has a unique fixed point
z = 0in X, obviously ¢(0) = 0. We stress that Theorem 8.9 cannot be used to deduce
that 7 has a unique fixed point since 7 is not continuous. Moreover, from

) )

we infer that we cannot use Theorem 2.2 of [21] (see Theorem 8.6) in order to affirm
that 7" has a fixed point. This completes the proof.

For completeness, we remark that, in Argoubi et al. [2], consider a pair of non-
linear operators satisfying a nonlinear contraction involving a simulation function
(in the sense of Definition 8.4) in a metric space endowed with a partial order. For
this kind of contractions, they establish coincidence and common fixed point results.
Furthermore, Argoubi et al. introduce the notion of right-monotone simulation func-
tion. A function ¢ € . is called a right-monotone simulation function if, for t > 0,
we have ¢ (¢, s1) < {(¢, s) whenever s; < s;.

We stress that the followimg result can be deduced from Corollary 4.3 of [2].

Theorem 8.11 Let (X, d, <) be a complete ordered metric space and T : X — X
be a nondecreasing mapping. Assume that X is regular and there exists a right-
monotone simulation function { € . such that

¢d(Tx,Ty),d(x,y)) =0 Vx,yeX, x <y.

Then T has a fixed point.

Obviously, the above result holds for any simulation function ¢ € .% that is not
necessarily right-monotone as specified by Argoubi et al. in [2]. We remark that
Theorem 8.11 follows from Theorem 8.8 if we choose the function F' € .% defined
by F(a,b,c) =a+ b+ cforalla, b, c € [0, +o0[ and the lower semi-continuous
function ¢ : X — [0, +-o0[ defined by ¢(x) = 0 for all x € X. Again, choosing F'
and ¢ as above and ¢ (¢, s) = ks — ¢t for some k € [0, 1[, we infer Theorem 8.6 from
Theorem 8.10.
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8.6 Consequences

In this section, we point out that particularizing the function ¢ € .#”’ in Theorems
8.3 and 8.9-8.10 we get in the setting of metric spaces and ordered metric spaces
several special results known in the literature. For instance, if we choose ¢ € .
defined by ¢ (¢, s) = ks — t with k € [0, 1[, thanks to Theorem 8.3, we obtain the
following corollary.

Corollary 8.1 (see [12], Theorem 2.1) Let (X, d) be a complete metric space and
T : X — X be a mapping. Suppose that there exist k € [0, 1], a function F € ¥
and a lower semi-continuous function ¢ : X — [0, +-o00[ such that

F(d(Tx,Ty), p(Tx), p(Ty)) <k F(d(x,y), p(x), ¢(y)) Vx,ye€X.

Then T has a unique fixed point 7 such that ¢(z) = 0. Moreover, for all ug € X, the
Picard sequence {u,} starting at uy converges to z.

Again, choosing the function ¢ as above, we obtain the following result in the
setting of ordered metric spaces.

Corollary 8.2 Let (X, d, X) be a complete ordered metric space and T : X — X
be a nondecreasing mapping. Suppose that there exist k € [0, 1[, a function F € F
and a lower semi-continuous function ¢ : X — [0, +o00[ such that

Fd(Tx,Ty), p(Tx),¢(Ty)) <k F(d(x,y), p(x),p(y)) Yx,yeX, x <y.

Ifthere exists a point xy € X such that xy < T x( and one of the following conditions:
(a) T is continuous,

(b) X is regular,

then T has a fixed point 7 such that ¢(z) = 0. Moreover, if X has the property (U),
then T has a unique fixed point 7 such that ¢(z) = 0 and, for all ug € X, we have
also lim,_, 4 oo u,, = z, where {u,} is the Picard sequence starting at uy.

We remark that, if we put F(a,b,c) =a+ b+ c foralla, b, c € [0, +oo[ and
@(x) = 0 for all x € X, then, from Corollary 8.1, we obtain the Banach contraction
principle. Further, from Corollary 8.2, we obtain Theorem 8.6 that gives the results
of Nieto et al. [21].

Let ¢ : [0, +00[X[0, +0o[— R be defined by ¢(¢,s) =5 — ¥(s) — ¢ for all
t,s € [0, +oo[, where v : [0, +00[— [0, +o00[ is a lower semi-continuous func-
tion such that ¥ (t) = 0 if and only if # = 0. We notice that such a function ¢ belongs
to .

In correspondence of this choice of ¢, in the setting of metric spaces, we obtain
the following result of Rhoades type [30].

Corollary 8.3 Let (X, d) be a complete metric spaceand T : X — X be a mapping.
Suppose that there exist a function F € % and two lower semi-continuous functions
¥ 1 [0, +00[— [0, +oo[ with ¥~1(0) = {0} and ¢ : X — [0, +00[ such that
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Fd(Tx,Ty), o(Tx), p(Ty)) = Fd(x,y), p(x), 9(y)) = ¥ (F(d(x., y), ¢(x), 9()))

Vx,y € X. Then T has a unique fixed point z such that ¢(z) = 0. Moreover, for all
uo € X, the Picard sequence {u,} starting at ug converges to z.

In the setting of ordered metric spaces, we can formulate the following result.

Corollary 8.4 Let (X, d, <) be a complete ordered metric space and T : X — X
be a nondecreasing mapping. Suppose that there exist a function F € % and two
lower semi-continuous functions ¥ : [0, +oo[— [0, +-00[ with ¥~ (0) = {0} and
¢ : X — [0, 400l such that

Fd(Tx,Ty), p(Tx),p(Ty)) < F(d(x,y), p(x), p()) — ¥ (Fd(x, y), p(x), 9(3)))

forall x,y € X with x < y. If there exists a point xy € X such that xy < Txy and
one of the following conditions:

(a) T is continuous,

(b) X is regular,
then T has a fixed point 7 such that ¢(z) = 0. Moreover, if X has the property (U),
then T has a unique fixed point z such that ¢(z) = 0 and for all uy € X, we have
lim,_ 1 oo u, = z, where {u,} is the Picard sequence starting at u.

Let ¢ : [0, +00[x[0, +0co[— R be defined by ¢(t,s) =s ¥ (s) — ¢t forall¢,s €
[0, +ool, where ¥ : [0, +00[— [0, 1[ is a function such that lim sup,_, .+ ¥ (¢) < 1
for all » > 0. Again, we have that ¢ € .. So, if we choose such a function ¢, we
get in the setting of metric spaces the following result (see [27]).

Corollary 8.5 Let (X, d) be a complete metric spaceand T : X — X be a mapping.
Suppose that there exist a function F € %, a function ¥ : [0, +o0[— [0, 1[ with
limsup,_, .+ ¥(t) < 1 for all r > 0 and a lower semi-continuous function ¢ : X —
[0, +o0[ such that

F(d(Tx,Ty), o(Tx), o(Ty)) = ¥ (F(d(x, ), ¢(x), o(y))) Fd(x, y), p(x), p(¥))

forall x,y € X. Then T has a unique fixed point z such that ¢(z) = 0. Moreover,
forall uy € X, the Picard sequence {u,} starting at uo converges to z.

In the setting of ordered metric spaces, we have the following result.

Corollary 8.6 Let (X, d, <X) be a complete ordered metric space and T : X — X
be a nondecreasing mapping. Suppose that there exist a function F € F, a function
¥ 1 [0, +o0[— [0, 1[ with limsup,_, .+ ¥ (¢) < 1 for all r > 0 and a lower semi-
continuous function ¢ : X — [0, o0l such that

F(d(Tx,Ty), o(Tx), p(Ty)) = ¥(F(d(x,y), 9(x), o(y)) Fd(x, y), p(x), p(¥))
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forall x,y € X with x < y. If there exists a point xy € X such that xo < Txy and
one of the following conditions:

(a) T is continuous,

(b) X is regular,
then T has a fixed point z such that ¢(z) = 0. Moreover, if X has the property (U),
then T has a unique fixed point z such that ¢(z) = 0 and, for all uy € X, we have
lim,, 4 oo u, = z, where {u,} is the Picard sequence starting at u.

Let ¢ : [0, +00[x [0, +00[— R be defined by ¢(z,s) = ¥ (s) —¢t for all ¢, s €
[0, +oo[, where ¢ : [0, +00[— [0, +o0[ is an upper semi-continuous function such
that ¢ (1) < ¢t forall t > 0 and ¥(0) =0, then ¢ € .¥".

In correspondence of this choice of ¢, in the setting of metric spaces, we obtain
the following result of Boyd-Wong type [6].

Corollary 8.7 Let (X, d) be a complete metric spaceand T : X — X be a mapping.
Suppose that there exist a function F € %, an upper semi-continuous function ¥ :
[0, +oo[— [0, +oo[ with () < t for all t > 0 and ¥ (0) = 0 and a lower semi-
continuous function ¢ : X — [0, +oo[ such that

F(d(Tx,Ty), p(Tx), p(Ty)) = ¥(Fd(x,y), ¢(x),9(y) Vx,yeX.

Then T has a unique fixed point z such that ¢(z) = 0. Moreover, for all ug € X, the
Picard sequence {u,} starting at uy converges to z.

Finally, in the setting of ordered metric spaces, we state the following result.

Corollary 8.8 Let (X, d, <X) be a complete ordered metric space and T : X — X
be a nondecreasing mapping. Suppose that there exist a function F € %, an upper
semi-continuous function ¥ : [0, +oo[— [0, +oo[ with ¥ (t) < t for all t > 0 and
¥ (0) = 0 and a lower semi-continuous function ¢ : X — [0, +oo[ such that

F(d(Tx, Ty), p(Tx), p(Ty)) = ¥ (Fd(x,y), ¢(x), (¥)))

forall x,y € X with x <X y. If there exists a point xo € X such that xo < Txy and
one of the following conditions:

(a) T is continuous,

(b) X is regular,
then T has a fixed point z such that ¢(z) = 0. Moreover if X has the property (U),
then T has a unique fixed point z such that ¢(z) = 0 and, for all uy € X, we have
lim,, + oo 4, = z, where {u,} is the Picard sequence starting at u.

We notice that we obtain the Boyd-Wong result from Corollary 8.7 if we assume
F(a,b,c) =a+b+cforalla,b,c € [0,+oo[ and ¢(x) = 0 forall x € X.
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8.7 Conclusions

We gave a short survey of S-F-contractions in the setting of complete metric spaces,
by using also the ordered approach. The presented generalized contractions had a
significant impact over the development of fixed point theory and its applications.
Indeed, they are useful in providing hybrid versions of already known results. This
opens the road to possibilities to get more interesting applications, by covering a
large amount of practical situations.
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Chapter 9

A Survey on Best Proximity Point Theory | <o
in Reflexive and Busemann Convex

Spaces

Moosa Gabeleh

Abstract In this chapter, we present some best proximity point theorems for Kannan
cyclic mappings in the setting of Busemann convex spaces which are reflexive. To
this end, we recall some results obtained in the framework of the fixed point theory
for Kannan self mappings and generalize them to cyclic mappings in order to study
the existence of best proximity points. We do it from two different approaches. The
first one is based on a geometric property defined on a nonempty and convex pair in
a geodesic space, called proximal normal structure, and the other one will be done
by considering some sufficient conditions on the cyclic mappings. We also study the
structure of minimal sets for Kannan cyclic nonexpansive mappings.

Keywords Best proximity point - Kannan cyclic mapping + Busemann convex
space * Proximal quasi-normal structure

9.1 Introduction

9.1.1 Kannan Contractions

A mapping T defined on a metric space (X, d) is called a Kannan contraction [26]
if there exists « € [0, %) such that

d(Tx,Ty) <ald(x,Tx)+d(y, Ty)], Vx,y € X. 9.1

In 1968, Kannan established the following fixed point theorem which is indepen-
dent of the Banach contraction principle [4].
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Theorem 9.1 (see also [25] for more new details) Let (X, d) be a complete metric
spaceand T : X — X be a Kannan contraction mapping. Then T has a unique fixed
point p € X and, for any x € X, the sequence iterates {T"x} converges to p and

d(T}1+1x’p) S C(( o
l—«o

)nd(x, Tx), VneNU {0}

An interesting observation about the Kannan’s fixed point problem is that it char-
acterizes the metric completeness, that is, a metric space X is complete if and only
if every Kannan self-mapping defined on X has a fixed point [37].

9.1.2 Kannan Nonexpansive Mappings

Let (X, d) be a metric space and let T : X — X be a self-mapping on X. Then T is
called nonexpansive if

d(Tx,Ty) <d(x,y), Vx,y € X. 9.2)

Also, T is called Kannan nonexpansive provided that
1
d(Tx,Ty) = S{d(x.Tx) +d(y. Ty)}, Vx,y € X. 9.3)

Clearly, the class of Kannan nonexpansive mappings contains the class of Kannan
contractions as a subclass. Moreover, there exists a nonexpansive mapping which
is not Kannan nonexpansive and a Kannan nonexpansive mapping which is not
nonexpansive. So, we cannot compare both conditions directly.

Example 9.1 Consider X = R with the usual metric and let A = [0, 1]. Define the
self-mapping 7 : A — A with

1—x, if xeQ°NIo, 1],

e if xeQnlo, 11

Tx =

Itis easy to check that 7' is a Kannan nonexpansive mapping which is not continuous
and so is not nonexpansive. Besides, if we consider B = [0, oo) and define S : B —
B with Sx = x + 1, then clearly T is nonexpansive but for all x, y € B with |x —
y| > 1 so that we have

1
E{d(x’ Sx)+d(y, Sy} =1<|x —y|=ISx — Sy|,

which implies that S is not a Kannan nonexpansive mapping.
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It is well known that, if K is a nonempty, compact and convex subset of a Banach
space X, then any nonexpansive and Kannan nonexpansive mapping of K into K has
a fixed point [28]. It is remarkable to note that if K is a weakly compact and convex
subset of a Banach space X, then the existence of fixed points for nonexpansive
and Kannan nonexpansive mappings cannot be concluded. Indeed, it was shown by
Alspach that there exists a weakly compact and convex subset K of L'[0, 1] and a
nonexpansive mapping 7 : K — K which is fixed point free [3].

In 1948, a useful geometric property was introduced by Brodskii and Milman as
follows.

Definition 9.1 ([5]) A nonempty and convex subset A of a Banach space X is said to
have the normal structure if for each bounded, closed and convex subset K of A which
contains more than one point, there exists a point x* € K such that sup{||x* — y|| :
y € K} < diam(K), where diam(K) denotes the diameter of K.

It is well-known that every nonempty, compact and convex subset of a Banach
space has the normal structure. Furthermore, every nonempty, bounded, closed and
convex subset of a uniformly convex Banach space has the normal structure too [28].

Using this geometric notion, the following famous fixed point theorem due to
Kirk, was proved.

Theorem 9.2 ([29]) Let K be a nonempty, weakly compact and convex subset of a
Banach space X and T : K — K be a nonexpansive mapping. If K has the normal
structure, then T has a fixed point.

A counterpart result of Theorem 9.2 was established for Kannan nonexpansive
mappings by Soardi in [36]. In a separate paper, Kannan used the notion of nor-
mal structure dependent on the considered self-mapping and proved the following
theorem.

Theorem 9.3 ([27]) Let K be a nonempty and convex subset of a reflexive Banach
space X and T : K — K be a Kannan nonexpansive mapping. If, for any bounded
closed convex and T -invariant subset H of K with more than one point, we have

sup{lly =Tyl : y € H} < diam(H),

then T has a fixed point.
A weaker notion of normal structure was introduced by Wong as follows.

Definition 9.2 ([39]) A convex subset A of a Banach space X is said to have the
quasi-normal structure if, for any bounded closed and convex subset K of A with
diam(K) > 0, there exists p € K such that

lx — pll < diam(K), Vx € K.

Finally, Wong proved the next fixed point result for Kannan nonexpansive self-
mappings by using the notion of quasi-normal structure.
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Theorem 9.4 ([40]) Let K be a nonempt, weakly compact and convex subset of a
Banach space X and T : K — K be a Kannan nonexpansive mapping. If K has the
quasi-normal structure, then T has a fixed point.

9.2 Geodesic Metric Spaces

A metric space (X, d) is said to be a geodesic space if every two points x and y of X are
joined by a geodesic,i.e.amapc : [0,/] € R — X suchthatc(0) = x,c(l) = yand
d(c(t),c(t)) = |t —t'| forallz,t’ € [0,1]. A metric space (X, d) is called uniquely
geodesic if there exists exactly one geodesic joining x and y for each x, y € X. If
there is only one geodesic between two points x and y, the image of this geodesic
which is called geodesic segment, is denoted by [x, y].

For instance, any Banach space is a geodesic space with usual segments as
geodesic segment. Other interesting examples are the Hilbert ball [24] and the hyper-
bolic spaces [34].

For a geodesic segment [x, y], we set |x, y[:= [x, y] — {x, y}. If X is a uniquely
geodesic metric space, then, for each x, y € X and r € (0, 1), we set c¢(r0 + (1 —
) :=tx @ (1 —t)y. A subset A of a uniquely geodesic metric space (X, d) is said
to be convex if the geodesic segment joining each pair of points x and y of A is
contained in A.

For more details about geodesic metric spaces, one can refer to [6, 7, 32]. The
notion of strictly convexity in metric spaces was introduced in [2] as follows.

Definition 9.3 A geodesic metric space (X, d) is said to be strictly convex provided
that, for every r > O and a, x, y € X withd(x,a) <r,d(y,a) <r and x # y, we
have d(a, p) < r, where p €]x, y[.

Note that every strictly convex metric space is uniquely geodesic. The reader can
see [32] for more information. Unless explicitly stated otherwise, from now on, we
will just use geodesic metric space to refer to a uniquely geodesic space.

Here, we recall another geometric notion on geodesic spaces which will be used
in the sequel.

Definition 9.4 ([24]) A geodesic metric space (X, d) is said to be uniformly convex
if, for any r > 0 and ¢ € (0, 2] there exists n € (0, 1] such that, for all a, x,y € X
withd(x,a) <r,d(y,a) <randd(x,y) > er, we have

dm,a) < (1 —n)r,

where m is a midpoint of x and y.

Obviously, every uniformly convex geodesic space is strictly convex, but as we
know the inverse implication does not hold in Banach spaces as a subclass of geodesic
spaces.
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A geodesic metric space (X, d) is said to be reflexive if any descending chain of
nonempty, bounded, closed and convex subsets of X has a nonempty intersection.
Every reflexive Banach space is a reflexive metric space too. Moreover, any uniformly
convex geodesic space is reflexive (see [31] for more details).

Let (X, d) be a uniquely geodesic space. A metric d: X x X — R is said to be
convex if, for any x, y, z € X, one has

dx,(1 =0y ®1z) < (1 =0)d(x,y) +1td(x,z), Vrel0,1].

Definition 9.5 ([9]) A geodesic space (X, d) is called convex in the sense of Buse-
mann if, given any pair of geodesics ¢y : [0,1;] - X and ¢; : [0, ] — X, one has

d(ci(th), e2(thh)) = (1 — 0)d(c1(0), ¢2(0)) +td(c1(lh), c2(l2)), Vi € [0, 1].

Equivalently, a geodesic metric space (X, d) is convex in the sense of Busemann
provided that

d((l=Dx@ty, 1 =Dz®tw) < (1 —1)d(x,z) +td(y,w)

forall x,y,z,w € X and r € [0, 1].

A reflexive and Busemann convex space is complete (see [13, Lemma 4.1]). We
also mention that Busemann convex spaces are strictly convex with convex metric
[15].

In this chapter, we present extensions of Theorems 9.2 and 9.4 by considering
cyclic mappings in the setting of reflexive and Busemann convex spaces in order to
study the existence of best proximity points. We also obtain a different version of
Theorem 9.4 without the geometric property of a quasi-normal structure.

9.3 Best Proximity Points

9.3.1 Cyclic Relatively Nonexpansive Mappings

Let (X, d) be a metric space and A, B be two nonempty subsets of X. A mapping
T:AUB — AU B is said to be a cyclic mapping provided that T(A) € B and
T(B) C A.

In [30], Kirk et al. established the following theorem which is an interesting
extension of the Banach contraction principle.

Theorem 9.5 ([30, Theorem 1.1]) Suppose that (A, B) is a nonempty and closed
pair of subsets of a complete metric space (X,d) and T : AUB — AUB is a
cyclic mapping for which there exists k € [0, 1) such that d(Tx,Ty) < kd(x, y)
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forall (x,y) € A x B. Then AN B is nonempty and T has a unique fixed point in
AN B.

As a cyclic mapping does not have a fixed point necessarily, it is of considerable
interest to find anelement x € A U B thatis as close to T'x as possible or equivalently,
the error of d (x, T x) is minimum. Indeed, best proximity point theorems investigate
the existence of such optimal approximate solutions, called best proximity points,
of the fixed point equation 7x = x when there is no exact solution for the cyclic
mapping T.

Definition 9.6 Let A and B be nonempty subsets of a metric space (X, d) and

T:AUB — AU B be a cyclic mapping. A point p € AU B is said to be a best
proximity point for the cyclic mapping T provided that

d(p, Tp) =dist(A, B) :=inf{d(x,y): x € A, y € B}.

In fact best proximity point theorems have been studied to find necessary condi-
tions such that the minimization problem:

min d(x, Tx) 9.4)
x€AUB
has at least one solution.

The first existence results of best proximity points for cyclic mappings was pre-
sented in [10] in Banach spaces and then in [17] in geodesic spaces. Before we state
some of these results, we recall the following notions and notations.

We say that a pair (A, B) of subsets of a geodesic metric space (X, d) satisfies
a property if both A and B satisfy that property. For example, (A, B) is convex if
and only if both A and B are convex; (A, B) € (C,D) < A C C, and B < D. We
shall also adopt the following notations:

8y (A) =sup{d(x,y): y € A}, Vx e X,
3(A, B) = sup{é,(B) : x € A},
diam(A) = §(A, A),
d*(x,y) =d(x,y) —dist(A, B), V(x,y) € A x B.

The closed and convex hull of a set A will be denoted by con(A) which is the
smallest closed and convex subset of X containing the set A. Also, Z(p, r) will
denote the closed ball with center at p € X and radius » > 0.

The metric projection operator 2, : X — 24 is defined as

Pa(x) :={ye A:dx,y) =dist(x, A)},

where 24 denotes the set of all subsets of A.
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Given (A, B) a pair of nonempty subsets of X, then its proximal pair is the pair
(Ao, By) given by

Ag={x € A: d(x,y") =dist(A, B) for some y’ € B},
Bo={y € B: d(x',y) = dist(A, B) for somex’ € A}.

Proximal pairs may be empty, but, in particular, if (A, B) is a nonempty, weakly
compact and convex pair, then (Ao, By) is also nonempty weakly compact and con-
Vex.

In what follows, we provide the other sufficient conditions for non-emptiness of
the pair (A, Bp) in Busemann convex spaces. To this end, we need the following
lemma.

Lemma 9.1 Let A be a nonempty, closed and convex subset of a reflexive and Buse-
mann convex space X. Then the metric projection P, : X — 24 is single-valued.

Proof Letx € X. For all n € N, define
. 1
A, = {a € A:d(x,a) < dist(x, A) + —}.
n
Then A, is closed for all n € N. Besides, if a;, a, € A, andt € (0, 1), then we have
1
dx,ta @ (1 —t)ay) <td(x,a) + (1 —t)d(x,ay) < dist(x, A) + —,
n

thatis, A, is convex. Therefore, { A, } is a decreasing sequence of nonempty, bounded,
closed and convex subsets of X. Since X is reflexive, ()., A, is nonempty. If
a* € A, for all n € N then d(x, a*) = dist(x, A), that is, a* € P4 (x). Finally,
from the strict convexity of X, we obtain &4 (x) is a singleton. This completes the
proof. (]

Proposition 9.1 If (A, B) is a nonempty, closed and convex pair in a reflexive
and Busemann convex space X such that B is bounded, then (Ag, By) is nonempty
bounded closed and convex.

Proof Foralln € N, set
. _ 1
U, = {x € A : dist({x}, B) < dist(A, B) + —}.
n

Clearly, U, is nonempty and closed. Let x;, x, € U,. Since X is a Busemann convex
space, forall y € B andt € (0, 1), we have

d(tx1 ® (1 — )xa, y) < td(x1, y) + (1 — )d(x2, y),

which implies that
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. . 1
dist(tx; & (1 — t)x,, B) < dist(A, B) + —
n

andso tx; & (1 — t)x, € U,. Thus U, is convex for all n € N. Also, it is easy to see
that the sequence {U, } is decreasing. In view of the fact that X is reflexive, (,-; U
is nonempty and, by Lemma 9.1, we obtain Ay = (1),.; U,. Thus Ay is nonempty
closed and convex. Similarly, we can see that By is also nonempty, closed and convex.
The boundedness of B ensures that both Ay and By are bounded too. This completes
the proof. O

Definition 9.7 A nonempty pair (A, B) in a metric space is said to be proximinal if
A=Ay, B=B5By.

Here, we recall a geometric notion of proximal normal structure which was intro-
duced in [10].

Definition 9.8 A convex pair (K, K3) in a geodesic space X is said to have the
proximal normal structure (PNS) if, for any bounded closed convex and proximinal
pair (H;, Hy) C (K, K») for which dist(H;, H,) = dist(K;, K») and § (H;, H,) >
dist(H,, H,), there exists (x1, x,) € H; x H, such that

max{8y, (H2), 8., (H1)} < 8(Hy, Hy).

Notice that the pair (K, K) has PNS if and only if K has the normal structure in
the sense of Definition 9.1.
Let us illustrate the notion of PNS with the following examples.

Example 9.2 ([17, Proposition 3.5]) Every nonempty, closed and convex pair in a
uniformly convex geodesic space X has the PNS.

Example 9.3 ([20, Theorem 3.5]) Every nonempty, compact and convex pair in a
geodesic space X with convex metric has the PNS.

Definition 9.9 Let (A, B) be a nonempty pair of subsets of a metric space (X, d).
A cyclic mapping T: AU B — A U B is said to be relatively nonexpansive if

d(Tx,Ty) <d(x,y), Y(x,y) € A x B. (9.5)

Obviously, if, in above definition, A = B, then we get the class of nonexpansive
self-mappings.
The next lemma has an important role in our coming discussions.

Lemma 9.2 Let (X, d) be a reflexive and Busemann convex metric space and
let (A, B) be a nonempty, closed and convex pair of subsets of X such that
A is bounded. Assume that T : AUB — AU B is a cyclic mapping such that
d(Tx, Ty) =dist(A, B) for all (x,y) € A x B with d(x, y) = dist(A, B). Then
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there exists (K, K») € (Ao, Bo) C (A, B) which is minimal with respect to being
nonempty, closed, convex and T -invariant pair of subsets of (A, B) such that

dist(K, K») = dist(A, B).
Moreover, the pair (K, K,) is proximinal and
K, =con(T (K>)), K»=rcon(T(Ky)).

Proof By Proposition 9.1 the pair (A, By) is nonempty, bounded, closed and convex
which is proximinal and dist(A, B) = dist(Ag, Bp). Also if x € Ay is an arbitrary
element, then there exists y € By such that d(x, y) = dist(A, B). It follows from
the assumption on 7T that d(Tx, T'y) = dist(A, B) which implies that Tx € Bj and
so T(Ag) € By. Similarly, T (By) C Ay, that is, T is cyclic on Ag U By. Now let
> denote a set of all nonempty, bounded, closed, convex pair (C, D) C (A, B)
with dist(C, D) = dist(A, B) which is T-invariant. Then (Ag, By) € >_ and so
is nonempty. Assume that {(C;, D,)}; is a descending chain in ) and put

%ZIHC]', @Z:ﬂDj.
J J

Since X is reflexive, the pair (¥, Z) is nonempty, closed and convex. Let x € €.
Then x € C; for all j. By the fact that any pair (C;, D;) is proximinal, and that X
is strictly convex, there exists a unique y € D; so that d(x, y) = dist(A, B) for all
Jj- Hence, y € 2 which ensures that

d(x,y) =dist(A, B) = dist(¥, 2).

that is, (¥, &) is proximinal. Moreover,

T@) =T(\CH<(\TCH<[\Di=2.
j j j

Similarly, 7(2) € ¢ and so (¥, Z) is T-invariant. It now follows from Zorn’s
lemma that ) has a minimal element, namely (K, K>). Since ((K1)o, , (K2)o) C
(K, K3) is nonempty, closed, convex and 7 -invariant, minimality of (K, K»)
implies that (K)o = K; and (K)o = K, which implies that (K, K3) is proximinal.
Furthermore, T(K;) C K, and so, con(7T (K)) € K, which deduces that

T'(con(T (K 1)) < T(K>) < con(T (K3)).

Similarly, we have
T (con(T' (K>))) < con(T (K1),
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that is, the pair (con(7 (K;)), con(T (K3)) is T -invariant. Also, we have
dist((con(T (K)), con(T (K,)) = dist(A, B).

Again, by the minimality of (K, K;), we obtain K| =con(7(K3)) and K, =
con(T (Ky)). ]

The following existence result of best proximity points for cyclic relatively non-
expansive mappings is a main result of [10] and [17].

Theorem 9.6 Let (X, d) be a reflexive and Busemann convex space and let (A, B)
be a nonempty, closed and convex pair of subsets of X such that A is bounded.
Assume T : AU B — A U B is a cyclic relatively nonexpansive mapping. If (A, B)
has the PNS, then T has a best proximity point.

Proof From Lemma 9.2 there exists a pair (K, K;) C (Ag, By) € (A, B) which is
minimal with respect to being nonempty bounded closed convex and 7 -invariant pair
of subsets of (A, B) such that dist(K;, K,) = dist(A, B). Also, the pair (K, K») is
proximinal. Note that, if § (K, K») = dist(K, K3), then each point of K is a best
proximity point of 7 and we are finished. So assume that §(K;, K») > dist(K;, K»).
Since (A, B) has the PNS, there exists a point (p, g) € K| x K; and A € (0, 1) for
which
max{$,(Kz), §,(K1)} < A8(K1, K2).

Let (p',q’) € K1 x K, be such that d(p,q’) =d(p/, q) = dist(Ky, K7)(= dist
(A, B)). Suppose that p; and g; are the midpoints of p, p’ and ¢, q’, respectively.
Clearly, d(p1, q1) = dist(A, B). By the fact that the metric d is convex, for all
y € K,, we have

1
d(pi,y) < zd(p',y)+d(p,y)

2
1

< 5(3(1(1, K>) + X8(Ky, K3))
1+ A

= U5k, K,

which implies that 6§, (K>) < “;—’US(KI, K») (note that @ < 1). Similarly, we
can see that §,, (K) < 132 8(K,, K»). Put

(1T+2)
2

L, := {x € K :6,(Kp) < 8(Ky, K») and, for its proximal point

14+ 2)

v € Ky, 8,(Ky) < 5(K, K2>},



9 A Survey on Best Proximity Point Theory in Reflexive ... 193

(1+2)

Ly := {y € K :6,(Ky) < 8(Ky, K3) and, for its proximal point

(1+2)
2

x €Ki, 8,(K2) < 5(K1, K.
Notice that (py, g1) € Ly x L, and so, dist(L;, L,) = dist(K;, K»). By an equiv-
alent argument of Theorem 3.3 of [17], (L, L,) is bounded, closed, convex and
proximinal. We assert that 7T is cyclic on L; U L,. To this end, assume that x € L.
Since (L, L,) is proximinal, there exists y € L, such thatd(x, y) = dist(A, B). Let
v € L,. Because of the fact that T is cyclic relatively nonexpansive,

d(Tx,Tv) =d(x,v) =é:(K>) =

1+ A
( ; )S(Kl, K>),

and so, T(K>) € Z(Tx; S25(K 1, K»)) N K. Put

K} = #(Tx; a —;A)S(Kl, ) (K1,

and let K} is the set of all proximal points of Kj. Then (Kj, K;) is bounded,
closed, convex, proximinal and T'-invariant. Minimality of (K, K,) ensures that

K| = K\, K} = K». Therefore, %(Tx; @S(Kl, K2)> C Ky, that is, 87,(Ky) <
@S(K], K»). Hence, Tx € Ly and so T (L) € L,. Equivalently, we can see that
T (L,) € L, which implies that T is cyclic on L; U L,. Again, by the minimality of
(K1, K,) we conclude that L; = Ky and L, = K,. Thus 6,(K>) < @S(Kl, K»)
for any x € K; which deduces that

1+2)
8(K17K2) = Sup SX(KZ) S B(Klsz)a
xek,
which is a contradiction. This completes the proof. O

9.3.2 Cyclic Kannan Contractions

Recently, the class of Kannan contraction self-mappings was generalized as follows:

Definition 9.10 ([33]) Let (A, B) be a nonempty pair of subsets of a metric space
(X,d). Amapping T: AU B — A U B is said to be the cyclic Kannan contraction
if T is cyclic and

d(Tx,Ty) <eld(x,Tx)+d(y, Ty)} + (1 — 2a)dist(A, B), (9.6)

for some « € [0, %) and for all (x, y) € A x B.



194 M. Gabeleh

The existence, uniqueness and convergence results of a best proximity point for
the cyclic Kannan contraction mapping 7: AUB — AU B, where (A, B) is a
nonempty closed and convex pair in a uniformly convex Banach space X, was proved
in [33].

To extend this conclusion to geodesic metric spaces, we need the following con-
cept.

Definition 9.11 ([38]) A nonempty pair (A, B) in a metric space (X, d) is said to
satisfy the property UC if the following holds: If {x,} and {z,} are sequences in A
and {y,} is a sequence in B such that

lim d(x,, y,) = dist(A, B) = lim d(z,, y.),
n—00 n—0oQ

then lim,,_, o d(x,, z,) = 0.

It was announced in [11] that if (A, B) is a nonempty and closed pair of subsets
of a uniformly convex Banach space X such that A is convex, then (A, B) has the
property UC (see Lemma 3.8 of [11]). Other interesting examples can be found in
[38].

Theorem 9.7 ([19, Theorem 3.1]) Suppose that X is a reflexive and strictly convex
geodesic metric space and suppose (A, B) is a nonempty pair of subsets of X such
that A is closed and convex. Let T : AU B — A U B be a cyclic Kannan contraction.
If the pair (A, B) has the property UC, then T has a unique best proximity point in
A.

Proof Letr := ﬁ Thenr € (0, 1). Now, foreachx € AU B andn € N, we have
d*(Tanlx’ TZnX) S a[d*(TZIlex’ T2n71x) + d*(T2n71x’ T2nx)]’
and so

d*(Tanlx’ T2nx) < ; - d*(T2n72x’ T2nflx)
—
— rd*(T2n72x7 T2n71x)

< " la@* (x, Tx).
Thus, for each (x, y) € A x B and n € N, we conclude that

d*(T2nx, T2ny) S a[d*(TZn—lx, T2l’lx) + d*(Tzn_ly, T2ny)]
< alr? 7t (x, To) + 727 d* (v, Ty)]
= or® '[d*(x, Tx) + d*(y, Ty)l. 9.7)

Suppose that x € A is an arbitrary but fixed elementin A. Fix/ € Nandletm =1 4k
with k € N. It now follows from the relation (9.7) that
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d*(szx, T2H—lx) — d*(TZI(Tzkx), TZI(TX))
< ar=a* (T%x, T %) + d*(Tx, T*x)].

By Lemma 3 of [33], we have d*(T?*"x, T*"*'x) — 0. So, we have
M (x) := sup{d*(T*x, T*Tx) + d*(Tx, T?x) : k € N},

exists. Therefore, we have d*(T?"x, T*+1x) < ar? ="M (x). Now, for each n € N,
there exists /(n) € Nsuchthat T%x € Z(T?™+x; dist(A, B) + 1) foralll > I(n).
If we set y, := T*™*1x, theny, € Band T*x € B(y,; dist(A, B) + 1) foralll >
I(n).Put%, .= B(y,; dist(A, B) + %) andset 2, =AN% and 9, .= Y,_1NE,
for all n > 2. Hence, for each n € N, Z, is nonempty bounded and closed subset of
X and by the fact that X is strictly convex metric space, every &, is also convex.
Moreover, since X is reflexive, we conclude that ),y %, is nonempty. Assume that
p € ﬂneN D,. Thus d(y,, p) — dist(A, B). Besides, we have

lim d(y,, Ty,) = lim d(T*®*x, T 2x)

< limsupd(T*'x, T**'x) = dist(A, B),

n—o0o

which implies that d(y,, Ty,) — dist(A, B). Since (A, B) has the property UC, we
must have d(Ty,, p) — 0 or Ty, — p. On the other hand, we have
d(p, Tp) = lim d(Ty,, Tp)
n—0oQ
< lim a[d(yn, Ty,) +d(p, Tp)]+ (1 — 2a)dist(A, B)
n—00
=ad(p, Tp) + (1 — a)dist(A, B).
Thend(p, Tp) = dist(A, B), thatis, p € A is a best proximity point of the mapping
T.

The uniqueness of the best proximity point for the mapping 7 in A can be obtained
similarly from Theorem 5 of [33]. This completes the proof. (]

9.3.3 Cyclic Relatively Kannan Nonexpansive Mappings

Here, we generalize the class of Kannan nonexpansive self-mappings as below.

Definition 9.12 Let (A, B) be anonempty pair of subsets of a metric space (X, d). A
mapping T: AU B — A U Bissaidtobe the cyclic relatively Kannan nonexpansive
mapping if T is cyclic and, for all (x, y) € A x B,

d(Tx,Ty) =dist(A, B) if d(x,y) = dist(A, B), (9.8)
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1
d(Tx,Ty) < S{d(x, Tx) +d(y. Ty)} if d(x.y) > dist(A, B). (9.9)

In special case, if A = B, then we get the class of Kannan nonexpansive self-
mappings.

We also say that T is the strongly cyclic relatively Kannan nonexpansive mapping
if T is cyclic which satisfies the condition (9.8) and

d(Tx,Ty) <min{d(x, Tx),d(y, Ty)} if d(x,y) > dist(A, B). (9.10)

In this situation if A = B, then T is said to be the strongly Kannan nonexpansive
self-mapping.

Obviously, the class of cyclic relatively Kannan nonexpansive mappings contains
the class of strongly cyclic relatively Kannan nonexpansive mappings.

In order to study the existence of best proximity points for cyclic relatively Kan-
nan nonexpansive mappings in geodesic spaces, we recall the following geometric
concept which was introduced in [1].

Definition 9.13 A convex pair (K|, K>) in a geodesic space X is said to have the
proximal quasi-normal structure (PQNS) if for any bounded closed and convex
proximinal pair (H;, Hy) C (K, K») for which dist(H,, H,) = dist(K, K;) and
8(Hy, Hy) > dist(H;, H»), there exists (p1, p2) € Hy x H; such that

d(p1,y) <d8(Hy, Hy), d(x, py) <8(Hy, Hy)

for all (x,y) € H; x H;.

It is remarkable to note that, for a convex subset K of a geodesic space X, the
pair (K, K) has the PQNS if and only if K has quasi-normal structure in the sense
of Definition 9.2. Also, it is clear that

PNS = PQNS.

To describe our main results of this section, we need the following important
lemma.

Lemma 9.3 ([1,Lemma3.7]) Let (K1, K») be a nonempty pair in a geodesic metric
space (X, d). Then
3(Ky, K») = §(con(K), con(K»)).

Proof We have to prove that §(con(K), con(K,)) < §(Kj, K»). Let x € K. For
all y € K| we have y € B(x; 8,(K1)). Then K| C ﬂxekz PB(x; 5,(Ky)) and hence
con(K;) C ﬂxeKz HB(x; 8,(K1)). Now if z € con(Ky), it is easy to see that con(K>)
C A(z; (K4, K»)). Thus we have
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con(Ky) € () Bz s(Ki. K2)),
zecon(Kp)
and the result follows. This completes the proof. (I

‘We now prove the following existence theorem.

Theorem 9.8 Let (X, d) be a reflexive and Busemann convex space and let (A, B)
be a nonempty closed and convex pair of subsets of X such that A is bounded. Assume
T : AUB — AU B isa cyclic relatively Kannan nonexpansive mapping. If (A, B)
has the PQNS, then T has a best proximity point.

Proof By Lemma 9.2, there exists a pair (K, K») € (Ao, By) € (A, B) which is
minimal with respect to being nonempty, bounded, closed, convex and T -invariant
pair of subsets of (A, B) such that dist(K|, K;) = dist(A, B). Now, let r be a real
positive number such that r > dist(A, B) and let (p, g) € K| x K, be such that

d(p,q) =dist(A, B), d(p,Tp)<r, d(Tq,q) <r.
Define
Ki={xeK;:dx,Tx)<r}, Ki={xeK,:d(Tx,x)<r},

and set
C] :=con(T(K7)), C5:=con(T(K3)).

Now, we claim that T is cyclic on C] U Cj. First, we show that C| € KJ.
Let x € C{ be an arbitrary element. If d(Tx, x) = dist(A, B), then x € K3. So
assume that d(Tx, x) > dist(A, B). Put s := sup{d(Tw, Tx) : w € K{}. Then we
have T (K|) € %(Tx; s). This implies that

Ci =con(T(K()) € Z(Tx;s).

Since x € C{, we have d(Tx, x) < s. By the definition of s, for each ¢ > 0 there
exists w € K| such that s — & < d(Tw, Tx). Therefore, we have

d(Tx,x)—e <s—e=<d(Tw,Tx)
1
< E[d(w’ Tw)+d(Tx,x)]

IA

1 1
Ed(Tx, x)+ Er.
Thereby, d(T x, x) < r 4+ 2¢ which implies that x € Kj. Thus C{ € K7 and so

T(C}) € T(K5) S con(T(K5)) = Cj.
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By a similar manner, we can see that 7(C5) € C, thatis, T is cyclic on C{ U Cj.
We now prove that §(C{, C3) < r. It follows from Lemma 9.3 that

8(CY, C3) = §(con(T (K1), con(T (K3)))
= 8(T (K1), T(K3)
=sup{d(Tx,Ty) :x € K{,y € K}}

1 .
< sup {E[d(x, Tx)+d(Ty,y)l:x € K{,ye€ Kﬁ}

<r.
Because of the fact that p € K{, ¢ € K} and d(p, q) = dist(A, B), we obtain
dist(A, B) < dist(C3, C}) <d(Tq, Tp) = dist(A, B),
that is, dist(C5, C7) = dist(A, B). Put
ro = inf{d(x, Tx) : x € K; U K3}.
Then ry > dist(A, B). Let {r,} be anonnegative decreasing sequence such thatr, —
ro. Thus {(Cy", C3")} is a descending sequences of nonempty, bounded, closed and

convex pair in X for which (C}", C3') € (K>, K,) for all n € N. It follows from the
reflexivity of the geodesic space X that

o0 o0
cr=(\Cr#2. Cr=(\Cy #2.
n=1 n=1

By a similar argument of Theorem 9.6, the pair (C5’, C{°) is T-invariant with
dist(Cy’, C{") = dist(A, B). Using the minimality of (K, K;), we must have C;’ =
K, and Cl”’ = K,. Thus d(x,Tx) <rg for all x € K; UK,. Now assume that
ro > dist(A, B). By the fact that (A, B) has PQNS, there exists (p1, q1) € K1 x K»
such that

d(p1,y) <38(Ki, Kz) <ro, d(x,q1) <38(Ky, K2) < ro,
for all (x, y) € K; x K». This ensures that
d(p1, Tp1) <8(Ky, Ky) <ro,  d(Tqi,q1) <3(Ky, Kz) <ro,
which is impossible and so ry = dist(A, B). In this case, we conclude that

d(x,Tx) =dist(A, B) =d(Ty,y), V(x,y) € K1 x K3,
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that is, every point of K| and K is a best proximity point for the mapping 7. This
completes the proof. O

The following new fixed point result is a straightforward consequence of Theorem
9.8 which is an extension of Theorem 9.4 due to Wong.

Corollary 9.1 Let A be a nonempty bounded closed and convex subset of a reflexive
and Busemann convex space (X, d). Assume T : A — A is a Kannan nonexpansive
mapping. If (A, B) has the quasi-normal structure, then T has a unique fixed point.

The following example shows the usability of Theorem 9.8.
Example 9.4 Let X = R? and d be the river metric on X defined with

[y1 — y2l, if x; = x2,

d((x1, y1), (x2, 2)) = )
|x1 — x2| + [yl + |y2l, ifx1 # x2.

It is well known that (R?, d) is a reflexive and Busemann convex space (see [14] for
more information). Suppose A = {(0,x) : 0 <x < %} and B={(1,y):0<y<
1}. Then (A, B) is a nonempty bounded closed and convex pair and it is easy to see
that dist(A, B) = 1. Moreover, we have

1
Apg=A, Bo={(1,y)30§y§§}-

Now, define the cyclic mapping T : AUB — AU B with
T0.x)=(1.x%), T,y =0y,

where (x, y) € [0, %] x [0, 1]. Then, forallx = (0,x) € Aandy = (1,y) € B, we
have

d(Tx,Ty) =d((1,x%),0,y) =1+x*+y

%{(1 +x 4+ x3) 4+ (1 +2y)}

IA

1

E{d((O, x), (1, x%) +d((1, y), (0, y))}
1

= 7 ldx. Tx) +d(y, Ty)},

which concludes that T is a cyclic relatively Kannan nonexpansive mapping. Besides,
since (A, B) is compact and convex pair, then (A, B) has the PNS and so has the
PQNS. Therefore, all of the conditions of Theorem 9.8 hold and T has a best prox-
imity point which is the point ((0, 0), (1,0)) € A x B.
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9.4 Structure of Minimal Sets and Min-Max Property

Let (X, d) be areflexive and Busemann convex space and let (A, B) be a nonempty
closed and convex pair of subsets of X such that Aisbounded.Let7 : AUB — AU
B be acyclic mapping. We denote by X7 the setofall (K, K») € (Ao, Bg) € (A, B)
which is minimal with respect to being nonempty closed convex and T -invariant such
that

dist(K;, K,) = dist(A, B).

We mention that from Lemma 9.2 if the cyclic mapping T satisfies the condition
d(Tx, Ty) =dist(A, B) for any (x,y) € A x B with d(x, y) = dist(A, B), then
Xr £ .

The next geometric notion was introduced in [35].

Definition 9.14 Let (A, B) be a pair of nonempty subsets of a metric space (X, d)
with Ag # @. The pair (A, B) is said to have the P-property if

d(xy, y1) = dist(A, B)

= d(x1,x2) =d(y1, y2),
d(xa, y2) = dist(A, B) (x1, %2) 1, y2)

where x1, x, € Ag and y;, y» € By.

To present an example of the pairs having the P-property, we need the following
concept.

Definition 9.15 For two geodesic segments [x, y] and [z, w] in a uniquely geodesic
space (X, d), we say that [x, y] is parallel to [z, w] and we write [x, y]||[z, w]
provided that

d(x,z) =d(y,w) =d(mi, ma),

where m; == Jx @ 3y and m; = 3z @® jw.
The next interesting result holds in the setting of Busemann convex spaces.

Lemma 9.4 ([8]) Let (X, d) be a Busemann convex space and x,y,z,w € X so
that [x, yll|[z, w]. Then [x, z]||[y, w].

‘We now state the following conclusion related to the P-property.

Proposition 9.2 ([21], Lemma 4.3) Let (A, B) be a nonempty closed and convex
pair in a reflexive and Busemann convex space X so that A is bounded. Then (A, B)
has the P-property.
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Proof From Lemma 9.1, (Ay, By) is nonempty bounded closed and convex. Let
X1,Xy € Ag and y;, y» € By be such that d(x;, y;) = dist(A, B) for i =1, 2. Set
mp = %xl &) %xz and m, := %yl (&) %yz. We have

1
dist(A, B) = d(my, ma) = Zld(x1, y1) +d(x2, y,)] = dist(A, B),

which implies that [x, x2]||[y1, ¥2]. It now follows form Lemma 9.4 that [x;, y]|
[[x2, y2] and so
d(x1, x2) = d(y1, y2) = d(m), m}),
1

wherem| 1= 5x; @ % yiandm) 1= %xz ® % ¥ and the result follows. This completes

the proof. (I

Definition 9.16 Let (X, d) be areflexive and Busemann convex space and let (A, B)
be a nonempty, closed and convex pair of subsets of X such that A is bounded.
Suppose T : AU B — A U B is a cyclic relatively Kannan nonexpansive mapping.
The pair (A, B) has the H-property if, for any (K, K») € X7, we have

max{diam(K), diam(K»)} < §(Ky, K>).

In what follows, we provide some sufficient conditions for the H-property. To
this end, we need the following requirements.

Definition 9.17 ([12]) Let (A, B) be anonempty pair of sets in a metric space (X, d).
A point p in A (g in B) is said to be a diametral point with respect to B (w.r.t. A) if
§,(B) =48(A, B) (3,(A) =48(A, B)).

Lemma 9.5 Let (X, d) be a reflexive and Busemann convex space and let (A, B) be
a nonempty closed and convex pair of subsets of X such that A is bounded. Suppose
T : AU B — AU B is a strongly cyclic relatively Kannan nonexpansive mapping.
Let (K1, K;) € 1. Then each pair (p,q) € K1 x Ky with d(p, q) = dist(A, B)
contains a diametral point (with respect to (K1, K»)).

Proof Let (p,q) € K| x K5 be such that d(p, g) = dist(A, B). Put r; :=§,(K>)
and r, := §,(Ky). Suppose that (p, g) is a nondiametral pair. Then we have r :=
max{r, 2} < §(K, K»). Note that, from Lemma 9.2, the pair (K, K>) is proximinal
and

Ky =con(T(Kz)), K> =rcon(T(K1)).

Let
G (K2) = Ki [ |(Neek, B(x; 1)), (K1) o= Ko [ |(Nek, Blx; 1)),

Then (p, g) € C,(K2) x G, (K1) and (C,(K3), G, (K1) S (K, K3) is nonempty
closed and convex. Besides, it is easy to verify that
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(u,v) € Cr(Ky) x Co(Ky) <= Ky € Blu;r), Ky S B(v;r).
Furthermore, we have
dist(C,(K2), C (K1) = d(p, q) = dist(K, K3) < dist(C+(K3), Cr (K1),

and this concludes that dist(C,(K3), C,(K)) = dist(K, K»)(= dist(A, B)). We
now assert that 7 is cyclic on C,(K;) U C,(Ky). Let u € C,(K3). Since T is a
strongly cyclic relatively Kannan nonexpansive mapping, for all v € K, we have

d(Tu, Tv) < max [ min{d(u, Tu), d(v, Tv)}, dist(A, B)} <r

which ensures that Tv € Z(Tu; r). Hence T (K,) C A(Tu;r) and so K; = con
(T(K»)) € B(Tu;r),thatis, Tu € C,.(K;). Therefore, T (C,(K3)) € C,(Ky).Sim-
ilarly, we have T (C,(K;)) € C,(K3), which implies that T is cyclic on C,(K,) U
C,(K). Again, by the minimality of (K, K,), we obtain

C (K =K1, G (K) =K.

So, K| C mvng P (v; r). Then, for each u € K| we have §,(K,) < r. Hence we
have
(K1, K>) = sup 8,(K2) <,

uek

which is impossible because of the fact that » < (K, K). This completes the
proof. (]

Proposition 9.3 Let (A, B) be a nonempty, bounded, closed and convex pair of
subsets of a Busemann convex space X and T : AU B — A U B be a strongly cyclic
relatively Kannan nonexpansive mapping. If X is uniformly convex, then (A, B) has
the H-property.

Proof Let (K, K;) € X1 be such that diam(K;) > §(K;, K»). Then there exist
X1, X € Ky suchthatd(xy, xp) > %S(Kl, K>). Since the pair (K, K3) is proximinal,
we can find the elements y;, y, € K, sothatd(x;, y;) = dist(A, B)(= dist(Ky, K3))
for i = 1,2. From Proposition 9.2, the pair (K|, K») has the P-property which
ensures that d(xy, x) = d(y1, y2) and so d(yy, y2) > %S(Kl, K5). Put

1 1 1 1
my = Exl @ 5)71, my = Exz Y 5)’2-

Then (m, m;) € K; x K, and, by the fact that X is a Busemann convex space, we
have

1 1 1 1 1 .
dimy,mp) =d (Exl @ 391 3%2 @ §y2> < E[d(m, y1) +d(x2, y2)] = dist(A, B).
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Now, for all y € K,, we have
1
d(x1,y) <8(Ky, Kr), d(xz,y) <8(Ky, Ko), d(xi,x2) > 53(1(1, K»).

Since X is uniformly convex, for e = % there exists n € (0, 1] for which
dimy,y) < (1 —-n)d(Ky, Kz), VyeK,

and so §,,,(K2) < (1 —n)d(K1, K2) < §(Ky, K). Equivalently, we can see that
8m, (K1) < 8(K1, K»). Hence, the proximal point (m;, m;) € K; x K, is a non-
diametral pair which is a contradiction by Lemma 9.5. By a similar argument, if
diam(K») > §(Ky, K>), then we get a contradiction. U

Motivated by the results of a recent paper of the current author [22] which was
discussed on the structure of minimal sets for cyclic relatively nonexpansive map-
pings, we introduce the following constant for cyclic relatively Kannan nonexpansive
mappings.

Definition 9.18 Let (X, d) be areflexive and Busemann convex space and let (A, B)
be a nonempty disjoint closed and convex pair of subsets of X such that A is bounded.
LetT : AU B — AU B be a cyclic relatively Kannan nonexpansive mapping and
(A, B) has the H-property. We define

max{diam(K), diam(K>)}
§(Ky, K3)

vr ::inf{ :(Kl,Kg)eET}.

It is clear that vy € [0, 1].

Proposition 9.4 Let (A, B) be a nonempty, disjoint, bounded, closed and convex
pair of subsets of a Busemann convex space X andT : AU B — A U B be a strongly
cyclic relatively Kannan nonexpansive mapping. If X is uniformly convex, then vr =

0.

Proof From Proposition 9.3, (A, B) has the H-property. We consider two following
cases:
Case 1. If vy = 1, then, for any (K|, K;) € X7, we have

max{diam(K), diam(K»,)} = §(Ky, K>3).

We may assume thatdiam(K ;) < diam(K>).Lety;, y» € K, besuchthatd(y, y;) >
%diam(Kz).It follows from the proximinality of (K, K;) that there exist x;, x, € K
so that d (x;, y;) = dist(Ky, K,) fori = 1, 2. Using Proposition 9.2, we observe that
the pair (K, K;) has the P-property and so d(xy, x2) = d(y1, y2). Now, for any
x € Ky, we have
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d(x,y1) < 8(Ky, Kr),
d(x,y2) < (K, K»),
d(y1, y2) > 3diam(K;) = 38(Ky, K).

Putm, := %xl (&) %yl and m, := %xz (&) %yz.Then (my, my) € Ky x K, and, by the
fact that X is Busemann convex, d(m, m») = dist(A, B). In view of the fact that X
is uniformly convex, we obtain

max{8,, (K2), 8, (K1)} < 8(K1, K3),

which is impossible since from Lemma 9.5, the pair (m,, m,) contains a diametral
point.

Case 2. Now, assume that 0 < vy < 1. Then for any (K, K,) € ¥ with
8(Ky, K,) > dist(K, K,), we have

vrd (K, K») < max{diam(K), diam(K>)}.

By a similar manner of the Case 1, we can find a point (m, m;) € K| x K, with
d(my, my) = dist(K;, K») such that

max{dy, (K2), 8, (K1)} < 8(K1, K2)

and this is a contradiction by Lemma 9.5. Therefore, we must have vy = 0. This
completes the proof. (I

We now ready to state the following best proximity point theorem for cyclic
relatively Kannan nonexpansive mappings.

Theorem 9.9 Let (X, d) be a reflexive and Busemann convex space and (A, B) be a
nonempty disjoint closed and convex pair of subsets of X such that A is bounded. Sup-
posethatT : AU B — AU B is a cyclic relatively Kannan nonexpansive mapping.
If vr = 0, then T has a best proximity point.

Proof Let ¢ > 0 be given. Because of the fact that vy = 0, there is an element
(K1, K,) € X7 for which

max{diam(K), diam(K>)} e
5(K1. Ka) S5 B

Thus we must have max{diam(K), diam(K;)} < ¢ for all ¢ > O which implies
that diam(K;) = diam(K;) = 0. Let K; = {p}. Since (K, K») is T-invariant and
dist(Ky, K») = dist(A, B), K, = {Tp} and so d(p, Tp) = dist(A, B), thatis, p €
K is a best proximity point for the mapping 7". This completes the proof. ]

By applying Proposition 9.4 and Theorem 9.9, the next result concludes, imme-
diately.
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Corollary 9.2 Let (X, d) be a reflexive and Busemann convex space and (A, B) be
a nonempty disjoint closed and convex pair of subsets of X such that A is bounded.
Suppose that T : AU B — A U B is a strongly cyclic relatively Kannan nonexpan-
sive mapping. If X is uniformly convex, then T has a best proximity point.

Here, we present a notion of min-max property for cyclic mappings.

Definition 9.19 ([22]) Let (X, d) be a reflexive and Busemann convex space and let
(A, B) be a nonempty disjoint closed and convex pair of subsets of X such that A
is bounded. Assume that 7 : AU B — A U B is a cyclic mapping. We say that the
pair (A, B) has the min-max property if, for any pair (K, K») € Zr,

(K1, K3) = dist(Ky, K>).

It is clear that, if in above definition the pair (A, B) has the min-max property,
then the mapping 7 has a best proximity point. So, it is interesting to find some
sufficient conditions to ensure that a consider pair having the min-max property.

Theorem 9.10 Let (X, d) be a reflexive and Busemann convex space and (A, B) be
a nonempty disjoint bounded closed and convex pair of subsets of X Suppose that
T :AUB — AU B isa cyclic Kannan contraction mapping. Then (A, B) has the
min-max property.

Proof Let I denote the set of all nonempty closed convex and T -invariant pairs
(E,F) C (A, B). Then (A, B) € I'andso I" # @. Reflexivity of the geodesic space
X implies that I" has a minimal element. Assume that I'; denotes the set of all
(Hi, Hy) € (A, B) which is minimal with respect to being nonempty closed convex
and T -invariant. We prove that I’y = X7. It is sufficient to show that X D 7. Let
(H;, H) € I'r. We assert that

§(Hy, Hy) = dist(A, B)

and this ensures that the pair (A, B) has the min-max property. As in the proof of
Lemma 9.2, we have

con(T'(Hz)) = Hy, con(T(Hy)) = H.
Leta € H; be an arbitrary element. Since T is a cyclic Kannan contraction, we have

d(Ta,Ty) < a{d(a, Ta) +d(y, Ty)} + (1 — 2a)dist(A, B)
< 2a8(Hy, Hy) + (1 — 2a)dist(A, B)

for some o € [0, %) and for all y € H, and so

Ty e %’(Ta; 2a8(Hy, H) + (1 — 2a)dist(A, B))
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for any y € H,. This implies that
H, = con(T (Hy)) € %(Ta; 2a8(Hy, Hy) + (1 — 2a)dist(A, B)).
Hence we have
dra(Hy) < 2a8(Hy, Hy) + (1 — 2a)dist(A, B), Va € H,,
and so

8(Hy, Hy) = §(H,,con(T (H,))) = 6(H;, T(H;)) (by Lemma 9.3)
= su}}; d7q(Hy)

< 2a8(Hy, Hy) + (1 — 2a)dist(A, B).

Therefore, §(H;, H,) = dist(A, B) and thus dist(H;, H,) = dist(A, B), that is,
(Hy, Hy) € X7 and the result follows. This completes the proof. O
The next corollary is a straightforward consequence of Theorem 9.10.

Corollary 9.3 Every cyclic Kannan contraction mapping defined on a union of
nonempty, disjoint, bounded, closed and convex subsets of a reflexive and Busemann
convex space X has a best proximity point.

Remark 9.1 By comparing Theorem 9.7 and Corollary 9.3 we find that the pair
(A, B) in Corollary 9.3 does not have the condition of property UC but we need
the boundedness condition of the pair (A, B), whereas in Theorem 9.7 we used the
property UC in the process of the proof but without using the boundedness of neither
A nor B.

Theorem 9.11 Let (X, d) be a reflexive and Busemann convex space and (A, B) be a
nonempty closed and convex pair of subsets of X such that A is bounded. Suppose that
T : AU B — AU B is a strongly cyclic relatively Kannan nonexpansive mapping.
If the pair (A, B) has the PNS, then (A, B) has the min-max property.

Proof Let (K, K») € Xr.Ifdist(K|, K») < §(K}, K»), then, by the fact that (A, B)
has the PNS, there exists a point (p, g) € K| x K, suchthatd(p, q) = dist(K;, K3)
and

max{$,(Kz), 8,(K1)} < §(K1, K2).

From Lemma 9.5, we see that the pair (p, ¢) contains a diametral point with respect
to 8(K, K»), which is a contradiction. So we must have §(K, K,) = dist(K;, K>)
and the result follows. This completes the proof. (I
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9.5 On Dropping of PQNS for Cyclic Relatively Kannan
Nonexpansive Mappings

In the current section of this chapter, we provide some best proximity point theorems
for cyclic relatively nonexpansive mappings but without the essential condition of
PQNS which was used in Theorem 9.8. We do that by considering some assumptions
on the considered cyclic mapping.

Before, we state the main conclusions of this section, we recall the following
equivalent of closed and convex hull of sets in geodesic spaces.

Lemma 9.6 ([6]) Let A be a nonempty subset of a geodesic space X. Let 4, (A)
denote the union of all geodesic segments with endpoints in A. Recursively, for each
n > 2, put9,(A) = 4% (4,_1(A)). Then we have

con(A) = |_J%.(A).
n=1

Remark 9.2 ([16]) It is worth noticing that in a Busemann convex space X the
closure of con(A) is convex and so, coincides with con(A).

Theorem 9.12 Let (X, d) be a reflexive and Busemann convex space and (A, B) be
a nonempty closed and convex pair of subsets of X such that A is bounded. Assume
that T : AU B — AU B is a cyclic relatively Kannan nonexpansive mapping such
that

d(T*x,Tx) <d(x,Tx), Yx € AUB with dist(A, B) <d(x,Tx). (9.11)

Then T has a best proximity point.

Proof From Lemma 9.2 Y7 is nonempty. Let (K, K;) € X7. Consider an arbi-
trary element x* € K| and suppose d(x*, Tx*) :=r. If r = dist(A, B), then x is
a best proximity point for the mapping 7 and we are finished. So assume that
r > dist(A, B). Define

H ={xeK|:dx,Tx) <r}.

Then x* € H,. Moreover, for y* := Tx* € K, we have
d(y*, Ty*) = d(Tx*, T*x*) < %{d(x*, Tx*) +d(Tx*, T*x")},
which deduces that d(y*, Ty*) < d(x*, Tx*) < r. Now define
Hy:={yeK,:d(y,Ty) =r}.

From the aforesaid discussion, y* € H; and thus H, # &. Let
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G, :=con(T(H,)), G,:=con(T(H;)).

We assert that G; € H;. Suppose p € 4 (T (H,)) and ¢ > 0 is given. Then there
exist#; € [0, 1] and y;, y, € H; for which

dip,tuiTy1 ® (1 —1)Ty) < e.
This implies that

dp,Tp) <d(p,tTy1 (1 —t)Ty) +dt,Ty1 ® (1 —t1)Ty,, Tp)

<e+td(Ty, Tp)+ (1 —t1)d(Ty,, Tp)

t (1—1)
<e+ El{d(yl, Ty) +d(p. Tp)} + — L Ad(y2. Tyo) +d(p. Tp))
<

L (=Y L )
e+ —r r4+ - , .
<et o > 54, Tp

Therefore, d(p, Tp) < 2¢ +r. Since ¢ > 0 is arbitrary chosen, we must have
d(p, Tp) < r.Thus p € H;.Againby the fact that p is arbitrary chosen, we conclude
that 4, (T (H,)) C H;. Similarly, we can see that

(T (H) = % (%(T (H)) € H,.

Continuing this process and by induction, we obtain ¢, (T (H,)) € H, foralln € N.
This implies that

con(T (Hy)) = | %, (T (H) < | % (T (Hy)) < Hi.

n=1 n=1

Hence, G, =con(T (H,)) € H,. Equivalent argument implies that G, = con
(T (Hy)) € H,. We now have

T(Gy) € T(Hy) < con(T(Hy)) = Ga,
T(Gy) € T(Hy) S con(T (H2)) = Gy,

which ensures that T is cyclic on G| U G. It now follows from the minimality of
(K1, Ky) that G| = K, and G, = K;. Therefore,

Ki=G,  CH CK| = K| =H,
Kr=G,<CH, CK,= K, =H,.

In view of the fact that x* € K| was chosen arbitrarily, we obtain d(x, Tx) = r for
any x € K. Hence, forall y € K, Ty € K| and so
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2 1 2 1
r=d(Ty.T7y) = S{d(y. Ty) +d(Ty. T"y)} = Z{r +r}=r.

Thereby, d(y, Ty) = r forany y € K,. On the other hand, from the condition (9.11),
for any u € K| U K, we have

r=d(Tu, T*u) < d(u, Tu) =r,

which is impossible, This competes the proof. (I
In the setting of normed linear spaces, we obtain the following result.

Corollary 9.4 ([18, Theorem 3.1]) Let (A, B) be a nonempty weakly compact and
convex pair of subsets of anormed linear space X. SupposethatT : AUB — AUB
is a cyclic Kannan nonexpansive mapping such that

IT?x — Tx| < |lx —Tx|, Yx € AUB with dist(A, B) < |lx — Tx|.

Then T has a best proximity point.

Remark 9.3 By comparing Theorems 9.12 and 9.8, we conclude that the considered
pair (A, B) in Theorem 9.12 need not to have the geometric property of PQNS.

Remark 9.4 As we show in the following example, the reflexivity of the Busemann
convex space X in Theorem 9.12 is sufficient but not a necessary condition. Now
it is interesting to ask whether Theorem 9.12 satisfies whenever X is a nonreflexive
Buseamann convex space.

Example 9.5 Consider the nonreflexive Banach space /; and {e,} be the canonical
basis of /. Suppose that

A =con({ez,—1 + e, :n €N}), B =con({es, +ez,41:n €N}).

Then (A, B) is abounded closed convex and proximinal pairin/; withdist(A, B) = 2
and 6 (A, B) = 4. Notice that (A, B) does not the PQNS. Indeed, for all x € A, we
have

k
X = th(eZn,-fl +62nj)7

Jj=1

where ¢; > 0 and Z’;zl t; = 1. Now, if we consider y := Z];=1 ti(eametj) +
enm+j)+1) € B, then we have

k
lx —yll =4 t; =4=8(A,B),

j=1

which concludes that (A, B) does not have the PQNS. Define the cyclic mapping
T:AUB — AU B with
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Then
1
ITx —Tyll=2=< E{le —Tx||+1ly—=Tyl}, Y(x,y) € AxB,

that is, T is a cyclic Kannan nonexpansive mapping. Besides,
|IT?x — Tx|| =2 < |lx — Tx|, Vx € AUB with ||x — Tx|| > dist(A, B).

Notice that 7" has best proximity points which are the points p = e; + ¢, € A and
q=e+e;€B.

As a corollary of Theorem 9.12 we obtain the following fixed point result.
Corollary 9.5 Let (X, d) be a reflexive and Busemann convex space and A be a

nonempty bounded closed and convex subset of X. Assume that T : A — A is a
Kannan nonexpansive mapping such that

d(T*x,Tx) <d(x,Tx), Vx € A with d(x,Tx) > 0.

Then T has a unique fixed point.

By using Theorem 9.12, we give the other sufficient conditions differ from the
condition of PQNS appeared in Theorem 9.8 in order to study the existence of best
proximity points for cyclic relatively Kannan nonexpansive mappings.

Theorem 9.13 Let (X, d) be a reflexive and Busemann convex space and (A, B) be a
nonempty closed and convex pair of subsets of X such that A is bounded. Assume that
T :AUB — AU B isa cyclic relatively Kannan nonexpansive mapping such that
for each nonempty closed and convex pair (Cy, C2) € (A, B) which is T -invariant
and such that §(Cy, Cy) > dist(A, B), we have

inf{d(x, Tx) : x € C;{ U Cy} < §(Cq, Cr). (9.12)

Then T has a best proximity point.
Proof Let (K, K5) € Z7. Then, from Lemma 9.2, we have

con(T (K3)) = Ky, con(T(Kp)) = K.

Note that, if §(K, K») = dist(A, B), then each point of K| U K3 is a best proximity
point of 7" and we are finished.

Let us assume that § (K, K») > dist(A, B). Then there is a point x* € K; U K,
for which r := d(x*, Tx*) < §(K, K;). By a similar argument of Theorem 9.12,
we obtain
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dx,Tx)=r=d(y,Ty), V(x,y) € K; x K».

Let (u, v) be arbitrary chosen in K; x K5. In view of the fact that T is a cyclic
relatively Kannan nonexpansive mapping, we have

d(Tu, Tv) < %{d(u, Tu)+d(w, Tv)} =r.

This implies that

8(T(Ky), T(Ky)) = sup  d(Tu,Tv) <r.
(u,v)eK | x K>

It now follows from Lemma 9.3 that

r < 8(Ky, K2) = 8(on(T (K»)), con(T (K1)))
=8(T (K1), T(K») <,

which is a contradiction. This completes the proof. (]
Ifin the above theorem A = B, then we obtain the following existence and unique-
ness fixed point result in reflexive and Busemann convex spaces.

Corollary 9.6 Let (X, d) be a reflexive and Busemann convex space and A be a
nonempty bounded closed and convex subset of X. Assume that T : A — A is a
Kannan nonexpansive mapping such that for each closed and convex subset C of A
which is T -invariant and diam(C) > 0, we have

inf{d(x, Tx) : x € C} < diam(C).

Then T has a unique fixed point.

9.6 More on Minimal Invariant Pairs for Strongly Cyclic
Relatively Kannan Nonexpansive Mappings

In the latest section of this chapter, we obtain more conclusions related to mini-
mal invariant pairs for the class of strongly cyclic relatively Kannan nonexpansive
mappings.

We begin with the following existence result of approximate best proximity point
sequences for aforesaid mappings.

Lemma 9.7 Let (X, d) be a reflexive and Busemann convex space and (A, B) be
a nonempty closed and convex pair of subsets of X such that A is bounded. Let
T: AU B — AU B be a strongly cyclic relatively Kannan nonexpansive mapping.
Then there exists a sequence {y,} in B such that
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d(y,, Ty,) — dist(A, B).

Proof Suppose that (K|, K;) € X7 and consider a fixed element (x*, y*) € K; X
K5 so that d(x*, y*) = dist(A, B)(= dist(K, K»)). For any « € [0, %), define a
mapping 7, : K} U K; — K; U K, by

T, () (1 =2a)y*®2aTx, if x € Ky, 9.13)
x) = .
“ (1 —-20)x*®2aTx, if x € K.

Since T is cyclic and (K, K») is a convex pair, T, is also cyclicon K; U K;. Besides,
for any (x, y) € K| x K3, we have

d(Tex, Tyy) = d((1 — 2a)y* ® 2aTx, (1 —20)x* @ 2aTy)
<2ad(Tx,Ty)+ (1 —2a)d(x*, y*)
<2amin{d(x, Tx),d(y, Ty)} + (1 — 2e)dist(A, B)
<ald(x,Tx)+d(y, Ty)} + (1 = 2a)dist(A, B),

which ensures that 7, is a cyclic Kannan contraction for all ¢ € [0, %) and so by
Corollary 9.3 it has a best proximity point such as y, € K, thatis, d(yy, To (Ve)) =
dist(A, B). We now have

dist(A, B) < d(Ya> T (Vo))
< d(Va, Ta (Vo)) +d(To(ya), T (o))
= dist(A, B) + d((1 = 2a)x™ @ 2aT (¥a), T (Ya))
<dist(A, B) + (1 = 20)d (x*, T (y4))
< dist(A, B) + (1 — 2a)diam(A).

Letting @« — 17 since A is bounded, we obtain

2 b
d(Vy, Tyy) — dist(A, B),

and hence the lemma follows. This completes the proof. (]
We recall that a subset A of a metric space (X, d) is said to be boundedly compact
if every sequence in A has a convergent subsequence.
The next corollaries conclude, immediately.

Corollary 9.7 Under the assumptions of Lemma 9.7, if moreover B is boundedly
compact and T |p is continuous, then T has a best proximity point.

Corollary 9.8 Let (X, d) be a reflexive and Busemann convex space and let A be
a nonempty bounded closed and convex subset of X. Let T: A — A be a strongly
Kannan nonexpansive mapping, that is,

d(Tx, Ty) < min{d(x, Tx),d(y, Ty)}, ¥x,y € A.
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Then T has an approximate fixed point sequence, i.e., there exists a sequence {x,}
in A such that d(x,, Tx,) — O.

To state the main result of this section, we introduce the following concept.

Definition 9.20 Let (A, B) be a nonempty pair in a metric space (X, d) and T :
AUB — AU B be a cyclic mapping. We say that the pair (A, B) is T-proximal
compact if, for any approximate sequence {x,} in A, there exists a subsequence {x;, }
such that the sequence {(x,,, T x,,)} is convergentin A x B.

For example, if (A, B) is boundedly compact, then, for every cyclic mapping T
defined on A U B, the pair (A, B) is T-proximal compact.

Theorem 9.14 (Compare with Theorem 4.5 of [19]) Let (X, d) be a reflexive and
Busemann convex space and (A, B) be a nonempty closed and convex pair of subsets
of X such that A is bounded, (B, A) is T -proximal compact and satisfies the property
UC. Let T: AU B — AU B be a strongly cyclic relatively Kannan nonexpansive
mapping. Assume that (K, K;) € X1 and {y,} is an approximate best proximity
point sequence in the set K,. Then, for any (x*, y*) € K| x K, with d(x*, y*) =
dist(A, B), we have

max{lim supd(x*, y,), limsupd(Ty,, y*)} = §(K}, K>).

n—oo n—oo

Proof Suppose the contrary. Then there exist a point (p, q) € K| x K, withd(p, q)
= dist(A, B) and r > O withr < §(K, K») such that

max{limsupd(p, y,), limsupd(Ty,, q)} <r.

n—00 n—oo

Since T is a strongly cyclic relatively Kannan nonexpansive mapping,
d(Tyy, T?y,) < min{d (v, Tya), d(Tyn, T?yy)} — dist(A, B).

In view of the fact that (B, A) satisfies the property UC, lim,,_, o d(y,, T?y,) — O.
Put

A = {x € Ky :limsupd(x,y,) <r}, £ :={ye€K,:limsupd(Ty,,y) <r}.

n—oo n—0o0

Then (p,q) € 4 x % which ensures that dist(.%}, %) = dist(A, B). Also,
(A, %) is closed. Moreover, if uy, u, € £}, then, by the fact that X is a Buse-
mann convex space, for all # € [0, 1], we have

limsupd(ru; @ (1 — H)uz, yo) < limsup[rd(uy, yo) + (1 = )d(uz, yo)] < r,

n—o00 n—o00

which implies that tu; @ (1 — H)u, € £ and so %) is convex. Similarly, .% is also
convex. Now, assume that x € .Z]. Then we have
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limsupd(Ty,, Tx) < lim sup min{d(y,, Ty,),d(x, Tx)} =dist(A, B) <r,

n—00 n—00

which deduces that Tx € 4. Thus T (£)) C %. On the other hand, if y € %, then
we have

limsupd(Ty, y,) < limsup[d(Ty, T2y,) + d(T2y,, yn)}

n—oo n—oo
= limsupd(Ty, T*y,)

n—oo

< lim supmin{d(y, Ty), d(Ty, Ty}

n—oo

= dist(A, B) <r,

that is, Ty € %, and so T (%) C %, which ensures that 7T is cyclic on £ U %,.
Thereby, (£, %) is a nonempty bounded closed convex and T-invariant pair
with dist(.Z], %) = dist(A, B). Minimality of (K, K3) deduces that K; = .} and
K, = 4. Since (B, A) is T-proximal compact and the sequence {y,} is an approx-
imate sequence in B, there exists a point (z, w) € K; x K, for which y,, — w
and Ty, — z, where {y,,} is a subsequence of the sequence {y,}. In this case,
d(z,w) = dist(A, B). Now, for all (x, y) € K| x K;, we have

d(x,w) <limsupd(x,y,) <r, d(z,y) <limsupd(Ty,,y) <r,

n—00 n—00

Therefore, we have §,, (K1) = sup, g, d(x,w) < rand$§,(K,) = SUpP ek, d(z,y) <
r and thus
max{d,(K>), 6, (K1)} < r < §(Ky, K2),

which concludes that (z, w) € K| x K, does not contain a diametral point which is
a contradiction with Lemma 9.5. This completes the proof. ]

Theorem 9.15 Under the conditions of Theorem 9.14 if, in addition, y, — q € K,
then T has a best proximity point.

Proof Since (K, K3) is proximinal, there exists a point p € K, suchthatd(p, q) =
dist(A, B). It now follows from Theorem 9.14 that

max{limsupd(p, y,), limsupd(Ty,, q)} = §(K1, K2).

n—0o0 n—oo

Moreover, we have

limsupd(Ty,, q) < limsup[d(Ty,, y») + d(y,, q)] = dist(A, B).

n—oo n—oo

Hence we have
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3(K1, K») = max{limsupd(p, y,), limsupd(Ty,, q)}

n—00 n—o0o

< max{limsup[d(p, g) +d(q, y,)], limsupd(Ty,, q)}

n—00 n—00

= dist(A, B)

and the result follows. This completes the proof. O
The following result is the counterpart of Goebel-Karlovitz lemma [23] for
strongly Kannan nonexpansive mappings.

Corollary 9.9 Let (X, d) be a reflexive and Busemann convex space and A be a
nonempty bounded closed and convex subset of X. Let T: A — A be a strongly
Kannan nonexpansive mapping. Assume that K is a subset of A which is minimal
with respect to being nonempty, closed, convex and T -invariant, and let {x,} be an
approximate fixed point sequence in K. Then

lim d(x*, x,) = lim d(x*, Tx,) = diam(K), Vx* € K.
n—oo n—oQ
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Chapter 10 ®)
On Monotone Mappings in Modular s
Function Spaces

M. R. Alfuraidan, M. A. Khamsi, and W. M. Kozlowski

Abstract Because of its many diverse applications, fixed point theory has been a
flourishing area of mathematical research for decades. Banach’s formulation of the
contraction mapping principle in the early twentieth century signaled the advent
of an intense interest in the metric related aspects of the theory. The metric fixed
point theory in modular function spaces is closely related to the metric theory, in
that it provides modular equivalents of norm and metric concepts. Modular spaces
are extensions of the classical Lebesgue and Orlicz spaces, and in many instances,
conditions cast in this framework are more natural and more easily verified than their
metric analogs. In this chapter, we study the existence and construction of fixed points
for monotone nonexpansive mappings acting in modular functions spaces equipped
with a partial order or a graph structure.
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10.1 Introduction

In this chapter, we study the existence and construction of fixed points for monotone
nonexpansive mappings acting in modular functions spaces equipped with a partial
order or a graph structure. Modular function spaces generalize many classes of func-
tion spaces including L?, I?, Orlicz, Musielak—Oricz, Orlicz—Lorentz, and several
others. We refer the reader to the books by Kozlowski [22] and Musielak [28] and
to the papers [20, 21] for the foundations of the theory of modular function spaces.
The fixed point theory in such spaces, already initiated in [22], has been extensively
investigated since the seminal 1990 paper by Khamsi, Kozlowski, and Reich [18].
The current status of the theory has been comprehensively treated in Kozlowski’s
two survey papers [23, 24] and in the 2015 book by Khamsi and Kozlowski [17].

The fixed point theory for contractive and nonexpansive mappings defined in
Banach spaces has been extensively developed since the mid 1960s. The fixed point
theory has been then extended to general metric spaces and independently to modular
function spaces. We refer the interested reader to [17, Chap.2] or to any standard
textbook on metric fixed point theory, e.g., [11, 14].

In recent years, a new research stream has emerged. This new research is focused
on dealing with fixed point theorems in metric spaces equipped with a partial order.
Ran and Reurings [31] initiated this direction in relation to a class of matrix equations.
The study of these matrix equations is motivated by applications including stochastic
filtering, control theory, and dynamic programming, see the paper by El-Sayed and
Ran [10]. Nieto and Rodriguez-Lopez [29] improved Ran and Reurings fixed point
theorem and used similar arguments to find periodic solutions for a class of differen-
tial equations. In [12], Jachymski provided a more unifying approach to these exten-
sions by equipping metric spaces with graphs rather than with partial orders. Khamsi
and Khan in [13] used this approach to prove the convergence of the Krasnoselskii-
Ishikawa iteration process to fixed points of a monotone nonexpansive mappings
acting in L, i.e., mappings that are both monotone and nonexpansive on compara-
ble (in the sense of partial order) elements. This direction has been further developed
by Bachar and Khamsi [5] for considering common approximate fixed point theo-
rems for monotone nonexpansive semigroups in Banach spaces. Dehaish and Khamsi
proved in [7] analogues of Browder and Gohde fixed point theorems for monotone
nonexpansive mappings acting in uniformly convex hyperbolic spaces and uniformly
convex in every direction Banach spaces. The fixed point results of Ran and Reurings
have been extended by Alfuraidan, Bachar, and Khamsi [2] to pointwise monotone
contractions acting in modular function spaces. Dehaish and Khamsi in their 2016
paper [8] proved the existence of fixed points of monotone p-nonexpansive map-
pings in p-uniformly convex modular function spaces. The graph-focused research
direction, initiated in [12], has been further developed by Alfuraidan and Khamsi [3],
who proved a series of fixed point results for monotone G-nonexpansive mappings
acting in a hyperbolic space with a graph. Also, Alfuraidan in [ 1] proved the existence
of fixed points for G monotone pointwise contraction mappings in Banach spaces
equipped with a graph. For more information on the results in the monotone fixed
point theory, the reader is referred to arecent survey article by Bachar and Khamsi [6].
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In this chapter, we demonstrate the existence of fixed points for monotone p-
nonexpansive mappings acting in a convex and p-a.e. compact subset of a modular
function space L, equipped with a partial order. Our results and methods, inspired
by [13], differ from the fixed point theorems proved in [8] because we do not assume
uniform convexity of p. Also, we introduce for the first time methods of I', non-
expansive mappings into the setting of modular function spaces, hence opening a
new interesting research direction. It is important to keep in mind that the conver-
gence results demonstrated in our paper define algorithms, which can be numerically
implemented.

10.2 Preliminaries

For the basic definitions and properties of modular function spaces, we refer the
readers to the books [17, 22].

Throughout this chapter, A stands for a nonempty set, ¥ a nontrivial o -algebra
of subsets of A, &2 a §-ring of subsets of A such that PN S € & for any P € &
and S € X. We will assume that there exists an increasing sequence {A,} C & such
that A = | J A,. # will stand for the space of all extended measurable functions
f A — [—00, 0o] for which there exists {g,} C &, with |g,| < |f| and g,(t) —
f (), forall t € A, where & stands for the vector space of simple functions whose
supports are in 2.

Definition 10.1 ([17, 22]) A convex and even function p : .#,, — [0, 0o] is called
a regular modular if

(@) p(f) =0implies f =0 p —a.e,;

®) [f (O] < |g@)]| for all 1 € A implies p(f) < p(g), where f, g € M (We
will say that p is monotone);

©) 1fu@®] 11 f@)] forall t € A implies p(f,,) 1 p(f), where f € .y (p has
the Fatou property).

Recall that a subset A € X is said to be p-null if p(glp) = 0 forany g € &£ and a
property holds p-almost everywhere (shortly, p-a.e.) if the exceptional set is p-null.
The notation 1, denotes the characteristic function of the set A. Consider the set

M =\f € M |f()] <00 p—a.el.
The modular function space L, is defined as follows:
L,={fe€;plf)—>0asr— 0}

In the following theorem, we recall some of the properties of modular spaces that
will be used throughout this chapter:

Theorem 10.1 ([17, 22]) Let p be a convex regular modular.
(1) If p(Bfu) — O for some B > 0, then there exists a subsequence { fy} such
that fymy — 0p —a.e.
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Q) If fo = f p—a.e., then p(g) < liminf p(g,).
(3) Recall that p satisfies the A,-type condition if

w (o) = sup {M 0<,o(g)<oo} < 0

p(g)

forany a € [0, +00). If p satisfies the A,-type condition, then we have p(cf,) — 0
if and only if p(caf,) — 0, for any a > 0.

The following definition is needed since it connects the metric properties with its
modular version:

Definition 10.2 ([17, 22]) Let p be a convex regular modular.
(1) {gn} is said to p-converge to g if lim p(g, — g) = 0.
(2) A sequence {g,} is called a p-Cauchy sequence if lim p(g, — gn) = 0.
n,m—o0

(3) A subset C of L, is said to be p-closed if, for any sequence {g,} in C p-
convergent to g implies that g € C.

(4) A subset C of L, is called p-bounded if its p-diameter sup{p(g — h); g, h €
C} < oc.

Note that despite the fact that p does not satisfy the triangle inequality in general,
the p limit is unique and p-convergence may not imply p-Cauchy behavior. But it
is interesting to know that p-balls B,(x,r) = {y € L,; p(x — y) < r} are p-closed
and any p-Cauchy sequence in L, is p-convergent, i.e., L, is p-complete [17, 22].

Using Theorem 10.1, we get the following result:

Theorem 10.2 Let p be a convex regular modular and {g,} C L, be a sequence
which p-converges to g. Then the following hold:

(1) If {gn} is monotone increasing, i.e., g, < gn+1 p-a.e., for any n > 1, then
gy < g p-a.e. foranyn > 1.

(2) If {gn} is monotone decreasing, i.e., g,+1 < g p-a.e. for any n > 1, then
g < g, p-a.e. foranyn > 1.

Next, we discuss a property called uniform convexity which plays an important
part in metric fixed point theory.

Definition 10.3 ([17]) Let p be a convex regular modular.
(1) Letr > 0 and ¢ > 0. Define

f+g

8,(r. £) =inf{1 - % p(T) - (f, g) € D(r, 8)},

where

D(r.e) ={(f.8) e Ly x Ly:p(f) =1, p(g) =r, p(f —g) =er}.

Then p is said to be uniformly convex (UC) if, for every R > 0 and ¢ > 0,
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8,(R,e) > 0.

(2) pissaidtobe (UUC) if, for every s > 0 and ¢ > 0, there exists n(s, &) > 0
such that
8,(R,€) >n(s,e) >0

for R > s.
(3) p is said to be strictly convex (SC) if, for any g, h € L, with

e =pH), plag+—-—a)h)=ap(g+A—-a)o)

for some @ € (0, 1), we have f = g.
Note that the uniform convexity of p easily implies (SC).

Remark 10.1 It is known that, under suitable assumptions, the uniform convexity
of the modular in Orlicz spaces is satisfied if the Orlicz function is uniformly convex
[19, 33]. Examples of Orlicz functions that do not satisfy the A, condition and are
uniformly convex are: ¢; (1) = e/l — || — 1 and @, (1) = ¢ — 1 [26, 27].

Modular functions which are uniformly convex enjoy a property similar to reflex-
ivity in Banach spaces.

Theorem 10.3 ([17, 19]) Let p be a (UUC) convex regular modular. Then L,
has property (R), i.e., every nonincreasing sequence {C,} of nonempty, p-bounded,
p-closed, convex subsets of L, has nonempty intersection.

Remark 10.2 Let p be a (UUC) convex regular modular and K be a p-bounded
convex p-closed nonempty subset of L,. Let {f,} C K be a monotone increasing
sequence. Since order intervals in L, are convex and p-closed, then the property (R)
implies

m{fEKlanf p—ael#o.

n>1

In other words, there exists f € K such that f,, < f p-a.e. forany n > 1. A similar
conclusion holds for decreasing sequences.

The following lemma is useful throughout this chapter:
Lemma 10.1 ([16]) Let p be a (UU C) convex regular modular. If there exists R > 0
and a € (0, 1) with

limsup o(f,) < R, limsupp(g,) <R,

n—oo n—oo

and .
nll)nolop(a fot+ (A —a)g) =R,

then lim p(f, — g,) — 0 holds.
n—00
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The concept of p-type functions will prove to be an important tool dealing with
the existence of fixed points.

Definition 10.4 Let p be a convex regular modular and C be a nonempty subset of
L,. A function 7 : C — [0, 0o] is called a p-type if there exists a sequence {g,,} of
elements of L, such that

t(f) = limsup p(gm — )

m— 00

for any f € C. Let t be a type. A sequence { f,,} is called a minimizing sequence of
T in C if

lim z(f,) =inf{z(f): f € C}.

n—oo

Now, we have the following amazing result about p-type functions in modular
function spaces:

Lemma 10.2 ([16]) Let p be a (UUC) convex regular modular. Let K be a p-
bounded p-closed convex nonempty subset of L. Then any minimizing sequence of
any p-type defined on K is p-convergent. Its limit is independent of the minimizing
sequence.

Before we finish this section, let us give the modular definitions of monotone
Lipschitzian mappings. The definitions are straightforward generalizations of their
norm and metric equivalents.

Definition 10.5 Let p be a convex regular modular. Let K be nonempty subset of
L,. Amapping T : K — K issaid to be monotone if T (f) < T(g) p-a.e. whenever
f < g p-ae.forany f, g € K. Moreover T is called:

(1) monotone p-contraction if T is monotone and there exists K € [0, 1) such

that
p(T(g)—Th) <K p(g—h)

for any g and % in K such that g < h p-a.e.
(2) monotone p-nonexpansive if T is monotone and

p(T(g) —Th) = p(g—h)

for any g and % in K such that g < h p-a.e.
(3) monotone asymptotically p-nonexpansive if T is monotone and there exists
{k,} C [1, +00) such that lim k, = 1 and
n—0oQ

p(T"(g) —=T"(h)) <k, p(g — h)

forany g, h € K suchthat g < h p-a.e.andn > 1.
(4) f € K is called a fixed point of T if T (f) = f.
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10.3 Monotone Nonexpansive Mappings

Note that a monotone p-nonexpansive mapping does not have to be nonexpansive or
even continuous. Hence, standard fixed point theorems as presented in [17] cannot be
applied. Throughout this section, we drop p-a.e. whenever f < gforany f, g € L,.

Definition 10.6 Let C be a nonempty convex subset of L, and T : C — C be a
monotone mapping. Fix A € (0, 1) and fy € C. The Krasnoselskii-Mann iteration
sequence { f,,} of elements { f,,} in C is defined by

Sor1 =2fu + A =0T (fn) (10.1)
foreachn € N.

Let us start with the following lemma which extends the L'-result obtained in
[13] to modular function spaces:

Lemma 10.3 Let p be a convex regular modular, C be a nonempty convex subset
of Lyand T : C — C be a monotone mapping. Fix 1. € (0, 1) and fy € C. Assume
that the Krasnoselskii-Mann iteration sequence { f,,} of elements { f,,} is generated

by (10.1) for any fy € C. If fo < T(fy), then
In = fovt =T (fo) =T (fug1) (10.2)
foreachn e N.
Proof Let us note that, if f < g, then
fAaf+d-Mg<g. (10.3)
Next, let us prove, by induction, that
fn =T (f) (10.4)

foreachn € N.Forn = 1, (10.4) follows from the assumption fy < T (fp). Assume
now that f, < T(f,). Observe that, using the inductive assumption, we get

Jo=xfa + A =0 fu < Afa + A =DT(fo), (10.5)

that is
fo < for1 S T(f). (10.6)

Since T is monotone, it follows that

T(fw) = T(fat1)s (10.7)
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which, combining with (10.6), gives us the required inequality f,+; < T (f,+1)- This
proves (10.4), which in turn allows us to conclude that

Jo=An+ A=) fo Afa+ A =DT(f0) = fus1- (10.8)
Combining (10.8) with (10.6) and (10.7), we get (10.2). This completes the proof.

Note that, if T (fp) < fp holds, then we will have

T(fn+l) =< T(fn) =< fn+l =< fn

foreachn € N.

Theorem 10.4 Let p be a convex regular modular. Let C C E, be nonempty, convex,
p-bounded, compact with respect to the convergence p-a.e. Assume thatT : C — C
is a monotone p-nonexpansive mapping and also there exists fo € C such that fy
and T (fy) are comparable. Let { f,,} be the Krasnoselskii-Mann sequence defined by
the formula (10.1) generated by fy € C, T and ) € (0, 1). Then there exists f in C
comparable to fy such that f is a fixed point of T. Moreover, | f, — fll, — 0 and

fn— [ p-ae.

Proof Without any loss of generality we can assume that fy < T'(fj). From the p-
a.e. compactness of C, it follows that there exists a subsequence {f,,} and f € C
such that f,, — f p-ae.

Now, we claim that f, — f p-a.e. Indeed, since {f,} is nondecreasing from
Lemma 10.3, we get f,, < f for any n; > 1. This implies that f, < f, for any
n > 1.Let g € C be a p-a.e. limit of another subsequence of { f,,}. Then, for the same
reason, we have f, < g for any n > 1. Using the properties of the partial order and
the p-a.e. convergence, we obtain that f < g. Obviously, this implies that f = g.
Therefore, {f,} has one p-a.e. cluster limit which implies {f,} p-a.e. converges
to f. Moreover, we have 0 < f — f, < f — fo € E, and then, by the Lebesgue
dominated convergence theorem [22, Theorem 2.4.7], we have || f, — fll, — O,
which implies that

pB(fu =) —0

for every f > 0. Since T is monotone p-nonexpansive and f, < f, for any n > 1,
we get

p(T(fu) =T(f) =p(fu — 1),
which implies p (T (f,) — T (f)) — 0. Since
forr = =2 — )+ A =T (f) = 1),

we get
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1
1T ) = fllo = T Wnrr = f = 2(fu = Dl

1
< m(”fnﬂ = fllo + AN — Dllp)
for any n > 1 and hence || T (f,) — fll, = 0. So, we have

(T (fu) = f) = 0.

Thus, {T (f,)} p-converges to f and T (f). Therefore, by the uniqueness of the
p-limit, we have T'(f) = f. This completes the proof.

As a consequence of our result we get the following corollary:

Corollary 10.1 Let p be a convex regular modular. Let C C E, be nonempty, con-
vex, p-bounded, compact with respect to the convergence p-a.e. Assume that 0 € C
and T : C — C is monotone p-nonexpansive mapping such that 0 < T (0) (resp.,
T(0) <0). Let {f,} be the Krasnoselskii-Mann sequence defined by (10.1) with
fo = 0. Then there exists f > 0 (resp., f < 0) such that f is a fixed point of T.
Moreover, we have || f, — fll, — Oand f, — f p-a.e.

Next, we discuss the existence of fixed points of monotone asymptotically p-
nonexpansive mappings.

First, recall that a map T is said to be p-continuous if {g,} p-converges to g
implies {7 (g,)} p-converges to T'(g). A similar result for asymptotically nonexpan-
sive mappings in modular function spaces may be found in [16].

Theorem 10.5 Let p be a (UUC) convex regular modular, K be a p-bounded p-
closed convex nonempty subset of L, and T : K — K be a p-continuous monotone
asymptotically nonexpansive mapping. Assume there exists fy € K such that fy <
T (fo) (resp., T(fo) < fo). Then T has a fixed point f such that fy < f (resp.,
f = fo)

Proof Without loss of generality, assume fy < T'(fp). Since T is monotone, the
sequence {T"(fp)} is monotone increasing. Remark 10.2 implies that Ko, = {f €
K : f, < f}isnotempty. Consider the p-type function ¢ : Ko, — [0, +00) defined
by

@(h) = limsup p(T"(fo) — h)

n—oo

for any h € K. Let g9 = inf{ep(h) : h € K5} and {g,} C Ko be a minimizing
sequence of ¢. Lemma 10.2 implies that {g,} p-converges to g € K.

Let us prove that g is a fixed point of 7. First, notice that ¢(T" (h)) < k,, ¢(h)
for any h € Ko and m > 1. In particular, we have ¢(T™(g,)) < k,, ¢(g,) for any
n,m > 1. Clearly, the sequence {T"*”(g,)} is a minimizing sequence in K., for
any p € N. Again, Lemma 10.2 forces {T"*7(g,)} to p-converge to g for any p €
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N. Since T is p-continuous and {T"(g,)} is p-convergent to g, {T"*'(g,)} is p-
convergent to 7'(g) and g. Since the p-limit of any p-convergent sequence is unique,
we must have 7' (g) = g. Since g € K, we have fy < g. This completes the proof.

Next, we discuss another iteration which will generate an approximate fixed point
sequence of a monotone asymptotically p-nonexpansive mapping in modular func-
tion spaces.

Definition 10.7 ([32]) Let p be a convex regular modular, K be a convex nonempty
subsetof L,and T : K — K be amapping. Fix fo € K and« € [0, 1]. The modified
Mann iteration is the sequence { f,,} defined by

Jori=aT"(f) + A —a) fu (10.9)

for eachn € N.
Now, we start by proving some Lemmas which will be helpful.

Lemma 10.4 Let p be a convex regular modular, K be a convex nonempty subset
of L,and T : K — K be a mapping. Let fy € K be such that fo < T (fo) (resp.,
T(fo) < fo). Let{t,} beasequencein [0, 1] and consider the modified Mann iteration
sequence { f,,} generated by fy and « € [0, 1]. Let f be a fixed point of T such that
fo < f (resp., f < fo). Then we have:

(1) fO = f;z =< f (resp., f = fn = fO)

@) T"(fo) = T"(fu) = f (resp., [ = T"(fu) = T"(fo)) for eachn € N.

Proof Without loss of generality, assume fy < T (fp). Since T is monotone and f
is a fixed point of T, we get (2) from (1).

Let us prove, by induction, (1). Indeed, we have fy < T (fo) < T(f) = f since
T is monotone. Using the convexity of the order intervals, we conclude that fj <
f1 < f. Assume that fy < f, < f. Again, using the monotonicity of T, we get

fo=T"(fo) =T"(f) =T"(f) = T,

which implies, by the convexity of the order intervals, that fy < f,+; < f.Byinduc-
tion, we conclude that fy < f, < f for each n € N. This completes the proof.

Lemma 10.5 Let p be a convex regular modular and K be a convex and p-bounded
nonempty subset of L,. Assume that the map T : K — K is monotone asymptotic
nonexpansive with the associated constants {k,} satisfy the condition

Z(k,, —1) < oo.
n=1

Let fy € K be such that fo < T(fo) (resp., T(fo) < fo) and consider the modified
Mann iteration sequence { f,} generated by fyand a € (0, 1). Let f be a fixed point
of T such that fy < f (resp., f < fo). Then lim p(f, — f) exists.

n—00
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Proof Without loss of generality, assume that fy < T'(fy). From the definition of
{fu}, we have

plfor1 = ) =apT"(fi) = H+ A —a) p(fu — )
=ap(T*(fu) =T"() +UA =) p(fu = f)

for any n > 1. Since T is monotone asymptotic nonexpansive, we get

pfur1t = ) <kn p(fu = ) =n =D p(fa = H+p(fa = )

for any n > 1 and hence

p(fusr = ) = p(fa = f) = (kn = 1) 8,(K)

for any n € N, where §,(K) = sup{p(h — g) : h, g € K} is the p-diameter of K.
Hence we have

m—1

poim = ) = 0o = ) < 8,(K) D (knyi = 1)

i=0
for any n, m > 1. If we let m — oo, then we get

lim sup p(fn — £) < p(fa = £) +8,(K) Y (ki = 1)

m— 00 .
=n

for any n > 1. Next, if we let n — oo, then we get

limsup p(f;, — f) < liminf p(f,, — f) 4+ 8,(K) liminf Stk —1)

m— 00 i=n

= liminf p(f, — f).
Therefore, we have

limsup p(fu — f) =liminf p(f, — f).

This completes the proof.

The next result shows that the sequence generated by the modified Mann iteration
almost provides a fixed point. Similar results for such iteration in modular function
spaces may be found in [9, 25].

Theorem 10.6 Let p be a (UU C) convex regular modular, K C L, be a p-bounded
p-closed convex nonempty subset and T : K — K be a p-continuous monotone
asymptotically nonexpansive mapping with the associated constants {k,} satisfy the
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condition

i(k,, —1) < o0.
n=1

Let fy € K be such that fy < T (fo) (resp. T (fo) < fo)andleta € (0, 1). Consider
the modified Mann iteration sequence { f,,} generated by fy and a. Then either { f,,}
is p-convergent or

lim p(fy = T"(f) = 0.
Proof Assume that { f,,} is not p-convergent. Let us prove that
lim o(fy =T"(f) = 0.

Without loss of generality, we assume fy < T (fy). Using Theorem 10.5, there exists
a fixed point f of T such that fy < f. Using Lemma 10.5, we conclude that
lim p(f, — f) exists. Set R = lim p(f, — f). Since {f,} is not p-convergent,
n—o00 n—o00

we have R > 0 and

limsup p(T"(fy) — f) = limsup p(T"(fu) — T"(f))

n—o0o n—o00

=< lim Supkn p(fn - f)

n—oo

= R.
On the other hand, we have

p(for1 = ) ZapT"(f) = H+UA—a) p(fu = f)

for any n > 1. Let % be a nontrivial ultrafilter over N. Then we have
R =1imp(fur1 — f) = o limp(T"(fu) = ) + (1 — ) R.

Since o # 0, we get 1i7m o(T"(f.) — f) = R. Hence, we have
%

R <liminf p(T"(f) = f) = limp(T"(f) — f) < limsup p(T"(fu) = f) < R.

n—o0o
So lim p(T"(f,) — f) = R. Using Lemma 10.1, we conclude that
n—0oQ
lim p(f, = T"(f)) =0,

which completes the proof.
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Remark 10.3 In fact, the modified Mann sequence {f,} is an approximate fixed

point sequence of 7 under suitable conditions. Indeed, assume p satisfies the A,-
type condition and 7 is uniformly p-Lipschitzian, i.e., there exists £ > 0 such that

p(T"(g) = T"(h)) <L p(g—h)
forany g, h € K and n > 1. In this case, we have
lim p(f = T"(f) =0
for any m > 1. Indeed, note that

fn - T(fn)

= o@) p(fa = T"(f) + @@2) p(T"(fa) — T (fu))
< @@ p(fu = T"(f)) +0@2) L p(T"'(fa) = fu)

for any n > 2. From

Tn71 n) — Jn
p(T" ' (fu) = f) Sw@)p (#

< o@p(T" ' (f) = T" " (fu-1) + 0@)p(T" (fa-1) = f)
< 0@ p(fu = fu-1) + @ Q)p(T" " (fu-1) = fu)s

o(fo = fa1) = ap(far = T" N (fum1))

and

P () = o) = (1= @) p(fut = " (fum)s

we get

o(T" N f) = f1) @@+ 1) p(fuet — T" (fu1)).
Hence, we have
p(fu =T(f) <@@) p(f = T"(f) + @*2) €+ D? p(fat = T (fu1))
for any n > 2. Since lim p(f, — T"(f,)) = 0, we conclude that
Tim p(fy = T(fu) =0,

i.e., { fn} is an approximate fixed point sequence of 7.
Finally, let us fix m > 1. Then we have
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m—1
p(fa = T"(f)) < @m) Y p(T*(f) = T (£)
k=0
m—1
<wm) Y Lp(fa—T ()

k=0

which implies that p(f, — T"(f,)) < m £ w(m) p(f, — T(f,)) for any m > 1.
Clearly, this implies
im p(fy = T"(f)) =0

forany m > 1.

When dealing with the modified Mann iteration sequence, it is unknown if the
sequence is monotone like the sequence generated by Krasnoselskii-Mann iteration.
For this reason, the authors in [4] introduced a new iteration which uses the Fibonacci
sequence {¢ (n)} defined by

pO) =M =1, ¢(n+1) =¢Mm) +¢(n—1)

forany n > 1.

Definition 10.8 Let C be a nonempty convex subset of L, and 7T : C — C be
a monotone mapping. Fix A, € [0, 1] and hy € C. The Fibonacci-Mann iteration
sequence {h,} of elements in C is defined by

Byt = oy T? (hy) + (1 = @) by (FMI)

for any n € N.

This new iteration scheme allowed the authors of [4] to prove the main results
of Schu [32] for monotone asymptotically p-nonexpansive mappings defined in uni-
formly convex Banach spaces. A surprising fact since this class of mappings may
fail to be continuous. Next, we discuss the behavior of the iteration (FMI) which will
generate an approximate fixed point of monotone asymptotically p-nonexpansive
mapping in modular function spaces.

The proof of the following lemma uses solely the partial order and is similar to
the original proof done in [4] in the context of Banach spaces:

Lemma 10.6 ([4]) Let p be convex regular modular, C be a convex nonempty subset
of L,and T : C — C be a monotone mapping. Let hy € C be such that hy < T (hy)
(resp., T (hg) < hg). Let {a,} C [0, 1] and consider the (FMI) sequence {h,} gen-
erated by hy and {o,}. Let f € C be a fixed point of T such that hy < f (resp.,
f < ho). Then we have the following:

(D) ho < hy < hyyr < TP (hy) < f (resp., f = T?™ (hy) < hys1 < by < ho).

(2) ho < T?™(hg) < T*(hy) < f (resp., f < T?™(hy) < T (ho) < ho)
foranyn € N.
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The next lemma is crucial throughout:

Lemma 10.7 Let p be convex regular modular and C be a p-bounded and convex
nonempty subset of L,. Assume that T : C — C is monotone asymptotically p-

o0
nonexpansive mapping with the Lipschitz constants {k,} satisfying Y (k, — 1) <

n=1
o0. Let hg € C be such that hy < T (hy) (resp., T (ho) < hg). Let {a,} C [0, 1] and
consider the (FMI) sequence {h,} generated by hy and {a,}. Let f € C be a fixed
point of T such that hg < f (resp., f < hg). Then lim p(h, — f) exists.
n—oo

Proof Without loss of generality, assume that hy < T (hg). Note that, since C is p-
bounded, we must have lim sup p(h,, — f) < 8,(C) < 400. From the definition of

m—00
{h,}, we have

oy p(T¢(n)(hn) - f) + (1 - an) :O(hn - f)

@y p(T?W (hy) =T () + (1 — ) p(hy — f)
oy k¢(n) p(hn - f) + (1 - an) p(hn - f)

oy (kq>(n) - 1) p(hn - f) +10(hn - f)

(kpoy = 1) p(hn = f) + p(hn — f)

:O(hn+1 - f)

IA

IAIETA

for any n € N, where we used the fact that f is a fixed point of T, the definition of
the Lipschitz constants {k,} and {¢,,} C [0, 1]. Hence we have

phpir = ) = p(hn = f) = (kg = 1) 8,(C)

for any n € N, which implies

pnim = f) = plhn = £) < 8,(C) Y (kpiiy — 1)

i=0

for any n, m > 1. Let us rewrite this inequality as

Py — [) < phn = £)+8,(C) D (kpweiy — 1)
i=0

for any n,m > 1.
Next, we let m — oo to get

limsup p (i — £) < plha — £)+8,(C) Y (kg — 1)

< plhy = ) 45,0 (ki = 1)

i=n
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for any n > 1.
Finally, if we let n — oo, then we have

limsup p(h,, — f) < liminf p(h, — f) + 6,(C) liminf Z(k,» =)
n—oQ n—oo

m—>00 imn

= liminf p(h, — f)
n—0oQ

oo
since the series Y _ (k, — 1) is convergent. Therefore, we have
n=1

limsup p(h,, — f) = liminf p(h, — f).

This completes the proof.

The next result shows that the sequence generated by (FMI) has an approximate
fixed point behavior which is crucial throughout

Proposition 10.1 Let p be (UUC) convex regular modular and C C L, be a p-
bounded and p-closed convex nonempty subset. Let T : C — C be a monotone
asymptotically p-nonexpansive mapping with the associated constants {k,} satis-

fying the condition
Z(k,, —1) < o0.
n=1

Let hog € C be such that hg < T (hg) (resp., T (hg) < ho) and f € C be a fixed point
of T such that hg < f (resp., f < hy). Let {a,} C [a,b]l with0) <a <b < 1 and
consider the (FMI) sequence {h,} generated by hy and {c,}. Then we have

lim p(h, — T?™ (h,)) = 0.
n—oo

Proof Without loss of generality, we assume hg < T (hg). From Lemma 10.4, we
know that i, < h,+; < f. Using the properties of the modular p, we get

p(f _hn+1) =< lo(f_hn)

foranyn € N,i.e., {p(f — h,)}is adecreasing sequence of positive numbers. Hence
R = lim p(h, — f) exists. Assume that R = 0, i.e., {h,} p-converges to f. From
n—0oQ

Lemma 10.4, we get h, < T?®(h,) < f, which implies

p(qu(n)(hn) - hn) = :O(f - hn)

for any n € N. Hence we have
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lim p(T¢(”)(hn) —h,) =0.
n—0o0
Next, we assume R > (0. Then we have

limsup p (79" (h,) — f) = limsup p(T" (h,)) — T**(f))

n—o00 n—0o0

< limsupkgu p(h, — f)

n—00

=R

since lim k, = 1 and f is a fixed point of T'.
n—>o00

On the other hand, we have

Pl = ) < oy p(T? (hy) = f) + (1 = ) plha — f)
for any n > 1. Let % be a nontrivial ultrafilter over N. Then we have

R =1im p(hy1 = f) < @ lim p(T*® (hy) = f) + (1 =) R

with hzr/n a, =« € [a, b]. Sincea # 0, we getlién,o(T‘f’(")(hn) — f) > R.Since

was an arbitrary ultrafilter, we get

R <liminf p(T?" (h,) — f) < limsup p(T*™ (h,) — f) < R.
n—0oQ

n—00

So lim p(T*™(h,) — f) = R. Since
n—oQ

tim (e, 790 (hy) + (1 = ) by = f ) = lim p(hnss = f) = R
n— o0 n— o0
and p is (UUC), by using Lemma 10.1, we conclude that

lim /O(hn - T¢(n)(hn)) =0,

which completes the proof.

Recall that the map T : C — C is said to be p-compact if {T(f,)} has a p-
convergent subsequence for any sequence {f,} in C. The following result is the
monotone version of Theorem 2.2 of [32].

Theorem 10.7 Let p be (UUC) convex regular modular and C C L, be a p-
bounded and p-closed convex nonempty subsetof L,,. Let T : C — C be a monotone
asymptotically p-nonexpansive mapping with the Lipschitz constants {k,}. Assume
that T™ is p-compact for some m > 1. Let hg € C be such that hyg < T (hy) (resp.,
T (ho) < hy). Let {a,} C [a, 1] with 0 < a < 1 and consider the (FMI) sequence
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{h,} generated by ho and {o,,}. Then {h,} p-converges to a fixed point f of T such
that hg < f (resp. f < hy).

Proof Without loss of generality, we assume i < T (hg). Since T is monotone, the
sequence {T"(hg)} is monotone increasing. Since 7™ is p-compact, there exists a
subsequence {T?™ (hg)} which p-converges to f € C.

Let us show that {T"(h¢)} p-converges to f and f is a fixed point of 7. Using
the properties of the p-a.e. partial order, we have T"(ho) < f for any n € N. In
particular, we have

T (ho) < T*W* (ho) < f

for any n € N. Using the properties of the modular p, we get
p(f =T (hg)) < p(f — T (ho))

for any n € N. This implies that {TPD* (ho)) p-converges to f. But we have

p(T(f) — T*DF (hg)) < ki p(f — T*™ (ho))

for any n € N, which implies that {T¢"*!(h¢)} p-converges to T (f) as well, which
implies T (f) = f from the uniqueness of the p-limit. It is clear from the properties
of the modular p that {p(f — T"(hy))} is a decreasing sequence of positive real
numbers. Hence, we have

lim p(f —T"(ho)) = lim p(f — T (ho)) =0,

i.e., {T"(hg)} p-converges to f.

Let us finish the proof of Theorem 10.7 by showing that {4,} p-converges to f.
Since f isafixed point of T which satisfies hy < f,Lemma 10.4 implies T?® (hg) <
T%™(h,) < f, which implies

p(f = T*" () < p(f — T*™ (ho))
forany n € N. Hence, {T?" (h,)} p-converges to f. Since {/,} is monotone increas-

ing and bounded above by f, we know that {p(f — h,)} is a decreasing sequence of
positive real numbers. Hence, lim p(f — h,) = R exists.
n—o00

Let us prove that R = 0. Let % be a non-trivial ultrafilter over N. Using the
definition of {4, }, we have

o (it — f) < oy p(T? () — )+ (1 — ) p(hy — f)

for any n € N. If we set lizm o, =« € [a, 1], then we get
4

lim p (i = f) < o lim p(T*® (hy) = f) + (1 = @) lim p(hy = /).
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Since hm,o(hnﬂ - )= 11m,o(h — f)=Rand hm p(T"(h,) — f) =0, we get

R < (1 — ) R. Since a # O we conclude that R = 0 i.e., {h,} p-converges to f.
This completes the proof.

Before we investigate a weaker convergence of the (FMI) sequence, we will need
the following result which may be seen as similar to the classical Opial condition
[30]. First, we recall that a subset C of L, is p-a.e.-compact if any sequence { f,} in
C has a p-a.e.-convergent subsequence and its p-a.e.-limit is in C.

Proposition 10.2 LetC C L, bea p-a.e.-compact and p-bounded convex nonempty
subset of L, and {f,} be a monotone increasing (resp., decreasing) bounded
sequence in C. Set Coc ={h € C: f, X h (resp., h <X f,) foranyn € N}. Con-
sider the p-type function ¢ : Coo — [0, +00) defined by

@(h) = lim p(f, —h).
n—o00
Then { f,} is p-a.e. convergent to f € Cn and
@(f) =inf{p(h) : h € C}.

Moreover, if p is (UU C), then any minimizing sequence {h,} of ¢ in C, p-converges
to f. In particular, ¢ has a unique minimum point in Cx.

Proof Without loss of generality, assume that { f,, } is monotone increasing. Since C is
p-a.e.-compact, there exists a subsequence { fy ()} which s p-a.e. convergent to some
f € C.Using Theorem 10.2, we conclude that f, < f foranyn € N.Hence, f € Cy
which implies that C, is nonempty. Let & € C. Then the sequence {p(h — f,)}
is a decreasing sequence of finite positive numbers since C is p-bounded. Hence,
p(h) = nli)ngo o(fa — h) exists. As we saw before, there exists a subsequence { fy )}

of {f,} which p-a.e.-converges to f € Co.

Let us prove that {f,} p-a.e.-converges to f. Indeed, for any n > ¥r(0), there
exists aunique k,, € N such that ¥ (k,) < n < ¥ (k, + 1). Clearly, we have k, — oo
when n — co. Moreover, we have fyu,) < fu < f for any n € N. Since { fy«,}
p-a.e. converges to f, we conclude that { f,,} also p-a.e. converges to f.

Next, let 1 € C. Then we must have f, < f < h, which implies

p(f = fu) = p(h— fn)
for any n € N. Hence ¢(f) < ¢(h), i.e.,
@(f) =inf{p(h); h € Cu}.

The last part of Proposition 10.2 is a classical result which may be found in [16].
This completes the proof.

Now, we are ready to state a modular monotone version of Theorem 2.1 of [32].
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Theorem 10.8 Let p be (UUC) convex regular modular and C C L, be a p-

a.e.-compact and p-bounded convex nonempty subset of L,. Let T : C — C be

a monotone asymptotically p-nonexpansive mapping with the Lipschitz constants
o0

{kn}. Assume that Y (k, — 1) < 0o. Let hg € C be such that hy and T (hg) are

n=1
p-a.e.-comparable. Let {a,} C [a,b] with 0 <a < b < 1 and consider the (FMI)
sequence {h,} generated by hy and {o,}. Then {h,} is p-a.e.-convergent and its
p-a.e.-limit is a fixed point of T p-a.e.-comparable to hy.

Proof Without loss of generality, assume that 4y < T (hg). In this case, we know
that {T"(ho)} is monotone increasing. Proposition 10.2 implies that {T"(h¢)} is p-
a.e.-convergent to f € Cy with

Coo={heC:T"(hy) <h foranyn € N}.

Since pis (UUC), f is the unique minimum point of the p-type ¢ : Coo — [0, +00)
defined by
¢(h) = lim p(T"(ho) —h).

By the definition of {k,}, we get

e(f) =oT"(f) < kn o(f)

for any m > 1. Hence, {T™(f)} is a minimizing sequence of ¢ since lim k,, = 1.
m-— 00

Using Proposition 10.2, we conclude that {7 ()} p-converges to f. Note that, since
T"(ho) < f,we get T""'(hg) < T(f) for any n € N, which implies f < T'(f) for
any n € N. Hence, {T™(f)} is monotone increasing and p-converges to f, which
implies 7" (f) < f. Hence T(f) = f holds, i.e., f is a fixed point of 7. Using
Lemma 10.4, we have

T (hg) < T (h,) < f

forany n € N, which implies that {T%" (h,,)} also p-a.e.-converges to f. Proposition
10.6 implies
lim p(hn - T¢(n) (hn)) =0.

n—o0
Using the properties of p-convergence and p-a.e.-convergence [17], there exists a
sequence of increasing integers {j,} such that {h;, — T?U)(h; )} p-a.e.-converges
to 0. Therefore, we must have {A; } p-a.e.-converges to f. Since {h,} is monotone

increasing and /,, < f, we conclude that {,} p-a.e.-converges to f. This completes
the proof of Theorem 10.8 by noting that f is a fixed point of T and hy < f.
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10.4 I, Nonexpansive Mappings

Now, we start this section with the graph theory terminology for the modular space
mapping which will be studied throughout.

LetC C L,.Let I beadigraph with the elements of C asits vertices and set of arcs
A(I") such that (f, f) € A(I") forany f € V(I"). We also assume that I is simple,
i.e., I" has no multi-arcs. Therefore, we can detect I" with the pair (V(I"), A(I")).
We use I to denote the graph attained from I” by disregarding the direction of arcs.

Definition 10.9 A [I-interval is any of the subsets [s, >) ={f € C: (s, f) €
A(IM)}and («—,t]={f e C:(f,t) e A(I')} forany s,t € C.

Definition 10.10 Let C be a nonempty subset of L,. A mapping T : C — C is
called:
(1) I'-monotone if (T(f),T(g)) € A(I') whenever (f,g) € A(I") for any

f.gecC.
(2) I'y-nonexpansive if T is I"-monotone and

p(T(f)—T@) =p(f—8
whenever (f, g) € A(I") forany f, g € C.

Definition 10.11 We say that the triple (C, p, I") has the property (A) if, for any
sequence { f,}nen in C such that (f,, fu+1) € A(I") for any n > 0, a subsequence
{ /. } p-converges to f, then (f,, f) € A(I") foralln > 0.

The following definition is introduced as an analog to the Lebesgue dominated
convergence theorem:

Definition 10.12 We say that I satisfies the Lebesgue dominated convergence prop-
erty if, for any f,, f € E, such that (f,, f,r1) € AU), (fy, f) € A(I') for all
n>0and f, — f p-ae.,then| f, — fl, = 0.

Let T : C — C be a I',-nonexpansive mapping. Throughout this section, we
assume that ["-intervals are convex and p-a.e. closed. Fix n € (0, 1). Let fp € C
be such that (fy, T(fo)) € A(I"). Define fi1 = nfy + (1 — n)T (fy). Since the set
[fo. T(fo)]l = [fo. =) (<=, T(fo)] is convex, it follows that f € [fo, T (fo)l,
ie. (fo, f1) and (f1, T(fp)) are in A(I"). Since T is I,-nonexpansive, we get
(T(fo). T(f)) € A(I") and

p(T(f1) = T(fo)) = p(f1 = fo)-

By induction, we build a sequence { f,} in C such that the following hold for each
n=>0:

@ forr =0fa + A =0T (fn);

®) (fus fat1)s (fu. T(f)) and (T (f), T (fus1)) are in A(7);
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©) p(T(far1) =T (fu)) = p(fat1 — Jo)-
Such sequence { f,,} is the Krasnoselskii-Mann iteration defined by 10.1.

Next, we present the graphical version of our results.

Theorem 10.9 Let C C E, be nonempty, convex, p-bounded, compact with respect
to the convergence p-a.e. Assume that (C, p, ") has the property (A) and I'
satisfies the Lebesgue dominated convergence property. Let T : C — C be a I')-
nonexpansive mapping. Assume there exists fy € C such that (fo, T (fp)) € E ().
Let { f,} be the Krasnoselskii-Mann sequence defined by (10.1) generated by fo, T
and n € (0, 1). Then there exists f € C with (f, fo) € E(F) such that f is a fixed
point of T. Moreover, || f, — fll, = Oand f, — f p-a.e.

Proof Without loss of any generality, we assume that (fy, T (fo)) € A(I"). From the
p-a.e. compactness of C it follows that there exists a subsequence { f,,} and f € C
such that f,, — f p-a.e.

Now, we claim that f,, — f p-a.e. By the properties (b) and (A), we get (f,, f) €
A(I'),foranyn > 1.Letg € C bea p-a.e. limit of another subsequence of { f,,}. Then,
for the same reason, we have (f,, g) € A(I") for any n > 1. Using the properties of
the I'-intervals, we obtain (f, g) € A(I"). By similarity, we obtain (g, f) € A(I').
Since I" has no multi-arcs, then f = g. Therefore, { f,} has one p-a.e. cluster limit
which implies { f,} p-a.e. converges to f. Since I” satisfies the Lebesgue dominated
convergence property, || f, — f1l, — 0, which implies that

pB(fo—f)—0

for every B > 0. Since T is I')-nonexpansive and (f,, f) € A(I") forany n > 0, we
«“ p(T(fu) =T() = p(fu— 1),
which implies p(T (f,) — T(f)) — 0. Since

forr = =0 = )+ A =m(T(f) = 1),

we get

IT(fu) = SFllp

1
m”fn+l = f=n(fu = Dlp
1
< m(”fn-&-l = fllp +0l(fa = HOllp)

for any n > 1. Hence ||T(f,) — fll, = 0. So, we have

p(T(fu) — ) = 0.

Thus, {T (f,)} p-converges to f and T (f). Therefore, by the uniqueness of the
p-limit, we have T(f) = f. This completes the proof.
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As a consequence of our result we obtain the following corollary:

Corollary 10.2 Let C C E, be nonempty, convex, p-bounded, compact with respect
to the convergence p-a.e. Assume that (C, p, ") has the property (A) and I
satisfies the Lebesgue dominated convergence property. Let T : C — C be a I')-
nonexpansive mapping. Assume that 0 € C such that (0, T (0)) € A(I"). Let {f,}
be the Krasnoselskii-Mann sequence defined by (10.1) generated by fy =0, T and
n € (0, 1). Then there exists f € C with (0, f) € A(I") such that f is a fixed point
of T. Moreover, || f, — fll, = Oand f, — f p-a.e.

10.5 Synopsis

Before we close this chapter, we would like to invite the readers to join us in the
journey taking all of us from a well-known base of classical fixed point theory in
Banach and metric spaces to the world of the theory of fixed points of mappings
defined in a class of spaces of measurable functions, i.e., modular function spaces.
The results and methods of fixed point theory, applied to spaces of measurable func-
tions, have been used extensively in the field of integral and differential equations.
Indeed, since the 1930s, many prominent mathematicians like Orlicz and Birnbaum
recognized that using the methods of L”-norms alone created many complications
and in some cases did not allow to solve some nonpower type integral equations.
They considered spaces of functions with some growth properties different from the
power type growth control provided by the L”-norms. Using the apparatus of the
modular function spaces, one can go much further: the operator itself is used for the
construction of a function modular and hence of a space in which this operator has
required properties. These techniques together with relevant modular function space
fixed point theorems can be efficiently applied to solving many mathematical prob-
lems. As we said before, the aim of this chapter was to familiarize the readers with
the main concepts and results of the fixed point theory for monotone Lipschitzian
mappings defined within modular function spaces, as well as to encourage them to
use these results in the course of their research activities.
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Chapter 11 ®)
Contributions to Fixed Point Theory s
of Fuzzy Contractive Mappings

Dhananjay Gopal

Abstract This chapter deals with a concise study of fixed point theorems concerning
fuzzy contractive type mappings in fuzzy metric spaces. The results presented in
detail were selected to illustrate the direction of research in the field from the past
six decades up to most recent contribution in the subject.

Keywords Fuzzy metric space - Fuzzy contractive mappings * Fixed point *
t-norms

11.1 Introduction

The concept of fuzzy set was initially investigated by Zadeh [52] as a new way to
represent vagueness in everyday life. Subsequently it was developed extensively by
many authors and used in almost all branches of science and engineering including
mathematics. A fuzzy set on a set can be defined by assigning to each element of aseta
value in [0, 1] representing its grade of membership in the fuzzy set. Mathematically,
a fuzzy set A of X is a mapping A : X — [0, 1].

Several notions of fuzzy metric spaces have been introduced and discussed in
different directions by various authors (see [34, 50]). In 1975, Kramosil and Michalek
[26] gave a notion of fuzzy metric space which could be considered as a reformulation,
in the fuzzy context, of the notion of probabilistic metric spaces due to Menger.
However, in order to strengthen and to obtain a Housedroff topology (the so-called
M-topology), George and Veeramani [14, 15] imposed some stronger conditions on
fuzzy metric and modify the concept of fuzzy metric due to Kranmosil and Michalek.
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11.2 Fuzzy Metric Spaces

In order to define fuzzy metric spaces, we first define the following:

Definition 11.1 (Schweizer and Sklar [36]) A binary operation * : [0, 1] x [0, 1] —
[0, 1] is called a continuous triangular norm (t-norm) if the following conditions
hold:

(a) = is associative and commutative;

(b) * is continuous;

(c) ax1=aforalla € [0, 1];

(d) axb <cx*xd,whenevera <candb <d,forall a,b,c,d € [0, 1].

Four basic examples of continuous 7-norms are: a x; b = min{a, b}, a %, b =
ﬁh’b‘/\} for all Ae (0,1), a*3b=ab, a+*4b=max{a+b—1,0}. (the
Lukasiewicz f-norm, we will denote it by ). For all a;, ay, ..., a, € [0, 1] and
n € N, the product a; * a, * - - - * a, will be denoted by ]_[f':l a;.

A t-norm x is said to be positive if a x b > O for all a, b € (0, 1].

A t-norm is said to be nilpotent if a x b is continuous and, for each a € (0, 1), there
exists n € N such that []}_, @; = 0. For example, consider the Lukasiewicz z-norm
for which we have a x a * - - - xa = 0 for all a € (0, 1). For the details concerning

t-norms we also refer [25].

Definition 11.2 (Kramosil and Michalek [26]) The triple (X, M, *) is a fuzzy metric
space if X is a nonempty set, * is a continuous #-norm and M is a fuzzy set on
X? x [0, 0o) satisfying the following axioms:

(KM1) M(x,y,0) =0;

(KM2) M(x,y,t) =1, forallz > Oif and only if x = y;

(KM3) M(x,y,t) = M(y,x,1);

(KM4) M(x,y,t) *M(y,z,5) < M(x,z,t+5);

(KM5) The function M (x, y, -) : [0, co) — [0, 1]isleftcontinuous, forallx, y, z €
Xandt,s > 0.

In what follows, fuzzy metric spaces in the sense of Kramosil and Michalek [26] will
be referred as KM-fuzzy metric space.

Example 11.1 ([46]) Let X = R, the set of all real numbers. Define a * b = ab for
alla,b €[0,1]. Forallall x,y € X, t > 0, define

e
M(x,y,t) = Gy’ ifx,yeX,t>0,
0, ifx,yeX,t=0.

Then M is a KM-fuzzy metric on R
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Example 11.2 ([30]) Let X be a set with at least two elements. If we define the
fuzzy set M by M(x,x,t) = 1forallx € X, ¢ > 0, and

0, ifr<1,
My D=9 4,2

for all all x € X, x # y, then (X, M, %) is KM-fuzzy metric space under any con-
tinuous #-norm .

In 1988, Grabiec [13] initiated the study of fixed point theory in fuzzy metric space
and established fuzzy Banach contraction theorem and Fuzzy Edelstein contraction
theorem. In order to obtain his theorems, he introduced the following notions:

Definition 11.3 ([13]) Let (X, M, %) be a fuzzy metric space. Then

(i) asequence {x,},cnin X issaidtobe convergenttox € X,if lim M(x,,x,t) =1
n—o0

forallt > 0.

(i) a sequence {x,},eny in X is said to be Cauchy (or G-Cauchy) if lim
n—o0

M(xy, Xuqp,t) = 1foreach p e Nand r > 0.

A fuzzy metric space in which every Cauchy (or G-Cauchy) sequence is convergent
is called complete (or G-complete).

In [14, 46] it has been observed that the notion of G-completeness has disadvan-
tage, it is a very strong notion of completeness, in fact, if d is the Euclidean metric
in R, then the induced fuzzy metric (Mg, *) of Example 2.1 given in [46] is not G-
complete. In order to strengthen and to obtain a Housedroff topology (the so-called
M-topology), George and Veeramani [14, 15] imposed some stronger conditions on
fuzzy metric due to Kranmosil and Michalek and gave the following concept of fuzzy
metric.

Definition 11.4 (George and Veeramani [14]) The triple (X, M, ) is called a fuzzy
metric space if X is a nonempty set, * is a continuous #-norm and M is a fuzzy set
on X? x (0, co) satisfying the following axioms:

(GV1) M(x,y,t) > 0;

(GV2) M(x,y,t) =1lifand only if x = y;

(GV3) M(x,y, 1) = M(y,x,1);

(GV4) M(x,y, 1)« M(y,z,s) < M(x,z,t+5);

(GV5) M(x,y,.):(0,00[— [0, 1] is continuous for all x, y,z € X and ¢, s > 0.

The axiom (GV1) is justified by the authors because in the same way that a
classical metric space does not take the value co then M can not take the value 0.
The axiom (GV2) is equivalent to the following:

M(x,x,t) =1forallx € X,r >0and M(x, y,t) < 1forallx #y,t >0

The axiom (GV?2) gives the idea that only when x = y the degree of nearness of
x and y is perfect, or simply 1, and then M (x, x, t) = 1 for each x € X and for each
t>0.
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(we observe that the M in the Example 11.2 (above) does not satisfies axiom
(GV2)). In this manner the value 0 and oo in the classical theory of metric space
are identified with 1 and 0, respectively, in this fuzzy theory. Finally, in (GV5) the
authors only assume that the variable 7 behave nicely, i.e., they assume that for fixed
x and y, the function t — M (x, y, t) is continuous without any imposition for M as
t — oo. In what follows, fuzzy metric spaces in the sense of (George and Veeramani
[14]) will be referred to as GV-fuzzy metric space.

Example 11.3 Let X = R. Define a x b = ab for all a, b € [0, 1] and

M(x,y,t) = [exp <|x ; yl)]—'

forallx,y € X and ¢ € (0, 00). Then (X, M, *) is a GV-fuzzy metric space.

The next example shows that every metric space induces a fuzzy metric space.

Example 11.4 Let (X, d) be a metric space. Define a x b = ab for alla, b € [0, 1]
and L
l}’l

Mix,y,t) = ——————
(. y.1) kt" +md(x, y)

forallk, m,n € N.Then (X, M, %) is a GV-fuzzy metric space. In particular, taking
k=m=n=1, we get

t
M s Vo ) = ———— 0,
(.. 1) r4d(x,y)

that is called a standard fuzzy metric.

George and Veeramani proved in [14, 15] that every fuzzy metric M on X
generates a topology 7y on X which has as a base the family of open sets
of the form {By (x,r,t) : x € X,0 <r < 1,¢t > 0}, where By (x,r,t) ={y € X :
M(x,y,t) > 1 —r}forallx € X, r € (0,1) and ¢ > 0. If (X, d) is a metric space,
then the topology generated by d coincides with the topology 7, generated by the
fuzzy metric M,.

Definition 11.5 (George and Veeramani [14]) Let (X, M, %) be fuzzy metric
space. Then a sequence {x,},ey in X is said to be a Cauchy sequence (or M-
Cauchy sequence) if, for each € € (0,1) and ¢ > 0, there is nyp € N such that
M(x,, Xy, t) > 1 —¢cforall n,m > ng.

A fuzzy metric space in which every Cauchy sequence ( M-Cauchy sequence) is
convergent is called complete (M-complete). It is called compact if every sequence
contains a convergent subsequence.

Remark 11.1 (George and Veeramani [14]) The metric space (X, d) is complete if
and only if the standard fuzzy metric space (X, My, *) is complete.



11 Contributions to Fixed Point Theory of Fuzzy Contractive Mappings 245

Definition 11.6 ([22]) Let (X, M, %) be a fuzzy metric space. The fuzzy metric
(M, ) (or the fuzzy metric space (X, M, x) ) is said to be non-Archimedean or
strong if it satisfies the following conditions:, for each x, y,z € X and ¢t > 0

M(x,y,t) > M(x,z,t)* M(z,y,1).

11.3 Fuzzy Contractive Mappings
In order to obtain fuzzy version of classical Banach contraction theorem, Gregori
and Sapena [19] introduced the following concepts:

Definition 11.7 Let (X, M, %) be a fuzzy metric space. A mapping f : X — X is
said to be fuzzy contractive if there exists k € (0, 1) such that

1 1
_ 1 §k<——1)
M(f(x), f(y),1) M(x,y,t)
foreachx,y € X andt > 0.

Definition 11.8 Let (X, M, %) be a fuzzy metric space. A sequence {x,} in X is said
to be fuzzy contractive if there exists k € (0, 1) such that

1 1
. §k(— _ 1)
M(-anrls Xn+42, t) M(-xns Xn+1, t)
forallt > 0,n € N.

Recall that a sequence {x,} in a metric space (X, d) is said to be contractive if
there exists k € (0, 1) such that d(x,41, X,12) < kd(x,, x,41) foralln € N.

Proposition 11.1 Let (X, My, x) be the standard fuzzy metric space induced by the
metric d on X. The sequence {x,} in X is contractive in (X, d) iff {x,} is fuzzy
contractive in (X, My, *).

Theorem 11.1 ([14]) A sequence {x,} in a fuzzy metric space (X, M, x) converges
to x if and only if M (x,,, x,t) —> 1 asn — oo.

Theorem 11.2 (Fuzzy Banach contraction theorem) Let (X, M, x) be a complete
fuzzy metric space (in the sense of George and Veeramani) in which fuzzy contractive
sequences are Cauchy sequences. Let f : X — X be a contractive mapping being
k the contractive constant. Then f has a unique fixed point.

Proof Fixx € X.Letx, = f"(x) foreach n € N. Then it follows that, forall ¢ > 0,

! —1 §k<;—l>
M(f(x), f2(x), 1) M(x, xy, 1)
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and, by induction,

1 1
- 1<k <— - 1)
M(xn+1a Xn+2, t) M()Cn, Xn+1, t)

for all n € N. Then {x,} is a fuzzy contractive sequence. So it is a Cauchy sequence
and hence x, converges to y for some y € X.
Now, we see that y is a fixed point for f. In fact, by Theorem 11.1, we have

! —1§k<;—1)—>0
M(f(y), f(xn), 1) M(y, x,, 1)

asn — oo. Then lim M(f(y), f(x,),t) = 1foreacht > 0 and so lim f(x,) =
n— 00 n—oo

), e, im x,1 = f(y) and then f(y) = y.
To show uniqueness, assume f(z) = z for some z € X. Then, for all > 0, we
have

1 1
- 1=
M(y,z,1) M(f(y), f(2),1)

(i)
M(y,z,t)

5...§k"<;—1>—>0
M(y,z,t)

as n — oo. Hence M (y, z,t) = 1 and then y = z. This completes the proof.

Now, suppose (X, My, %) is a complete standard fuzzy metric space induced
by the metric d on X. From Remark 11.1, (X, d) is complete and so, if {x,} is a
fuzzy contractive sequence, by Proposition 11.1, it is contractive in (X, d) and hence
convergent. So, from Theorem 11.2, we have the following corollary, which can be
considered the fuzzy version of the classic Banach contraction theorem on complete
metric space.

Corollary 11.1 Let (X, My, %) be a complete standard fuzzy metric space and f :
X — X be a fuzzy contractive mapping. Then f has a unique fixed point.

Theorem 11.3 (Fuzzy Banach contraction theorem) Let (X, M, x) be a G-complete
fuzzy metric space (in the sense of Kramosil and Michalek) and f : X — X be a
fuzzy contractive mapping. Then f has a unique fixed point.

Proof Letk € (0, 1) and since f is fuzzy contractive, so f satisfies

;—1§k<;— 1)_
M(f(x), f(¥), 1) M(x,y,1)
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Fix x € X.Letx, = f"(x), n € N. We have seen in the proof of Theorem 11.2 that
{x,} is a fuzzy contractive sequence satisfying

1 1
- 1<k (— - 1)
M(anrla Xn+2, t) M()Cn, Xn+1» t)

for each n € N. Thus we have

1 1
B —— <— - 1)
M('anrlv Xn+2, t) M(xnfh Xns t)
1

<. ..<k'|— =1
M(x1, x2, 1)

— 0asn —> o0

and so lim M (x,, x,4+1,t) = 1 forall t > 0. Then, for a fixed p € N, we have

n—oo

t t
M(xru Xn+p> t) = M <~xn7 Xn+1s ;) *...x M <xn+p—l,xn+pa ;)

i
—1*x...x1=1

and so {x,} is a G-Cauchy sequence. Therefore, {x,} converges to y for some y € X.
Now, imitating the proof of Theorem 11.2, one can prove that y is the unique fixed
point for f. This completes the proof.

Remark 11.2 In Theorem 11.3, it has been proved that each fuzzy contractive
sequence is G-Cauchy sequence whereas, in Theorem 11.2, it was assumed that fuzzy
contractive sequences are M-Cauchy sequence. This arises the following question:

Question (Gregori and Sapena [19]). Is a fuzzy contractive sequence a Cauchy
sequence in George and Veeramani’s sense?

The above problem generated much interest to fuzzy fixed point theorist to work
on various aspects of fuzzy contractive mapping and associated fixed point. In this
direction Tirado [43, 44] introduced the following:

Definition 11.9 We say that the mapping T is Tirado’s contraction [43] (see also
[30]) if the following condition is satisfied: there exists k € (0, 1) such that

1_M(T-xsTyvt) Sk(l_M(xsyst))

forall x, y € X and ¢t > 0. The constant k is called the contractive constant of T.
Tirado [43] proved the following theorem as a consequence of his study.

Theorem 11.4 Let (X, M, x1) be a complete fuzzy metric space. If T is a Tirado’s
contraction on X, then T has a unique fixed point.
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On the other hand, Mihet [29] introduced the concept of point convergent and
improve the result of Gregori and Sapena [19].

Definition 11.10 Let (X, M, %) be a fuzzy metric space. A sequence {x,} in X is
said to be pointwise convergent to x € X (we write x, —, x) if there exists t > 0
such that

lim M(x,,x,t) =1.

n—o0

It is easy to see that, endowed with the point convergence, a GV-fuzzy metric

space (X, M, %) is a space with the convergence in the sense of Fréchet, that is, one
of the following holds:

(a) Every sequence in X has at most one limit point.
(b) Every constant sequence, x, = x, Vn € N, is convergent and lim x, = x.
n—oQ

(c) Every subsequence of a convergent sequence is also convergent and has the same
limit as the whole sequence.

Remark 11.3 Itis worth noting that if the point convergence in a fuzzy metric space
(X, M, x) is Fréchet, then (GV2) holds (so the uniqueness of the limit in the point
convergence characterizes, in a sense, a fuzzy metric space in the sense of George
and Veeramani). Indeed, let x, y € X withx # y. If M(x, y,t) = 1 forsome t > 0,
then the sequence {x,},cny C X defined as x, y, x, y,--- has two distinct limits,
for the equality M (x, x,t) = M(y, x,t) = 1 implies x,, —, x, while M(x, y, 1) =
M(y,y,t) = 1implies x, — y.

In the next example, we will see that there exist p-convergent but not convergent
sequences.

Example 11.5 Let {x,},cny C (0, 00) with x, — 1 and X = {x,} U {1}. Define
M(x,, x,,t) = 1foralln € Nandt > 0,M(1, 1,¢) = 1forallt > 0, M (x,,, x,, ) =
min{x,, x,,} forall n, m € Nand ¢ > 0 and

_ | min{x,,t}, if 0 <zt <1,
M(x"’l”)_{ Xeo i 1> 1,
for all n € N. Then (X, M, Ty;), where Ty (a, b) = min{a, b}, is a fuzzy metric
space (see [20], Example 2]). Since lim M (x,, 1, %) = %, {x,} is not convergent.

Nevertheless, it is p-convergent to 1 for lim M (x,, 1,2) = 1.
n— 00

Theorem 11.5 Let (X, M, x) be a GV-fuzzy metric spaceand f : X — X be a fuzzy
contractive mapping. Suppose that, for some x € X, the sequence {x,},eN defined
by x, = f"(x) of its iterates has a p-convergent subsequence. Then f has a unique
fixed point.

It should be noted that a similar theorem does not hold in KM-fuzzy metric spaces.
This is illustrated in the following:
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Example 11.6 Let X be the set N = {1, 2, ...}. We define (for p # q) the fuzzy
mapping M by

0 if r=0,
M(p,g,t)=11—=2"mnlrd} if 0 <1 <1,
1, if t>1.

As 1 — 1/27 (P > min{l — 1/2- ™00 and 1 — 172~ ™nPD) for all p,q,r €
N, (X, M, Tyy) is a KM-fuzzy metric space satisfying M (x, y, t) # Oforallx, y € X
and ¢ > 0. The mapping f : N — N defined by f(x) = x + 1 is fuzzy contractive.
Indeed, if ¢ > 1, then we have

1 1 1
—1=0<—- <— — 1)
M(f(p), f(q),1) 2\ M(p,q,1)
for all p, g € N, while, if 0 < < 1 and p < ¢, then we have

1 1

=
M(f(p). f(@). 1) 2rtl —1

1 1 1
T 2rtl -2 2 M(p’ qat)

As lim M(f"(x),1,s) =1forallx € X and s > 1, it follows that x, —, 1. Nev-
n—oo
ertheless, 1 is not a fixed point of f.

Remark 11.4 (1) We note that in Example 11.5, as well as in Example 11.4, there
are essentially no nonconstant convergent sequences.

(2) It will be natural to continue the study of these convergence spaces, by find-
ing some more examples and introducing a similar concept for Cauchy sequence,
p-completeness, etc. Also, it would be interesting to compare different types of
contraction maps in fuzzy metric spaces.

On the other hand, Yun et al. [51] introduced the notion of minimal slop of a map
between fuzzy metric spaces and studied various properties of fuzzy contractive
mapping which complement the above question proposed by Gregori and Sapena
[19].

11.4 Fuzzy ¥-Contractive Mappings

In 2008, Mihet [30] provided a partial answer to the above question proposed by
Gregori and Sapena in affirmative by introducing the notion of fuzzy ¥ -contractive
mapping as follows:
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Definition 11.11 ([30]) Let ¥ be the class of all mapping ¥ : [0, 1] — [0, 1] such
that v is continuous, nondecreasing and ¢(¢) > ¢ forall r € (0, 1). Let (X, M, %) be
a fuzzy metric space and i) € ¥.

(1) A mapping f : X — X is called a fuzzy 1)-contractive mapping if the follow-
ing implication takes place:

M(x,y, 1) > 0= M(f(x), f(¥), 1) = p(M(x, y,1)).

(2) A fuzzy -contractive sequence in a fuzzy metric space (X, M, ) is any
sequence {x,},cn in X such that

M(.Xn+2, Xn+1, t) > w(M(xn-H > Xns t))

foralln €e Nand ¢ > 0.

Example 11.7 Let X = [0, o0), a * b = min{a, b} Va, b € [0, 1] and

0, ifr <|x—y|,
M(x,y, 1) = = =)l
1, ift > |x —y|.

It is well known that (X, M, ) is KM-fuzzy metric space. Let ¢) be a mapping in ¥.
Since (1) = 1 and

Mx,y,t) >0= M(x,y,t) =1
= Y(M(x,y,1)) = 1.

It follows that any fuzzy contractive mapping on (X, M, %) satisfying

x =yl <t=1fx) = fOMl <1,

that is,
[f(x)—fODI<Ix—yl, Vx,y € X.

Conversely, if f: X — X is such that |f(x) — f(y)| <|x —y| forall x,y €
X, then f is a fuzzy v contractive mapping for all ¢ € ¥ such that ¢(0) = 0.
Thus the mapping f : X — X, f(x) =x + 1, g(x) = x are fuzzy iy -contractive
on (X, M, %).

Remark 11.5 (Mihet [28], Example 3.4) The sequence {x,},cn defined by x, =
n + 1 in the fuzzy metric space considered in the above Example 11.7, although
fuzzy . -contractive, is not an M-Cauchy sequence.

We note that, for every k € (0, 1), the mapping v : [0, 1] — [0, 1] defined by

t
U (t) = m is in ¥ and a v -fuzzy contractive mapping is a fuzzy con-
tractive mapping in the sense of Geogori and Sepena [19].
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Theorem 11.6 Let (X, M, x) be an M-complete non-Archimedean fuzzy metric
space and f : X — X be a a fuzzy -contractive mapping. If there exists x € X
such that M(x, f(x),t) > 0 forallt > 0, then f has a fixed point.

Proof Let x € X be such that M (x, f(x),t) > 0 forall t > 0 and x,, = f"(x) for
each n € N. Then we have

M(xy1, x2,1) = Y(M(xo, X1, 1))
> M(xg, x1,t) >0, Vt>O0.

Hence we have

M(x3, x3,1) = V(M (x1, x2,1))
> M(xy,x,t) >0, Vt > 0.

By induction, M (x,41, Xn42,t) = M (x,, Xp41,t) > O for all # > 0. Therefore, for
every t > 0, M(x,, X,+1, I)nen 18 a nondecreasing sequence of numbers in (0, 1]. Fix
at > Oanddenote lim M (x,, x,+1, ) byl. Wehave! € (0, 1] (for M (xg, x1, ) > 0)

n— o0
and since M (x,,, Xp+1,1t) > V(M (x,—_1, Xn, t)) and ¢ is continuous, [ > 1(I). This
implies / = 1 and so
lim M(x,, x,+1,t) =1, Vt > 0.

n—oo

If {x,} is not an M-Cauchy sequence, then there are € € (0, 1) and # > O such that,
for each k € N, there exist m(k), n(k) € N with m(k) > n(k) > k and

M (Ximys Xny, 1) < 1 —€.

Let, for each k > 1, m(k) be the least integer exceeding n(k) satisfying the above
property, thatis, M(xm(k),l, Xn(k)—1» t) >1—cand M(xm(k), Xn(k)» t) <1 —e.Then,
for each positive integer k > 1,

I —e 2= M&Xnw, Xnw), 1)
> k(M (Xpmy—15 Xnys 1)y M Xmy—15 Xmk)» 1))
> #(1 — &, M(Ximy—15 Xm@)> 1))-

\

Since klim *(1 — &, M(Xm@y—15 Xmy, 1)) = *(1 — €, 1) = 1 — ¢, it follows that
— 00
lim M(xm(k), Xn(k)» tH=1—¢.
k—o00

Let us denote M (X, k), Xn(k)+1, t) by z,. Then we have
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2
M (Xpuys Xn@o> 1) = %7 (20 M (X415 Xn@)+15 1) 5 Zm)

2
> *7(2n, M Xy Xn(kys 1) Zm)-
Letting k — 0o, we obtain

1—e>+*(1,9( —e),1)
=¢(l—e)>1—¢,

which is a contradiction. Thus {x,} is a Cauchy sequence.
If lim x,, =y, then, from M (f(y), f(x,),t) > Y(M(y, x,, 1)), it follows that

n—o0o
Xnt1 — f(y). From here, we deduce that

M(y» f(y)v t) Z *2(M(y7xna t)v M(-xnsxn+lv t)s M(-xn+l’ f(y)s t)) m) 1

for all + > 0 and hence f(y) = y. This completes the proof.

Theorem 11.7 Let (X, M, %) be an M-complete non-Archimedean fuzzy metric
space satisfying the condition M(x,y,t) >0 forallt >0 and f: X — X be a
fuzzy -contractive mapping. Then f has a unique fixed point.

Example 11.8 Let X = (0, 00),a*xb = ab foralla, b € [0, 1] and

M( 0 min(x, y)
X, y, 1) = ———
Y max(x, y)

forallt € (0, 00) andx, y > 0. Then (X, M, %) is an M -complete non-Archimedean
fuzzy metric space. Since «/t > t forall ¢ € (0, 1), the mapping f : X — X defined
by f(x) = /x is a fuzzy 1-contractive mapping with 1(t) = +/z. Thus all the con-
ditions of Theorem 11.7 are satisfied and so the fixed point of f is x = 1.

Some other generalizations of results of Geogori and Sepena [19] and Mihet [30]
can be found in [1, 16, 43, 47, 48].

11.5 «-¢-Fuzzy Contractive Mappings

We start this section by introducing the notions of a-¢-fuzzy contractive and a-
admissible mappings in fuzzy metric spaces.

Denote by @ the family of all right continuous functions ¢ : [0, +00) — [0, +00)
with ¢(r) < r for all r > 0.

Remark 11.6 Note that, for every function ¢ € @, lim,_, 1o, ¢"(r) = 0 for each
r > 0, where ¢"(r) denotes the nth iterate of ¢.
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Definition 11.12 ([17]) Let (X, M, ) be a fuzzy metric space in the sense of George
and Veeramani. We say that f : X — X is an a-¢-fuzzy contractive mapping if there
exist two functions « : X x X x (0, +00) — [0, +00) and ¢ € @ such that

1 1
o (g )= Grym 1) o)

forallx,y € X andt > 0.

Remark 11.7 If a(x, y,t) =1 for all x,y € X and ¢t > 0 and ¢(r) = kr for all
r > 0 and for some k € (0, 1), then Definition 11.12 reduces to the definition of the
fuzzy contractive mapping given by Gregori and Sapena [19]. It follows that a fuzzy
contractive mapping is an a-¢-fuzzy contractive mapping, but the converse is not
necessarily true (see Example 11.9 given below).

Definition 11.13 Let (X, M, x) be a fuzzy metric space in the sense of George
and Veeramani. We say that f : X — X is a-admissible if there exists a function
a:X x X x (0,400) = [0, 400) such that, for all # > 0,

x,yeX, ax,y,t) > 1= a(fx, fy,t) > 1.

Definition 11.14 (Di Bari and Vetro [9]) Let (X.M, %) be a fuzzy metric space in
the sense of George and Veeramani. The fuzzy metric M is said to be triangular if
the following condition holds:

1 1 1
<M(x1y,t) - 1) : (M(x,z,t) a 1) + (m - 1> (11.2)

forall x,y,z € Xand¢ > 0.
Now, we are ready to state and prove our first result of this section.

Theorem 11.8 ([17]) Let (X, M, x) be a G-complete fuzzy metric space in the sense
of George and Veeramani. Let f : X — X be an «a-¢-fuzzy contractive mapping
satisfying the following conditions:

(a) f is a-admissible;

(b) there exists xg € X such that a(xg, fxo,t) > 1forallt > 0O;

(c) f is continuous.

Then f has a fixed point, that is, there exists x* € X such that fx* = x*.
Proof Letx € X suchthat a(xg, fxg,t) > 1foralltr > 0. Define the sequence {x,}
in X by x,41 = fx,, foralln € N. If x,, = x,,4| forsome n € N, then x* = x, isa

fixed point of f. Assume that x,, # x,. for all n € N. Since f is a-admissible, we
have

al(xg, x1,1) = alxg, fxo,1) = 1= a(fx, fx1,1) = alx;,x2,1) = 1.
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By induction, we get
a(xnaxn-‘rl’t) Z 1 (11.3)

foralln € Nand ¢ > 0. By (11.3), we have

1 1
- )= —1
(M(-xn9xn+l’t) ) (M(fxn—l’ fxnvt) )

=< a(xn_l,xn,t)<

1
—1].
M(f-xnflv fxnst) )

Using (11.1) with x = x,,_; and y = x,, from the above inequality, by the property
of ¢ (¢(r) < r for all r > 0), we obtain

)=o)
M(-xna-anrl’t) M(xnflv-xn’t)

1
<|{—m—-1).
<M(X,,1,)Cn,l) >

Consequently, M (x,,, xX,+1,1) > M(x,—1, X, t) foralln € Nandthus M (x,,_1, x,, t)
is an increasing sequence of positive real numbers in [0,1].
Let S(¢r) = lirf M (x,_1, x,,t). Now, we show that S(¢) = 1 for all r > 0. We
n——+00

suppose that there is 7y > 0 such that S(#y) < 1. Then, from

1 1
JE S
M (x,, Xp1, 1o) M (x,—1, Xu, to)

as n — +00, using the right continuity of the function ¢, we deduce that

1 < 1 > 1
—1<¢ -1 < —1
S(to) S(to) S(10)

which is a contradiction and so we get lim M (x,_;, x,,,t) = 1 forall r > 0. Then,
n—+o0o

for a fixed p € N, we have

t t
M(xnvx11+p7t) Z M (xn,xn+lv ;) * M (xn-&-l,xn-ﬂ, ;)

t ——
Koo *M<xn+p—lvxn+p’_>_)1* ...... x1 =1
p

as n — +oo and thus {x,} is a G-Cauchy sequence. Therefore, {x,} converges to
x* for some x* € X. Now, the continuity of f implies that fx, — fx* and so
lim M(fx,, fx*,t) = 1forall ¢t > 0. It follows that

n——+o00o
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lirf M(xpy1, fXx*, 1) = lirf M(fx,, fx*, 1) =1
for all t > 0, that is, x, — fx*. By the uniqueness of the limit, we get x* = fx*,
that is, x* is a fixed point of f. This completes the proof.

In the next theorem, we omit the continuity hypothesis of f:

Theorem 11.9 ([17]) Let (X, M, ) be a G-complete fuzzy metric space in the sense
of George and Veeramani. Let M be triangular and f : X — X be an a-¢-fuzzy
contractive mapping satisfying the following conditions:

(a) fis a-admissible;
(b) there exists xg € X such that a(xg, fxo,t) > 1forallt > 0;

(¢) if{x,}is a sequence in X such that o(x,, x,+1,t) > 1 foralln € Nand x,, — x
asn — +oo, then ax,, x,t) > 1 foralln € N.

Then f has a fixed point.

Proof Following the proof of Theorem 11.8, we get that {x,,} is a G-Cauchy sequence
in the G-complete fuzzy metric space (X, M, *). Then, there exists x* € X such that
X, = x* as n — 400. On the other hand, from (11.3) and the hypothesis (c), we
have

oalx,, x5, 1) >1 (11.4)

for all n € N and ¢ > 0. Now, using, successively, (11.2), (11.4) and (11.1), also in
view of (GV-3), we obtain

R N
M(fx*, x*t) M(fx*, fx,,t) M (Xp41,x*,1)

, 1 1
= b1 (M(fxn, fon 1) * (M(xnﬂ,x*, n_ 1)

1 1
f¢(m‘l)+(m”)'

Letting n — 400, since ¢ is continuous at r = 0, we obtain

1
(M(fx*,x*,t) N 1) =0

that is, fx* = x*. This completes the proof.

The following example shows that the generalization given by Definition 11.12
offers many possibilities to study the existence of a fixed point for a mapping:

Example 11.9 Let X = {1 :n e N}U{0,2}, a*b = ab for all a, b € [0, 1] and
M(x,y,t)= Hl;ﬂ,‘ forall x,y € X and ¢ > 0. Clearly, (X, M, *) is a G-complete
fuzzy metric space. Define the mapping f : X — X by
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x2

—, ifxe X\ {2},
fr=14
2, ifx =2,

and the function o : X x X x (0, +00) — [0, +00) by

1. ifx,ye X\ {2},
alx,y, ) =
0, otherwise,

forall¢ > 0. Clearly, f is an a-¢-contractive mapping with ¢(r) = r/2 forall r > 0.
In fact, if at least one between x and y is equal to 2, then a(x, y, r) = O and so (11.1)
holds trivially. Otherwise, if both x and y are in X \ {2}, then a(x, y, ) = 1 and so

(11.1) becomes
Gz ) =3 (e )
— 1)< | -1),
M(fx, fy, 1) 2\ M(x,y,1)

which is always true since x + y < 2.
Now, let x, y € X such that a(x, y, t) > 1 for all # > 0, this implies that x, y €
X \ {2} and, by the definitions of f and «, we have
2 2

fx="7eX\ @2} fy=2-€X\ {2} a(fx.fy.0=1 Vi>0,

that is, f is a-admissible. Further, there exists xo € X such that a(xg, fxo,1) > 1
for all # > 0. Indeed, for xo = 1, we have a(1, f(1),t) = 1.

Finally, let {x,},cn be a sequence in X such that a(x,, x,+1,¢) > 1 foralln € N
and x, — x € X as n — 4o00. By the definition of the function «, it follows that
X, € X \ {2} forall n € N and hence x € X \ {2}. Therefore a(x,, x, t) = 1 for all
n € N. Thus all the hypotheses of Theorem 11.8 are satisfied. Here 0 and 2 are two
fixed points of f. However, f is not a fuzzy contractive mapping [19]. To see this
consider x = 2 and y = 1, then we have

(empm )52~ (wamm )
—— —l)=—~L —=k[— -1
M(fx, fy,t) 4t t M(x,y,t)
since k € (0, 1).

Remark 11.8 Let (X, M, %) be a fuzzy metric space in the sense of George and
Veeramani. A sequence {x, },cn is said to be fuzzy contractive if there exists k € (0, 1)

such that
1 1
— 1)<k
M(-anrls xn+2st) M(X,,, xn+lvt)
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for all » € N and for all ¢+ > 0. In the conclusions of their paper, Yun et al. [51]
observed that every fuzzy contractive sequence is Cauchy in both George and Veera-
mani sense and Grabiec sense. Here, in proving Theorems 11.8 and 11.9, we used
the G-completeness of the fuzzy metric space (X, M, x). Thus it will be interesting
to see whether these results will remain true in a M-complete fuzzy metric space.

Now, we give a sufficient condition to obtain the uniqueness of the fixed point in
the previous theorems. Precisely, we consider the following hypothesis:

(H) for all x,y € X and 7 > 0, there exists z € X such that a(x, z,¢) > 1 and
a(y,z,t) > 1.

Theorem 11.10 ([17]) Adding the condition (H) to the hypotheses of Theorem 11.8
(resp. Theorem 11.9), we obtain the uniqueness of the fixed point of f.

Proof Suppose that x* and y* are two fixed points of f. If a(x*, y*, 1) > 1, then,
by (11.1), we conclude easily that x* = y*. Assume that a(x*, y*, t) < 1, it follows
from (H) that there exists z € X such that

a(x*,z,)>1 and a(y*, z,t) > 1. (11.5)
Since f is a-admissible, from (11.5), we get

a(x*, f'z,t) =1 and a(y*, f"z,1) > 1 (11.6)

foralln € Nand ¢ > 0. Using (11.1) and (11.6), we have

1 1
— 1) = —1
<M(X*7f"z, 1 ) <M(fX*,f(f”“Z),f) )

*  rn—1 ! -
sa’ f Z’t)<M(fx*,f(f”“z)’f) 1)

1
= gé(M(x*, iz 1)‘

This implies that

1 1
(e 1) =¢ (s 1) e
Then, letting n — 400, we have
f'z — x*. (11.7)
Similarly, for n — 400, we get also

[z — y*. (11.8)



258 D. Gopal

Using (11.7) and (11.8), the uniqueness of the limit gives us x* = y*. This completes
the proof.

In view of Remark 11.7 and to show the usefulness of our theorems, we prove the
following classical theorem of Gregori and Sapena [19]:

Theorem 11.11 Let (X, M, x) be a G-complete fuzzy metric space in the sense of
George and Veeramani. Let f : X — X be a fuzzy contractive mapping. Then f has
a unique fixed point.

Proof Leta: X x X x (0, 400) — [0, +00) be the function defined by a(x, y, t)
= 1forall x,y € X and ¢ > 0. Define also ¢ : [0, +00) — [0, +00) by ¢(r) = kr
for all » > 0. Then f is an a-¢-contractive mapping. It is easy to show that all the
hypotheses of Theorems 11.8 and 11.10 are satisfied. Consequently, f has a unique
fixed point. This completes the proof.

Following [6, 8, 35], we show that the obtained theorems are also useful to deduce
easily some fixed point results in ordered fuzzy metric spaces. We begin by giving
the following two definitions:

Definition 11.15 Let < be an order relation on X. We say that f : X — X is a
nondecreasing mapping with respect to < if x < y implies fx < fy.

Definition 11.16 Let (X, <) be a partially ordered set and (X, M, *x) be a fuzzy
metric space in the sense of George and Veeramani. We say that f : X — X is
a fuzzy order ¢-contractive mapping if there exists ¢ € @ such that the following
implication holds:

1 1
wer = (g ) 2 lmmss ) o

Theorem 11.12 Let (X, X) be a partially ordered set and (X, M, *) be a G-
complete fuzzy metric space in the sense of George and Veeramani. Let ¢ € @ be
such that f : X — X is a fuzzy order ¢-contractive mapping and suppose that the
following conditions hold:

(a) f is a nondecreasing mapping with respect to <;

(b)  there exists xo € X such that xy < fxo, M(x9, fxo,t) > 0forallt > 0;

(¢) if{x,}is a nondecreasing sequence in X such that x,, - x € X asn — 409,
then x, < x foralln € N.

Then f has a fixed point.

Proof Define the function o : X x X x (0, +00) — [0, +00) by

1, if x Xy,
0, otherwise,

a(-xvyvt) :{
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for all > 0. The reader can show easily that f is a-¢-contractive and c-admissible.
Now, let {x,} be a sequence in X such that a(x,, x,+1,¢) > 1 for all n € N and
X, = x € X asn — +00. By the definition of «, we have x,, < x,,; foralln € N.
From (c), this implies that x,, < x for all n € N, which gives us that a(x,, x, 1) = 1
for all n € N and ¢t > 0. Thus all the hypotheses of Theorem 11.9 are satisfied and
f has a fixed point. This completes the proof.

11.6 3-1-Fuzzy Contractive Mappings

In this section, we present the notions of 3-i-fuzzy contractive and (3-admissible
mappings in fuzzy metric spaces due to Gopal et al. [17].
Let ¥ be the class of all functions v : [0, 1] — [0, 1] such that

(a) 1 is non-decreasing and left continuous;
(b) ¥(r) > rforallr € (0, 1).

It can easily be shown (see, e.g., [47]) that, if ¢ € ¥, then (1) =1 and
lir}rl Y"(r) = 1forallr € (0, 1).
n—+0o0

Definition 11.17 Let (X, M, x) be a fuzzy metric space. We say that f : X — X isa
B-1-fuzzy contractive mapping if there exist two functions 8 : X x X x (0, +00) —
(0, +00) and ¢ € ¥ such that

M(x,y, 1) >0 = [Bx,y, OM(fx, fy. 1) =2 ¢ (M(x,y, 1)) (11.9)

forallt > Oandx,y € X withx # y.

Remark 11.9 If G(x, y,t) =1 for all x, y € X and ¢ > 0, then Definition 11.17
reduces to the definition of the fuzzy 1-contractive mapping given by Mihet [30]. It
follows that a fuzzy -contractive mapping is a §-1-fuzzy contractive mapping; but
the converse is not true always (see Example 11.10 given below).

Definition 11.18 Let (X, M, ) be a fuzzy metric space. We say that f : X — X is
(-admissible if there exists a function 5 : X x X x (0, +00) — (0, +00) such that,
forallt > O,

x,yeX, Bx,y,t) <1 = B(fx, fy,t) <1.

Theorem 11.13 Ler (X, M, %) be a M-complete non-Archimedean fuzzy metric
space and [ : X — X be a (B-1-fuzzy contractive mapping satisfying the follow-
ing conditions:

(a) f is B-admissible;
(b) there exists xg € X such that 3(xg, fxo,t) <1 forallt > 0;
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(¢) for each sequence {x,} in X such that B(x,, xXp+1,t) <1 for all n € N and
t > 0, there exists kg € N such that B(Xpy+1, Xp+1,t) < 1 forallm,n € N with
m>n>kypandt > 0;

(d) if {x,} is a sequence in X such that 3(x,, x,11,t) < 1 foralln e Nandt > 0
and x, — x asn — +oo, then B3(x,,x,t) < 1foralln € Nandt > 0.

Then f has a fixed point.

Proof Letxy € X such that 5(xg, fxg,t) < 1forallt > 0. Define the sequence {x,}
in X by x,4+1 = fx, foralln € N. If x,,.; = x,, for some n € N, then x* = x, is a
fixed point of f. Assume x,, # x,+) foralln € N. Since f is S-admissible, we have

Bxo, fxo,t) = B(x0, x1,t) <1 = B(fxo, fx1,1) = B(x1,x2,8) < 1.

By induction, we get
B, Xpg1, 1) <1 (11.10)

foralln € Nand ¢ > 0. Now, applying (11.9) with x = x,,_; and y = x,, and using
(11.10), we obtain

M(xila xn+17 t) = M(fxn—l, fer t)
= B(xnfl» Xn, t)M(fxnflv fxn’ t)
Z {L/)(M(xn—lvxnvt))'

By induction, we get
M('xnv-xn-‘rl’ [) Z 1;/}n(M('x07-xlvt))v Vn E N~

Since lim " (r) = 1forallr € (0, 1), we deduce that

n—-+00

lim M, Xpi1,t) = 1, V¢ > 0.

n——+o0o

Now, if the sequence {x,} is not an M-Cauchy sequence, then there are € €
(0, 1),t > 0 and ky € N (by (c)) such that, for each k € N with k > kg, there exist
m(k), n(k) € N with m(k) > n(k) > k and

M Xy, Xncy> 1) < 1 — € and B(Xmi), Xnw), 1) < 1.

Let, for each k > 1, m(k) be the least positive integer exceeding n (k) satisfying the
above property, that is,

M (Xpy—1, Xnky, 1) > 1 —cand M (Xpx), Xny, 1) < 1 — €.

Then, for each positive integer k > kg, we have
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I —e>MXnw, Xnw), 1)
> M Xpgy—15 Xn)s 1) * M (Xp@y—1, Xm@y, 1) (by (NA))
> (I —¢)* M(Xp@y—15 Xm@)> 1)-

Since lim (1 —¢) * M (Xp@)—1, Xm@), 1) = (1 —€) * 1 =1 — ¢, it follows that

n—-+o00

lim M(xm(k)v Xn(k)» H=1-e.

n—+oo

Now, by (NA) and the condition (c), we get

M (Ximky> Xnk)» 1) = M Xm)> Xmk)+15 1) * M (Xm@)+15 Xn(k)» 1)
> M Xy Xmy+1> 1) * M (X +15 Xn)+1 1) * M (Xn)+15 Xnk)s 1)
= M Xmkys Xmk)+15 1) ¥ M(fXm@ys [Xn@w)> 1) * M (Xn@)+15 Xnk)s 1)
> Mm@y Xm@)+15 1) * B Xm@ys fXn@ys 1) * M(fXm@ys fXn)» 1)
* M (Xn(k)+15 Xn(k)» 1)
> M Xy Xmk)+15 1) % VM Xn (k) > Xnkys 1) % M (Xnikys Xnk)+15 1)-

Letting k — 400, we obtain
l—e=>1xY(0—-e)x1 =9y —¢)>1-—¢,

which is a contradiction and so {x,} is a Cauchy sequence. Since X is M-complete,
there exists x* € X such that lim,,_, 1o x, = x*.
On the other hand, from (11.10) and the hypothesis (d), we have

B(x,, x*, 1) <1, Vt>0.
Now, by (NA) and (11.9), we get

M(fx*9x*7 t) 2 M(fx*9 fxl’l’ t) * M('xn+]7X*7 t)
> B, X*, OOM(fxn, fX*, 1) % M(xXp41, X5, 1)
Z 1Z)(1‘4(-xns X*v t)) * M(-xt1+lv-X*’ t)

Letting n — +o00 and since ¥ (1) = 1, we conclude that fx* = x*. This completes
the proof.

The following example shows the usefulness of Definition 11.17:

Example 11.10 Let X = (0, 400), axb =abforalla,b € [0, 1]and M(x, y, 1)
_ minfx,y

= axx y}} for all x,y € X and ¢t > 0. Clearly, (X, M, %) is a M-complete non-
Archimedean fuzzy metric space. Define the mapping f : X — X by
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Jx, ifx e, 1],
fx=

2, otherwise,
and the function 5 : X x X x (0, +00) — (0, +00) by

1, ifx,y e (0, 1],
Blx,y,t) =

2, otherwise,

forall ¢ > 0. Itis easy to show that f is a 3-1)-contractive mapping with (r) = /7
for all r € [0, 1]. Clearly, f is $-admissible. Further, there exists xo € X such that
B(xg, fxo,t) < 1forall t > 0. Indeed, for xo = 1, we have 8(1, f(1),1) = 1.
Finally, let {x,},cn be a sequence in X such that 3(x,, x,+1,¢) < lforalln € N,
X, —> x € Xasn — +ooandletky = 1besuchthat, forallm,n € N,m > n > k.
By the definition of the function g, it follows that x,, € (0, 1] for all n € N. Now, if

x > 1, we get
min{x,, x X 1
M(x,,,x,t):g——"<—< 1,

max{x,, x}  x X

which contradicts (1) of Definition 11.3 since lim,_ o M(x,, x,t) = 1 for all
t > 0. Consequently, we obtain that x € (0, 1]. Therefore, B(x,,x,t) =1 and
BXmt1, Xnt1,t) = 1 for all m, n € N. Thus all the hypotheses of Theorem 11.13
are satisfied. Here 1 and 2 are two fixed points of f. However, f is not a fuzzy
1-contractive mapping [30]. To see this, consider x = % and y = 3. Then we have

Iz o, 172
M(fx, fy. 1) = T/ z % =VM(x,y, 1) =yp(M(x, y,1)).

To ensure the uniqueness of the fixed point, we will consider the following hypoth-
esis:

(J) Forallx,y € X and ¢ > 0, there exists z € X such that
Bx,z,t) <1 and B(y,z,1) < 1.

Theorem 11.14 Adding the condition (J) to the hypotheses of Theorem 11.13, we
obtain the uniqueness of the fixed point of f.

Proof The proof can be completed using a similar technique as given in the proof
of Theorem 11.10. Therefore, to avoid repetitions, we omit the details.

Remark 11.10 Motivated by Samet et al. [35], we proposed the concept of «-¢-
fuzzy contractive mapping, which is weaker than the corresponding concept of fuzzy
contractive mapping [19] and the concept of 3-1)-fuzzy contractive mapping, which is
weaker than the corresponding concept of fuzzy-1-contractive mapping [30]. More-
over, we proved two theorems which ensure the existence and uniqueness of fixed
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points of these new types of contractive mappings. The new concepts lead to further
investigations and applications. For example, using the recent ideas in the literature
[12], it is possible to extend our results to the case of coupled fixed points in fuzzy
metric spaces.

11.7 Fuzzy 77-Contractive Mappings and o Type Fuzzy
2 -Contractive Mappings

Recently, Wardowski [49] introduced the concept of fuzzy .7#-contractive mappings,
as a generalization of that of fuzzy contractive mappings, and established the con-
ditions guaranteeing the existence and uniqueness of fixed point for this type of
contractions in M-complete fuzzy metric spaces in the sense of George and Veera-
mani.

Definition 11.19 Let .77 be the family of the mappings n: (0, 1] — [0, co) satis-
fying the following conditions:

(H1) n transforms (0, 1] onto [0, 00);
(H2) n is strictly decreasing.

Then the mapping f : X — X is called a fuzzy 57-contractive mapping (see War-
dowski [49]) with respect to i) € .77 if there exists k € (0, 1) satisfying the following
condition:

n(M(fx, fy, 1) <kn(M(x,y,1))

forallx,y € X andt > 0.

Proposition 11.2 Let (X, M, x) be a fuzzy metric space and let ) € . A sequence
(Xn)nen C X is an M-Cauchy sequence if and only if, for every ¢ > 0 and t > 0,
there exist ng € N such that

N(MXp, X, 1)) <€, VYm,n > ng.

Proposition 11.3 Letr (X, M, x) be a fuzzy metric space and let ) € . A sequence
(Xn)neny C X is convergent to x € X ifand only if lim n(M(x,,x,t)) =0, Vt > 0.
n—oo

Theorem 11.15 ([49]) Let (X, M, x) be an M-complete fuzzy metric space and
[ X — X be a fuzzy F€-contractive mapping with respect to n € J such that

(a) ]_[f;l M(x, fx,t;) #0 for all x € X and k € N and a sequence (t;)icy C
(0, oco) with t; — 0;

d) ifr xs > 0,thenn(r xs) < n@) +n(s)forallr,s € {M(x, fx,t):x € X, t >
0};

(©) {n(M(x, fx,t;)): i € N} is bounded for all x € X and any sequence (t;);jen C
(0.00) with t; — 0.
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Then f has a unique fixed point x* € X and, foreach xy € X, the sequence (f"x¢)nen
converges to x*.

In a recent note, Gregori and Minana [24] observed that the main idea of War-
dowski [49] is correct and different from the known concepts in the literature but
they also showed that the class of fuzzy .7#-contractive mappings are included in the
class of fuzzy ¥ -contractive mappings, as well as they point out some drawbacks of
the conditions used in the above Theorem 11.15.

Remark 11.11 (See Gregori and Mifiana [24]) If n € JZ, then the mappings 7 -
k: (0,1] — [0, 00) and 17_' : [0, o0) — (0, 1], defined in its obvious sense, are two
bijective continuous mappings which are strictly decreasing.

In view of the above remark, we observe that every fuzzy .7#’-contractive mapping
is a fuzzy W-contraction with 1 (t) = 7' (kn(z)) for all t € (0, 1] (see [24]).

In this direction of research work, a recent paper of Mihet [32] provides a larger
perspective and further scope to study fixed points of fuzzy 7#-contractive mappings.

Most recently, Beg et al. [10] introduced a new concept of a-fuzzy .7-contractive
mapping which is essentially weaker than the class of fuzzy contractive mapping
and stronger than the concept of a-¢-fuzzy contractive mapping. For this type of
contractions, the existence and uniqueness of fixed point in fuzzy M-complete metric
spaces have been established.

Definition 11.20 Let (X, M, ) be a fuzzy metric space. We say that f : X — X is
an a-fuzzy-7¢-contractive mapping with respect to n € 7 if there exists a function
a:X x X x (0,00) = [0, o0) such that

alx,y, n(M(fx, fy, 1)) < kn(M(x, y, 1)) (1111
forallx,y € Xandt > O.

Remark 11.12 If a(x, y,#) = 1 for all x, y € X and ¢ > 0, then Definition 11.20
reduces to the Definition 18 but converse is not necessarily true (see Example 11.11
given bellow).

Definition 11.21 Let (X, M, *) be a fuzzy metric space. We say that f : X — X is
a-admissible if there exists a function a : X x X x (0, +00) — [0, 4+00) such that

alx,y,t) 2 1= a(fx, fy,1) 21
forallx,y € Xand ¢t > 0.

Now, we are ready to state and prove the following:

Theorem 11.16 Let (X, M, x) be a M-complete fuzzy metric space, where * is
positive. Let f : X — Xbe an a-fuzzy-7-contractive mapping with respect to 1 €
A satisfying the following conditions:
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(a) there exists xg € X such that a(xg, fxo,t) > 1, t > 0;

(b) f is a-admissible;

©) nrxs) <n@)+n(s), r,s € (0, 1];

(d) if {x,} is a sequence in X such that oa(x,, x,+1,t) > 1 for each n € N and
lim, 00 X, = X, then a(x,,x,t) > 1foralln € Nandt > 0.

Then f has a fixed point x* € X. Moreover, the sequence { f"xo},cn converges to

x*.

Proof Let xo € X such that a(xg, fxo,1) > 1, t > 0. Define the sequence {x,},en
in X by x,41 = fx,, n € NU{0}. If x,,4; = x,,, forsome n € N, then x* = x, isa
fixed point of f. So, assume that x,, # x,.; foreachn € N. Since f is a-admissible,
we have

al(xg, x1,1) = alxg, fxo,1) > 1= a(fx, fx1,1) = alx;,x2,1) = 1, Vit > 0.

By induction, we get
a(xna xn+lvt) = 1 (1112)

for all n € N and ¢ > 0. Now, applying (11.11) and using (11.12), we obtain the
following:

(M (Xpi1, Xng2, 1) =10 (M(fXn, fat1, 1))
< a(Xy, Xpg 1, O (M (f X0, fug1, 1))
< kn(M(x,, Xp41,1))
< ka(xp—1, Xp, O (M (fXp-1, fXn, 1))
< kkn (M (x,—2, Xp—1,1))

IA

< k"™ (M(xo, x1,0), Vi > 0.
Since k € (0, 1) and 7 is strictly decreasing, we have
N (M (Xpt1, Xni2, 1)) < 1 (M(x0, x1, 1)), V1 >0,

and
M (Xpt1, Xny2,t) = M(xg,x1,¢) >0, Vne N, t > 0. (11.13)

Now, letus considerany m, n € N withm < n andlet {a; };cy be astrictly decreas-
ing sequence of positive numbers such that ) ;-, a; = 1. From (GV-4), (GV-2) and
the positivity of *, we get
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n—1 n—1
Mxm, xn, 1) > M (xm»xm7t - Zai[> * M (xm,xm Zait>
i=m

i=m

n—1
=M | xpm, xn, Za[t
i=m
> M (Xm, Xm+1, Amt) ¥ M (Xn41, Xn42, Gmy18) * - % M (Xp—1, Xn, Gn—11)

for all # > 0. By the condition (c) and (11.13), we get

n—1
n(MXp, X, 1)) < (1_[ M (x;, xi+lvait)>
n—1
< ZU (M (x;, xiy1,0a;t))
n_—l
> ki (M(xo, x1, 1)

i=m

IA

forallm,n € N withm < n and ¢t > 0. The above sum is finite, i.e., for any € > 0,
there exist ng € N such that

n—1

1 (M (o, %0, 1) < DK (M (x0, 1, 1) < €

i=m

for all m,n € N with m < n and t > 0. Thus, by Proposition 11.2, it follows that
{xn}nen 1s an M-Cauchy sequence in X. By the completeness of X, there exists
x* € X such that x, — x* as n — 00. Due to Proposition 11.3, we have

lim n(M (x,, x*, 1)) =0, Vt > 0.
n—oo

Now, applying the condition (d) and (11.11), we obtain

0 (Mgr, fx5.0) =0 (M(fxp, fx*,1))
< a(xn, X", 01 (M(fxa, fX*, 1))
<kn (M(x,,,x*, t)), vt > 0,

which implies that

lim n (M (x,41, fx*,1)) =0, Vi >0,

ie.,
fx* = nli)ngox,,ﬂ =x".
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So, x* is a fixed point of f. This completes the proof.
The following examples shows the usefulness of the above theorem:

Example 11.11 LetX = R,a * b = min{a, b} foralla, b € [0, 1]Jand M (x, y, t) =
; +|x 3 forallx,y € X andt > 0. Clearly, (X, M, x) is an M-complete fuzzy metric
space. Define the mapping f : X — X by

2, otherwise.

Pl = { 2 ifx €0, 1],

Also, define n(s) = ——1 se€0,1]and o : X x X x (0, 00) — [0, 00) by

_ )1, ifx,y €[0,1],
alx, y, 1) = {0, otherwise.
Clearly, f is an a-fuzzy-7#-contractive mapping with k = %
Now, let x, y € X such that «(x, y, t) > 1 for all # > 0. This implies that x, y €
[0, 1] and, by the definitions of f and «, we have

2
flx) = —e[o 1, f(y)zyz e[0. 1], a(fx. fy.0)=1, V& >0,

i.e., f is a-admissible. Further, there exists xo € X such that a(xg, fxg, ) > 1 for
all # > 0. Indeed, for any x¢ € [0, 1], we have a/(xg, fxo,t) = 1 forall t > O.

Finally, let {x, },,cry be a sequence in X such that a(x,,, x,11,¢) > 1 foreachn € N
and lim,,_, o, x, = x. By the definition of the function «, it follows that x,, € [0, 1]
for each n € N and hence x € [0, 1]. Therefore, a(x,, x,t) = 1 foreachn € N. So,
all the hypothesis of Theorem 11.16 are satisfied. Here, O and 2 are two fixed point
of f. However, f is not a fuzzy ¢ -contractive mapping [49]. To see this, consider
x =2and y = 1. Then, since k € (0, 1), we have

7 k

Now, we give a sufficient condition to obtain the uniqueness of the fixed point in
the previous theorem. Precisely, we consider the following hypothesis:
(U) Forall x, y € X and ¢ > 0, there exists z € X such that

a(x,z,t) > 1 and a(y,z,t) > 1.

Theorem 11.17 Adding the condition (U) to the hypothesis of Theorem /1.16, we
obtain the uniqueness of the fixed point of f.

Proof Suppose that x* and y* are two fixed points of f.If a(x*, y*, ) > 1 for some
t > 0, then by (11.11), we conclude easily that x* = y*.
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Assume a(x*, y*, ) < 1 forall ¢+ > 0. Then, by (U), there exists z € X such that
ax*,z,t) > land a(y*, z,1) > 1, Vt > 0. (11.14)
Since f is a-admissible, and by (11.14), we get
a(x*, f'z,t) > 1 and a(y*, f"z,t) > 1 (11.15)
foralln € Nand ¢ > 0. Now, applying (11.11) and (11.15), we have
M(*, f'z,0) = M(fx*, f(f"'2),1)
and
N (ME*, f2,0) = n(M(fx", f("7'2),0)
<a@*, "l (M, ("2, 1)

< kn(MG*, f""'z,1)
< ... S knn (M(x*’z,t))

foralln € Nand ¢ > 0. By letting n — o0 in the last relation, we get

lim n (M(x*, f"z,1)) =0, Vi >0,
n— o0
and
lim f"z = x*.
n—00
Similarly, we have
lim f"z = y*.
n—00
Finally, the uniqueness of the above limits gives us x* = y*. This completes the
proof.

The assumption that * is positive can be further relaxed in Theorem 11.16. In fact,
we can prove the following:

Theorem 11.18 Let (X, M, x) be a M-complete strong fuzzy metric space for a
nilpotent t-norm %, and let f : X — X be an «-fuzzy-7¢-contractive mapping
with respect to 1 € H satisfying the following conditions:

(a) there exists xg € X such that a(xg, fxo,t) > 1forallt > 0;

(b) f is a-admissible;

(©) n(rxs) <n@r)+mn(s)foralr,s € {M(x, fx,t):x € X,t >0},

(d) each subsequence {x,, }ren of a sequence {x,}nen = { f"X0}nen has a following

property:
a(Xp,, X, 1) = 1
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forallk,l e Nwithk >l andt > 0O;
(e) if {x,} is a sequence in X such that o(x,, Xp+1,t) > 1 foralln e Nandt > 0

and lim x, = x, then a(x,,x,t) > 1 foralln € Nandt > 0.
n—0oQ

Then f has a fixed point x* € X. Moreover, the sequence { f"xo},en converges to

x*.

Proof Let xy € X and a(xg, fxg,7) > 1 for all + > 0. Define a sequence {x,},cn
such thatx, = fx,—1 = f"xo.If x, = x,_; for some n € N, then x* = x,, is a fixed
point of f. So, assume x,, # x,—; for each n € N. Since f is a-admissible, we have
a(xg, fxo,t) = alxg, x1,t) > 1 = a(fxo, fx1,1) = a(x, x2,1) > 1
for all # > 0. By induction, we get
a(x,, xp+1,8) > 1, neN, Vi >0.

By (11.11), we have

n(M(xy, x2, 1)) =n(M(fxo, fx1,1))
< alxo, x1, )n (M (fxo, fx1,1))
< kn(M(xg, x1,1)), Vt>0.

Inductively, we have
0 (M (xp, Xny1, 1)) <k (M(xXp—1, X, 1)) < -+ < k" (M(xo, x1,2))  (11.16)
for alln € N and ¢ > 0. Since 7 is strictly decreasing and k € (0, 1), we have
M (s Xng1, 1) = M (X1, Xns 1)

for all n € N and ¢t > 0. So, for every ¢ > 0, the sequence {M (x,, Xy41, )}, 1S
nondecreasing and bounded, it is convergent, i.e.,

lim M(x,, x,+1,t) = p, VYt > 0.

n—00

Let us prove, by the contradiction, that p = 1. Suppose that p < 1. Letting n —
oo in (11.16), since 7 is continuous, we have

lim 7 (M (x,, X541, 1)) < k lim n (M (x,_1, x,, 1)), Vt > 0.
n—oo n—oo

So, we obtain a contradiction n(p) < kn(p) and conclude that p = 1, i.e.,

lim M (xy, Xup1,2) = 1, V> 0. (11.17)

n—oo
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Let us prove that {x, },,cn is a Cauchy sequence. Suppose the contrary. Then there
exist € > 0, o > 0 and 5o € N such that, for each s € N and s > s, there exist
m(s), n(s) € N, m(s) > n(s) > s such that

n (M(xm(s)s Xn(s)» tO)) g
and, by the condition (d),
a(xm(s)fla Xn(s)—1» tO) > 1.
Let, for each s > 1, m(s) be the least positive integer exceeding n(s) satisfying the
above property, i.e., 7 (M (Xu(s)—1, Xn(s)» 10)) < € and 1 (M (X (s), Xn(s)» f0)) = € for
each s € N. Since 7 is continuous, there exists 0 < €; < 1 such that n(e;) = ¢, i.e.,
M(xm(s),l, Xn(s)> th) > €1, Vs € N. (1118)

Then we have

eE<TM (M(Xm(x), Xn(s)s [()))
< a(Xm(s)—1> Xn(s)—1, 1) N (M(xm(s), Xn(s)s fo))
< k1 (MGno)-1 Xn-1.10)) . Vs € N. (11.19)

Since fuzzy metric is strong, we obtain

M (X (s)—15 Xn(s)—1, fo) = *L {M(xm(x)flv Xn(s)> 10), M (Xn(sys Xn(s)—1s lo)}

= max {M(xm(s)fls Xn(s)s fo) + M(xn(s)s Xn(s)—1>» fo) — 1, O}
(11.20)

for each s € N. Take € defined in (11.18). Then, by (11.17), there exist sy € N such
that
M (Xn(s)s Xnis)—1,t0) > 1 — €1, Vs > 5. (11.21)
Now, by (11.18) and (11.21), we get
M(xm(x)—l’ Xn(s)s tO) + M(xn(s)v Xn(s)—1» t()) > l’ Vs > 50 (1122)

So, applying (11.19), (11.20), (11.22) and the condition (c), we get

€ < M Xi(s), Xn(s)s to))
< kn (M Xmis)-1, Xn(s)—1: 10))
< k[ (MGns)-1: Xn)» D) + 1 (M Xnisys Xnis)-1, D))

for each s > sy. Letting s — o0 in the above expression, we get
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e<ke<e

So, we get a contradiction. Hence {x,},cn is a Cauchy sequence in X.
The rest of the proof follows similar lines to Theorem 11.16. This completes the
proof.

Remark 11.13 In the paper of Wardowski ([49]) one could find the following open
question:

“Can the condition (a) in Theorem 15 (i.e., Theorem 3.2 in [49]) be omitted for
nilpotent t-norms?”’

Ifa(x,y,t) =1forallx,y € X and¢ > 0 in Theorem 18, then a partial answer
to this question is obtained. Namely, in narrowed space (strong fuzzy metric space),
we could expand the class of the #-norms, i.e., in that case Theorem 18 holds for the
nilpotent t-norm * = .

Open Problem. Can the assumption of strong fuzzy metric in Theorem 18 be omit-
ted/further relaxed?

11.8 Fuzzy Z-Contractive Mappings

Most recently Shukla et al. [40] unified different classes of fuzzy contractive map-
pings by introducing a new class of fuzzy contractive mappings called as Fuzzy
Z -contractive mappings.

First, we define the Z-contraction in G V-fuzzy metric spaces. Denote by Z the
family of all functions ¢: (0, 1] x (0, 1] — R satisfying the following condition:

C(t,s) >s

forallz,s € (0, 1).

Example 11.12 Consider the following functions ¢ from (0, 1] x (0, 1] into R
defined by

(1) {(z,s) = (s), where y: (0, 1] — (0, 1] is a function such that s < ) (s) for
all s € (0, 1);

1
(2) ¢(t,s) = pan +1;

S
3) C(@,s) = -
Then, in all the cases, ( € Z.

Remark 11.14 By the above definition, it is obvious that ((¢,7) > ¢ for all
O0<t<l.

Definition 11.22 Let (X, M, *) be a fuzzy metric space and f: X — X be a map-
ping. Suppose that there exists { € 2 such that
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M(fx, fy, 1) = C(M(fx, fy, 1), M(x,y,1)) (11.23)

for all x, y € X with fx % fy and t > 0. Then f is called a fuzzy Z -contractive
mapping with respect to the function ( € 2.

Example 11.13 Every Tirado’s contraction with contractive constant k is a fuzzy 2-
contraction with respect to the function {; € 2 defined by (s(¢t,5) =1+ k(s — 1)
forall s, t € (0, 1].

Example 11.14 Every fuzzy contractive mapping with contractive constant £ is a
fuzzy Z’-contraction with respect to the function (g5 € 2 defined by (ss(7, 5) =

m forall s, t € (O, 1].

Example 11.15 In view of Remark 11.11, every Z-contractive mapping with
respect to n € S is a fuzzy Z -contraction with respect to the function (y € 2
defined by Cw (t, s) = n~ ' (kn(s)) forall s, ¢ € (0, 1].

Example 11.16 Every )-contractive mapping is a fuzzy 2 -contraction with respect
to the function (y; defined by (3 (¢, s) = ¥ (s) forall s, ¢ € (0, 1].

Example 11.17 Let X = R and d be the usual metric on X. Then (X, My, *,,) is

t
a complete fuzzy metric space, where M\; = ——— forallx,y € X, ¢ > 0, is
t+d(x,y)

the standard fuzzy metric induced by d (see [14]). Let f: X — X be Edelstein’s
mapping (contractive mapping) on metric space (X, d), i.e., d(fx, fy) <d(x,y)
forallx, y € X, then f isafuzzy 2°-contractive mapping with respect to the function
(n € Z defined by

i > s
— 2 b 9
Cm (2, 8) = { 1, otherwise.

Indeed, the above fact remains true, if instead YTH (i.e., the arithmetic mean of s and
t) for t > s, one take geometric or harmonic mean of s and .

Remark 11.15 If (X, M, %) is an arbitrary fuzzy metric space and f: X — X bea
Edelstein’s mapping on (X, M, %), i.e., M(fx, fy,t) > M(x,y,t)forallx,y € X
and ¢t > 0. Then f is a fuzzy 2 -contractive mapping with respect to the function
(n € Z defined in the previous example. Therefore, we conclude that for any given
fuzzy Edelstein’s mapping we always have ((= (,) € Z such that the fuzzy Edel-
stein mapping is a fuzzy 2 -contractive mapping and so the contractive mappings
considered by Tirado [43], Gregori and Sapena [19], Wardowski [49] and Mihet [30]
are included in this new class. Although there are fuzzy 2 '-contractive mapping
which do not belong to any of these considered classes (see, e.g., Example 11.18,
Example 11.20 and Example 11.22).

The following example shows that a fuzzy 2°-contractive mapping may not have
a fixed point even in an M-complete fuzzy metric space:
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Example 11.18 Let X = N and define the fuzzy set M on X x X x (0, o0) by

M, m,t) = min li, ﬂ] forall n,m € X and ¢t > 0. Then (X, M, %,) is an M-
m n

complete fuzzy metric space. Define a mapping f: X — X by fn =n + 1 for all

n € X.Then fisafuzzy Z'-contractive mapping with respect to the function ¢, € 2
defined in Example 11.17. Notice that f is a fixed point free mapping on X.

The above example motivates us for the consideration of a space having some
additional property so that the existence of fixed point of fuzzy Z°-contractive map-
ping can be ensured.

Definition 11.23 Let (X, M, %) be a fuzzy metric space, f: X — X a mapping and
¢ € Z. Then we say that the quadruple (X, M, f, () has the property (S) if, for any
Picard sequence {x,} with initial value x € X, i.e., x, = f"x forall n € N such that
r}flfn M(x,, X, t) < r}ltlfn M (x41, Xma1,t) foralln € Nand ¢ > 0 implies that

lim inf ((M (Xps1, Xmt1, 1)y M(Xp, Xy 1)) = 1

n—oom>n

forall t > O.

The following example shows that there exists a function ¢ such that the map-
pings introduced by Tirado [43] forms a quadruple (X, M, f, (), which satisfies the
property (S), where (X, M, %) is an arbitrary fuzzy metric space:

Example 11.19 Let (X, M, %) be an arbitrary fuzzy metric space and f: X — X
be a fuzzy Tirado-contraction. Then the quadruple (X, M, f, () has the property (S)
with {(¢,5) = 1+ k(s — 1) forallz, s € (0, 1]. Indeed, if x € X and {x,} be a Picard
sequence with initial value x such that

inf M(x,, x,,,t) < inf M(x,11, Xma1, 1)
m>n m>n

foralln € Nand¢ > 0,then lim inf M (x,, x,,, t) mustexists forall # > 0. Suppose
n—-oo m>n

that lim inf M (x,, x,,,t) = a(t) for all ¢+ > 0O, then a(¢) < 1. By the definition of

n—-oom>n
¢, for every t > 0, we have

lim inf C(M(anr]’leJrl? l), M(xn» Xm s t)) =1 +k(d(l) - 1)

n—oom>n

Also, by the contractivity condition, we obtain 1 4+ ka(¢) < k + a(¢) andso 1 < a(r).
It shows that a(t) = 1 forall t > 0, i.c.,

lim inf C(M (Xpg15 Xms15 1) M (X, X, 1)) = 1.

n—oom>n

The following theorem generalizes Theorem 11.4 (see also Corollary 3.9 in [30])
for arbitrary ¢-norms:
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Theorem 11.19 Let (X, M, %) be an M-complete fuzzy metric space and f: X —
X be a fuzzy Z -contraction. If the quadruple (X, M, f, ) has the property (S), then
f has a unique fixed point u € X.

Proof First, we show that if the fixed point of f exists, then it is unique. Suppose
that u, v are two distinct fixed point of f, i.e., fu = u and fv = v and there exists
s > O such that M (u, v, s) < 1. Then, by the condition (11.23) and the definition of
¢, we have

Mu,v,s) = M(fu, fv,s) > C(M(fu, fv,s), M(u,v,s)) > M(u,v,s).

This contradiction shows that M (u, v, t) = 1 for all # > 0 and so u = v. It proves
the uniqueness.

Now, we show the existence of fixed point of f. Let xo € X and define the Picard
sequence {x,} by x, = fx,_; foralln € N.

Ifx, = x,_; forany n € N, then fx,_; = x, = x,_ is a fixed point of f. There-
fore, we assume that x, # x,_; for all n € N, i.e., no consecutive terms of the
sequence {x,} are equal.

Further, if x,, = x,, forsome n < m, then, as no consecutive terms of the sequence
{x,} are equal from (11.23), we have

M(er—la Xn42, t) = C(M(xi1+17 Xn425 t)v M(Xn, Xn+1, t)) > M(xna Xn+1, t)’

i'e'7 M(-xn’ Xn+1, t) < M(xl‘l+17 Xn+2, t)
Similarly, one can prove that

M(xn» Xn+1, [) < M(xn-i-la Xn+2, t) << M(Xm, Xm+1, t)~
Since x,, = x,,, we have x,.; = fx, = fx, = x4+ and so the above inequality
yields a contradiction. Thus we can assume that x,, # x,, for all distinct n, m € N.

Now, for ¢t > 0, let
a,(t) = inf M(x,, X, 1).
m>=n

Then it follows from (11.23) and the definition of  that

M(xn+l’xm+lvt) = M(fxl’H fxm’t)
> CM(fxn, fXm, ), M(xXy, X, 1))
> M(xilaxmvt) (11.24)

for each t > 0. Therefore, for all n < m, we have
M Xy, Xy t) < M(Xp41, Xmt1, 1) foralln < m.

Taking infimum over m (> n) in the above inequality, we obtain
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inf M(xnv Xm» t) = inf M(xn-H s Xm+1, t)7
i.e., a,(t) < a,,1(¢t) for all n € N. Thus {a,(¢)} is bounded and monotonic for all
t > 0.

Suppose that lim a,(t) = a(t) forallt > 0. We claim thata(¢) = 1 forall¢ > 0.
If s > 0 and a(s) < 1, then, using the fact that the quadruple (X, M, f, () having
the property (S), we obtain

lim inf ((M (x,,, X, ), M (Xpi1, Xma1,S)) = 1. (11.25)

n—oom>n

From the inequality (11.24), we have
inf M(xpy1, Xm+1,8) = inf C(M(fxn, fXm,5), M(xp, X, 8)) = inf M(xp, X, 5),
m>n m>n m>n

ie.,
Ang1(s) = inf C(M(fxn, fXp,8), M(Xn, X, ) = a,(s).

Letting n — oo and using (11.25) in the above inequality, we obtain

lim inf M(x,, x,,,s) = a(s) = 1.

n—oom>n

This contradiction verifies our claim. By the definition of a,, we have lim M
n,m— oo

(Xn, Xm,t) =1 for all t > 0. Hence {x,} is an M-Cauchy sequence and, by M-
completeness of X, there exists # € X such that

lim M(x,,u,t)=1, Vi > 0. (11.26)
n—0oQ
Now, we show that u is a fixed point of f. Suppose that fu # u. Without loss of
generality, we can assume that x, # u and x, # Tu for all n € N, and so, there
exists s > 0 such that M(u, fu,s) <1, M(x,,u,s) <1 and M(x,41, fu,s) =
M(fxy,, fu,s) < 1 forall n € N. Then we have

M(xp,u,s) < C(M(fxn, fu,s), M(xp,u,s)) < M(fxy, fu,s) =Mx,4+1, fu,s).

Letting n — oo and using (11.26), we obtain 1 < M (u, fu, s). This contradiction
shows that M (u, fu,t) = 1forallt > 0and so fu = u. Thus the existence of fixed
point follows. This completes the proof.

Remark 11.16 Example 11.13 and Example 11.19 shows that the above theorem
generalizes Theorem 11.4 for arbitrary z-norms.

The following example shows that this generalization is proper:
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Example 11.20 Let {x,} be a strictly increasing sequence of real numbers such that
0 <ux, <lforalln € Nandlim, . x, = 1.Let X = {x,,: n € N} U {1} and define
a fuzzy set M on X x X x (0, co) by:

1 if x =y;
M(x,y, 1) = {min{x, v}, otherwise,
for all x,y € X and ¢ € (0, 00). Then (X, M, *,,) is an M-complete fuzzy metric
space. Define a function (: (0, 1] x (0, 1] - R by

t, ift>s,

C([vs)z{\/g’ lftfs,
forall s, ¢ € (0, 1] and a mapping f: X — X by
fxp =xu41 and fl =1

for all n € N. Then ¢ € 2 and the quadruple (X, M, f, ) has the property (S).
Furthermore, the mapping f is a fuzzy 2-contractive mapping with respect to the
function (. Thus all the conditions of Theorem 11.19 are satisfied and we can conclude
the existence of fixed point of f. Indeed, x = 1 is the unique fixed point of f.

Remark 11.17 In view of the above example, we can conclude that the mapping
f is not Tirado’s contraction. For instance, take the sequence {x,} defined by x, =

1
I — —— forall n € N in the above example. Then we have

1 _M(fxnv fx11+lvt) =1- M(le—la xn+27t) =1 — Xn+1,
1 — M(-xns-anrl’t) =1-x,

for all t > 0. Therefore, for sufficient large n, there exists no k such that k € [0, 1)
and
1- M(fxns fanrla t) < k[l - M()Cn, Xn+1, t)]’ vt > 0.

Thus Theorem 11.19 is an actual generalization of the fixed point result of Tirado
[43], i.e., Theorem 11.4.

Next, we introduce another condition (S’) which is weaker than the condition (S).

Definition 11.24 Let (X, M, *) be a fuzzy metric space, f: X — X be a mapping
and ¢ € 2. Then we say that the quadruple (X, M, f, {) has the property (S') if,
for any Picard sequence {x,} with initial value x € X, i.e., x, = f"x foralln ¢ N
such that inf M (x,,, x,,,1) < l’}lllfn M (xp41, Xpm+1,t) foralln e Nandr > 0and 0 <

m>n

lim inf M(x,, x,,,t) < 1 forallr > 0, we have
n—-oom=>n
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lim inf (M (xp41, Xma1, 1), M(xy, X, t)) =1, ¥Vt > 0.

n—oom>n

The following example verifies the fact that condition (S”) is weaker than condition

(S):

Example 11.21 Let ¢ > 0 be fixed and X = [g, 00). Define a fuzzy set M on X X
X x (0, 0c0) by
1, if x=y;
M(x,y, 1) = 1

——— otherwise,
1 + max{x, y}

forall x,y € X and r € (0, 00). Then (X, M, %,,) is a fuzzy metric space. Define a
mapping f: X — X by fx = 2xforallx € X.Supposethat(: (0, 1] x (0, 1] - R
is defined by ((¢, s) = ¢(s) forall ¢, s € (0, 1], where v € ¥ is such that ¢(0) = 0.
Then it is easy to see that the quadruple (X, M, f, ) satisfies the condition (S")
trivially.

On the other hand, the quadruple (X, M, f, () does not satisfy the condition (.5).
Indeed, for any x € X and ¢ > 0, we have

inf M(f"x, f"x,t) = inf M(2"x,2"x,1) =0 < 1.

Therefore, inf M(f"x, f"x,t) < inf M(f""'x, f"*'x,t)foralln € Nandt > 0,

but we have

lim inf (M (X415 Xma1, 1), M (X, X, t)) = lim inf (M (x,,, X, 1)) =0 # 1.

n—-oom>n n—-oom>n

In the next theorem, we see that the condition (S”) enables us to extend the result of
Mihet [30] for fuzzy Z°-contraction, but with an additional assumption to Theorem
11.19:

Theorem 11.20 Let (X, M, x) be an M-complete fuzzy metric space, f: X — X
be a fuzzy & -contraction and the quadruple (X, M, f, () has the property (S'). In
addition, suppose that lim inf M(f"x, f"x,t) > Oforallx € X andt > 0. Then

n—-oom>n

f has a unique fixed point u € X.

Proof Because of lim inf M(f"x, f™x,t) > Oforallx € X andt > 0, following

n—oom>n

the lines of the proof of Theorem 11.19 and using the property (S’), we obtain the
required result. This completes the proof.

In the next example, we show that the class of fuzzy 2’-contractions is wider than
that of fuzzy 1-contractions and verify the merit of fuzzy 2 -contractive mappings
over fuzzy 1-contractive mappings. For this, we use the idea of Example 11.20.
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Example 11.22 Let X = {x,,: n € N} U {1}, where {x,} is an arbitrary sequence
such that x,, € (0, 1), x, < x,41 for all n € N and lim,,_, » x, = 1. Define a fuzzy
set M on X x X x (0, co) by

1, if x =y,
M(x,y, 1) = {min{x, v}, otherwise,
for all x,y € X and ¢ € (0, 00). Then (X, M, *,,) is an M-complete fuzzy metric
space. Define a mapping f: X — X by fx, =x,4 foralln e Nand f1 =1.
Then we claim that T is not a fuzzy 1)-contraction. On the contrary, suppose that 7
is a fuzzy 1p-contraction. Therefore, there exists ¢ € ¥ such that (M (x,,, X, 1)) <
M(fx,, fxm,t)foralln,m e Nwithn < m,i.e.,

Xn < P(xp) < Xnyl. (11.27)
Since ¢ € ¥, we can choose the sequence {x,} such that, for any x; € (0, 1), x,,41 =
)%1/}()@1) for all n € N. Then, by (11.27), we obtain

Xy < P(x,) < w

The above inequalities contradict the definition of 1. Therefore, f is not a fuzzy -
contraction. On the other hand, we have shown in Example 11.20 that the mapping f
is a fuzzy 2 '-contractive mapping as well as, the condition (S’) is satisfied. Now the
existence and uniqueness of fixed point of f is assured by Theorem 11.20. Indeed,
1 is the unique fixed point of f.

Corollary 11.2 Let (X, M, %) be an M -complete fuzzy metric space, f: X — X be
afuzzy y-contractive mapping and lim inf M(f"x, f"x,t) > Oforallx € X, t >
n—oom>n

0. Then f has a unique fixed pointu € X.

Proof Inview of Example 11.16 we need only to show that the quadruple (X, M, f, ()
have the property (S’), where ((¢, s) = 1 (s). Suppose that x € X and {x, } is a Picard
sequence with the initial value x such that inf M (x,, x,,,, ) < inf M (X,41, Xpt1,1)

m>n

and, forallt > 0,0 < lim inf M(x,, x,,,t) = a(t) < 1. Then, by the definition of

n—-oom>n

1, it follows that, for all # > 0,

lim inf (M (Xpt1, Xmt1, 1), M (X, X, 1)) = p(a(r)).

n—-oom>n

Also, by the 1-contractivity, we obtain ¥ (a(t)) < a(t) and so a(t) = 1, i.e.,

lim inf (M (xp41, Xma1, 1), M(xy, X, t)) =1, ¥Vt > 0.

n—oom>n
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Therefore, the quadruple (X, M, f, () has the property (S’). This completes the
proof.

Remark 11.18 Since the class of fuzzy 1)-contractions consists of the class of fuzzy
contractive mappings [19], Tirado’s contraction [43] and Wardowski’s contraction
[49], therefore, fixed point results for these contractions can be obtained by the above
corollary.

Remark 11.19 1t is clear from the definition that every fuzzy % -contractive map-
ping is a fuzzy Edelstein’s mapping (contractive mapping). Also, Remark 11.15
shows that, for every fuzzy Edelstein’s mapping f, there exists a function (pean € Z
such that f is afuzzy 2 -contractive mapping with (ean € 2. In view of existence of
fixed point of mapping f, notice that, for a fuzzy Edelstein’s mapping, the quadruple
(X, M, f, Cmean) need not have the property (S), e.g., in Example 11.18, f is a fuzzy
Edelstein’s mapping but the quadruple (X, M, f, () does not possess the property
(S). Indeed, in this example, for any Picard sequence {x, } with initial value x € X,
we have

inf M(x,, X, 1) < inf M (X1, Xpg1, 1)
m>n m>n

foralln € Nand ¢ > 0, but

hm lnf Cmean(M(xn-&-lvxm-H’ t)v M(-xn’ Xm s t)) = 0 # 15 Vt > O
n—oom>n

Therefore, the condition (S) of Theorem 11.19 is not satisfied. Also, one can see that
the condition: lim inf M(f"x, f™x,t) > 0 for all x € X and ¢ > 0 of Theorem

n—oom>n

11.20 is not satisfied, while the condition (S’) is satisfied.

Remark 11.20 Motivated by the results of Tirado [43] and Mihet [30], we intro-
duced the class of fuzzy 2°-contractive mappings and showed that the mappings of
this new class have a unique fixed point on an arbitrary M-complete fuzzy metric
space having the properties (S) and (S”). With suitable examples, we showed that the
class of fuzzy Z’-contractive mappings is weaker than the existing ones in the litera-
ture. Further, it will be interesting to apply this new approach in general settings, e.g.,
in fuzzy metric-like setting (see [38, 39]) as well as it will be interesting to generalize
the class of fuzzy Z-contractive mappings for weaker contractive conditions, e.g.,
(e, 9)-type contractive conditions (see [31]).

11.9 Conclusions

The notion of fuzzy metric spaces are introduced for the first time by I. Kramosil
and J. Michalek in 1975, thus releasing axioms to the fuzzy metric spaces requires a
function of the distance has supremum 1, in the relation to the axiomatic of probability
of metric spaces. The modified definition of the fuzzy metric spaces introduces A.
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George and P. Veeramani In 1994, which relieves axiomatic of the fuzzy metric spaces
and it is desired that the infimum of the function of the distance is 0, in relation to the
probability approximation space. Today, they are studying the fuzzy metric spaces
in terms of both definitions.

Recently, many authors (see, for example, [2, 4, 5, 7, 11, 18, 21, 33, 42] and
referenced mentioned their in) observed that the various contraction mappings in
metric spaces may be exactly translated into probabilistic or fuzzy metric spaces
endowed with special t —norms, such as minimum #—norm.

Starting with famous Banach contraction principle, a huge number of mathemati-
cians started to formulate better contractive conditions for which fixed point exists.
In this chapter, we have identified some of the first but no less important contrac-
tion conditions that have been formulated by well-known mathematicians, Grabiec,
Gregori-Sapena, Tirado, Mihet, Wardowski, and made them in the framework of the
fuzzy metric space.

It is our hope that the material presented in this chapter will be enough to stimulate
scientists and students to investigate further this challenging field.
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Chapter 12 ®)
Common Fixed Point Theorems for Four Creck for
Maps

Muhammad Nazam, Choonkil Park, and Muhammad Arshad

Abstract In this chapter, we manifest some coincidence and common fixed point
theorems for four maps satisfying Ciric type and Hardy—Rogers type (a, F)-
contractions on «-complete metric spaces. We apply these results to infer several new
and old corresponding results in ordered metric spaces and graphic metric spaces.
These results also generalize some results obtained previously. We present an exam-
ple and an application to support our results.

Keywords «o-Complete metric space * (¢, F))-Contraction - Common fixed point *
Four maps - Coincidence point

12.1 Introduction and Preliminaries

After the famous Banach’s Contraction Principle, a large number of researchers
revealed many fruitful generalizations of Banach’s fixed point theorem. One of these
generalizations is known as F-contraction presented by Wardowski [21]. Wardowski
[21] evinced that every F-contraction defined on complete metric space has a unique
fixed point. The concept of F-contraction proved another milestone in fixed point
theory and numerous research papers on F'-contraction have been published (see for
instant [1, 2, 5, 12-14, 16, 18, 22]).

In 2012, Samet et al. [20] investigated the idea of (w, ¥)-contractive and «-
admissible mappings and evinced some significant fixed point results for such kind
of mappings defined on complete metric spaces. Subsequently, Salimi et al. [19] and
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Hussain et al. [10, 11] improved the concept of a-admissible mapping and proved
some important (common) fixed point theorems.

Recently, Cosentino et al. [4] established a fixed point result for Hardy—Rogers
type F-contraction and Minak et al. [17] presented a fixed point result for Ciric
type generalized F'-contraction. We bring into use the idea of Ciric type and Hardy—
Rogers type (o, F)-contractions comprising four self-mappings defined on metric
space. We present some fixed point results for four maps satisfying such kind of
contractions on «-complete metric space. We apply our results to infer several new
and old results. We present ordered metric and graphic metric versions of these
theorems as consequences. We apply our result to show the existence of common
solution of the system of Volterra type integral equations.

We denote (0, oo) by R, [0, 00) by R, (—o00, +00) by R and the set of natu-
ral numbers by N. Wardowski [21] investigated a nonlinear function F : Rt — R
complying with the following axioms:

(Fy) F is strictly increasing;

(F,) For each sequence {r,} of positive numbers lim,_, o, 7, = 0 if and only if
lim,,, oo F(r,) = —00;

(F3) There exists 6 € (0, 1) such that lim,_ ¢+ (@)’ F (&) = 0.

We denote by Ar the set of all functions satisfying the conditions (F;)—(F3).

Example 12.1 ([21]) Let F : Rt — R be the functions defined by
(1) F(r) = In(r);
(2) F(r) =r +1In(r);
(3) F(r) =In(r* +r);
@ Fr)=—=.
It is easy to check that the functions (1)—(4) (d) are members of Af.

In [21], Wardowski utilized function F in an excellent manner and gave the
following remarkable result:

Theorem 12.1 ([21]) Let (M, d) be a complete metric space and T : M — M be
a mapping satisfying

d(T(r1), T(r2)) > 0= v+ F(d(T(r1), T(r2)) < F(d(r1,12))) (12.1)
forallry,r, € M and some t > 0. Then T has a unique fixed point v € M and, for
every ro € M, the sequence {T" (ry)} for all n € N is convergent to v.

Remark 12.1 ([21, Remark 2.1]) In metric spaces, a mapping giving fulfillment to
F-contraction is always a Banach contraction and hence a continuous mapping.

Definition 12.1 ([20]) Let S : M — M be a mapping and o : M x M — R be a
function. S is said to be an a-admissible mapping if

a(ry,r2) > 1 implies a(S(r1), S(r2)) > 1

forallr;,m € M.



12 Common Fixed Point Theorems for Four Maps 285

Definition 12.2 ([20]) Let S : M — M be a mapping and o : M x M — RaL be
a function. The mapping § is said to be a triangular o-admissible mapping if the
following conditions hold:

(a) a(ry, r2) = limplies a(S(r1), S(r2)) = 1;

(b) a(ri,r3) > 1and a(rs, r;) > 1 imply a(r1, ) > 1 forallry, rm, r3 € M.

Definition 12.3 ([3]) Let f, g : M — M be mappings and o : M x M — R be a
function. The pair (f, g) is said to be:
(1) a weakly a-admissible pair of mappings if

alf(r),gf(r) =1, algl), fgr) =1

forallr € M;
(2) a partially weakly a-admissible pair of mappings if a(f(r), gf (r)) = 1 for
allr € M.

Let f~'(ry={meM: f(m)=r).

Definition 12.4 ([3]) Let f, g, h : M — M be three mappings such that f(M) U
gM)yCh(M)anda : M x M — R(J)r be a function. The pair (f, g) is said to be:
(1) aweakly a-admissible pair of mappings with respectto hif a(f(ry), g(r2)) >
1forallr, € Mandr, € h=' f(r)) and a(g(r1), f(r2) > 1forallr, € h'g(r));
(2) apartially weakly a-admissible pair of mappings with respectto & if o (f (ry),
g(r)) > 1forallr; € Mandr, € h=' f(r)).

Remark 12.2 Note that

(1) if g = f in Definition 12.4, then f is weakly «-admissible (partially weakly
a-admissible) with respect to #;

(2) if H = I); (the identity mapping on M), then Definition 12.4 reduces to
Definition 12.3.

Definition 12.5 Let f, g, h : M — M be three mappings suchthat f (M) U g(M) <
h(M)ando : M x M — Rar be a function. The pair (f, g) is said to be triangular
weakly a-admissible pair of mappings with respect to # if the following conditions
hold:

(@) a(f(r1), g(r2)) > 1forallry € Mandr, € h™' f(r)) and a(g(ry), f(r2)) =
1 forallr, € h~'g(r));

() a(ry,r3) > 1 and a(rs, r2) > 1 imply a(ry,rp) > 1 forallry, r,r3 € M.

Definition 12.6 Let f, g, h : M — M be three mappings suchthat f (M) U g(M)
h(M)ando : M x M — Rg be a function. The pair (f, g) is said to be triangular
partially weakly a-admissible pair of mappings with respect to & if the following
conditions hold:

@) a(f(@r1),g(r)) = 1forallry e Mandr, € h™' £(r1);

() a(r,r3) = 1, a(rs, r) = 1imply a(ry, ) > 1forall vy, rp, r3 € M.
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Example 12.2 Let M = [0, co) and define the functions by

r, ifr e [0, 1], ) = r3, ifr [0, 1],
¢, ifre(l,o0), T Ve, ifre, oo,

-]

r3, ifr €0, 1], r, ifr € [0, 1],
) _{ Citre(oon), 1T e ifrel o),

where c is a constant. Define a mapping o : M x M — Ry by a(ry,ry) = 7"
for all 1, r, € M. Then the pair (f, g) is a triangular weakly «-admissible pair of
mappings with respect to T and (g, f) is a triangular weakly «-admissible pair of
a(ri,rm) >1, —r, <0, .

ary.ra) > 1. then { Fy— 1 <0, which
implies that r; — r3 < 0. Hence, a(r,r3) =77 > 1.

To prove that (f, g) is a partially weakly «-admissible pair of mappings with
respectto T, letr;, r, € M be such thatr, € T~ 1f(rl) that is, T'(r) = f(r;) and

mappings with respect to S. Indeed, if {

thus we have r2 =riorrn = r1 Since g(r;) = rl15 >ry = f(r;) forallry € [0, 1],
a(fry, gr) =¥~/ > 1. Hence, (f, g) is a partially weakly o-admissible pair
of mappings with respect to 7. Similarly, it can be proved that (g, f) is a partially
weakly a-admissible pair of mappings with respect to S.

Recently, Hussain et al. [11] introduced the concept of -completeness for a metric
space, which is weaker than the concept of completeness.

Definition 12.7 ([11]) Let (M, d) be a metric space and o : M x M — Rg' be a
function. The metric space M is said to be a-complete if every Cauchy sequence {r,}
in M such that @ (7, r,+1) > 1 forall n € N converges in M.

Remark 12.3 If M is a complete metric space, then M is also an ¢-complete metric
space. But the converse is not true (see [15, Example 1.17]).

Definition 12.8 Let (M, d) be ametric spaceando : M x M — R()*, T-M—>M
be two mappings. We say that 7 is an «-continuous mapping on (M, d) if, for any
r € M and a sequence {r,},

lim d(r,,r) =0 and a(ry, ry+1) =1 imply lim d(T (r,), T(r)) = 0.
n—00

n—0o0

Example 12.3 Let M =[0,00) andd : M x M — [0, co) be defined by d(r;, r3)
= |r; — r2| for all ry, r, € M. Define the functions by

sin(rr), if r € [0, 1],

ri 413+ 1, if g, € [0, 1],
cos(mr) +2, ifr € (1, 00), 0,

otherwise.

T(r) = a1, 1) =

Then T is not continuous on M, however, T is a-continuous.
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Definition 12.9 ([3]) Let (M, d) be a metric space. The pair {f, g} is said to be
a-compatible if lim, o d(fg(r,), gf (r,)) = 0, whenever {r,} is a sequence in M
such that «(r,,, r,+1) > 1 and

lim f(r,) = lim g(r,) =1¢
n—oo n—oo
for somet € M.

Remark 12.4 If (f, g) is a compatible pair, then ( f, g) is also an «-compatible pair.
But the converse is not true.

Definition 12.10 ([8]) Let f and T be self-mappings defined on a nonempty set M.
If f(r) =T (r) for some r € M, then r is called a coincidence point of f and T.
Two self-mappings f and T defined on M are said to be weakly compatible if they
commute at their coincidence points, That is, if f(r) = T(r) for some r € M, then

JT(r)=Tf(r).
Example 124 Let M =R and T, f: M — M be the mappings given by

T(r)==6r —235, f(r)y=5r—-4

for all r € M. Then f, T are weakly compatible mappings for coincidence point
r=1

Definition 12.11 Let (M, d) be ametricspaceanda : M x M — Rar be a function.
The space (M, d) is said to be a-regular if there exists a sequence {r,} in M such
that, if r, — r and a(r,, r,1) > 1, then a(r,,r) > 1 foralln € N.

Lemma 12.1 Let (M, d) be a metric space. Assume that there exist two sequences
{ra}, {5} such that

lim d(r,,s,) =0, limr,=t

n— 00 =00

forsomet € M. Then lim, s, = t.

Proof Due to the triangular inequality, we have
d(sp, 1) < d(sn,rn) +d(ry, 1)

and so the result follows after applying limit as n — oo.

12.2 Main Results

Let (M, d) be metric space, f,g,S,T : M — M be mappings and e : M x M —
[0, c0) be a function. We define the set yr, o by
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Viga =10r1,1) € M x M 1 a(Sry,Try) > 1, d(f(r1), 8(r2)) > 0}.
Let

M1 (r1, r2) = max ld(S(Vl), T(r2)),d(f(r1), S(r1)),d(g(r2), T (r2)),

d(S8(r1), g(r2)) +d(f(r1), T(r2)) }
3 .

The following theorem is one of our main results:

Theorem 12.2 Let M be a nonempty set and o : M x M — [0, 00) be a function.
Let (M, d) be an a-complete metric space and f, g, S, T be o-continuous self-
mappings on (M, d) such that f(M) C T(M), g(M) C S(M). Suppose that, for all
(r1,1m2) € Vfg.0 and some F € Ap and T > 0, the inequality

T+ Fd(f(r1), 8(r2)) = F (A (r1,12)) (12.2)

holds. Assume that the pairs (f, S), (g, T) are a-compatible and the pairs ( f, g) and
(g, f) are triangular partially weakly a-admissible pairs of mappings with respect
to T and S, respectively. Then the pairs (f, S) and (g, T) have a coincidence point
v in M. Moreover, if a(Sv, Tv) > 1, then v is a common point of the mappings

f. g S, T.

Proof Let ryp € M be an arbitrary point. Since f(M) € T (M), there exists r; € M
such that f(rg) = T (ry). Since g(r;) € S(M), we can choose r, € M such that
g(r)) = S(rp). In general, rp,4; and rp,4, are chosen in M such that f(r,) =
T (ryn+1) and g(r2p+1) = S(r2,42). Define a sequence {j,} in M such that

Jons1 = f(r) =T (rang1)

and
Jonv2 = 8(rany1) = S(rani2)

foralln > 0.Sincer; € T~ (frg),r» € S~'(gr)and (f, g) and (g, f) are triangular
partially weakly c-admissible pairs of mappings with respectto 7" and S, respectively,
we have

a(Try = fro,gri = Sr2) > 1

and
a(gry = Sry, fro=Tr3) > 1.

Continuing this way, we obtain «(T 7,41, Ston+2) = & (Jou+1, jont2) = 1 for all
n=>0.
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Now, we prove that lim;_, o, d(ji, ji+1) = 0. Define d; = d(j, ji+1). Suppose that
dj, = 0 for some ly. Then jj, = ji,+1. If lo = 2n, then jy, = jou+1 giVes jout1 =
Jon+2. Indeed, from the contractive condition (12.2), we get

F (d(jont1s Jont2)) = F(d(f(r2n), §(rans 1)) < F (M1 (ran, T2ng1)) — T

for all n € N U {0}, where

M (Fon, Tong1)

_ d(S(r), T (ran 1)), d(f (ran), S(ra)), d(g(rans 1), T (rans1))s
= MaxX \ 4(S(ro).8rams))+d(f (r20). T (r2ns1))
2

d oy jont1)s dCGong1s Jon)s d(Gons2, Jjons1),
d(jonsjont2)+d (ony 1, jons1)
2

= max {
= max {d (jon, jon+1)s dong1s jons2)} -
Since d(jon, jont1) = 0, A (ran, Fang1) = d(jont1, jons2) and so
F (d(jons1s Jons2)) < F (d(ons1s Jons2)) — T,
which is a contradiction due to Fy. Thus, jo,4+1 = jout2. Similarly, if Iy = 2n + 1,
then jon4+1 = Jjon+2 gives joni2 = jou+3. Continuing this process, we find that j; is a
constant sequence for [ > [y. Hence, lim;_, o, d(ji, ji+1) = 0 holds true.
Suppose that d; = d(ji, ji+1) > 0 for each /. We claim that
lim F (d(ji, ji+1)) = —o0.
[— 00

Let [ = 2n. Since a(Sra,, Trone1) > 1 and d(f (r2,), 8(ran—1)) > 0, (ran, ran_1) €
Vf.0.« Using (12.2), we obtain

F(d(jan, Jon+1)) = F (d(jon—1, Jon)) — T (12.3)
for all n € N. Similarly, for/ =2n — 1
F(d(jon-1, jon)) = F(d(jon—2, jon-1)) — T (12.4)
for all n € N. Hence, from (12.3) and (12.4), we have
F(d(jn, jn+1)) = F(d(jn—1, jn)) — T (12.5)
for all n € N. By (12.5), we obtain

F(d(jns ja+1)) = F (d(jn-2, ju-1)) = 27.
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Repeating these steps, we get

F(d(jn, jn+1)) = F (d(jo, j1)) — nt. (12.6)

From (12.6), we obtain lim,,_, oo F (d(j,, jut1)) = —00. Since F € Ap,
lim d(jn, ju+1) = 0. (12.7)
From the property (F3) of F-contraction, there exists ¥ € (0, 1) such that
lim (s Jur 1)) F (d (s Jut1))) = 0. (12.8)
By (12.6), for all n € N, we obtain

d(ns Jn+))* (F(d (s Jns1)) = F (d (o, j1))) = = (d (s Jus1)) nT < 0.

(12.9)
Considering (12.7), (12.8) and letting n — oo in (12.9), we have
Tim (1 (s jor1)) = 0. (12.10)

Since (12.10) holds, there exists n; € N such thatn (d(j,, ju+1)) < 1foralln > n,

or |
d(jns Jn+1) = — (12.11)

ne

for all n > ny. Using (12.11), it follows that, form > n > n,

d(jn» jm) = d(jnv jnJrl) + d(jn+lv jn+2) + d(jn+2, jn+3) +- 4+ d(jmflv ]m)
= d(]nv jnJrl) + d(jn+1v jn+2) + d(jn+2» jn+3) + d(jmflv ]m)

m—1 00 ° 1
DD BN IDED By

i=n

The convergence of the series Z;’in Ll entails limy, 00 d(ju, jm) = 0. Hence, {j,}
i
is a Cauchy sequence in (M, d). Since {j,} is a Cauchy sequence in the «-complete

metric space M and a(j,, j,+1) > 1, there exists v € M such that

lim d(jous1, v) = lim d(Tryp1,v) = lim d(fra,,v) =0
n—oo n—o0 n—oQ

and
lim d(j,, v) = lim d(Sry,, v) = lim d(gra,_1,v) =0.
n—oo n—0oQ n—oo
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Hence,
Sron = v, fry, > v

as n — oo. Since (f, S) is an a-compatible pair and «(j2,, jon+1) = 1, we have

lim d(fSrzn, Sfr2n) =0.

Moreover, from lim,—, o d(fr2,, v) = 0, lim,_, o, d(Srz,, v) = 0 and «-continuity
of mappings f and S, we obtain

lim d(fSra,, fv) =0= lim d(Sfr,, Sv).
n—o00 n—oo
By the triangular inequality, we have

d(fv, Sv) <d(fv,Sfra) +d(Sfrm, Sv)
=< d(fU, ferH) + d(fSTQn, Sfr2n) + d(Sfr2n7 SU) (1212)
Applying the limitasn — ocoin (12.12), we obtaind ( fv, Sv) < 0, which yields that
fv = Sv. Thus, v is a coincidence point of f and S. Arguing in a similar manner,

we can prove that gv = Tv. Let «(T v, Sv) > 1 and assume that d( fv, gv) > 0.
Since v € Yy g.«, using the contractive condition (12.2), we have

F@d(f (), g(W)) < F(AMi(v,v) — T, (12.13)

where

d(S(), T(v)),d ,S(v)), d(v), T (v)),
0, v) = max | S sy SO A T
2

m {d(f(v),g(v)),d(f(v),S(v)),d(g(v),T(v)), }
= max d(f(v),g(U))erd(f(v),g(U))

=d(f(v), g(v)).
Using (12.13), we deduce that fu = gv. Hence, fv = gv = Tv = Sv, that is, v
is a coincidence point of f, g, S, T.
We show that v is a common fixed point of f, g, S and T'. Since S is @-continuous,
lim Sf(ry,) = S(v) = lim Sz(rz,,+2).
n—0oQ n—oo

Since the pair (f, S) is a-compatible,

im d(fS(ra), Sf(r2n) =0



292 M. Nazam et al.

and by Lemma 12.1
lim fS(ry,) = SW).
n—o0

Now, putr; = S(r2,) andrp = rp,4 in(12.2) and suppose on contrary thatd (S (v), v)
> (. Then we obtain

F(d(fS(ra), g(rant1)) < F(A1(S(ran), rans1)) — T, (12.14)

where

%l (S(r2n) r2n+l)

. d(S*(ran), T(rant1)), d(f S(r2n), S*(r20)), d (€ (rans1), T (rans1)),
= MAX\ 4(52 (1) 8 2w +d (f S(20). T (r2041))
2

Applying the limit as n — oo in (12.14) and using the continuity of F', we have
Fd(S(),v) = Fd(S(v),v) —t < F(d(S(v), v),

which is a contradiction. Hence, d(S(v), v) = 0 implies S(v) = v. Thus, fv =
gu = Tv = Sv = v, that is, v is a common fixed point of the mappings f, g, S, T.
This completes the proof.

Remark 12.5 If we suppose that «(v, w) > 1 for each common fixed point of the
mappings f, g, S, T, then v is unique. Indeed, if w is another fixed pointof f, g, S, T
and assume on contrary that d(fv, gw) > 0. Then, from (12.2), we have

Fd,w)) = F(d(SW), T(w))) < F (A (v, w)) — T, (12.15)

where

d(s T d S d T
M, a))=max{d((s(5)vg(w))$)()f)(v) (), S0, d(g(@). T)), }

Thus, from (12.15), we have
F(d(v,w)) < F (d(v, w)),
which is a contradiction. Hence, v = w and v is a unique common fixed point of
four mappings f, g, S, T.
The following example elucidates Theorem 12.2:

Example 12.5 Let M = [0, oo) and defined : M x M — R(J{ byd (ry,r) = |r) —
r2|. Definea : M x M — [0, 00) by a(ry, 1) =€ forall rj,r, € M withr; >
rp. Then (M, d) is an a-complete metric space. Define the mappings f, g, S, T :
M — M by
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r r
£ =1n(1+8), g(r):ln(l+?),
Sry=e"—1, T@r)=e"—1
for all r € M. Clearly, f, g, S, T are a-continuous self mappings complying with
fM)=T(M) =g(M)=S(M). We note that the pair (f, S) is «-compatible.
Indeed, let {r,} be a sequence in M satisfying «(r,, r,+1) > 1 and
lim f(r,) = lim S(r,) =1t
n—oo n—oo
for some ¢t € M. Then we have
lim |f(r,) —t| = lim |S(r,) —t] =0,
n—0o0 n—0o0
equivalently,
: Tn : 7r,
lim |ln(l+—)—t| = lim |¢"" —1—1] =0,
n—00 6 n—00
which implies

In(z + 1)

lim |r, — (6¢' — 6)| = lim |r, - ——| = 0.
n—0oo n—o00 7
The uniqueness of the limit gives that 6¢’ — 6 = 1“(’+1) and thus ¢ = Qis only possible

solution. Due to a-continuity of f, S, we have

lim d(fS(r), Sf(r)) = lim | £S() = Sf ()|
=f@®)-S®OI=10-01=0
for t = 0 € M. Similarly, the pair (g, T) is a-compatible. To prove that (f, g) is

a partially weakly o-admissible pair of mappings with respect to 7', let r1,r, € M
be such that r, € T~!(f(r1)), that is, T(r;) = f(r;) and thus we have ¢%? — 1 =

In(1+%2)orr= —]n(]+]n(l+

2)) . Since
foo =1 (14 =)= (1 (4l E1))) =n(1+ 2) =50,

42

a(fry, gr) = efn—8” > 1 Hence, (f, g) is a partially weakly «-admissible pair of
mappings with respect to 7. To prove that (g, f) is a partially weakly a-admissible

pair of mappings with respectto S, letr, r, € M besuchthatr, € S~ (g(r1 )), that s,

1n(1+1n(1+

S(r;) = g(r1) and thus we have ¢’ — 1 =In (1 + Z) orrp = 1) Since
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gr))=1In (l + ’;—1) > In (l + ln(l +122(1 i 71))) =1In (1 + %2) = f(r),

a(gry, fry) = es" —f12 > 1, Hence, (g, f) is a partially weakly or-admissible pair of
mappings with respect to S.
Now, for each ry, r, € M, consider

d(f(r1), g(r2) = |f(r1) —gr)| = ‘ln (1 + %) —In (1 + ;)‘

1 1
=(5-5)=(5)mr—61=(55)1" =
6 7 42 42

! 1
- (‘E) d(T (r1), S(r2)) < (E) M (1, 12).

The above inequality can be written as

In(42) +1In(d(f(r1), g(r2))) < In (A1(r1,12)).

Define the function F : Rt — R by F(r) = In(r), for all » € Rt > 0. Hence, for
all ri,r, € M such thatd(f(ry), g(r2)) > 0, T = In(42), we obtain

T+ Fd(f(r),8(r2) < F (A (ry,12)).

Thus, the contractive condition (12.2) is satisfied for all r;, r, € M. Hence, all the
hypotheses of Theorem 12.2 are satisfied. So the mappings f, g, S, T have a unique
common fixed point r = 0.

The following corollary is a generalization of [9, Theorem 3.1]:

Corollary 12.1 Let M be a nonempty set and o : M x M — [0, 00) be a function.
Let (M, d) be an a-complete metric space and f, g, S, T be a-continuous self-
mappings on (M, d) such that f(M) C T(M), g(M) C S(M). Suppose that, for all
(r1,72) € Vf,g,a» the inequality

d(f(r1), g(r2)) < A i(r1,12) (12.16)

holds. Assume that the pairs (f, S), (g, T) are a-compatible and the pairs ( f, g) and
(g, f) are triangular partially weakly a-admissible pairs of mappings with respect
to T and S, respectively. Then the pairs (f, S), (g, T) have a coincidence point v,
in M. Moreover, if a(Svy, Tvy) > 1, then vy is a common point of the mappings
g S, T.

Proof For all (r1, 1) € Y¢,4.a, We have

d(f(r), g(r)) < A\ (r1, r2).
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It follows that
T +1In(d(f(r1), g(r2))) < In (A1 (r1,12)),

where 7 = In (1) > 0. Then the contraction condition (12.16) reduces to (12.2) with
F(r) = In(r) and application of Theorem 12.2 ensures the existence of fixed point.
This completes the proof.

In the following theorem, we omit the assumption of «-continuity of f, g, T, S
and replace the o-compatibility of the pairs (f, S) and (g, T') by weak compatibility
of the pairs.

Theorem 12.3 Let (M,d) be an a-regular and o-complete metric space and
f. 8, S, T be self-mappings on (M, d) such that f(M) C T(M), g(M) C S(M),

and T (M) and S(M) are closed subsets of M. Suppose that, for all (ri, 1) € V(0.4
and some F € Ap and t > 0 the inequality

T+ F(d(f(r1), 8(r2))) < F (A 1(r1,12)) (12.17)
holds. Assume that the pairs (f,S), (g, T) are weakly compatible and the pairs
(f, g) and (g, ) are triangular partially weakly a-admissible pairs of mappings

withrespectto T and S, respectively. Then the pairs (f, S), (g, T) have a coincidence
pointvin M. Moreover, ifa(Sv, Tv) > 1, then v is a coincidence pointof f, g, S, T.

Proof In the proof of Theorem 12.2, we know that there exists v € M such that
lim d(j;, v) =0.
[—o00

Since T (M) is a closed subset of M and {j,+1} € T(M), v € T(M). Thus, there
exists w; € M such that v = T (w;) and

nlirglo d(jony1, T (w1)) = nlirglo d(Trypy1, T(w1)) =0.
Similarly, there exists w, € M such that v = T (w;) = S(w;) and

lim d(jo,, S(w2)) = lim d(Sry,, S(w2)) = 0.
n—00 n—00

Now, since lim, oo d(T72,+1, S(w2)) =0, the «o-regularity of M implies that
a(Tryus1, S(w2)) > 1 and, from the contractive condition (12.17), we have

Fd(f(@2), g(rms1))) < F (Mi(w2, r2011)) — T (12.18)

for all n € N U {0}, where
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M (@2, Fant1)
_ d(S(w2), T (rant1)), d(f(w2), S(w2)), d(g(ran+1), T (r2n+1)),
= MAX } d(S(@2),8(rm+1)+d(f (@2). T (raus1))

2

_ d(Ua j2n+l)’ d(f((,()z), U)v d(j2n+29 j2n+1)a
= Max \ . jow)+d(f (@), jons1) .
2

Whenn — ooin(12.18), we obtain f(w;) = v = S(w,). Weakly compatibility of f
and S gives f(v) = fS(w) = Sf(w2) = S(v), which shows that v is a coincidence
point of f and S. Similarly, it can be shown that v is a coincidence point of the pair

& 1).
The rest of the proof follows from similar arguments as in the proof of Theorem
12.2. This completes the proof.

If we set S = T in Theorem 12.2, then we obtain the following result:

Corollary 12.2 Let M be a nonempty setand o : M x M — [0, 00) be a function.
Let (M, d) be an a-complete metric space and f, g, T be self-mappings on (M, d)
such that f(M)U g(M) C T(M) and T (M) is o-continuous. Suppose that, for all
ri,rp € M with a(Try, Try) > 1, d(f(r1), g(r2)) > 0 and for some F € Ap and
T > 0, the inequality

T+ F(d(f(r1), g(r2)) = F (A (r1,1r2))

holds, where

AM\(r1, r2) = max {d(T(rl), T(r2)), d(f(r), T(r1)), d(g(r2), T (r2)),

d(T(r1), g(r2)) +d(f(r1), T(r2)) }
5 .

Assume that either the pair (f, T) is a-compatible and f is a-continuous or (g, T)
is a-compatible and g is o-continuous. Then the pairs (f, T) and (g, T) have a
coincidence point v in M provided the pair ( f, g) is a triangular weakly a-admissible
pair of mappings with respect to T. Moreover, ifa(Tv, Tv) > 1, then v is a common
point of the mappings f, g, T.

Ifweset S =T and f = g in Theorem 12.2, then we obtain the following result:

Corollary 12.3 Let M be a nonempty set and o : M x M — [0, 00) be a func-
tion. Let (M, d) be an a-complete metric space and f, T be a-continuous self-
mappings on (M, d) such that f (M) C T (M). Suppose that, for all r\, r, € M with
a(Try, Try) > 1,d(f(r1), f(r2)) > Oandforsome F € Ap andt > 0, the inequal-
ity

T+ Fd(f(r1), f(r2))) < F (A (r1,12))
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holds, where

A\ (11, r2) = max {d(T(rl), T(r2),d(f(r1), T(r1)),d(f(r2), T(r2)),

d(T(ry), f(r)) +d(f(r), T(r2)) }
5 )

Assume that the pair (f, T) is a-compatible. Then the mappings f, T have a coinci-
dence point in M provided that f is a triangular weakly a-admissible mapping with
respect to T. Moreover, if x(Tv, Tv) > 1, then f, T have a common point v.

Corollary 12.4 Let (M, d) be an o-regular and a-complete metric spaceand f, g, T
be self-mappings on (M, d) such that f(M) C T(M), g(M) CT(M) and T (M)
is a closed subset of M. Suppose that, for all ri,r, € M with a(Tr;, Trp) > 1,
d(f(r1), g(r2)) > 0 and for some F € Ar and Tt > 0, the inequality

T4+ Fd(f(r1), 8(r))) < F (M (r1,12))

holds, where

AM\(r1, r2) = max {d(T(rl), T'(r2)), d(f(r), T(r1)), d(g(r2), T (r2)),

d(T(r1), g(r2)) +d(f(r1), T(r2)) }
5 .

Assume that the pairs (f, T), (g, T) are weakly compatible and the pair (f, g) is a
triangular weakly a-admissible pair of mapping with respect to T. Then the pairs
(f, T), (g, T) have a coincidence point v in M. Moreover, if a(Tv, Tv) > 1, then
v is a coincidence point of the mappings f, g, T.

Corollary 12.5 Let (M, d) be an a-regular and o-complete metric space and f, T
be self-mappings on (M, d) such that f(M) C T(M) and T (M) is closed subset of
M. Suppose that, for all ri,r, € M witha(Try, Try) > 1, d(f(r), f(2)) > 0and
for some F € Ap and © > 0, the inequality

T+ FA(f(r1), f(r) = F (A(r1,1r2))

holds, where

M (r1, r2) = max {d(T(ﬁ), T(r2),d(f(r), T(r1)),d(f(r2), T (r2)),

d(T(ry), f(r)) +d(f (), T("z))}
5 )

Assume that the pair (f, T) is weakly compatible and f is a triangular weakly o-
admissible mapping with respect to T. Then the pair (f, T) has a coincidence point
vin M.
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If we set S = T = I (: the identity mapping) in Theorems 12.2 and 12.3, then
we obtain the following result:

Corollary 12.6 Let (M, d) be an o-complete metric space and f, g be self-mappings
on (M, d). Suppose that, for all ri, r, € M with a(ry,r) > 1,d(f(ry), f(r2)) >0
and for some F € Ap and t > 0, the inequality

T+ Fd(f(r), f(r2) = F (Ai(r1,12))

holds, where

A1, 72) = max [d(r), 72), S (), 1), d(g(r2), ),

d(ry, g(r2)) +d(f(r), rz)]
> )

Assume that the pair (f, g) is a triangular weakly a-admissible pair of mappings.
Then f, g have a common fixed point v in M provided either f or g is a-continuous
or M is a-regular.

The following theorem shows that the arguments given in the proof of Theorem
12.2 hold equally if we replace . (ry, r2) with #Z;(r, r2) (i =2,3,4,5,6):

Theorem 12.4 Let M be a nonempty set and o : M x M — [0, 00) be a function.
Let (M,d) be an a-complete metric space and f,g,S,T be o-continuous self-
mappings on (M, d) such that f(M) C T(M), g(M) C S(M). Suppose that, for all
(r1,72) € V0.0 and for some F € Ap and © > 0, the inequality

T+ F(d(f(r1), g(r))) < F (Mi(r1,12)) (12.19)
holds for eachi = 2, 3,4, 5, 6, where

Mo (r1,12) = ard(S(r1), T(r2)) + axd(f(r1), S(r1)) + azd(g(r2), T (r2))

+aa[d(S(r1), g(r2)) +d(f(r1), T (r2))]

with a; > 0(i =1, 2, 3,4) such that a; +ap +a3 +2a4 < 1,
M3(r1,r2) = a1d(S(r1), T(r2)) + axd (f (r1), S(r1)) + azd(g(r2), T (r2))

with a1 +ax +a3 <1,
Ma(ry, r2) = k max{d(f(r1), S(r1)), d(g(r2), T (r2))} with k € [0, 1),
M5(r1,12) = ay(r1,r2)d(S(r1), T(rp)) + ax(r1, r2)d (f (r1), S(r1))

+a3(ry, r2)d(g(r2), T (r2))

+aa(ry, r)[d(S(r1), (r2)) +d(f (rD), T (r2))]

where a;(ry,r)(i =1, 2,3,4) are nonnegative functions such that

sup {ay(r1,rp) +ax(ry,r2) +az(ry, r) +2a4(r1, )} =p < 1,
ri,rpeM
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ap + az
2
a4 + as
5 [d(S(r1), g(r2)) +d(f(r1), T(r2))]
with ay +ay +az +ag+a5 < 1.

Me(ri,r2) = ard(S(r1), T(r2)) + [d(f (1), SCr1) +d(g(r2), T(r2))]

+

Assume that the pairs (f, S), (g, T) are a-compatible and the pairs (f, g) and (g, )
are triangular partially weakly o-admissible pairs of mappings with respect to T
and S, respectively. Then the pairs (f, S), (g, T) have a coincidence point v in M.
Moreover, if a(Sv, Tv) > 1, then v is a common point of the mappings f, g, S, T.

Proof 1In the beginning part of the proof of Theorem 12.2, for all (1, 12) € Vf¢.as
for some F € Ap and T > 0, from the contractive condition (12.19), we get

F (d(jans jons1)) = F (d(f(ram), 8(rans1))) < F (Mo(ron, ron1)) — T (12.20)

for all n € N U {0}, where

A (T Tong1)

= a1d(S(ran), T (rang 1)) + a2d (f (ran), S(r2n)) + azd(g(rany1), T (r2ns1))
+asld(S(ra), g(rans1)) +d(f (ran), T (r2n41))]

= a1d(jon-1, jou) + a2d (jon,s jon—1) + azd (jon+1, jon)
t+asld (jan—1, Jjan+1) + d(jan, jon)]

= (a1 + az + a4)d(jon—1, jou) + (a3 + a)d (jon, j2ns1)-

Now, by (12.20) we have

F (d(jans jon+1)) (12.21)
< F ((a1 + az + as)d(jon—1, jou) + (a3 + as)d(jon, jont1)) — T.

Since F is strictly increasing, (12.22) implies
d(Jons Jon+1) < (a1 + az + as)d(jon—1, jon) + (a3 + as)d(jon, jont1),

(1 — a3 — as)d(jon, jont1) < (a1 +az + as)d(jon—1, jon),

. a+ax+ay , . .
d(jan, jont1) < —————d(jan—1, jon)-
1—613 — da

Since a; + a; + a3z + 2a4 < 1, we have

.. ai+a+ay . . . .
d(jon, jont1) < —————d(jon—1, Jon) < d(Jon—1, jon)-
1— as — dg
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Thus, from (12.22), we obtain

F (d(jan, Jon+1)) = F (d(jon—1, Jon)) — T (12.22)

for all n € N. Similarly, we have

F (d(jon-1, j2n)) < F (d(jon—2, jon-1)) — T (12.23)

for all n € N. Hence, from (12.22) and (12.23), we have

F(d(jns jn+1)) = F (d(jn-1, ju)) — T (12.24)

The inequality (12.24) leads us to remark that {j,} is a Cauchy sequence and the
remaining part of the proof follows from the finishing part of the proof of Theorem
12.2.

The case .#5(ry, r): In the beginning part of the proof of Theorem 12.2, for all
(r1,72) € Vf,g.« and for some F' € Ar and 7 > 0, from the contractive condition
(12.19), we get

F (d(jans jons1)) = F (d(f(r2n), 8rans1))) < F (M3(ron, rong1)) — T (12.25)

for all n € N U {0}, where

M3 (F2ns Fant1)

= a1d(S(r2n), T (ran+1)) + aod (f (r2n), S(ran)) + azd(g(ran+1), T (r2n+1))
= a1d(jon—1, jon) + @2d (jon, jon—1) + a3d (jan+15 jon)

= (a1 + a2)d(jon—1, jon) + a3zd(jon, jons1).

Now, from (12.25), we have
F (d(jan, jon+1)) = F (a1 + a2)d (jon—15 Jon) + a3d (jons jons1)) — T (12.26)
Since F is strictly increasing, (12.26) implies
d(jans jon+1) < (@1 + a@2)d(jou-1, jon) + a3d (o, jon+1),

(1 = a3)d(jon, jon+1) < (a1 + a2)d(jon—1, Jon),

.. ay+a
d(jon, jang1) < 1

2 . .
d(jon—1, jon)-
— 3

Since a; +ar +az < 1,
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.. ai+a , . . . .
d(]va ]2n+1) 5 1 a d(.]Zn—la .]2;1) < d(.]Zn—la .]2;1)-
—as
Thus, from (12.26), we obtain
F (d(jon, joan+1)) < F(d(jon—1s o)) — T (12.27)

for all n € N. Similarly, we have
F (d(jZn—l’ ]2n)) S F (d(j2n—2’ j2n—l)) 4 (1228)
for all n € N. Hence, from (12.27) and (12.28), we have

F(d(jns jn+1)) = F(d(jn-1, ju)) — T (12.29)

The inequality (12.29) leads us to note that { j, } is a Cauchy sequence and the remain-
ing part of the proof follows from the finishing part of the proof of Theorem 12.2.

The case .#,(r, r2): In the beginning part of the proof of Theorem 12.2, for
all (71, 72) € ¥4« and for some F € Ar and T > 0, from the contractive condition
(12.19), we get

F (d(jon, jon+1)) = F(d(f(ran), 8(rang1))) < F (Ma(ran, 12011) — T

for all n € N U {0}, where

My (ran, rony1) = kmax {d(f (r2n), S(r2n)), d(g(rans1), T (rans1))}
= k max {d(jZVn j2n—l)’ d(j2n+lv j2n)} .

The remaining part of the proof follows from the proof of Theorem 12.2. Similar
arguments hold for .#5(ry, r;) and .#(ry, r2). This completes the proof.

12.3 Results in Ordered Metric Spaces

In this section, we present some common fixed point theorems on metric spaces
endowed with an arbitrary binary relation, especially, a partial order relation which
can be regarded as consequences of the results presented in the previous section.
Let (M, d) be a metric space and let < be a binary relation over M.

Definition 12.12 ([3]) Let f and g be two self-mappings on M and < be a binary
relation over M. A pair (f, g) is said to be:

(1) weakly <-increasing if f(r) < gf (r) and g(r) < fg(r) forallr € M;

(2) partially weakly <-increasing if f(r) < gf(r)forallr € M.



302 M. Nazam et al.

Definition 12.13 Let f,g,h: M — M be three mappings such that f(M)
U g(M) € h(M). The pair (f, g) is said to be a transitive weakly <-increasing pair
of mappings with respect to / if the following conditions hold:

(@ f(r1) <g() forall ry € M and r» € h=' f(r1) and g(r1) < f(r2)) for all
ry € h™'g(r);

®) ry <r3,r3 <rpyimplyry <rpforallry, rp,r3 € M.

Definition 12.14 Let f,g,h: M — M be three mappings such that f(M)
Ug(M) C h(M). The pair (f, g) is said to be a transitive partially weakly
<-increasing pair of mappings with respect to £ if the following conditions hold:
@) f(r1) < g(ry) forallr; € M and r, € h=' f(r));
(b) ri <r3,r3 <ryimplyry < ryforallry,r,rs e M.

Let < be a binary relation over M and let

1, ifry <r,
0, otherwise.

a(ry, r) = {
By this assumption, we see that the above definitions are special cases from the

definitions of weak a-admissibility and partially weak «-admissibility.

Definition 12.15 ([15]) Let (M, d) be a metric space. It is said to be <-complete if
every Cauchy sequence {r,} in M such that r, < r,,| converges in M.

Definition 12.16 ([15])Let (M, d) be ametricspaceandT : M — M be amapping.
We say that T is an <-continuous mapping on (M, d) if, forany r € M and a sequence

{ra},

lim d(r,,r) =0, r, <ryy1, Vo eN, imply lim d(T(r,),T(r)) =0.
n—oo n—0oo

Definition 12.17 ([3]) Let (M, d) be a metric space. The pair (f, g) is said to be an
<-compatible if lim,_, . d(fg(r,), gf (r,)) = 0, whenever {r,} is a sequence in M
such that r,, < r, 41 and

lim f(r,) = lim g(r,) =t
n—0oQ n—oQ

for somet € M.

Definition 12.18 The metric space (M, d) is said to be <-regular if there exists a
sequence {r,} in M such that

Fp —> 1, Iy <tpy1, Yn €N, imply r, <r

forall n € N.
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Now, we are able to remodel Theorems 12.2 and 12.3 in the framework of ordered
metric spaces.

Theorem 12.5 Let (M,d) be an <-complete metric space and f,g,S,T be
<-continuous self-mappings on (M, d) such that f(M) € T(M), g(M) € S(M).
Suppose that, for all ri,r, € M with S(ry) < T (r2), d(f(r1), g(r2)) > 0 and for
some F € A and t > 0, the inequality

T4+ Fd(f(r1), 8(r))) < F (M (r1,12))

holds. Assume that the pairs (f, S), (g, T) are <-compatible and the pairs (f, g) and
(g, f) are transitive partially weakly <-increasing pairs of mappings with respect
to T and S, respectively. Then the pairs (f, S), (g, T) have a coincidence point v in
M. Moreover; if Su < Tv, then v is a common point of the mappings f, g, S, T.

Proof Define

1, ifr1 <7,
0, otherwise

a(ry, ) ={

and the proof follows from the proof of Theorem 12.2.

Theorem 12.6 Let (M,d) be an <-regular and <-complete metric space. Let
f,g,S, T be <-continuous self-mappings on (M,d) such that f(M) C T (M),
gM) C S(M) and T(M) and S(M) are closed subsets of M. Suppose that, for
all ri,rp, € M with S(ry) < T (rp), d(f(r1), g(r2)) > 0 and for some F € Ap and
T > 0, the inequality

T+ Fd(f(r1), 8(r2)) = F (A (r1,12))

holds. Assume that the pairs (f, S), (g, T) are weakly compatible and the pairs
(f, g) and (g, f) are transitive partially weakly <-increasing pairs of mappings with
respect to T and S, respectively. Then the pairs (f, S), (g, T) have a coincidence
point v in M. Moreover, if Su < T, then v is a coincidence point of the mappings

f. g S, T.

Proof Define

1, ifry < ry;
0, otherwise

01(’1,72):{

and the proof follows from the proofs of Theorems 12.2 and 12.3.
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12.4 Results in Metric Spaces Endowed with a Graph

Consistent with Jachymski [6], let (M d) be a metric space and A denotes the diagonal
of the Cartesian product M x M. Consider a directed graph G such that the set
V(G) of its vertices coincides with M and the set E(G) of its edges contains all
loops. We assume that G has no parallel edges and so we can identify G with the pair
(V(G), E(G)). Moreover, we may treat G as a weighted graph (see [7]) by assigning
to each edge the distance between its vertices. If x and y are vertices in a graph G,
then a path in G from x to y of length N (N € N) is a sequence {x;}, of N + 1
vertices such that xo = x and xy = y and (x;_1, x;) € E(G) fori =1,2,3,..., N.

Recently, some results have appeared in the setting of metric spaces which are
endowed with a graph. The first result in this direction was given by Jachymski [6].

Definition 12.19 ([3]) Let f and g be two self-mappings on a graphic metric space
(M, d). A pair (f, g) is said to be:

(1) weakly G-increasing if (f(r), gf(r)) € E(G) and (g(r), fg(r)) € E(G) for
allr e M,

(2) partially weakly G-increasing if (f(r), gf(r)) € E(G) forallr € M.

Definition 12.20 Let f,g,h: M — M be three mappings such that f(M)
U g(M) C h(M). The pair (f, g) is said to be a transitive weakly G-increasing pair
of mappings with respect to 4 if the following conditions hold:

(@) (f(r1), g(r2) € E(G) forallry € Mandry € h™' f(r1) and (g(r1), f(r2)) €
E(G)forallr, € h='g(r1);

(®) (r1,r3) € E(G) and (r3, 1) € E(G) imply (r1,7,) € E(G) forallry, ry, r3 €
M.

Definition 12.21 Let f,g,h: M — M be three mappings such that f(M)
Ug(M) C h(M). The pair (f, g) is said to be a transitive partially weakly G-
increasing pair of mappings with respect to & if the following conditions hold:

@ (f(r1), g(r)) € E(G) forallry € Mandr, € b= f(r1);

(b) (r1,m3) € E(G)and (r3, ;) € E(G) imply (r1,r;) € E(G) forallry,ry, r3 €
M.

Let (M, d) be a graphic metric space and let

L it (1,2 € E(G),
a(ri, ry) = {O, otherwise.
By this assumption, we see that the above definitions are special cases of the
definitions of weak o-admissibility and partially weak «-admissibility.

Definition 12.22 ([15]) Let (M, d) be a graphic metric space. It is said to be G-
complete if and only if every Cauchy sequence {r,,} in M such that (r,,, r,+1) € E(G)
converges in M.
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Definition 12.23 ([15]) Let (M, d) be a graphic metric space and T : M — M be
a mapping. We say that T is a G-continuous mapping on (M, d) if, for any r e M
and a sequence {r,},

lim d(r,,r) =0, (rp,rpy1) € E(G), Yn € N, imply lim d(T(r,), T(r)) =0.
n—oo

n—00

Definition 12.24 ([3]) Let (M, d) be a graphic metric space. The pair (f, g) is said
to be G-compatible if lim,_, . d(fg(r,), gf (r,)) = 0, whenever {r,} is a sequence
in M such that (r,, r,11) € E(G) and

lim f(rn) = lim g(rn) =1
n—00 n—00

for somet € M.

Definition 12.25 The graphic metric space (M, d) is said to be G-regular if for any
sequence {r,} in M, the following condition holds:

if r, > r and (r,,7r,4+1) € E(G), VYn €N, then (r,,r) € E(G), Vn € N.

Now, we are able to remodel Theorems 12.2 and 12.3 in the framework of graphic
metric spaces.

Theorem 12.7 Let (M, d) be a G-complete graphic metric space and f, g, S, T be
G-continuous self-mappings on (M, d) such that f(M) C T(M), g(M) € S(M).
Suppose that, for all ri,r, € M with (S(ry), T (r2)) € E(G), d(f(r1),g(r)) >0
and for some F € Ap and t > 0, the inequality

T4+ F(d(f(r1), g(r))) < F (A i(r1, 1))

holds. Assume that the pairs (f, S), (g, T) are G-compatible and the pairs (f, g) and
(g, f) are transitive partially weakly G-increasing pairs of mappings with respect
to T and S, respectively. Then the pairs (f, S), (g, T) have a coincidence point v
in M. Moreover, if (Sv, Tv) € E(G), then v is a common point of the mappings

f. g S, T.

Proof Define
_ ] 1, if (ri,m) € E(G),
a(ri, ry) = {O, otherwise
and the proof follows from the proof of Theorem 12.2.

Theorem 12.8 Let (M, d) be a G-regular and G-complete graphic metric space.
Let f, g, S, T be G-continuous self-mappings on (M, d) such that f(M) € T(M),
g(M) € S(M) and T(M) and S(M) are closed subsets of M. Suppose that, for all
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ri,rp € M with (S(ry), T (rp)) € E(G), d(f(r1), g(r2)) > 0 and for some F € Ap
and t > 0, the inequality

T+ Fd(f(r1), 8(r2)) = F (A (r1,12))

holds. Assume that the pairs (f, S), (g, T) are weakly compatible and the pairs
(f, g) and (g, f) are transitive partially weakly G-increasing pairs of mappings with
respect to T and S respectively. Then the pairs (f, S), (g, T) have a coincidence
point v in M. Moreover, if (Sv, Tv) € E(G), then v is a coincidence point of the
mappings f, g, S, T.

Proof Define
1, if (r1, r2) € E(G);
0, otherwise

a(r19r2):{

and the proof follows from the proofs of Theorems 12.2 and 12.3.

Corollaries 12.2, 12.3, 12.4, 12.5 and 12.6 given above hold equally good in
ordered metric spaces and graphic metric spaces.

12.5 Application

Let M = C([a, b], R) be the space of all continuous real valued functions defined
on [a, b]. Let the functiond : M x M — [0, co) be defined by

du,v) = sup |u(t) —v(t)] (12.30)
t€la,b]

forall u,v € C([a, b], R) and definec : M x M — [0, c0) by

1, ift € [a, b];
0, otherwise.

au(),v(t)) = {

Obviously, (M, d) is an a-complete metric space.
Now, we apply Theorem 12.2 to show the existence of common solution of the
system of Volterra type integral equations given by

1

u(t) = p(t) +fK(t,r, S(u(t)))dr, (12.31)

a
t

w(t) = p(t) +/J(t,r, T()))dr (12.32)

a
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forall ¢t € [a,b] and a > 0, where p : M — R is a continuous function and K, J :
[a, b] x [a,b] x M — R are lower semi continuous operators. Now we prove the
following theorem to ensure the existence of solution of system of the integral equa-
tions (12.31) and (12.32).

Theorem 12.9 Let M = C([a, b], R) and define the mappings f, g : M — M by

t

Fult) = p() + / K, r, Sw(®))dr,

gu(t) = p(t) + / J(@,r, T(v(t)))dr

a

for all t € [a,b] and a > 0, where p: M — R is a continuous function and
K, J :la,b] x [a,b] x M — R are lower semi continuous operators. Assume the
following conditions are satisfied:

(H1) there exists a continuous function H : M — [0, 0o) such that

|K(t,r,8) = J(t,r,T)| = HI)ISu()) — T (v(1))]

foreacht,r € la,bland S, T € M;
(H2) there exists T > 0 and for each r € M, we have

t
/H(r)dr <e’"

forallt € [a, b];
(H3) there exists a sequence {r,} in M such that lim,,_, oo d(fS(rn), Sf(r,)) =0
and lim,_, o d(gT (r,), Tg(ry)) = 0, whenever a(ry,, r,+1) > 1 and

lim f(r,) = lim S(r,) =¢, lim g(r,) = lim T(r,) =1t
n—0oQ n—0oQ n—oo n—oo

for somet € M;

H4) a(f(r1), g(rr)) = 1forallry € M andr, € h’lf(rl);

(HS5) a(ri,r3) = 1 and a(rs, rn) = 1imply a(ry,r2) > 1 forallry,ry, r3 € M.
Then the system of integral equations given in (12.31) and (12.32) has a solution.

Proof By the assumptions (H1) and (H2), we have
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d(fu(t),gv(t)) = sup |fu(t) — gv(®))l

tela,b)
= sup / |[K(,r, S(u()) — J@,r, T(v())))|dr

tela,b]
a

< sup /H(r)lS(u(t))—T(V(t))ldr
tela,b]

= sup IS(M(I))—T(V(I))I/H(V)dr
tela,b]

=d(S(u(t)),T(V(l)))/H(F)dr

=dSw®), Tw())e ™ < A (u@), v(t))e "
Consequently, we have

d(fu(t), gv(t)) < e " A (u(t), v(1)),

which implies

T+ In(d(fu(n), gv(1))) = In(A (u(r), v(1))).

Taking F(r) = In(r), we can show that all the hypotheses of Theorem 12.2 are
satisfied. Hence, the system of integral equations given in (12.31) and (12.32) has a
unique common solution. This completes the proof.

12.6 Conclusion

We have seen that the concepts of a-complete metric space, a-continuity of a map-
ping, and «-compatibility of a pair of mappings are weaker than the concepts of com-
plete metric space, continuity of a mapping, and compatibility of a pair of mappings,
respectively. Therefore, Theorems 12.2 and 12.3 and the corresponding corollaries
enrich the fixed point theory on F-contraction under weaker conditions.
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Measure of Noncompactness in Banach s
Algebra and Its Application on Integral
Equations of Two Variables

Anupam Das and Bipan Hazarika

Abstract The aim of this chapter is to introduce a class of measure of noncom-
pactness satisfying certain conditions. We apply it to establish a few theorems on
existence of solution integral equations of two variables in Banach algebra. Further,
we explain the results with the help of examples.

Keywords Measure of noncompactness - Fixed point theorem - Functional
Integral Equations + Banach Algebra.
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13.1 Introduction

The measure of noncompactness plays a very significant role in fixed point theory.
The measure of noncompactness was first introduced by Kuratowski [22]. There
are different types of measure of noncopactness in metric and topological spaces.
We refer to the reader [8] for details on measure of noncompactness. On the other
hand, the measure of noncompactness has applications in different types of integral
equations and differential equations (see [2-7, 16—19, 21, 24-28]).

Assuming that measure of noncompactness used in the study satisfies certain
condition, the existence of solution of the integral equations in two variables has
been proved. The results that are going to be proved in this chapter are generalization
of the results of the other papers and monographs [11, 13, 14].
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The main idea of this investigation depends on the indication of a class of
measure of noncompactness in Banach algebras satisfying certain condition called
condition(m). We discussed the measure of noncompactness satisfying condition
(m) in the Banach algebras C(I x I) and BC(R; x R}).

Suppose that E is a real Banach space with the norm || . ||. Let B(y, d) be a closed
ball in E centered at y and with radius d. If X is a nonempty subset of E then by
X and ConvX we denote the closure and convex closure of X. Moreover, let .45
denote the family of all nonempty and bounded subsets of E and .47 its subfamily
consisting of all relatively compact sets. We denote by R the set of real numbers,
Ry =1[0,00)and I = [0, 1].

13.2 Measure of Noncompactness

Measure of noncompactness is an important tool in Banach spaces. It can be used
in fixed point theory, differential equations, integral equations, integro-differential,
functional equations, etc.

13.2.1 Preliminaries

Let M and S be subsets of a metric space (X, d) and € > 0. Then, the set S is called
e-net of M if, for any x € M, there exists s € S, such that d(x, s) < . If § is finite,
then the e-net S of M is called finite e-net. The set M is said to be fotally bounded
if it has a finite e-net for every € > 0. A subset M of a metric space X is said to be
compact if every sequence (x,) in M has a convergent subsequence and the limit of
that subsequence is in M. The set M is called relatively compact if the closure M of
M is a compact set. If a set M is relatively compact, then M is totally bounded. If
the metric space (X, d) is complete, then the set M is relatively compact if and only
if it is totally bounded.

If x € X and r > 0, then the open ball with center at x and radius r is denoted by
B(x,r), where B(x,r) ={y € X :d(x,y) <r}.If X is a normed space, then we
denote by By the closed unit ball in X and by Sx the unit sphere in X.

Let .#x or, simply, .Z be the family of all nonempty and bounded subsets of a
metric space (X, d) and let .# or simply .#° be the subfamily of .#x consisting
of all closed sets. Further, let .#% or simply .4 be the family of all nonempty and
relatively compact subsets of (X, d). Letdy : .# x .# — R be the function defined
by

dy(A, B) = max {supd(x, B),supd(y, A)} ,

x€eA yeB

where A, B € .#x. The function dy is called the Hausdor{f distance and dgy (A, B)
is the Hausdorff distance of two sets A, B.
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Let X and Y be infinite-dimensional complex Banach spaces and denote the set
of bounded linear operators from X into ¥ by B(X, Y). We put B(X) = B(X, X).
For T in B(X,Y), N(T) and R(T) denote the null space and the range space of
T, respectively. A linear operator L from X to Y is called compact (or completely
continuous) if D(L) = X for the domain of L and, for every sequence (x,) € X
such that || x,, ||< C, the sequence (L(x,)) has a subsequence which converges in
Y. A compact operator is bounded. An operator L in B(X, Y) is of finite rank if
dimR (L) < oco. An operator of finite rank is clearly compact. Let F (X, Y), C(X,Y)
denote the set of all finite rank and compact operators from X to Y, respectively. Set

FX)=FX,X), CX)=CX,X).

If E is a subset of X, then the intersection of all convex sets that contain F' is
called convex cover or convex hull of F denoted by co(E).

Let Q be a nonempty and bounded subset of a normed space X. Then, the convex
closure of Q denoted by Co(Q) is the smallest convex and closed subset of X that
contains Q. Note that Co(Q) = co(Q).

13.2.2 Kuratowski Measure of Noncompactness

Definition 13.1 ([8]) Let (X, d) be a metric space and Q a bounded subset of X.
Then, the Kuratowski measure of noncompactness (c-measure or set measure of
noncompactness) of Q, denoted by a(Q), is the infimum of the set of all numbers
€ > 0 such that Q can be covered by a finite number of sets with diameters € > 0,
that is,

a(Q)=inf {e > 0: QCUS,-,SiCX,diam(Si)<5(i=1,2,...,n),neN}.

i=1

The function « is called Kuratowski’s measure of noncompactness, which was intro-
duced by Kuratowski [22]. Clearly, we have

a(Q) < diam(Q) for each bounded subset Q of X.

Lemma 13.1 ([8]) Let Q, Q| and Q, be bounded subsets of a complete metric space
(X, d). Then,

(1) a(Q) = 0 ifand only if Q is compact (regularity).

(2) a(Q) = a(Q) (invariance under passage to the closure).

3) Q1 C Qrimplies a(Q1) < a(Q7) (monotonicity).

4) a(Q1 U Qr) = max{a(Q1), a(Q2)} (maximum property).

(5) a(Q1 N Q2) < min{a(Q1), a(Q2)}
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Lemma 13.2 ([8]) Let Q, Q1 and Q; be bounded subsets of a normed space X.
Then,

(1) a(Q1 + @2) < a(Q1) + a(Q2).

) a(Q + x) = a(Q) for each x € X.

B) a(AQ) = |A a(Q) for each X € TF, where T is the field of scalars.

4) a(Q) = a(Co(Q)).

We recall the following definition of a measure of noncompactness given in [10].

Definition 13.2 A function u : .#g — [0, 00) is called a measure of noncompact-
ness in E if it satisfies the following conditions:

(a) for all X € .4, we have ;(X) = 0 implies that X is precompact;

(b) the family ker 4 = {X € .#g : 1 (X) = 0} is nonempty and ker u C A;
©X<cY = puX) =pd);

() p(X) = (X);

(e) p(Conv X) = pu (X);

OpAX+A-MDY) < uX)+A =N pu)forAel0,]1];

(¢) if X, € Mg, X, =X, Xps1 C X, for each n =1,2,3, ... and lim p1(X,,)

o0
=0,then () X, # &.

n=1

The family ker 4 is said to be the kernel of measure 1. Observe that the intersection
set X, from (g) is a member of the family ker . In fact, since u(Xo) < u(X,) for
any n = 1, 1, 3, ..., we infer that (X)) = 0. This gives X, € ker p.

Definition 13.3 A measure p is said to be sublinear if it satisfies the following
conditions:

(@ p(AX) = A p(X) forall A e R;

®) p(X+Y) < p(¥) + ().

A sublinear measure of noncompactness j satisfying the condition:
p(XUY) =max {u(X), @)

and such that ker u = 4% is said to be regular.

13.2.3 Hausdorff Measure of Noncompactness

Definition 13.4 ([9]) Let (X, d) be a metric space, Q be a bounded subset of X and
B(x,r) ={y € X :d(x,y) < r}. Then, the Hausdorff measure of noncompactness
x(Q) of Q is defined by

n
X(Q)=inf{e>0:0cC|JB&xi.r) xieX,ri<e (i=12...,nneNt.

i=1
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The definition of the Hausdorff measure of noncompactness of the set Q is not
supposed that centers of the balls that cover Q belong to Q. Hence, it can equivalently
be stated as follows:

x(Q) =inf {¢ > 0 : Q has a finite ¢ — netin X}.

Then, the following results were obtained in [8, 9].

Lemma 13.3 ([9]) Let Q, Q1 and Q» be bounded subsets of the complete metric
space (X, d). Then,

(1) x(Q) = 0 if and only if Q is compact.

(2) x(Q) = x(Q).

(3) Q1 C Qs implies x(Q1) = x(Q2).

@) x(Q1 U Q2) = max {x(Q1), x(Q2)}-

(5) x(Q1 N Q2) <min{x(Q1), x(Q2)}

Now, we point out the well-known result of GoldenStein et al. [20].
Let X be a Banach space with a Schauder basis {ej, e, ...} . Then, each ele-

o0

ment x € X has a unique representation x = ) _ ¢;(x)e;, where the functions ¢;
i=1

are the basis functionals. Let P, : X — X be the projector onto the linear span of

n

{e1, ea, ..., ey}, thatis, P,(x) = ) ¢i(x)e;.

i=1
Theorem 13.1 ([9]) Let X be a BK-space with Schauder basis (b,), Q € #x,
P, : X = X (n € N) be the projector onto the linear span of {ei, ez, ..., e,} and ¥
be the identity operator on X. Then,

1
p lim sup <SUP I (7 = Py)(x) I|> = x(Q) = limsup (Sug I (7 = Pp)(x) |I> ,

n—oo xeQ n—>oo xXe

where a = limsup || &/ — P, || .

n—00

We say that a norm || . | on a sequence space is monotone if x,x € X with
|xx| < |xk| for all k implies || x |<|| X | .

Theorem 13.2 ([8]) Let X be a BK -space with AK and monotone norm, Q € My
and P, : X — X (n € N) be the operator (projection) defined by P,(xy, x3,...) =
xM = (x1, x2, ..., %,, 0,0, ...) for all x = (x1, x2, ...) € X. Then,

X(Q) = lim (sug | (F = P)@) ||> :

Now, let us assume that £2 is a nonempty subset of a Banach space E and F : 2 —
E is a continuous operator which transforms bounded subsets of £2 onto bounded
ones. Suppose that y is a measure of noncompactness given in E.
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Definition 13.5 ([22]) We say that T satisfies the Darbo condition with a constant k
with respect to a measure of noncompactness p provided pu(7 X) < ku(X) for each
X € Mg suchthat X C 22.1fk < 1, then T is called a contraction with respect to .

We assume that the space E has the structure of Banach algebra. For given subsets
X, Y of a Banach algebra E, let us denote

XY={xy:xeX, ye/Y}.

The measure of noncompactness ;1 defined on a Banach algebra E is said to be
satisfy the condition (m) if, for arbitrary sets X, Y € .#g, the following condition
is satisfied:

p(XY) <|| X || p(Y)+ 'Y || p(X).

We recall following important theorems:

Theorem 13.3 (Shauder [1]) Let D be a nonempty, closed, and convex subset of a
Banach space E. Then every compact, continuous map T : D — D has at least one

fixed point.

Theorem 13.4 (Darbo [15]) Let D be a nonempty, bounded, closed, and convex
subset of a Banach space E. Let T : D — D be a continuous mapping. Assume that
there is a constant k € [0, 1) such that

(T M) < ku(M), M C D.

Then, T has a fixed point.

Theorem 13.5 ([12]) Assume that S2 is nonempty, bounded, closed, and convex
subset of the Banach algebra E, and operators P and T transform continuously the
set §2 into E in such way that P(§2) and T (§2) are bounded. Moreover, we assume
that the operator S = P.T transforms S2 into itself. If the operators P and T satisfy
on the set §2 the Darbo condition with respect to the measure of noncompactness
W with the constants ky and k,, respectively, then the operator S satisfies on §2
the Darbo condition with the constant || P($2) || ka+ || T($2) || k1. Particularly, if
| P(£2) || ko+ || T(£2) || k1 < 1, then S is a contraction with respect to the measure
of noncompactness p and has at least one fixed point in the set 2.

This condition (m) was used in the paper [12] for measures of noncompactness
defined on the Banach algebra C (7). Particularly, the Hausdorff measure of noncom-
pactness x [12] satisfies condition (m).

The space C(I x I) represents the Banach space of real functions defined and
continuous on / x [ with the norm

Il x I=sup{|x(z,s)| :t,5 € I},

where x € C(I x I'). With respect to the usual product of functions, this space has
the structure of Banach algebra.
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For arbitrary fixed € > 0, set X € .#cxy and x € X, we denote by w(x, €) the
modulus continuity of x, i.e.,

w(x,e) =sup{lx(,s) —xw,v)| :t,s,u,vel, |t—u|l<e|s—v| <e}.

Also, let
w(X,e) =sup{w(x,e) :x € X}

and
wo(X) = lin}) w(X, e).
e—

It can be shown that wy(X) is a measure of noncompactness in C(I x I). Also,
wo(X) satisfies condition (m).

Now, we introduce another measure of noncompactness in the Banach algebra
C(I x I) which satisfies the condition (m) on .#Zc (). Letaset X € C(I x I) and
x € X. Also, consider the following quantity:

d(x) =sup{|x(t,s) —x(u,v)| =[x, s) —x(u,v)] : t,s,u,vel,u<tv<s}.

Further, let
d(X) =sup{d(x) : x € X}.

Finally, we denote
pa(X) = wo(X) +d(X). (13.1)

It can be shown that y,; is a measure of noncompactness on the space C(I x I).

Theorem 13.6 The measure of noncompactness i, satisfies condition(m) on the
subfamily of Mc i« consisting of sets of function being nonnegative on I x I.

Proof Let X, Y be any arbitrary sets in .#¢(; ) such that the functions belonging
to X, Y are nonnegative on I/ x [I. Further, let x € X, y € Y be arbitrary fixed and
t,s,t,5 € I witht <t, 5 <s. Then, we have

|x(t, )y, s) —x@, 5y, 5| — [x(t, )y, s) —x1T, 5y, 5]
< |x(t, )y, ) —x(t, )y, | + |x(t, )y, 5) — x(7, 5y, 5)|
—|[x@ )y, s) — x(t,5)y@, )] + [x(t, )y, 5) —xT, )y, 5]}
=Ix(t, 9| [y, 5) = y@ 5|+ [y, )] [xt, 5) = x(7,5)|
—x(t,8) [y(t,8) = y@, 5] — y@.5) [x(t,5) —x(7,5)]
=x@, ){|y,9) —y@ 5| = [y, s) - y@ 5]}
+ y@D|{|x . 5) = x@ 5| - [x(t.s) —x7. 5]}
<l xld+ 1yl dx).
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This gives
dXY) =l X | dY)+ | Y || d(X).

Since wy(X) satisfy the condition (m), we get
pa(XY) < X || pa(¥)+ 1Y | pa (X)),

i.e., py satisfy the condition (m). This completes the proof.

Now, consider the Banach space BC (R x R, ) which consists of the set of real
continuous and bounded functions on R, x R with respect to the norm:

I x lI=sup{lx(z, ) : 7,5 = 0}, x(z,5) € BC(R} x Ry).
Let X be a fixed nonempty and bounded subset of the space BC(R; x R, ) and
7 be a fixed positive number. For x € X and € > 0, denote by w’ (x, €) the modulus
of the continuity function x on the interval [0, 7], i.e.,

wh(x,e) =sup{lx(t,s) —x@,v)| :t,s,u,vel0,7] |t —ul <e|s—v| <e}.

Further, we define
w'(X,e) =supf{w(x,¢) : x € X}.

wy(X) = li_r)%wT(X, €)

and
wit(X) = lim wi(X).
T—>00
Also, let
a(X) = lim sup {sup {|x(t,s)| : ¢, > T}}.

TA)OOXEX
We denote

ta(X) = w*(X) + a(X). (13.2)

It can be shown that p, is a measure of noncompactness of (. Let us mention
that kernel of the measure (1, consists of all sets X € .#pc(r, xr,) such that for any
€ > 0 there exists 7 > 0 such that |x(¢,s)] <ecforallx € X and¢,s > 7.

Theorem 13.7 The measure of noncompactness i, satisfies the condition (m).

Proof This theorem can be proved in the same way as Theorem 13.6. This completes
the proof.
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13.3 Existence of Solution of a Functional Integral
Equation with Two Variables in C(I x I)

Consider the following integral equation:

x(t,s) = f(t,s,x(t,s)) <p(t, s) + f fs G(,s,v,w,x(v, w))dvdw) , (13.3)
0 JO

where ¢, s, v,w € I = [0, 1]. The Eq. (13.3) can be written in the following form:
x(t,s) = (Fx)(,s)(Vx)(t,s), (13.4)

where

(Fx)(t,s) = f(t,s,x(t,5))

and Do
Vx)(t,s) = p(t,s) +/ / G(t,s,v,w,x(v,w))dvdw,
o Jo

where ¢, s, v, w € 1.

Consider the following assumptions:

(a) p e C x I) and p is nonnegative and nondecreasing function on I x I;

(b) The function f : I x I x R — R is continuous and f(/ x I x R;) C R,.
Moreover, the function f (¢, s, x) is nondecreasing with respect to ¢, s € I for any
fixed x € R, and the function f (¢, s, x) is nondecreasing on R for any fixed ¢, s €
I;

(c) There exists 0 < K < 1 such that

|f(tvsax)_f(t75,y)|§K|x_)’|,

forallt,s € [ and x,y € [—r, 7];

(d) The function G : I x I x I x I x R — R is continuous such that G : I x
I xIxIxR;y— R, and G(t,s,v,w, x) is nondecreasing with respect to each
variable 7, s, v, w and x separately;

(e) There exists a continuous and nondecreasing function ¢ : Ry — R such that
|G(t,s,v,w,x)| < ¢(|x|) forallz,s,v,w € I and x € R;

(f) There exists a positive solution r( of the inequality

(rK+F)(l pll+¢0) <,
where F = max {| f (¢, s,0)| : £, s € I}. Moreover, the number r( such that

K ([ p Il +o(ro)) < 1.
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Theorem 13.8 Under the hypothesis (i)—(vi), Eq. (13.3) has at least one solution in
C( x I).

Proof By the assumption (b), we observe that the operator F' transforms the Banach
space C(I x I) into itself and is continuous. Again, by the assumptions (a) and (d),
we observe that the operator V transforms the Banach space C(/ x [) into itself and

is continuous.
On the other hand, for fixed x € C({ x I) and ¢, s € I, we get

[(Fx)(t, )] < 1f(t,5,x(t,8) = f(t,5, 0]+ |f(,5,0) <K [| x | +F. (13.5)

Moreover, we obtain

KVxan)lslpU,wl+:/ /”|G(ns,wvmx<WMONdvdw
0 0
ﬂpn+//ﬂmmnme
0 0

(V)@ o)1 <l p I +odl x - (13.6)

i.e.,

It can be seen that, using (13.5), (13.6) and the assumption (f), there exists a positive
number r( such that operator W = F.V mapstheball B,, = {x :|| x | < ro}intoitself.
On the other hand, we observe that, from (13.5), (13.6), the following inequalities
are satisfied:

| FBy, II<roK + F (13.7)

and
I VB, 1= p Il +¢(ro). (13.8)

Further, let the set Q consisting of all nonnegative functions x € B,,. Then, by the
assumptions, we infer that the operator W maps Q into itself. Moreover, form (13.7)
and (13.8), we get

| FOII<rnK +F

and

IVOI=Ip Il +¢@ro).

Since the operator F is continuous on Q by the assumptions (b) and (c) and the
operator V is also continuous on Q by the assumptions (a), (d), and (e).

Now, fix a nonempty subset X of the subset Q, choose a number € > 0 and take
1, 81, b, so such that |t, — 11| < &, |so — 51| < . Then, we have
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[(Fx)(f2, s2) — (Fx)(t1, s1)| < | f(t2, 52, x(12, 52)) — f(t1, 51, x(11, 51))]
< |f(t2, 52, x(12, 82)) — [ (2, 52, x(11, 51))|
+ | f (2, s2, x(11, 51)) — f (01, 51, x(t1, 51))]
< K |x(t2, 82)) — x(t1, s))| + wy, (f, €)
< Kw(x, &) +wy,(f, &),

where

Wi (f, €) = sup{| f(t2, 52, x) — f(t1,81, )| 1 t1,81, 2,80 € I, |t — 1] < €,
ls2 — 811 <€, x € [=ro, rol}.

Hence, we have
w(Fx,e) < Kw(x, ) +w,(f,¢e)

and, consequently,
wo(FX) < Kwy(X). (13.9)

Again, we have

[(Vx)(t2, 52) — (VX) (21, s1)]
< |p(t2,s2) — p(t1, s1)|

s 1 5]
+ ‘/ / G(ty, s, v, w, x(v, w))dvdw—/ f G(t1,s1, v, w, x(v,w))dvdw
0 0 0 0
15 )
sw(p,e)+(/ / G12, 52, v, w, x(v, w))dvdw
0 0
n S1
—/ / G(t1, s1, v, w, x(v, W))dvdw‘,
0 0
This gives
%) 52
W(VX,2) Sw(p,e) +| f f G(t2, 52, v, w, x(v, w))dvdw
0 0

n 51
— / / G(ty, s1,v,w, x(v,w))dvdw
o Jo

and, consequently,
wo(VX)=0. (13.10)

Taking an arbitrary function x € X and #; < 1, 51 < §2, wWe get
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[(Vx)(t2, 52) — (V) (11, s — [(Vx)(t2, 52) — (V) (21, 51)]
<Ip(t,s2) — p(t1, s — [p(r2, 52) — p(t1,s1)]

%) ) 11 51
+ '/ / G(tp, s, v, w, x(v, w))dvdw —/ / G(t1,s1, v, w, x(v, w))dvdw‘
0 0 0 0

s s
— [/ / G(tr, s, v, w, x(v,w))dvdw — / / G(t1,s1,v,w, x(v, w))dvdw:| .
0 0 0 0

Therefore, we have

d(Vx)=0
and hence
d(VX)=0. (13.11)
Similarly, we can show that
d(FX) < Kd(X). (13.12)

From (13.9), (13.10), (13.11), (13.12) and the definition of the measure of noncom-
pactness (i, we get
pa(FX) < K pq(X)

and
ua(VX) = 0.

In view of Theorem 13.5 that the operator W is a contraction with respect to p; on
the set Q. Thus, W has a fixed point x in Q. Thus, the integral Eq. (13.4) has a
solution in C (I x I). This completes the proof.

Example 13.1 Consider the following system of integral equations:

ts x(t,s)
1252 + 15 2

t s
x(t,s) = |: i| 1252e™2s +//{ths +x(v,w)ldvdw |,
0 0
(13.13)
where t, s € I = [0, 1]. It can be seen that this equation is a particular case of the

Eq. (13.3), where
ts X

ta ) = 5 5 1z A
T80 =505 12

p(t,s) =t*s*e™ s

and
G(t,s,v,w,x) = tsvywx.

It can be easily seen that the Eq. (13.13) satisfies the assumption of Theorem 13.8
with
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K—l F(t.5.0) = ts f_l
T T e s T T s
and
d(x) =x.
Accordingly, we have || p ||= i Thus, the inequality (f), of the assumptions, has
the form
r n 1 1 n _
-+ —= )=+ r,
2 15 2e -
ie.,

(0.5r +0.067) (0.183 +r) <r.

‘We check that r = % satisfies the above inequality, i.e., ryp = % Also, we have

1 /1 1
Kl p Il +¢(ro)) = 3 (Z+ 5) <L

Therefore, the Eq. (13.13) has a solution belonging to B and hence in C(I x I).

13.4 Existence of Solution of a Functional Integral
Equation with Two Variables in BC (R4 x Ry)

Consider the following integral equation:
x(t,s) = (Vx)(t,s)(Ux)(t,s), (13.14)

where ¢, s € R, and the operators V and U are defined on BC(R; x R;) in the
following way:

(Vx)(t,s) = pi1(t, s) + fi(t, s, x(¢, S))/ /J hi(t, s, v,w, x(v, w))dvdw
o Jo
and
(Ux)(t,s) = pat,s) + folt, s, x(2, S))/ /5 hao(t, s, v, w, x(v, w))dvdw.
o Jo

Consider the following assumptions:

(@) pi e BC(Ry xRy) and p;(t,s) > Oast,s - oo(i = 1,2);

(b) The function f; : Ry x Ry x R — R is continuous and f;(¢,s,0) — 0 as
t,s >oofori =1,2;
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(c) There exists constants K; > 0 such that

|.fi(tvs7-x) - .fi(tvsv y)' = Ki |)C _Y|

forallz,s e Ry andx,y e R (i =1,2);

(d) The function i, : Ry x Ry x Ry x Ry x R — R is continuous and there
exists a continuous nondecreasing function G| : Ry — R and a continuous func-
tion g; : Ry x Ry x Ry x Ry — R, such that

|hi(2, s, v, w,x)| < gi(t,s,v, w)G1(Ix])

forall¢,s,v,w € R, and x € R;

(e) The function 4, : Ry x Ry x Ry x Ry x R — R is continuous and there
exists a continuous nondecreasing function G, : Ry — R, and a continuous func-
tion g, : Ry x Ry x Ry x Ry — R, such that

lha(t, s, v, w,x)| < g2(t, 5, v, w)Ga(|x])

forallt,s,v,w € R; and x € R;
(f) The function

t s
(t,s) —> / / gi(t, s, v,wydvdw
0 Jo

is bounded on Ry x Ry;
(g) The function

t s
(t,s) —> / / & (t, s, v, w)ydvdw
0o Jo

is bounded on R, x R, ;
(h) Also, o
F; =sup{| fi(t,s,0)] : t,5 € Ry}
and

t s
G; = sup {/ / gi(t,s,v,wydvdw : t,s € R+}
o Jo

fori =1,2;
(i) There exists a positive solution ry of the inequality

[P+ KGirGi(r) + FG,Gi(r)][p + KGarGa(r) + FG2Ga(r)] < r

such that
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pK [G1G1(r0) + G2G2(r0)] + 2K F GG/ (r0) G2 G2 (ro)
+2K*r0G1G1(r0) G2 Ga(rg) < 1,

where
p=max{|| pi |l p1 I}, F =max {F, F,} and K = max {K;, K,}.

Theorem 13.9 Under the assumptions (a)-(i), the Eq. (13.14) has at least one solu-
tion x(t, s) in the Banach algebra BC(R, x R,).

Proof Suppose x is a fixed function from BC (R x R, ). From the assumption (i)—
(iv), it is obvious that Vx is a continuous function on R; x R, . For arbitrary fixed
t,s € Ry, we get

V), 9]
5|p1(t,s>|+|f1<r,s,x<r,s>)|/ / 1t 5, v, w, (v, w))| dvdw
0 0

< 1p1(t )]+ Lt 5. % (0 8)) — fults 5, 0)] 4+ 1 £1(6s 5. 0)]]

< f / g1t 5, v, W)G1 (1 (v, w) dvdw
0 0
< 1pr(t, )] + K1 x (2, )] + L1, 5, 1G]] x ||>/ / a1, 5, v, w)dvaw.
0 0

Hence, we have
(V)& )| <Il pi | +K1 Gy |l x | Gi(ll x ) + F1G G (|| x |-

Thus, the function Vx is bounded on Ry x R, . Therefore, it can be concluded that
V transforms the Banach algebra BC (R x R.) to itself. Moreover, we have

| Vx < p+KGillx || Gi(llx ) + FG1G (| x | (13.15)
Similarly, it can be shown that Ux € BC(R; x R, ) and

| Ux |<p+KGy |l x || G2l x ) + FG2G(]| x ). (13.16)
By linking the estimates (13.15), (13.16) and the assumption (a), it can be seen that
there exists a number ry > 0 such that the operator W transforms the ball B,, into
itself, where W is defined by

(Wx)(t,s) = (Vx)(t,s)(Ux)(t,s)

forallx € BC(R. x Ry)andz, s € R.. Moreover, ry satisfies the second inequality
of the assumption (a). From the above statement and the estimates (13.15), (13.16),
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we get B o
| VB, < p+ KGiroGi(ro) + FG1G(rp)

and
| UB,, I< p+ KGaroGa(rg) + FG2Ga(ro).

Consider a fixed nonempty subset X of B,,. Now, choose arbitrary numbers 7 > 0
and € > 0. Then, forall x € X and #,5,7,5 € [0, T] with |t — 7| <, |s —5| <&,
we get

|(Vx)(t, s) — (Vx)(,5)|
<|p1t.5) = p1@.5)|

tops
+|f1(t,s,x(t,s))—f](f,E,x(f,E))|/ / |hy(t, s, v, w, x(v,w))| dvdw
0 JO
1
AT @] [ [ hisovonxwodvan
0 JO

t s
- / / hi(t,5,v,w, x(v, w))dvdw)
0 JO

<|pit.s) = p1@.5)|
+[| A1, s, xt, ) = filt, s, x@ )|+ |1, 5,27 5) — AT 5,xT, )]

t prs
x/ / g1, s,v,w)G1(|x(v, w)|)dvdw

0 JO
+[|AE5.xE5) - f1G.5.0)] + | f1G.5.0)]

X

t ops r rs
/ / hi(t,s,v,w, x(v, w))dvdw —/ / hi(t,5,v,w, x(v, w))dvdw
0 JO 0 JO

T T
EWT(P1,5)+[K1 |x<i§>—x<t,s)}+w,§(f1,s>]61<ro)/0 /O g1(t, s, v, wydvdw
t s
+[K1 |x(f,§)|+fl]‘/ / hi(t,s,v,w, x(v,w))dvdw
0 JO

t rs
— / / h1(@,s5,v,w, x(v, w))dvdw)
0 JO

<w'(p1,e) + [K1w' (x,8) + w] (f1,6)] G1(r0) G,

t s
+ (K1r0+F1) ’/ f hi(t,s,v,w, x(v,w))dvdw
0o Jo

)

i s
— / / hi(,s,v,w, x(v,w))dvdw
o Jo

where
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wﬂf“@::wP{VML&y)_fdiiYN3ﬁi&§e[Q7L}.

t—t|<els—5<eyel-dd]

It is obvious that wy (f1,€) — 0 as e — 0 because of the uniform continuity of fi
on [0, 7] x [0, 7] x [—ro, ro]. Similarly, it can be seen that

-0

t s t ps
/ / hi(t,s,v,w, x(v,w))dvdw — / / hi(@,s,v,w, x(v, w))dvdw
o Jo o Jo

as ¢ — 0. Thus, we have
wP(VX) < KG G (ro))w (X)

and B
wP(UX) < KG2Ga(ro)wi” (X).

In view of the assumptions (a), (b), we get
a(VX) < KG1G(ro)a(X)

and
a(UX) < KG,Ga(rg)a(X).

Therefore, we have .
a(VX) < KG1G1(ro)pra(X)

and .
ta(UX) < KG2G2(ro) pa(X).

By Theorem 13.5, it can be seen that W = V U is a contraction operator with respect
to measure of noncompactness (i, with the constant L given by

L = pK [G1G1(ro) + G2G1(ro)| + 2K FG G (r9) G2 G2 (ro)
+2K*r0G1G1(r0) G2 G (ro)

< 1.

Further, consider the sequence of sets (Bf0 ), where B,lo = Conv W(B,,), Brzo =
Conv W(Br'O) and so on. Observe that all sets of this sequence are nonempty bounded
closed and convex. Moreover, B;’O“ C B;’O C B,,foreachn =1, 2, .... Thus, we have

ta (Bf,) < L"tta (Br,) -
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o0
This gives lim p, (B,”0 ) =0.Sotheset Y = (1) B} nonempty bounded closed and
n—00 n=1

convex and Y € ker p,. The operator W maps set Y into itself.

Now, to show that W is continuous on Y. Fix ¢ > 0 and take x, y € X such that
|l x —y ||<e.Since Y € ker u, therefore we can find a number 7 > 0 such that, for
eachz € Y andt, s > 7, we have that |z(f, s)| < e. Since W : Y — Y, we have that
Wx, Wy € Y. Thus, forall t, s > 7, we get

[(Wx)(t,s) — (Wy)(@, )| < |((Wx)(#, )| + [(Wy)(, s)| < 2e.
On the other hand, take an arbitrary ¢t € [0, 7]. Now, we have

[(Wx)(z,5) — (Wy)(z, 5)]
= U@ ) Vx)(E, s) = (Vy)E, )+ (V) ) Ux)(E, s) — (Uy)(, s)]
SNUBy (V) s) = (Vy)E, )|+ I VB, || [(Ux)(t,5) = (U, 5)].

Further, we get
(V). 5) — (V)T 5)]
t s
< |f1<r,s,x(z,s))—fl(z,s,y<r,s))|f / 1 (2. 5. v w, x (v, W) | dvdw
0 JO
t Ky
+|f1<t,s,y(t,s))|f f 1t 5. v wo X (v W) — By (1,5, v, w, y(v, w)) | dvdw
0 JO
t S
<K |x<z,s)—y(z,s>|f / g1(t, 5, v, WG (1xdvdw
0 Jo
t K T
+ Ky |y(t,s>|+|f1(z,s,0)|]/0 /0 &l (hy, edvaw
5KEE]G](F())-‘r(Kr()—l—f)TzE:O(h],&),
where

Tk, 2) = Sup{ |hy (t,s,v,w,x) —hy (t,s,v,w, )| : t,5,v,w € [0, T], }

Ix —yl=ex,yel-dd]

It is obvious that w} (h, e) — 0 as e — 0. Similarly, it can be shown that
[(Ux)(t,5) — Uy)(t, $)| < KeG2Ga(ro) + (Kro + F) T?W], (ha, €),

where

T (s, &) = Sup{ lhy (t, s, v, w,x) — hy (£, 5, v, w, Y)| : £,5,v,w € [0, T], }

lx —yl<ex,yel-d.d]
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As € — 0 gives wy(hy, €) — 0. Therefore, W is continuous on the set Y. Using
Schauder’s fixed point theorem, it can be concluded that W : Y — Y has at least one
fixed point x in the set Y C BC(R; x R;). This completes the proof.

Example 13.2 Consider the following system of integral equations:

x(1,5) = (Vx) (1, 5) (Ux) (z, 5), (13.17)
where
Wi | W Wl
ts X\, w
(Vx)(t,s) = m [x(t,s)+e" 0// TG+ Do dvdw
and

N

!
(Ux)(t,s) = tse 25 + arctan (zs + x(z, 5)) / / e VIFD=wWEHD 20, oy dvdw,
00

™

where ¢, s € R,. It can be seen that this equation is a particular case of the Eq.

(13.14), where
pa(t, s) = tse” 2,

(t,s) = o
9 S 9
P 1252 44

fit, s, x(t,s)) = x(t,s) +e ",

arctan (ts + x (¢, s)) ,

fo(t, s, x(t,s)) = «/12_7r

lx (v, w)l
(P+1)W+1) e+ D+ D

hi(t,s,v,w,x(v,w)) =

and

ho(t, s, v, w, x(v, w)) = e "EFD=WEFD 20, 4y,
It is obvious that p;(t,s) > 0 as t,s — oo and || p; ||= i. Similarly, it can be
shown that p,(¢,s) — Oast,s — ocoand || ps ||= i Again, fi, f> are continuous

functions with

1
filt,s,0) =e"", fo(t,s,0) = — arctan (¢5) .

Vam

Ast,s — o0, it gives

filt,s,00 = 0, fo(t,s,0) — 0.
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Moreover, the functions f(¢, s, x) and f>(¢, s, x) satisfy the assumption (c) with the

constants K; = 1 and K, = \/427 Hence
— — 1 |n
Fi=1, F,= W3
Therefore,
1 _
p= 7 K=1, F=1
Again,
vw

gi(t,s,v,w) = (v2+1) (w2~|-1) (t_|_1)(s+1)7

gt s, v,w) = VDEED D Gi(x) = VX, Ga(x) = X%

It can be observed that ki, hj, g1, and g, are continuous. Also, G; and G, are
continuous nondecreasing functions. Again,

r 11og (12 + 1) 1o (s2 + 1
//gl(l,S,v,W)z_ g ( ) log ( )
0 4 D+

and

/l /X &1, s, v, w) = (1 _ e""2> <1 ~ e_&_ﬁ).
0 Jo

(t+DG+D

Thus G, = }1 and G, = 1. The inequality (a), of the assumptions, has the form:

11 1 1
<Z+er/7+zx/7> (Z+r3+r2) <r

It is easy to observe that r = i (e, rg= i) is a solution of the above inequality,
also satisfying the second inequality of assumption (i).

Finally, it can be concluded that all the assumptions (a)—(i) of Theorem 13.9 are
satisfied and so the integral Eq. (13.17) has a solution x (z, s) belonging to the ball
B% C BC(R, x R,).

13.5 Conclusion

In our present investigation, we have established the existence of the solution of a
functional integral equation of two variables, which is of the form of the product
of two operators in the Banach algebra C ([0, 1] x [0, 1]) and BC(R, x R,). Also
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we have illustrated our results with the help of an example. Moreover, due to our
existence theorem for Egs. (13.4) and (13.14) of two variables, we therefore conclude
that our existence result is more general than the one obtained earlier by Banas and
Olszowy [12]. Also, one can apply these results for fractional differential equations
and fractional integral equations for single and more than one variable.
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Abstract We propose a new notation of p-set contractive mappings for two classes
of functions involving a measure of noncompactness in Banach space and Darbo-
type fixed point and n-tupled fixed point results. These results include and extend the
results of Falset and Latrach [Falset, J. G., Latrach, K.: On Darbo—Sadovskii’s fixed
point theorems type for abstract measures of (weak) noncompactness, Bull. Belg.
Math. Soc. Simon Stevin 22 (2015), 797-812.] The results are also correlated with
the classical generalized Banach fixed point theorems. Finally, we apply these results
to two different Volterra integral equations in Banach algebras with an illustration.
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Throughout the paper,

R = the set of real numbers,
N = the set of natural numbers,
R* = [0, +00) and N* = N U {0}.

Let (E, ||.]|) be a real Banach space with zero element 6. Let Z(x, r) denote the
closed ball centered at x with radius r. The symbol 28, stands for the ball Z(6, r).
For X, a nonempty subset of E, we denote by X and ConvX the closure and the
convex closure of X, respectively. Moreover, let us denote by 91g the family of
nonempty bounded subsets of E and by 91 its subfamily consisting of all relatively
compact sets.

We use the following definition of the measure of noncompactness (MNC) given
in [9].

Definition 14.1 A mapping u : 9 — RY is said to be the measure of noncom-
pactness (MNC) in E if it satisfies the following conditions:

(1°) The family kerp = {X € Mg : w(X) = 0} is nonempty and kerp C Ng;

(2%) (Monotonicity) X C ¥ = u(X) < u(Y);

(3% (Invariance under closure) ,u(Y) = u(X);

(4%) (Invariance under passage to the convex hull) u(ConvX) = u(X);

(5°) (Convexity) u(AX + (1 = A)Y) < Au(X) + (1 — A)u(Y) for A € [0, 1;

(6°) (Cantor’s generalized intersection property) If (X,,) is a decreasing sequence
of nonempty, closed sets in Mg such that X, C X, (n=1,2,...) and if
lim,,_, oo (X)) = 0, then the set X = ()=, X, is nonempty and compact.

n=1
The family ker u defined in axiom (19) is called the kernel of the MNC L.
One of the properties of the MNC is X € kerp. Indeed, from the inequality

U Xoo) < u(X,) forn=1,2,3,..., weinfer that £ (X,) = 0.
The Kuratowski MNC is the map « : 91z — R with

a(£2) =inf {6 >0:2cC USk, Sk C E,diam(S;) <€ (ke N)}. (14.1)
k=1

In 1955, Darbo [11] used the notation of Kuratowski measure of noncompactness
«a to prove the fixed point theorem and generalized topological Schauder fixed point
theorem [9] and classical Banach fixed point theorem [8].

Theorem 14.1 ([9]) Let X be a closed, convex subset of a Banach space E. Then
every compact, continuous map T : Z — X has at least one fixed point.

Theorem 14.2 ([11]) Let X be a nonempty, bounded, closed and convex subset of a
Banach space E, and i be the Kuratowski MNC on E. Let T : 2 — $2 be a contin-
uous and [L-set contraction operator, that is, there exists a constant k € [0, 1) with

u(T'M) < kp(M)

for any nonempty subset M of X. Then T has a fixed point.



14 Generalization of Darbo-Type Fixed Point Theorem and Applications ... 335

Following this result, various authors proved several Darbo-type fixed point and
coupled theorems by using different types of control functions. Here, we mention
the paper discussed in [2-7, 11, 13, 15, 22, 23, 23, 24, 37]. In this work, we
establish some new results of Darbo’s integral type which generalizes and includes
work mentioned in [2—4, 11, 13] as well. We apply these results to get solutions of
two different types of Volterra integral equations in Banach algebras followed by an
illustration.

14.2 Generalized Darbo-Type Fixed Point Theorems

We start the section with the following notation:

Definition 14.2 ([26]) Let A be a family of all functions F : R — R such that

(A) F is continuous and strictly increasing;
(A,) for each sequence {t,} € RT, lim,_, o #, = 0 if and only if

lim F(t,) = —o0.
n—o0

Ag,p denotes the set of pairs (G, 8), where G : R — Rand 8 : [0, 00) — [0, 1)
such that

(A3) for each sequence {#,} € R*, limsup,_, ., G(#,) > 0 if and only if

limsupt, > 1;
n—0oQ

(A4) for each sequence {t,} < [0, o0), limsup,_, ., B(#,) = 1 implies

lim z, = 0;
n—0oQ

(As) for each sequence {t,} € R™, ZZO:, G(B(t,)) = —o0.

Setl = {f :RT™ — RT; fisalLebesgueintegrable mapping whichis summable
and nonnegative and satisfies foe f(@®)dt > 0, for each € > 0}.

Our first main result is as follows:

Theorem 14.3 Let §2 be a nonempty, bounded, closed and convex subset of a Banach
space E, and T : §2 — $2 be a continuous operator. If there exist F € Ap, (G, B) €
Ag.p and a continuous and strictly increasing mapping ¢ : Rt — R such that

(T M)+o(u(TM))
W(TM) > 0 — F(/ f(s)ds) < F(/
0 0

+G(ﬁ(/OxL<M)+<ﬂ(u(M)) f(s)ds)> (142)

M)+ (u(M))

f(s)ds)
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for all M C 2, where w is an arbitrary MNC and f €I, then T has at least one
fixed point in 2.

Proof Starting with the assumption §2y) = §2, we define a sequence {2,,} such that
2,41 = Conv(T £2,), for n € N*. If u(82,,) + @((82,,)) = 0, that is, (82,,)=0
for some natural number ny € N, then £2,,, is compact. Thus, we conclude the result
from Theorem 14.1, and hence we assume that ;£ (£2,) + ¢(u(£2,)) > 0, forall n €
N*. From (14.2) and (4°) of Definition 14.1, we have

w(2n1)+o (1 ($2541))
F( / f(s)ds)
0

( /#(COHV(T-Qn))+w(14(C0nV(T-Qn)))

f(s)ds)

0

(T $2,)+o(n(T£2,))
F( / f(s)ds)
0

F(/:(Q”)W(M(Qn)) f(s)ds) N G('B(/-M(Qn)w(u((zn)) f(s)ds))

0

F(/Ou(ﬂn-le(/t(ﬂn-l)) f(s)ds) N G(IB(/O

N G(IB(/OM(QHIHVJ(M(QM)) f(s)ds))

IA

H(82,)+ (1 (£2,))

IA

f(s)ds))

A

F( /0 HspE F(5)ds) + 2(; G(8( f T f@)ds)),

0
that is,
($2n41)+@ (1 ($2041))
F( f f(s)ds)
0

n

F<f0u(90)+w(u(90)> f(s)ds) + Z G(ﬂ( /OM(Qi)JrW(M(Qi)) f(S)ds>) (14.3)

i=0

IA

for all n € N. From the properties of (G, fB) € Ag g, F(fOM(Q”“)W(”(Q”“))
f(s)ds) - —oo asn — oo and, by (4A,), we have

(82n4+1)+@ (1 ($2,41))
lim f(s)ds =0,

n—0o0 0

and hence
nli)r{.lo w(82,11) + o(u(82,11)) =0.
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Therefore, we have
lim w(82,) =0.
n— o0

Now, from (6°) of Definition 14.1, we have X, = ﬂ;’lczl X, is a nonempty, closed,
convex setand X, € X, foralln € N. Also, T (X) C X and X, € keru. There-
fore, by Theorem 14.1, T has a fixed point u in the set X, and hence u € X. This
completes the proof.

Theorem 14.4 Let §2 be a nonempty, bounded, closed and convex subset of a Banach
space E and T : 2 — §2 be a continuous operator. If there exist F € Ap, (G, B) €
Ag.p and a continuous and strictly increasing mapping ¢ : R — RY such that

u(IM) >0 = FuTM)+ou(TM))
= F(uM) + o(n(M))) + G(B(u(M) + ¢(u(M))))

forall M C $2, where p is an arbitrary MNC, then T has at least one fixed point in
2.

Corollary 14.1 Let 2 be a nonempty, bounded, closed and convex subset of a
Banach space E and T : 2 — $2 be a continuous operator. If there exist T > 0,
F € Ap and a continuous and a strictly increasing mapping ¢ : Rt — R such
that

w(TM)+o(u(TM))
WTM)>0 = 1+ F(/ f(s)ds)
0

w(M)+(u(M))
< F( / f(s)ds) (14.4)
0

for all M C $2, where u is an arbitrary MNC and f €I, then T has at least one
fixed point in X.

Proof Ifweconsider G(¢) = Intforallz > 0,8() =X € (0,1)andt = —InA >0
in (14.2) of Theorems 14.3, we have (14.4) and the result follows from Theorem 14.3.

If we consider F () =Intand 7 = ln(%) forall A € (0, 1) in (14.4) of Corollary
14.1, then we obtain the following result.

Corollary 14.2 Let §2 be a nonempty, bounded, closed and convex subset of a
Banach space E and T : 2 — §2 be a continuous operator. If there exists a contin-
uous and strictly increasing mapping ¢ : R™ — RY such that

w(TM)+o(u(T M))

(M) +o(r(M))
W(TM) > 0 = / F(s)ds < x[/ f(s)ds] (14.5)
0 0

for all M C 2, where w is an arbitrary MNC and f €I, then T has at least one
fixed point in X.
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Remark 14.1 Put f(¢) =1 and ¢(¢) = ¢ for all ¢ € [0, +00) in Corollary 14.2.
Then we have

w(TM)

1 [HTM)+eu(TM))
/ f(s)ds

1
E[M(TM) +o(u(TM))] = 3

A /M(M)+¢(M(M))

0

=3
A

= S M) + ¢ (u(M))]

= A u(M)

f(s)ds

and so we get Darbo’s fixed point theorem.

Proposition 14.1 Let X be a nonempty, bounded, closed and convex subset of a
Banach space E and T : X — X be a continuous operator such that

w(TM) >0
</diam(TM)+<ﬁ(diam(TM))

— F f(s)ds) (14.6)

0

5 F(/Odiam(M)+<p(dium(M)) f(s)ds> . G<ﬂ</diam(M)+(p(diam(M)) f(s)ds)>

0

Joral M C X and f €I, F € Ar and (G, B) € Ag g and a continuous mapping
¢ : Rt — R*. Then T has a unique fixed point in X.

Proof Following Theorem 14.3 and Proposition 3.2 [13], T has a fixed point in X.

To prove the uniqueness, we suppose that there exist two distinct fixed points ¢, § €
X, then we may define the set T := {¢, &£}. In this case, diam (V") = diam(T (Y")) =
Il€ — ¢l > 0. Then, using (14.6), we get

diam(T(T)) > 0 =
diam(Y)+¢(diam(Y))

F( f f(s)ds)
0

(/diam(T(T))+<p(diam(T(T)))

F f(s)ds)

0
( /-diam(('f))+§0(diam(('f)))

diam((Y))+e(diam((T)))
<F ( /

f@©)ds) +G(p f(s)ds)).

0 0

Therefore, we have

G(IB([dium((T))+w(dium((T))) f(s)ds)) > 0

0
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and hence

( /diam((T))+w(diam((T)))

B f@)ds) = 1,

0

which is a contradiction and hence £ = ¢. This completes the proof.

If we consider f(t) = 1in (14.6) of Proposition 14.1, then we obtain the following
result.

Corollary 14.3 Let X be a nonempty, bounded, closed and convex subset of a
Banach space E and T : X — X be a continuous operator such that

w(TM) > 0=
F(diam(TM) + ¢(diam(T M)))
< F(diam(M) + ¢(diam(M))) + G(B(diam(M) + ¢(diam(M)))) (14.7)

forall M C X, where F' € Ap and (G, B) € Ag.g and a continuous mapping ¢ :
R* — R*. Then T has a unique fixed point in X.

Corollary 14.4 Let X be a nonempty, bounded, closed and convex subset of a
Banach space E and T : X — X be an operator such that

|Tu —Tv| >0—=

1 Tu=Tvl|+eITu—=Tv|)
F(/ f(s)ds) (14.8)
0

- F</0IIM—VII+<ﬂ(IIu—VII) f(s)ds> N G<ﬂ</(;IIM—VII+<ﬂ(M—V) f(s)ds))

forallu,v € X, where f €I, F € Ap, (G, B) € Ag g and ¢ : R — RT is a con-
tinuous and strictly increasing mapping. Then T has a unique fixed point.

Proof Let i : Mg — RT be a set quantity defined by the formula u(X) = diamX,
where diamX = sup{|lu — v|| : u,v € X} stands for the diameter of X. It is easily
seen that p is a MNC in a space E in the sense of Definition 14.1. Therefore, from
(14.8), we have
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sup [|[Tu —Tv|| >0 =

u,veX

sup, yex ITu—Tvl+o(sup, ,ex ITu—Tvll)
F( / f(s)ds)
0
ITu=Tvl+oUITu=TvI)
= sup F(/ f(s)ds)
u,veX 0

IA

EFEPX [F(/Ouvwnuvn) f(s)ds) +G(ﬂ(/0nuv||+w<||uv||>f(s)ds))]

sup, vex lu—vl+esup, ,ex lu—vi)
F( / f(s)ds)
0

-}-G(IB( ASUPM,L'EX lu—=vli+e(sup, vex llu—vI) f(s)ds))’

which implies that

IA

diam(T(Z)) > 0 =

diam(T (X)) +e(diam(T (X))
F( / f(s)ds)
0
diam(Z )+e(diam(Z)) diam(Z )+e(diam(Z))
< F(/ f(s)ds) + G(,B(/ f(s)ds)).
0 0

Thus, following Proposition 14.1, .7 has a unique fixed point. This completes the
proof.

If we consider f(¢) = 1 in (14.8) of Corollary 14.4, then we have the following
result.

Corollary 14.5 Let X be a nonempty, bounded, closed and convex subset of a
Banach space E and T : X — X be an operator such that

I Tu —Tv| >0—
F(ITu —Tvll+¢(lTu —Tv]))
< F(llu —vll+eUlu —vID) + GBlu —vi+¢lu—vI))  (14.9)

forallu,v € X, where F € Ap and (G, B) € Ag,p and ¢ : R" — R* is a contin-
uous and strictly increasing mapping. Then T has a unique fixed point.

Corollary 14.6 Let (E, || - ||) be a Banach space and X be a closed, convex subset
of E. Let T, T, : X — X be two operators satisfying the following conditions:
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M (M +T)(X) CX;
(2) thereexist ' € Ap and (G, B) € Ag, g and a continuous and increasing map-
ping ¢ : RY — R¥ such that

ITiu —Tv|] >0—=
ITiu=Tvll+o(I Tiu—Tv|)
F( / f(s)ds)
0

- F</OMV+¢(MV) f(s)ds) N G(ﬁ(/(')

(3) Ty is a continuous and compact operator.
Then ¢ =T, + T, : X — X has a fixed point u € X.

lu—=vil+e(lu—vi)

f(s)ds)); (14.10)

Proof Suppose that M is a subset of X with «(M) > 0. By the notation of Kura-
towski MNC, for each n € N, there exist 4, ..., €, bounded subsets such
that M C Um(") € anddiam(€;) < a(M) + % Suppose that & (77 (M)) > 0. Since
Ti(M) C Um(") T:(%}), there exists iy € {1,2,...,m(n)} such that a(T;(M)) <
diam(T,(6;,)). Using (14.10), we have

a(Ty (M) +e(a(T (M)))
F( /

f(s)ds)
0
(/‘diam(Tl((gio))""(p(dium(Tl((’6)1’0)))

IA

F f(s)ds)

0
( \/diam(ctq”,-o)Jr(p(diam(%”,-o))

IA

diam(Ciy)+e(diam ()

i reas) +6(s( | f(s)ds))

a(M)+ L +p@M)+1)) a(M)+ L 4g(a(M)+1))
< F(/ f(s)ds +G ,3(/ f(s)ds)).
0

0

Passing to the limit as n — oo, we get

a(Ty(M))+¢(a (T (M)))
F( /

| f(s)ds)

- F(‘/OQ(M)-W(a(M))) f(s)ds) N G(IB(-/O

Using hypothesis (3), it follows from the notation of « that

a(M)+o(a(M)))

f(s)ds)).
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a( Z (M)+e(a( 7 (M)))
(],

f(s)ds)

/Dt(Tl (M)+T2(M))+o(a(Ti (M)+T2(M)))

(=]

Il
Ty

f(s)ds)

/ a(Ty (M) +a (T2 (M) +e(a(Ty (M) +a (T2 (M)

(=]

IA
B!

f(s)ds)

(=)

Il
!

(
(
(
( /Ot(Tl (M))+¢(a(Ti(M))) f(s)ds)

S F</0a(M)+<ﬂ(ot(M))) f(s)ds) N G(‘B(/Oa(M)-ﬁ-w(ot(M))) f(s)ds))

Thus, by Theorem 14.3, ¢ has a fixed point u € X.

If we consider f(¢) = 1 in (14.10) of Corollary 14.6, the we have the following
result.

Corollary 14.7 Let (E, || - ||) be a Banach space and X be a closed, convex subset
of E. Let T, T, : X — X be two operators satisfying the following conditions:

D M +T)(X) CX;
(2) thereexist F' € A, (G, B) € Ag,p and a continuous and increasing mapping
¢ : RY — R* such that

I Tiu —Tv| >0—=
F(|Tiu — Tyl + oI Ty — Tiv)[D) (14.11)
= F(lu —vll+e(lu—vID) + GBu — v+ ¢Ulu —vI))):

(3) T is a continuous and compact operator.
Then ¢ =T, +T,: X — X has a fixed point u € X.

14.3 Darbo-Type n—Tupled Fixed Point Theorems

Definition 14.3 Let X be anonempty setand ¢ : X" — X be a given mapping with
n > 2. Anelement (xy, x5, ..., x,) € X" is said to be an n-tupled fixed point of the
mapping ¥ if

G (x1,x2,...,%,) = X1,
G (x2, X3, ...,X1) = X2,

%(x,,, X1y oo 7xn71) = Xpn.
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In the following, we have denoted ), or [ [, as a summation or product in cyclic
permutation over the product of X; foreachi € {1,2...,n}.

Theorem 14.5 Let X be a nonempty, bounded, closed and convex subset of a Banach
space E. Suppose that ¥ : X" — X is a continuous operator satisfying the following
condition: for each € {1,2...,n},

(o)) =0 =
A(Safo(TT0) +o(u(o(T))

< P () + o o n(x0)) + G(B( X u(x) + o X u(x)))

for all X; C X, where v is an arbitrary MNC, F € Ar and (G, B) € Ag,g and
¢ : Rt — R is a continuous increasing and sub-additive mapping. Then 4 has at
least an n—tupled fixed point in X".

N

Proof We start by considering a map 7 : X" — X" defined by
G122, X)) = (G100 X)), G (X2, x3, X1, G (n XL X)),

With the virtue of continuity of ¢, gis continuous. Define
n
AM) =Y u(Xy)
i=1

where X;, i = {1,2,...,n} denote the natural projections of X. Without loss of
generality, let @ # M C X". Hence, by the condition (14.13) and using (2°) of
Definition 14.1,

A@ (M) < FS (X1 % Xy x - X X)) x G (Ko x K3 x o % X1)
X...X%(anXl X - x Xp_1))

=D uE@ (X1 x Xz x - x Xp).
J

Therefore, by the assumption, we have

(G (M)) > 0,
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which implies
FEG (M) + (G (M))))

= r(a(ITo(IT%) + (o (TTo(T0)

i=

F(Suer(TT0) ol Sulo([T7))

J

< F(éu(xi) + w(gu(%))) + G(,B(lZ::M(Xi) + (p(gﬂ(%))»

= F(u(M) + ¢(1(M))) + G(B((M) + ¢ (it(M)))),

IA

that is,

AGM)) > 0 =
F((4 (M) + ¢((4 (M))))
< F(L(M) + o((M))) + G(B((M) + ¢(1L(M)))).
Therefore, from Theorem 14.4, we get that Sé\ has at least one fixed point in X" and

hence ¢ has an n—tupled fixed point. This completes the proof.

Theorem 14.6 Let X be a nonempty, bounded, closed and convex subset of a Banach
space E. Suppose that 4 : X x X — X is a continuous operator. If there exist F €
Ar, (G, B) € Ag.p and a continuous and increasing mapping ¢ : RT™ — R* such
that, for eachi € {1,2...,n},

(o(1Tx) 0=
(o TT0)) oo TT0))

< F (max{u(X1), n(X2), ..., w(Xn)} + ¢ (max{n(X1), w(X2), ..., w(Xn)})

+G (B(max{u(X 1), n(Xa), .., w(X,)
+o(max{u(X)), £(Xa), ..., n(X,)}))) (14.13)

forall X; C X, where w is an arbitrary MNC, then 9 has at least an n—tupled fixed
point in X".

Proof Consider the mapping G X" — X" defined by the formula

G(x1,x2,..., Xn) = (G (x1,x2,..., Xn), G (X2, X3, ..., X1)seees G (Xns X15 - - - Xn—1))-
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¢ is continuous due to the continuity of 4. Define

‘(M) = max{u(Xy), p(X2), ..., p(X)},

where X; for each i = {1,2, ..., n} denote the natural projections of X. Without
loss of generality, let @ %= M C X". Following the previous theorem,

AG (M)
SUE@ X x Xy XX X,)XG(Xy x X3 x-+-x X)X
XY (X, x Xy x - X X021)
u(G (X1 x X x -+ x Xp),

— max W& (X2 x X3 x -+ x X1)),

WG Ky X Xy % % Xn1))

which is, by the assumption, R
(& M)) > 0.

The condition (14.13) and (2°) of Definition 14.1 imply that

FREG M) + oG (M))))

< FaJ [« x»
J

i=1

+e@ [ Jo (] x»
J i=1

w(G (X1 x Xa x -+ x Xp)), w(G (X1 x Xg x -+ x Xp)),
= F|max{ w@ Xy xX3x---xX1)), ¢+¢|max{ w@ Xy x X3 x---x X1)),

W& (Xp x X1 x---x Xy_1)) WG (Xn x X1 x---x Xy_1))
F(r(@ (X1 x Xa x -+ x Xp)) + (UG (X1 x X3 x - x X1)))),

F(u@ Xy x X3 x -+ x X1)) + o(u( (X x X3 x -+ x X1)))),
= max .

F(u((Xn x X1 X - x Xy-1)) + (& (Xn x X1 x - X Xp_1)))),

F(max{u(X1), u(X2), ..., m(Xn)} + e(max{u(Xy1), w(X2), ..., w(Xn)})
+G(Bmax{u(X1), u(X2), ..., w(Xn)} + pmax{u(Xy), u(X2), ..., w(Xn)H)),
F(max{n(X2), u(X3, ..., m(X 1)} + e(max{u(X2), n(X3), ..., w(X)H)
< max +G (B(max{n(X2), u(X3, ..., XD} + gmax{u(Xz), u(X3), ..., w(XH),

F(max{u(Xn), p(X1, ..., H(Xp—1)} + e(max{u(Xn), u(X1), ..., w(Xp—1h)
+G(B(max{pu(Xn), u(X1, ..., Xn—D} + pmax{u(Xn), p(X1), ..., w(Xu—1H)

= F(max{u(X1), n(X2) ..., w(Xn)} + @(max{u(X1), u(X2) ..., u(Xn)}H)
= F((M) + o(@(M))) + G(BI(M) + p((M)))),
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that is,

AGM) >0 =
T+ F(R(@ (M) < FR(M) + ¢(L(M))) + G (BE(M) + ¢((M)))).

Hence, by Theorem 14.4, we reached that {2 has at least one fixed point in X" and
thus ¢ has an n—tupled fixed point. This completes the proof.

Remark 14.2 In view of Corollaries 14.13-14.7, some new n—tupled fixed point
results can be derived from Theorems 14.5 and 14.6.

14.4 Application I

Let (X, ||.||) be a real Banach algebra and let the symbol C (I, X) stand for the
space consisting of all continuous mappings x : I = [0, 1] — X. We consider the
existence of a solution x € C (I, X) to the following integral equation:

_ sm)a—lmsm—l

x(t):f(t,x(t))—l—Hx(l)/ ¢ ki(g1(t,8)Q1x(s)ds
0 I'(a)

t cen _ n\B—1 n—1
« /0 ¢ SF)(ﬂ) " ko(ga(t. $))Qax(s) ds
(14.14)

forallt e I =[0,1],0 <a,B <1landm,n > 0.

We assume that the following conditions are satisfied:

(a1) f:1 x X — X is a continuous mapping such that there exist a bijective,
strictly increasing function F' : (0, 00) —> (=00, 0), (G, B) € Ag,g and a nonde-
creasing function ¢ : RT™ — R such that

If (t.x) — £t ) >0 =
FALf@x) = f @l +ef @x) = f @)
< F(llx =yl + ¢ (lx = yI) + GBlx — yll + ¢ (llx — yID)): (14.15)

(a;) H, Q) and Q, are some operators acting continuously from the space
C (I, X) into itself and there are increasing functions ¥, ¥, ¥3 : R™ — R* such
that

IH Ol = ¥ dlxlD
191 (I = Y2 (llx]D)
192 Il = ¥3 (lixID
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(az) g1, 8 : I x I — R are continuous and the functions g (¢, s) and g (¢, s)
are nondecreasing for each variable ¢ and s, separately;

(ag) ky : Img, — R, is acontinuous and nondecreasing function on the compact
set Imgy;

(as) kp : Imgy, — R, is acontinuous and nondecreasing function on the compact
set Imgy;

. V1 (8) Y2 (§) Y3 () NIkl NIk |l
(as) liminf,_, o < 1.
a4+ DHIr@B+1)
Theorem 14.7 Under the assumptions (a;)—(ae), Eq.(14.14) has at least one solu-
tion in the space x € C (I, X).

Proof Define an integral operator T : C (I, X) — C (I, X) by
Tx(@)=fx@)+Hx@) Fx (@) Gx (1),

where

Fx () —/fwmsm_'k (1(1, )01 x(s) ds
= A (@) 1817, 1 s

(tn_ n)ﬂ 1 nfl
Gx (1) = / TG k2 (g2(t,5)) Q2x(s) ds.

Now, we show that the operator T has one fixed point. To this end, we define the
following two mappings 71, 7> : C (I, X) — C (I, X) by:

Tix (1) = f (¢, x (1)),
Tox (1) = Hx (1) Fx (t) Gx (),

where T = T} + T5. It is easy to see that T is well-defined. Now, we show that 7,
is well-defined. Let ¢ > 0 arbitrarily and x € C (/, X) be given and fixed. Lete > 0
arbitrarily and x € C(I, X) be given and fixed. Since k; is uniformly continuous
on the compact set Img;, there exists §;(¢) > 0 such that, for all ¢, 1, € I with
|t, — 1] < 81(€), we have

I'(ax + 1)e

(8112 90) = ki (g1 (1) < 5o o=

Similarly, there exists §;(¢) > O such that, forall #;, , € I with |t; — #;| < &2(€), we

have
I'(B+ e

lka(g2(028)) = ka(g2t1. )| < 5=

Put
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d3(¢) = min {51(8)’\% I'(e+ De }

m*(1+ 21 Qx| k1)
for all t1, 1, € I with |, — t;] < 83(€), then we have

[(Fx)(12) — (Fx)(11)]

5} m __ .m a—1
= ‘ % ms" ki (g1(12,$)) Q1x(s)ds
B o(gm _ gmye—l
_ %msm—lkl(gl(tl’s))le(S)ds‘
0
B (gm _ cmya—l
+‘ %msmflkl(gl(fl,S))Qm(s)ds
I m _ myoe—1
B %msmilk‘(gl(tlaS))le(s)ds
0
I (tm— m)a 1 o
+‘/ T ms™ ki (8111, 5)) Qi x(s)ds
4 (l‘{n _ m)oz 1 m_]k .
o Tms 1(81(t1, 5)) Q1x(s) s‘
G
=) T T ™ @) =k a)llQi(s)lds
o) m __ mya—1
%msmﬂ'kl(&(ﬁvS))||Q1X(s)|ds

141 m __ ma—=1 __ em _ mya—1
+:/ 07 = )" = W S otk (gu 11, )11 Q1) Ids.
) '@

Therefore, if we denote
Oryog, (81, .) = sup{lki(g1(t,5)) —ki(g1(t', )| : ¢, ', s € I and |t — '] < &1},

then we have

I(Fx)(t) — (Fx)@) < | Qixllwk,og (81, ) 5" N1 Quxllllkill (5" — 1)

I' (o) o I'(a) o
Nkl [ a3 =y e
I () o % o
0g(81,) 2 k
= | Q1% l| kg, (81 )+ IQix |kl (@ — 1y,
I'le+1) I'oe+1)

By applying the mean value theorem on [71, £,], we get

5" — 1'% < m®|ty — 11]".
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Thus, from the last inequality, we get

Q1 xllwk 0, (81, ) | 20 Qux]llkll

T'e+1) T+ 1)
I

< .
T30+ [Hx [ IGx])

[(Fx)(t2) — (Fx)(t)| <

m®|t, — t;|*

(14.16)

T+ De
B4+ 211Qxx]l k21

Similarly, if we put §4(¢) = min {52(6‘), \‘7
n

with |, — 1| < 84(€), then we have

}foralltl,tz el

A

| Q2% ||wi,0g, (82, .) 2”Q2x””k2”nﬁ|t )
rB+1 r'B+1) 2
£

S K
3+ IHx[ 1 FxID

1(Gx)(12) = (GX) (@) =<

where
a)kz()gz(827 ) = Sup{lkz(gZ(ta S)) - k2(g2(t/v S))' : ta tla s G I and |t - t/| S 82}

Also, for all t € I, we have

Ikl Quxll k2l Il Qaxl

IF0OI = “RE= 00 IG0OI = S0

Also, since Hx is uniformly continuous on /, there exists ds (¢) > 0 such that, for
allty, 1, € I, with |t, — 11| < &5 (¢), we have

'+ DB+ De
31+ kil 1Q1x1D) (1 + N2l 1 Q2x 1)

Put §(¢) = min {65(¢), 84(¢), §5(¢)} and 1, — 1; < §(¢). Then we get

[Hx (1) — Hx (1)l <

1T2x (82) — Tox (t)|| =1 Hx (©2) Fx () Gx () — Hx (t1) Fx (1) Gx (t1)||
<IHx (&) — Hx (t) | Fx ()| IGx (1)l
+ 1 Hx )1 Fx () — Fx (1)l |Gx (&)l

+ I1Hx @) 1Fx @)l 1Gx () — Gx (1)l
e n & n e
- +-+-=c
-3 3 3
Next, we show that 75 is a continuous operator. Let y € C (I, X) and ¢ > 0. Since
H, Q) and Q, are some operators acting continuously from the space C (I, X) into
itself, so there exist §; > 0, 5, > 0 and 83 > 0, such that
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Vxe C(,X), (Ix =yl <8 = Hx — Hy| < &1(¢)),
Ve C(,X), (Ix —yll <= 11Qix — Qiyl < &2(e)),
Vxe C(,X), (Ix =yl <8 == [Q2x — Q2yll <&3(¢)),

foreach ¢t € I, we have

_ sm)ozfl

|Fx(r) — Fy(1)] =|/ ¢ ms" ki (g1(2,5)) Q1x(s)ds

I ()

(tm— smye=l o
/ I'(a) ms™ ki (g1(z, 8)) Q1y(s)ds|

mo__ gmya— 1
/ ([ ) s’”_l|k1(g1(l, S))Hle(s) — Qly(s)|ds

F(a)

andso I | Iy | £2(e)
1 1l &2(&
| Fx — F||_1_,( +1)||Qx Oy ||_m

Similarly, we show that
[k k21 €3 ()
G G _
1Gx — y”_F(ﬂ )||Q — 0yl = FE+ D)

Now, if we put § = min {3}, &5, 83}, then, for any x € C (I, X) that ||x — y|| < 4,
by the triangle inequality, we obtain

T2x (1) — T2y ()l
= Hx () Fx (@) Gx (t) — Hy (1) Fy (1) Gy ()|
< |Hx @) — Hy O I1Fx OIIGx O + 1Hy Ol 1Fx @) — Fy )OI 1Gx @)l
+IHy OIIFy OIGx (@) — Gy @)l
< |IHx — Hy| I Fx| IGx]| + I1Hy I | Fx — FyIl I1Gxll + | Hyl IFyI 1Gx — Gy|
et TQxll k2]l 1| Qoxl

<eq(e)
Fa+1) T@B+1D
kil ex(e) k2l 11 Q2xl kL @1yl k21l £3(e)
R Teey TN TRy T
- eyl o (llxID N2l Y3 (lx 1D
<eq(e)
Fa+1) TB+1D)
kil ea(e) koIl ¥ Clix ) kil 2 Clly 1D k2l €3(e)
+ ¥ dlyID Fa+) TB+D + ¥ dlylD Fa+l) TG+
- &yl ¥ Iyl + 8) k21l w3 (lyll + 8)
<eq(e)
T+ 1) rB+1)
kil ea(e) koIl ¥r3 (llyll + ) kil ¥r2 Iyl k2l e3(e)
+ ¥ dlylD Fa+l) rG+1) + ¥ (lylD Fa+l) TF+D
& & &
=< 3 + 3 + 3 =g,
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where

T+ DB+ e

e 314+ v Ayl +8) Ik I+ ¥ Ayl + 8) lk2ll]
. T+ DB+ De ’

3T+ Ay D e 01 + 3 (ly D k2]
o T'@+ DI B+ De

301+ (I Ik 1T+ 2 (lly D k211

Now, we show that 75 is a compact operator. If B={x € C (I, X) : ||x|| < 1}
is the open unit ball of C (I, X), then we claim that 7, (B) is a compact subset
of C (I, X). To see this, by the Arzela—Ascoli theorem, we need only to show that
T, (B) is an uniformly bounded and equi-continuous subset of C (I, X).

First, we show that 7, (B) = {T,x : x € B} is uniformly bounded. By the condi-
tions (ay), for any x € B, we have the following estimates:

IT2x ()]l = [1Hx (1) Fx (1) Gx (1) |
<IHx OIIFxOIIGx Ol < [Hx|[ [ Fx[l 1G]l

&l Y2 (llxID k2l 3 Cllx )
Fe+l) T+

lkrll Yra(1) llk2|l ¥r3(1)
Fa+1) B+’

= ¥udlxD

=viD)

Hence, putting M := (1) ”;‘J(ll;/jfg) ”ff&‘/ﬁ;) wg conclude tl}at T ‘(B) is uniformly
bounded. Now, we show that 75 (B) is an uniformly equi-continuous subset of
C (I, X). To see this, let x € B be arbitrary, and let ¢ > 0. Since Hx, Fx and

Gx are uniformly continuous, there exist some 8; (¢) , 6, (€), 83 (¢) > 0 such that

Vi, €1, (b =11l <81(e) = [|[Hx () — Hx (t)| < €1),
Vi, €l, (o —1t] <8 (e) = |[Fx () — Fx ()l < &),
Vi, el, (b —t] <8(e) = IGx () — Gx (1)l < €3).

Let§ (¢) = min {&; (¢), 82 (¢), 83 (¢), &2}, where &; and &3 depend on ¢ and will be
given. Therefore, if #,, 1, € [0, T] satisfies 0 < 1, — t; < 8 (¢) and x € B, then we
have the following estimates:
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IT2x (12) — Tox ()|l

= |Hx (f2) Fx (12) Gx (1) — Hx (11) Fx (1) Gx (11) |

<Hx (&) — Hx ¢DI 1 Fx @) 1Gx @)l + 1 Hx GDI | Fx (22) — Fx D IHIIGx (1)l
+IIHx DI IFx DI IIGx (2) — Gx ()l

. kgl 2 CllxID el ¥r3 (llx 1) + i lxlDe 1z 1l Y3 (llx D
=T+ T+ : e+
kil 2 Cllx 1)
+¢1(||X||)W€
kil Yo (1) llk2ll ¥3(1) Ik Il ¥r3(1) lky Il ¥ra(1)
Dyt ’ T
STt rgn Ve TR
£ I &
=3+3+3
=g,
where

F'la+1D)I'(B+ De

T3 v (D) Tl Y3(1)
o '+ e

2T 34y (D) kel vs()

. I'(x + 1e

3

T3+ (D) k[ Y1)

Therefore, 7, is a compact operator. Next, we show that 7; satisfies in (14.11).
Letx,y e C (I, X), and ||T1x — T1y| > 0. By applying the fact that every contin-
uous function attains its maximum on a compact set, there exists ¢ € I such that
0<||Thvx—Tyl=IfEx@)— f y@)| By (a;) and using the fact that F
and g are strictly increasing functions, we obtain

F(Tx =Tyl + ¢ ITix — Tiyl))
=Ff@x@®) = f@yO)l+edf@Ex@)—fye)h)
= F(x=yll+odx =y +GBWx =yl +¢Ux —=yI)))).

Hence T satisfies in (14.11).
Now, we show that there exists some M; > 0 such that ||7,x|| < M, holds for
each x € C (I, X). Since F is bijective and strictly increasing, we have

ITix = Tayll + o (IT1x = Tiyll)
< FUIF (lx =yl + ¢ Ux = yID) + GBI = yll + ¢ (lx = yID)I.

LetO < |Ix]| +¢ (llx|]), since F (||x|| + ¢ (Jlx]])) < O, the above inequality implies
that
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ITix]l = ITix — T10] + | T10]
< IITix — 1Ol + ¢ (I T1x — T10) + 1 0]
< F'[F (Ixll + ¢ (x D) + GBWIxIl + @ (x )N+ 170l
< F'IGBWIxIl + ¢ (xI)N] + ITi0l < [IT10] .

Therefore, we have
IM; >0:Vx xeC,X) = |Tix|| < M),

where M, := ||T0]|.

Finally, we claim that there exists some r > 0, such that T (B, (0)) € B, (0) with
B, (0)={x e C(,X): ||x]| <r}.Onthe contrary, for any { > 0 there exists some
x; € B, (0) such that HT (x;) || > ¢. This implies that lim inf,_, o, % ||T (x{) H > 1.
On the other hand, we have

| Txe O] < [ f (t.xc ©)] + | Hxe @) Fxe ()G (1)
< | Tixe | + [Hxc O | Fxe ] | Gxc ]|
<M+ [Hxe| .| Fx| . |Gx|

Iyl Il l
kvl Il |l

=M+ Y1 (8) Y2 (0) - ¥3 (D)

Fa+DHI B+
Hence, by the above estimate and the condition (ag), we get

liminf |7 (x¢)| < timinf V1 (©) Y2 (©) s (D) Mkl lIkall
t—oo {00 (rle+DHIr'+1

which is a contradiction. Thus, in view of the above discussions and Corollary 14.7,
we conclude that Eq.(14.14) has at least one solution in B, (0) C C (I, X). This
completes the proof.

Corollary 14.8 Let the assumptions of Theorem 14.7 be satisfied (withm = n = 1),

then the fractional-order quadratic integral equation

t _ a—1
20 = Fx) +He 0 [ =2 kgt ) Qux(s) ds
o I'(o)

f(t—s)ﬂflk . J
xfo Ty e ) Q) ds

has at least one solution x € C (I, X).

Corollary 14.9 Let the assumptions of Corollary 14.8 be satisfied (with Hx(t)) =
1), then the fractional-order quadratic integral equation
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t _ a1
w0 = e xon+ [ ke 5) 0ux(s) ds
) T@
tp o pl
<[ %kz(gz(f,s))sz(s)dS

has at least one solution x € C (I, X).

Corollary 14.10 Let the assumptions of Corollary 14.9 be satisfied (withk, = k, =
IL,a=8,81=g =g, f(t,x) =0), then the fractional-order quadratic integral
equation:

t (I _ S)a—l

2
@ g(t, s)x(s) a’s]

x(t):[ 0

has at least one solution x € C (I, X).
In what follows, we illustrate the above-obtained result by the following example.

Example 14.1 Consider the following functional integral equation of fractional
order
2120 Ht+1)

4+ 1
0] /t 2s [l(t+s)+li|ln <1+ 5|x(s)|> ds
2(1+1xP) Jo vz =52 |8 4 5

[ S YO0 VR
X/O réyye@ -y 12 1“(1+T> ds, VA > 0.

x(t) = éﬁ + cos(x (1))

(14.17)

In this example, we have X = R, g;(¢, s) = %«/t +sand gy(t,s) =t + 4/s,and
these functions satisfy the assumption (a3). Letk; : [0, ‘/—E] — Ry andk; : [0,2] —

R, be given by k;(y) = 2y> + i and k> (y) = ll—zyz, then k; and k, satisfy assump-

tions (a4) and (as) with ||k{|| = % and ||k, || = % Define the continuous operators
H,Q1,0,:CU,R) — C(I,R) given by
5/
Hx = ¢2
2(1+1x1?)
5/ 3/
Qix =In (1 + ;x|>’ Orx =1In <l—|— 3|)x|>’

respectively. Define the functions f : [0, 1] x R — R given by f (¢,x) = %t3 +
2120 M1+1)

i cos(x) which is continuous and satisfies
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22+

If (@, x) = f@yl= Arl

] |cos(x) — cos(y)| < e x — yl. (14.18)

So, we have

lf @, x) = fE DI+t x)—fE, )P <e|x—yl+e|x —y?
<et(lx—yl+Ix—yP).

Now, by choosing the function F : [0, 00) — (—00,0) given by F (t) =1In(t),
G:R* - RbyG(t) =In(t), B :[0,00) — [0, 1) by B(¢) = e~ and the function
¢ : Rt — R givenby ¢ (t) = 12, itis easy to see that the inequality (14.18) implies
that the condition (14.15) holds.

Indeed, if | f (t, x) — f (¢, ¥)| > O, then we have

FIIf @t,x) = f 0+ o(f . x)= fE D]
=F[If @, x)— f&DI+1ft.x)— f @]
=In[|f (t,x) — f (. I+ |f @, %)= f @ ]
<In[e™* (Ix = y| + lx — y*)]
=In(]x — yl 4+ |x — y[*) + In(e™)
= F(Ix =yl +¢(x —y])) + GB (Ix — y| + ¢(x — y))).

By choosing the strictly continuous functions ¥, ¥, 93 : Rt — R* given by

Y1 (1) = g, Yo (t) = %; and 3 (1) = %;, we have

IH I =y dixlD, 1211 <v2dixl), 1Q2)1 <3 dixlD,

limi Y1 () a2 () s (O kil lkall VT X T x T
im inf =liminf ———~Y2> Y>> —(

im in <1
{—00 ¢Ma+DIB+1) t>o0 30 (5)IM(3) ¢

and this satisfies the assumption (ag).

14.5 Combination of Some Effective Modified Methods to
Solve Volterra Nonlinear Singular Mixed Integral
Equations (14.14)

A singular integral equation occurs in some concepts of engineering mechanics,
such as elasticity, plasticity and aerodynamics (see [18, 27]). The Cauchy inte-
gral equation is a kind of singular integral equation introduced in [20, 21], and
this problem is solved with the help of some numerical methods as collocation
points, Gaussian quadrature method and general quadrature collocation nodes in
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[10, 17, 36], respectively. Also, in [32, 34], integral equations with singular loga-
rithmic kernel are solved by Galerkin multi-wavelet and wavelet methods in turn. In
[30, 38], the variational iteration method and the Adomian decomposition method
are used to solve nonlinear mixed integral equations, respectively.

Now, we have nonlinear singular mixed integral equations which have more com-
plexity with respect to the above problems. So we use a combination of some effective
modified methods, in order to consider homotopy perturbation which is an important
concept of topology and perturbations theory (see [14, 19]). For increasing the abil-
ity of this method, some modifications of the homotopy perturbation method were
created by [28, 29] where the definition of homotopy perturbation is introduced
by nonlinear operators. To relax the nonlinearity we use from linear combination of
Adomian polynomials; to see some applications of Adomian decomposition method,
refer to [1, 31, 35]. In this section, we use a combination of modified homotopy per-
turbation and Adomian decomposition method, where we convert a nonlinear prob-
lem to some easier linear or nonlinear problems and also to free of nonlinearity we
use Adomian polynomials. In the following, we consider Volterra nonlinear singular
mixed integral equations (14.14) in the following form:

t t
x(r)—H(x(r))fO ki1, )01 (x(s)) ds xfo ka(t, $)Qa(x(s) ds — f (t.x (1) = 0

(14.19)
forallr € [0,1],0 <&, 8 <1 and m,n > 0, where
ms" ki (g1(1, )) ns"'ky(g2(t, 5))
ki(t,s) = , ka(t,s) = . 14.20
S = T —myime RO = pg gy (1429
The general operator form of (14.19) can be given to this form:
A(t,x(@)) — f(t,x(@) =0, Vtel0,]1]. (14.21)

Obviously, A is a nonlinear integral operator and f is a known analytic function. Sim-
ilar to [33], we divide the general operator A to N; and N, operators and f function
converts to simple functions fi(z) and f>(¢, x(¢)), thus (14.21) can be expressed by
Ni(x) — fi(t) 4+ Na(x) — fo(t, x(¢)) = 0. Therefore, we define a modified homo-
topy perturbation as follows:

H(u, p) = Ni(w) — fi(1) + p(Na(u) — fo(t, x(1))) =0, Vp €[0,1], (14.22)

and
x(1) ~ u(t) = uo(t) + pui(t) + p*ur(t) + pAus(t) + ..., (14.23)

where p is an embedding parameter, with the help of variations of p =0to p = 1;
then we obtain Ny (u) = fi(¢) to A(¢, u(t)) = f(t, x(t)). So, we can get the solution
of (14.21) for p =1 and x(¢) = lim,_,; u(z). By (14.19) and (14.22), we can give
Nj and N, operators in this form:
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Ni(u) = u(),

‘ : (14.24)
No(u) = —H(u(t))/0 ki(t,s)Q1(u(s))ds X/O ko(t, s)Q2(u(s)) ds.

By converting f(¢, x(t)) to fi(t), f>(¢, x(¢)) and replacing (14.23), (14.24) in
(14.22), we conclude that

(Z Pluit) = fi (r)) - P<f2 <r, > p"u,-a))

i=0 i=0

oo . t o0 . t o0 )
+H (Z p’ui(t)> /0 ki(t,s) Q1 (Z p’ui(S)> dS/O ka(t, s) Q2 (Z p’ui(S)) dS>

i=0 i=0 i=0
=0.

We approximate the above nonlinear functions by Adomian polynomials:

(o) + pur @) + pPuz) + -+ = f1(0)
- p(ZplF,-(t) + 2 Hw [ 0nds [ Y Qz.,-(s>ds)
i=0 i=0 i=0 i=0
=0,
(14.25)
where Adomian polynomials are given in the suitable form:
1/ a" =
F,(t) = —( t, fu; (t
= 5 (G P L' )
1o = L (L nY )
n = - u;
n! \dp" —y P p=0,
= (14.26)

n

Q1.n(5) = %(CZ?” Ql(i piui(S)))p_O
: i=0 o
Al

n

1,d =
" dp”QZ(;pui(s))>p=o'

QZ,n (S) =

Rearranging (14.25) in terms of p powers concludes that

P : (uo(t) — fi(1)),
) ' t (14.27)
Pl (u(t) — Fioq(0) _ijl(t)/ kl(LS)Ql,jfl(s)dS/ ka(t, ) Q2 j-1(8)ds)
0 0
foreach j = 1,2, 3, .... From the definition of the modified homotopy perturbation

(14.22), the coefficients of p powers are equal to zero, so we approach an iterative
algorithm to solve (14.19).
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Table 14.1 Absolute errors

t Absolute errors for (14.31)
0.0 0

0.1 2.9 x107*
0.2 1.4 x1073
0.3 3.7 x1073
0.4 7.5 x1073
0.5 1.3 x1072
0.6 2.0 x1072
0.7 3.0 x1072
0.8 43 x1072
0.9 5.9 x1072
1.0 8.0 x1072
Algorithm.

uop(t) = f1 (1),
t f (14.28)
wj(t) = Fj_1(t) + Hj_1(t) [y ki(t, ) Q1,j—1(8)ds [y ka(t, 5) Q2 j_1(s)ds)

foreach j =1, 2, 3, - - -. According to algorithm (14.28), for Eq. (14.17) in Example
(14.18), we have

[ =0, fot.x() = 387 + E cos(x(1), Vi > 0,
st S i (2 2V S
ki(t,s) = ar(hJi—s’ ky(t,s) = 41_‘(%)2/@’ .
J 5 y .
H(X(l‘))Z%, Qi(x(s)) =1In (1+@)7
0s(x(s)) =1In (1 + @) .

In the first stage of algorithm (14.28), we choose A = 1, up(¢) = f1(t) = 0 and we
compute Adomian polynomials Fy(t), Ho(t), Q1.0(s) and Q2 0(s) by (14.26) and
replace them into the second stage of algorithm (14.28); then we obtain u((¢) and
uy (1) as follows:

up(t) = f1(t) =0,
2

ur(t) = Fo(®) + Ho(0) Jg k11, $)Q1.06)ds [ ka(t, $)Q2,0()ds = 517 + sy
(14.30)

Now, we can give an approximation of the solution of Volterra nonlinear singular
mixed integral equations (14.17) by the first two terms of series (14.23),
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1

N 1, 212
xX(6) = u(t) =;ui(r» =3+ @ pa

(14.31)
By substituting (14.31) into (14.17) and comparing both sides of it, absolute errors
are shown in Table 14.1.

14.6 Application II

The utility function is a magnificence concept that measures preferences over a set of
goods and services. The theory of estimated utility and the dual utility theory are two
very standard and extensively recognized methods for the quantification of favorites
and a basis of decisions under uncertainty. These classical topics in economics are
involved in the plenitude of textbooks and monographs and characterize a benchmark
for every other quantitative decision theory.

Recently, the utility function is represented by the Volterra integral operator of
the first and second types [12]. The main problem in the utility theory is to maximize
the utility function. The unique solution of the problem guarantee implies this maxi-
mization. Our aim is to apply Theorem 14.6 in terms of fractional calculus [25]. The
uniqueness of the fixed point implies the maximum value of the utility function.

Let Cla, b] be the space of all continuous functions that endow with the maximum
norm. And let the weighted space Cy, ,[a, b] defined for the functions ¢

xP —a” &
Cp.pla. bl = {¢ - (a,b] > R: (T) b(x) € C[a,b]}, Vo € [0, 1),

— &
Coplabl H <¥> ¢>(X)HC.

We define the utility function by applying the fractional integral operator in Volterra
style:

and the norm

600

1 X[ xP — 1P -1
UGx) = Up(, p) + / ( ) O Udr.  (1432)
I'(p) J, P

where Uy > 0 is the initial utility value depending on the fractional powers O<gp <1
and p > 0, and the integral

xP — 1P

1 x -l
1&”09(;():—“60)/ <—p ) 7 10(r)dr
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is called the generalized fractional integral [16]. Clearly, U (x) € Cy, ,[a, b] when-
ever ©@ € C, ,la, b] (see Lemma 5 in [25]).

In our discussion, we suppose that © (., U) is Lipschitz with a Lipschitz constant
¢ > 0. The optimal problem is to maximize the utility function U. We consider the
problem:

m;lx Ux) :=G(B(x), G € Agg. (14.33)

Moreover, we assume that ¢ is the accumulation function of the utility function
(the future value of U) satisfying a new combination U + ¢(U). Define the optimal
problem of U + ¢(U) as follows:

max[U + ¢(U)] := F(U + ¢(U)), VF € Ap. (14.34)
X

Now, it is ready to seek our result.

Theorem 14.8 Consider the problems (14.32)—(14.34). If; for all € [0, 1) and

p >0,
b —a’\® I
8( a> () <1, Ve>0,
P I'(p+ )

then there is a unique solution maximizing the problems (14.32)—(14.34).

Proof Our aim is to show that there exists a unique solution to the Volterra integral
equation, the Eq.(14.32). This equation can be translated into integral operator:

(TU)Yx) =U),

where
(TU)(x) = [Wo(g, p) + 1P O](x).

Now, we proceed to prove that || (T U1) (x) — (TU2)(x)llc, ,la.b) > 0, Where Uy #
U,. We have

I(TUN () — (TU)(X)c, la.b)
=IO (x, U) = 1770 (x, Ua)llc, la.b)
= I"*[O(x, U) — O(x, U] llc,  la.b)

<(bp_“p)p 7o) o v -6, Ul
= P T(p+g) X Ui X U2)llc,  la,b]

b? —a’\* I'(p)
<e¢ x Uy = Uzllc, pla.b)-
2 I'(p+ )

Thus, we obtain
ITUD(X) — (TU)O e, plab) > O
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Now, we achieve the condition of Theorem 14.6.

sup  [[(TUD(x) = (TU)OO e, plan)0 =
U],UzGC@Yp[a,b]

F(  sup I(TUN(x) — (TU)Olc, pla.b]
Uy, U,eCy, pla,b]

+o( sup  [[(TUDKX) — (TU)(0 e, la.6))
Uy,U€Cy, pla,b]

= sup  FTUHOO) = (TU)Xllc,  la.b1
Ul,UzeCﬂp[a,b]

+o([(TUD(x) = (TU) OO, ap)

< sup  [F(IU — Uallc, lab) +@1UL — Uallc, la.61))
U1.U>eC, pla.b]

+G(BUIU, — Uallc, la.p1 + @IU1 — Uzllc, ta.o1)))]
<F( sup U1 — Ualic, ta) + @ sup U — Uallc,  la.61))

U],UzeCE,,_/,[a,b] U],UzECp_/,[a,b]
+G(B(  sup Ui =Usll+¢(  sup  [[U; = Ual).
U,,U€Cy, pla,b] U,,UeCy, pla,b]

Hence this implies that 7 has a unique fixed point corresponding to the solution of
the problems (14.32)—(14.34) and maximizing the utility function U.

Denoted by

<b'°—a”>" I'(p)
w .= €& b
p I'(p+ )

we have Table 14.2.

Theorem 14.8 maximizes the utility function for one item. In other words, the set
of goods contains one unit. The next result describes the set for n-items; in this case,
we shall apply Theorem 14.6. The Stone—Geary utility function can be generated by
using the integral operator /#* as follows:

1 n Xi Xp _ _L_!() p—1 |
U(X seees X ) = U, (6/')7 IO)+_ / (;) T[p_ @i(rv U)dfi,
b A e T () H a p

(14.35)

Table 14.2 The correlation between the fractional parameters and ¢ in the interval [a, b] to achieve
w <1

(&, p) € o<l [a, b]
(0.5,0.5) 0.1 0.7 [0, 1]
(0.5,0.5) 0.2 0.5 [0, 1]
(0.5, 0.5) 0.3 0.7 [0, 1]
(0.5, 1.0) 0.4 0.45 [0, 1]
(0.75, 1.5) 0.5 0.28 [0, 1]
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where U is utility, x; € [a, b] is consumption of good i, and g and p are fractional
parameters. Obviously, U(xi, ..., xx) € Cp ,la, b]" whenever & € C,, ,[a, b]".
Assume that ©;(., U) is Lipschitz with a Lipschitz constant &; > 0. The optimal
problem is to maximize the utility function U. We consider the problem

max Uxis ooy Xn) =GB, - -5 X)) YG € Agg. (14.36)

Moreover, we assume that ¢ is the accumulation function of the utility function
(the future value of U) satisfying a new combination U + ¢(U). Define the optimal
problem of U + ¢(U) as follows:

n}(aX[U(Xh-.-,xn)+</>(U(x1,-..,xn))] =FUMXL - xn) + U - X)),

(14.37)
where F € Ap. We have the following result, which can be proved by applying
Theorem 14.6 by letting

FUX o) WU, s X)) = U, - oos X)) F U (X, -2 X))

Theorem 14.9 Consider the problems (14.35)—-(14.37). If, for all € [0, 1) and
p >0,

n

b* —a’\¥ T
Hs,-( a) (0) <1, Ve >0,
il p Ilp+e)

then there is a unique solution maximizing the problems (14.32)—(14.34).

14.7 Conclusion

In this chapter, we have proposed the notation of p-set contractive mappings for two
classes of functions involving a measure of noncompactness in Banach space, and
proved Darbo-type fixed point and n-tupled fixed point results. Our work improved
and generalized the results existing in the literature. In the end, we have applied our
results to two different Volterra integral equations in Banach algebras, followed by
an example.
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Chapter 15 ®)
Approximating Fixed Points of Suzuki o
(a, B)-Nonexpansive Mappings in

Ordered Hyperbolic Metric Spaces

Juan Martinez-Moreno, Kenyi Calderén, Poom Kumam, and Edixon Rojas

Abstract In this chapter, we define the class of monotone («, 3)-nonexpansive
mappings and prove that they have an approximate fixed point sequence in partially
ordered hyperbolic metric spaces. We prove the A and strong convergence of the
CR-iteration scheme.

15.1 Introduction and Preliminaries

In 2004, Kohlenbach [1] introduced hyperbolic metric spaces. Busemann spaces [2]
are the well-known examples of hyperbolic metric spaces. Leaustean [3] showed
that CAT(0) spaces are uniformly convex hyperbolic metric spaces. Recently, Bin
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Dehaish and Khamsi [4] obtained a fixed point theorem for a monotone nonexpansive
mapping in the setting of partially ordered hyperbolic metric spaces.

On the other hand, to generalize nonexpansive mappings, Aoyama and Kohsaka
[5] introduced a new class of nonexpansive mappings, namely, a-nonexpansive map-
pings, and obtained a fixed point theorem for such mappings.

Definition 15.1 ([5]) Let K be a nonempty subset of a Banach space M. A mapping
T : K — K is said to be a-nonexpansive if, for all u,v € K and a € [0, 1),

IT W) — T < allT @) —vII* +allu — TOII* + (1 —2a) lu — v|I*. (15.1)

Theorem 15.1 ([5]) Let K be a nonempty closed and convex subset of a uniformly
convex Banach space M and T : K — K be an a-nonexpansive mapping. Then
F(T) is nonempty if and only if there exists u € K such that {T"(u)} is bounded,
where F (T) denotes the set of fixed points of the mapping T.

This class of mappings is recently extended to the class of («, 3)-nonexpansive
mappings, which is defined by Amini-Harandi et al. [6].

Definition 15.2 ([6]) Let K be a nonempty subset of a Banach space M. A mapping
T : K — K is said to be a-nonexpansive if, for all u,v € K and o, 8 € [0, 1),

IT @) = TWI? < allT@) —vI* +allu = TW)|? (15.2)
+BIT @) — ul® + Bllv = TMI* + (A = 2a = 28)[lu — v|]*.

Remark 15.1 We note that an («, (3)-nonexpansive mapping reduces to «-non-
expansive mapping when 3 = 0 and to a nonexpansive mapping when o = 3 = 0.

On the other hand, to generalize nonexpansive mappings, Suzuki [7] introduced
the following new class of mappings and obtained some existence and convergence
results:

Definition 15.3 ([7]) Let E be a Banach space and K a nonempty subset of E. A
mapping T : K — K is said to satisfy the condition (C) if, forall u,v € K,

1 N
EIIM — Tl < |lu—v| implies |[Tw) =TI = [lu—v].

Let (., d, <) be a metric space with the metric d and the partial order < . The
following two definitions are due to Kohlenbach [1].

Definition 15.4 A triplet (#, d, W) is called a hyperbolic metric space if (A, d)
is a metric space and W : .# x .# x [0, 1] — .# is a function satisfying the fol-
lowing conditions: for all u, v, z, w € .# and (3, v € [0, 1],

(H1) d(z, W(u, v, 3)) < (1 — B)d(z, u) + Bd(z, v);

H2) d(Wu,v, 3, Wu,v,7)) =18 —vld(u,v);

H3) Wu,v,B) =W, u,1—73);

H4) dW(u,z,08), Wy,w, 8) < (1 —B)d(u,v) + 8d(z, w).
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Definition 15.5 Let (.#, d, W) be a hyperbolic metric space. The set
seglu, v] :={W(u,v, ) : 3 [0, 1]}

is called the metric segment with the endpoints u, v.

Remark 15.2 If only the condition (H1) is satisfied, then (.Z, d, W) is a convex
metric space in the sense of Takahasi [8]. The conditions (H1)—(H3) are equivalent
to (#,d, W) being a space of hyperbolic type in the sense of Goebel and Kirk
[9]. The condition (H4) was considered by Itoh [10] and later used in [11] (with the
restriction on f3, i.e., 8 = 1/2) to define the class of hyperbolic metric spaces. The
condition (H3) ensures that seg[u, v] is an isometric image of the real line segment
[0, d(u, v)].

Throughout this paper, W (u, v, 3) is fixed as
W(uv v, ﬁ) = (1 - ﬁ)u D ﬁv.

We say that a subset 2 of .# is convex if, forallu,v € ', (1 — Du & fv € X
for all 8 € [0, 1]. We use (., d) for (#,d, W) when there is no ambiguity. All
normed linear spaces and Hilbert balls equipped with the hyperbolic metric are some
examples of hyperbolic metric spaces [12].

Throughout, we assume that order intervals are closed and convex subsets of a
hyperbolic metric space (.#, d). We denote these as follows:

[a,—) ={ue . #;a<u} and («,b]:={u € .#;u=<b}

for any a, b € 4 (cf. [4]).

Definition 15.6 ([13, 14]) Let (.#, d) be a hyperbolic metric space. For any r > 0
and € > 0, set

1 /1 1
O(r,e) = inf [1 — —d(zu @ Ev,a) s du,a) <r,dv,a) <r, du,v) > r&}
r
for any a € .# . We say that .# is uniformly convex if §(r, €) > 0 for any r > 0 and
e>0.

Definition 15.7 ([15]) A metric space (.#, d) is said to satisfy the property (R) if
{C,} is a decreasing sequence of nonempty bounded convex and closed subsets of
o0
M, then () C, # 2.
n=1
Uniformly convex hyperbolic spaces enjoy the property (R) [4].
Let J# be a nonempty subset of a hyperbolic metric space (.#, d) and {u,} a
bounded sequence in .. For all u € .# , define the following:
(1) The asymptotic radius of {u,} at u as r({u,}, u) := limsupd(u,, u).

n—0o0
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(2) The asymptotic radius of {u,} relative to £ as
r{{u,}, ) == inf{r(u,}, u) : u € A}.
(3) The asymptotic center of {u,} relative to JZ by
A Aun}) == {u € X 2 ru, {up}) = r({un}, 2O}

Lim [16] introduced the concept of A-convergence in metric spaces. Kirk and
Panyanak [17] used Lim’s concept to CAT(0) spaces and showed that many Banach
spaces results involving weak convergence have precise analogs in this setting.

Definition 15.8 ([17]) A bounded sequence {u,} in .# is said to A-converge to a
pointu € . if u is the unique asymptotic center of every subsequence {u,, } of {u,}.

Definition 15.9 ([4]) Let ¥ be a nonempty subset of a hyperbolic metric space
(A ,d). A function 7 : . # — [0, 00) is called a type function if there exists a
bounded sequence {u,} in .# such that

7(u) = limsup d(u,, u)
n—o00

forany u € %

Remark 15.3 We note that every bounded sequence generates an unique type func-
tion.

Now, we rephrase the concept of A-convergence in hyperbolic metric spaces.

Definition 15.10 A bounded sequence {u,} in . is said to A-convergent to a point
z € A if 7 is the unique point and a type function generated by every subsequence
{uy,, } of {u,} attains its infimum at z.

Definition 15.11 ([18]) Let # be a subset of a metric space (.#, d). A mapping
T : % — ¢ is said to satisfy the condition (I) if there exists a nondecreasing
function f : [0, c0) — [0, 0o) satisfying f(0) = 0and f(r) > Oforall r € (0, 0co0)
such that d(u, T (1)) > f(D(u, F(T))) for all u € %, where D(u, F(T)) denotes
the distance from u to F(T).

15.2 Existence Results on Picard Iterations

First, we recall the following definitions and preliminary results:

Definition 15.12 ([4]) Let (#, d, <) be a partially ordered metric space and T :
M — A amapping. The mapping T is said to be monotone if, for all u, v € 4,

u < vimplies T (u) < T (v).
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Definition 15.13 ([4]) Let (4, d, <) be a partially ordered metric space and T :
M — A be a mapping. The mapping 7 is said to be monotone nonexpansive if T
is monotone and

d(T ), T(v)) <du,v) (15.3)

for all u, v € .# such that u and v are comparable.

We extend Definition 15.2 from Banach spaces to hyperbolic metric spaces as
follows:

Definition 15.14 Let (%, d, <) be a partially ordered metric space and T : .# —
. be a mapping. The mapping T is said to be monotone (o, 3)-nonexpansive if T
is monotone and there exist «, 3 € [0, 1) such that

d(T (), T()? < ad(T (), v)> + ad(u, T(v))? (15.4)
+Bd(T (), u)?> + Bd(v, T)* + (1 — 2a — 23)d (u, v)?

for all u, v € .4 such that u and v are comparable.

Moreover, we can introduce a new class by combining Definitions 15.4 and 15.2
as follows:

Definition 15.15 Let (.#, d, <) be a partially ordered metric space and T : .# —
A be amapping. The mapping 7 is said to be monotone Suzuki (o, 3)-nonexpansive
if T is monotone and there exist «, 3 € [0, 1) such that, if

%d(u, T () <d(u,v),

then the condition (15.4) holds for all u, v € .# such that u and v are comparable.

If 3 =0, then (a, B)-nonexpansive definition reduces to the concept of -
nonexpansive defined in [19, 20]. A (0, 0)-nonexpansive mapping is a monotone
nonexpansive. The Suzuki case is introduced in [21]. An a-nonexpansive mapping
T with a fixed point w € JZ is quasi-nonexpansive, that is, d(7T (u), w) < d(u, w)
forallu € 2 andw € F(T) such that u and w are comparable. It may be completed
following the proof of Proposition 2 [7].

We remark that the above proposition is not valid in general for 3 # 0. An example
is presented in [6].

Lemma 15.1 ([4]) Let (4, d) be a uniformly convex hyperbolic metric space and
J be a nonempty closed and convex subset of M. Let 7 : X — [0, 00) be a type
Sfunction. Then T is continuous. Moreover, there exists a unique minimumpointz €
such that

7(z) = inf{r(u) : u € H'}.
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Now, we present some existence results on a partially ordered hyperbolic metric
space. For more details on ordered metric spaces and applications, one may refer to
[22, 23].

Although a-nonexpansive mappings are defined for any real number o < 1, as
Ariza-Ruiz et al. [24] pointed out that this concept is trivial for « < 0. From now
on, we assume that o, 5 € [0, 1).

Now, we present our first existence result which is a generalization of [4, Theorem
3.1] and [19, Theorem 3.5].

Theorem 15.2 Let (#,d, <) be a uniformly convex partially ordered hyperbolic
metric space and & be a nonempty bounded closed and convex subset of M not
reduced to one point. Let T : & — & be a monotone Suzuki (c, 3)-nonexpansive
mapping. Assume that there exists u € & such that u and T (u) are comparable.
Then T has a fixed point.

Proof Without loss of generality, we may assume that # < T (u). Since T is mono-
tone, we get T (1) < T2(u). Continuing in this way, we get

Tw) X T*w) < T @) < THu) <.

Define u, = T"(u) for all n € N. Since .# is uniformly convex, it satisfies the
property (R) and, by the construction of {u,}, we have

o0 o]

%oozﬂ[una_))ﬂji/:m{uejaunfu}#@

n=1 n=I1

Letu € #,,.Thenu, < u.Since T is monotone, we have u,, < T (u,) < T (u) forall
n € N. This implies that T (J75,) C JFo.Let T : 5, — [0, 00) be the type function
generated by {u,}, that is,

7(u) = limsupd(u,, u).
n—o0

From Lemma 15.1, it follows that there exists a unique element w € JZ,, such that
T(w) =inf{r(u) : u € #,}.
Since w € JHy, uy, < w for all n € N. If u,, = u, 11, then d(u,, u,1) < d(u,, w)

for all n € N. Again, if u, < u,41, thenu,, < u,; < w. Thus, in the both cases, we
have d(u,, u,+1) < d(u,,w) for all n € N and so

%d(unv T(uy,)) <d@un,w).

In the generalized case, since Definition 15.15,
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d(T (un), TW))? < ad(T (un), w)? + ad(un, T(W))? (15.5)
+Bd(T (up), un)* + Bdw, TW)* + (1 — 2a — 28)d (un, w)>.

This equation is also valid in the not generalized case by the definition of the («, 3)-
nonexpansive mapping.

Let Tw < w. Since d(u,, up+1) < d(u,,w)and dw, T(w)) <d(u,, T (w)), we
have

d(Ups1, TW)? = d(T (u,), T (w))*
< ad(pi1, w)* + ad(u,, TW))* + (1 — 2a)d (u,, w)*.

Taking n — oo, we have

limsupd(uny1, TW))? < alimsupd (41, w)* + alimsupd(u,, T (w))?
n—o00 n—o0 n—oo

+(1 = 2a) lim sup d (u,,, w)*
n—o0
or

lim supd(u,, T (w))? < limsupd (u,, w)>.
n—oo n— 00

Thus we have
limsupd(u,, T(w)) <limsupd(u,, w).
n—0oQ n— o0

Letw < Tw. Since d(u,, up+1) < d(u,,w)and dw, T(w)) <d(u,, T (w)), we
have

dpi1, TW)? = d(T (), TW))? < ad(ttyr1, w)* + (@ + B)d(uy, T (W))?
+(1 =20 — B)d (i, w)*.

Taking n — oo, we have

limsupd(uys1, TW))? < alimsupd (41, w)*> + (o + B) limsupd(u,, T (w))?

n—00 n—o0o n—oo
+(1 = 2a — B) limsupd (u,, w)*
n—oo
or

lim supd(u,, T(w))? < limsupd (u,, w)>.
n—oo n— 00

Thus we have
limsupd(u,, T(w)) <limsupd(u,, w).

n—oo n—oo



372 J. Martinez-Moreno et al.

Since 7(w) = inf{7(u); u € #5}, the uniqueness of minimum point, it follows that
T (w) = w, thatis, w is a fixed point of 7. This completes the proof.

The following result is slightly different than Theorem 15.2. In this result instead
of taking the domain of 7 a bounded set, the sequence of iterates at a point is
considered as bounded and the proof is similar to Theorem 3.7 in [19].

Theorem 15.3 Let (A, d, <) be a complete uniformly convex partially ordered
hyperbolic metric space and J be a nonempty bounded convex and closed subset
of M not reduced to one point. Let T : & — & be a monotone Suzuki (e, 3)-
nonexpansive mapping. Assume that there exists u € & such that u and T (u) are
comparable. Then F(T) is nonempty if and only if {T" (u)} is a bounded sequence
and there exists a pointv € J& such that every point of sequence {u, } are comparable
with v.

15.3 Existence Results on the CR-Iteration

In 2012, Chugh et al. [25] introduced the following iterative process:

u € X,

v = T (un) & (1 — y)un,

Wy = BT (va) @ (1 — BT (un),
Upt1 = oy T (W) & (1 — a,)wy,

(15.6)

foreachn € N, where {a}, {3,} and {~, } are the real sequences in [0, 1]. Itis called the
CR-iteration. If we take o, = 0, the CR-iterative process reduces to the S-iteration
[26].

Lemma 15.2 Let (A, d, <) be a partially ordered hyperbolic metric space and %
be a nonempty closed and convex subset of M . Let T : & — X be a monotone
mapping. Let uy € & such that uy < T (uy) (or T(uy) < uy). Then the sequence
{u,} defined by (15.6), we have the following:

(1) up < T(up) < tpgr (o uppy < T (uy) < uy,) for eachn € N.

(2) u, < p (or p <X uy,) provided {u,} A-converges to a point p € & for each
n e N.

Proof (1) By induction, we prove our first result. By the assumption, we have u; <
T (u1) and, by the convexity of the ordered interval [u;, T (u;)] and (15.6), we have

up vy < T(uy). (15.7)

Since T is monotone, we have T (u;) < T(v;) and, by the convexity of ordered
interval [T (u1), T (vi)] and (15.6), we have



15 Approximating Fixed Points of Suzuki (e, 3)-Nonexpansive Mappings ... 373
T(up) 2w 2T). (15.8)
Combining (15.7) and (15.8), we get
up <vy X T(uy) 2wy

Since T is monotone, we have w; < T'(v{) < T (w;) and, by the convexity of ordered
interval [wy, T (wy)] and (15.6), we have

wy X uy X T(wy). (15.9)
Combining (15.7), (15.8) and (15.9), we get
up vy 2T (up) 2wy 2up <T(wy).
Thus the result is true for n = 1. Similarly, for n = k — 1, we have
up—1 = T(ug—1) = ug
and so, by induction, for each n € N,
up 2V 2T (n) 2wy 2ty T W), wy T (vy) 2T(wy).  (15.10)

(2) Suppose tht p is a A-limit of {u,}. Here the sequence {u,} is monotone
increasing and the order interval [u,,, —) is closed and convex. Now, we claim that
p € lu,,, —) for a fixed m € N. If p ¢ [u,,, =), then the type function generated
by the subsequence {u,} of {u,} defined by leaving first m — 1 terms of sequence
{u,} will not attain an infimum at p, which is a contradiction to the assumption that
p is a A-limit of the sequence {u,}. This completes the proof.

Now, we give a main result in this section

Theorem 15.4 Let (#,d, <) be a uniformly convex partially ordered hyperbolic
metric space and J¢ be a nonempty convex and closed subset of M. Let T : X —
K be a monotone Suzuki («, )-nonexpansive mapping. Assume that there exists
uy € A such that uy and T (uy) are comparable. Let a sequence {u,} generated by
(15.6) is bounded and suppose that there exists a point v € & such that every point
of the sequence {u,} is comparable with v and

lim inf d(T (uy), u,) = O.
n—oo

Then T has a fixed point.

Proof Supposethat {u, }isabounded sequence and lim inf d(T (u,,), u,) = 0. Then
n—0oQ
there exist a subsequence {u,;} of {u,} such that
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lim d(T(unj),unj) =0. (15.11)

Since u,, is bounded, there existu’ € # andU < Rsuch thatd(unj, u") < U.There-
fore, we have
d(T (up,), u') < d(T (un,), un;) +d(u,,, u).

Thus {T(un/.)} is bounded. By Lemma 15.2, we have u; < Up; X Up;,- Define
Hi={ueX u, 2uj
for all j € N. Clearly, for each j € N, %] is a closed and convex. Since v € %, it
follows that % is nonempty. Let
o0
Ji/oozﬂ{ueﬂf/:u,,jju}yé@
j=1

be a closed convex subset of ¢, Let u € #,,. Then Un, 2 u for each j € N. Since
T is monotone, it follows that, for each j € N,

un, X T(up,) 2 T(u).

This implies that T (#5) C Hs. Let 7 : #5 — [0, 00) be the type function gen-
erated by {7 (u,,)}, that is,

7(u) = limsup d (T (u,;), u).

j—o0
From Lemma 15.1, it follows that there exists a unique element w € JZ, such that
T(w) = inf{T(u); u € #s}.
By the definition of the type function, we have

7(T (W) = limsupd(T (u,), T (W)).

By the triangle inequality and (15.11), we have

lim sup d(T (u,;), u) < limsupd(T (u,;), un;) + limsupd(u,,, u)
j—oo j—o0 j—oo
= limsupd(up;, u).

j—o0

Similarly, we have
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lim supd(uy,, u) < limsupd (T (uy;), u).

j—oo j—oo
Therefore, we have

limsupd(uy,, u) = limsup d(T (u,,), u). (15.

j—oo j—oo

375

12)

Since w € #4,, we have Uy, W for each j € N. It follows from the monotonicity

of T and Lemma 15.2 that Uy, < T(unj) =< w for each j € N. Then we have
d(un;, T(un;)) < d(u;, w)
for all j € N. By (15.3), for each j € N, we have

d(T (un,), TW))? < ad(T (u)), w)* + ad(uy,, T (W)
+Bd(T (un,)), un,)* + Bdw, T(W))*> (15
+(1 = 2a = 2B)d (uy,, w)*.

13)

Letting a; := d(T (uy;), T(W)), bj := d(uy;, T (un,)) and ¢; := d(uy,,, w) for each

J € N. Then, for all j € N, we have
d(un, T = (a; +b;)" = a} + b} +2a;b;
and
dw, Tw))* = (aj +b; —i—cj)z = a? —i—b? + c? +2ajb; +2ajc; + 2bjc;.
Thus, by the triangle inequality, it follows that (15.13) reduces to

(1 —a—pB)a; < ad(T(uy), w)* + (a+28)b; + (1 = 20 — f)c;
+2(a + ﬁ)ajbj + 26ajcj =+ ZﬂbjCj.

Using (15.11), we get

(1 —a—B)limsupa; < alimsupd(T (uy,), w)* + (1 — 2a — §) limsup c;

j—oo j—o0 j—oo
+2@3limsupajc;.
j—o0

By (15.12), we have

limsup d(T (uy,), T(w))* < limsupd(T (uy,), w)*.

j—oo j—oo
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This implies that

lim supd(T (uy;), T(w)) < limsupd(T (u,;), w).

j—oo Jj—oo

Therefore, we have 7(T (w)) < 7(w) and, further, by the uniqueness of the minimum
point, T (w) = w. This completes the proof.

15.4 Convergence Results

In this section, we discuss some convergence results for CR-iteration process in
partially ordered hyperbolic metric spaces.

Lemma 15.3 ([27]) Let (A , d) be a uniformly convex hyperbolic metric space with
monotone modulus of the uniform convexity 6. Let w € . and {«,} be a sequence
such that 0 < a < oy, < b < 1 foreach j € N. If {u,} and {v,} are the sequence in
M such that

limsupd(u,,w) <r, limsupd(v,,w) <r
n—oo n—oo

and
lim d(Oann D (1 - an)unv W) =r
n—00

for some r > 0, then we have lim d(v,, u,) = 0.
n—0oQ

Theorem 15.5 Let (A, d, <) be a uniformly convex partially ordered hyperbolic
metric space and ¥~ a nonempty convex and closed subset of # . Let T : X — H
be a monotone Suzuki (o, 3)-nonexpansive mapping. Assume that there exists u; €
J such that uy and T (u,) are comparable. Suppose that F(T) is nonempty and
uy and w are comparable for everyw € F(T). Let {u,} be the sequence defined by
(15.6). Then following assertions hold:

(1) the sequence {u,} is bounded.
(2) max{d(uy4+1,w),dw,, w),dw,, w)} < du,,w) for eachn € N.
3) lim d(u,,w) and lim D(u,, F(T)) exist.

n—0o0 n—0oQ

@) lim d(T (uy,), u,) =0.

Proof Without loss of generality, we may assume that #; < w. Then, by the mono-
tonicityof T, T (u;) < T(w) = w.By(15.10), wehavev| < T(u;) < T(w) = w.By
the monotonicity of 7 and (15.10), w; < T'(v;) < T'(w) = w. Since T is monotone,
we have T'(w;) < T (w) = w. Then, again from (15.10), we have

ur < T(wy) 2 w.
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Continuing in this way, we get
U, <w

for each n € N. By (15.10), we have d(T (u,), u,) < d(u,,w) and, by Definition
15.15, we have

d(T (un), w)* < ad(T (uy), w)* + ad (uy, w) + Bd(T (u,), u,)*
+(1 = 2a — 28)d (un, w)?
< ad(T (uy), w)* + (1 — o — B)d(u,, w)*.

So, d(T (u,), w) < d(u,,w). Similarly, we have
d(T(Vn), W) S d(vl‘la W)a d(T(Wn)’ W) S d(wnv W)'
By (15.6), we have

dWp, w) = d(yT (u) & (1 — yp)un, w)
< Yd(T (), w) + (1 — vu)d (uy, w)
< Yud(Un, w) + (1 = y)d (un, w)
=du,,w).

Further, by (15.6), we have

d(Wru W) = d(ﬁnT(Vn) @ (1 - ﬁn)T(un)a W)
=< ﬁnd(T(Vn)s W) + (] - ﬁn)d(T(un)s W)

< Bud(n, w) + (1 = Bo)d (uy, w) (15.14)
< Bud(uy, w) + (1 — B,)d(u,, w)
=du,,w).

Finally, by (15.6), we have

d(upr1,w) = d(,T(w,) @ (1 — a)w,, w)
< aud(T (wn), w) + (1 — a)d(Wy, w)
< Bud Wy, w) + (1 = B)d (un, w)
< Bud (@, w) + (1 = B)d (un, w)
=d(u,,w).

Thus the sequence {d (u,,, w)} is bounded and monotonic decreasing so lim d(u,,, w)
exists. For each w € F(T), since we have d(u,+1, w) < d(u,,w) for each n € N,
taking the infimum over all w € F(T), we get D(u,+1, F(T)) < D(u,, F(T)) for
all n € N. So, the sequence {D(u,, F(T))} is bounded and monotone decreasing.
Therefore, it follows that lim D(u,, F(T)) exists. Suppose that

n—oo
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lim d(u,,w) =r. (15.15)
n—oo

By (15.15), we have

lim sup d(T (u,), w), limsupd(T (v,), w), limsupd (T (w,), w) <r. (15.16)

n—oo n—oo n—oo

By (15.14) and (15.15), we have

lim supd (v, w), lim supd (w,, w) <r. (15.17)
n—0oQ n—oo
By (15.6), we have
r=lim d(u,y1,w) = lim d((1 — a,))w, ® a,, T (wy,), w). (15.18)
n—o00 n—oo

In view of (15.16), (15.18) and Lemma 15.3, we get

lim d(wy,, T (w,)) = 0. (15.19)
n—o0o

Again, by (15.6), we have

duns1, T(wyn)) = d((1 — a)wy © T (wy), T (wy))
< (A = andw,, T(wy)).

Letting n — oo and using (15.19), we get

lim d(upq1, T(wy)) = 0. (15.20)

Now, observe that

dWps1, w) < dpgr, Twy)) +d(T (wy), w)
S d(un+1’ T(Wn)) + d(Wn, W)v

which yields that
r <liminf d(w,, w). (15.21)

n—oo

From (15.17) and (15.21), we get

r=lim d(w,, w) = liminf d((1 = B)T (a) @ SuT (), w). (15.22)

Finally, from (15.15) and Lemma 15.3, we conclude that lim d(T (u,), T (v,,)) = 0.
Again, by (15.6), we have



15 Approximating Fixed Points of Suzuki («, 3)-Nonexpansive Mappings ... 379

dWwn, T(va)) = d((1 = B)T (n) ® BuT V), T (va))
= (1= B)d(T (uy), T (vy)).

Letting n — oo and using (15.19), we get

lim d(wp, T (vy)) = 0. (15.23)

Now, observe that

dWwp, w) <dw,, T(vy)) +d(T (v), w)
<dWw,, T(vy)) +dv,, w),

which yields that
r <liminf d(v,, w). (15.24)

n—oo

From (15.17) and (15.21), we get

r = lim d(v,,w) = liminf d((1 — v,)u, & ¥, T (u,), w). (15.25)
n—00o n— oo
Finally, from (15.17), (15.22) and Lemma (15.3), we conclude that
lim d(T (u,), u,) = 0. This completes the proof.
n—0o0

Now, we present a result for the A-convergence.

Theorem 15.6 Let (., d, <) be a uniformly convex partially ordered hyperbolic
metric space. Let ', T and {u, } be the same as in Theorem 15.5. If F (T is nonempty
and totally ordered, then {u,} A-converges to a fixed point of T.

Proof By Theorem 15.5, {u,}is abounded sequence. Therefore, there exists a subse-
quence {u,,} of {u,} such that {u,;} A-converges to some p € %". By using Lemma
15.2, we have

up Juy; X p o(or p <uy Xup)

for each j € N.

Now, we show that every A-convergent subsequence of {u, } has a unique A-limit
in F(T'). Arguing by contradiction, suppose that {u, } has two subsequence {u,,} and
{un, } A-converging to p and g, respectively. By Theorem 15.5, {u,, } is bounded and
d(T (uy;), un,) = 0. We claim that p € F(T). By following the proof of Theorem
15.4, we have T (p) = p. By the similar argument, 7'(g) = g. Since nli)ngo d(u,,w)

exists for all w € F(T), by the definition of the A-convergence and Lemma 15.1,
we have
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lim supd(u,, p) = limsupd(u,;, p) < limsupd(u,;, q)

n— 00 j—oo Jj—oo

= limsupd(u,, q) = limsupd(u,,, q)

n—00 k—o00

< limsupd(u,,, p)

k— 00

= limsupd(u,, p),
n—00
which is a contradiction, unless p = g. This completes the proof.

Next we present a strong convergence theorem.

Theorem 15.7 Let (A, d, <) be a uniformly convex partially ordered hyperbolic
metric space and let ', T and {u,} be the same as in Theorem 15.5. Suppose that
F(T) is nonempty and totally ordered. Then the sequence {u,} converges strongly
to a fixed point of T if and only if

liminf D(u,, F(T)) = 0.
n—oo

Proof Suppose thatlim inf D(u,, F(T))=0.From Theorem 15.5, lim D(u,, F(T))
n—oo n—0oQ
exists and so
lim D(u,, F(T)) =0. (15.26)
n—00

First, we show that set F(T) is closed. For this, let {z,} be a sequence in F(T)
converging strongly to a point z € . By Definition 15.15, we have

limsupd(T (z,), T(2))* < alimsupd(T (z,), z)> + alimsupd(z,, T (z))*

n—oo n—oo n—oo
+B1im supd(T (z,). 24)* + Slimsupd(z, T (2))>
n—oo n— 00
+(1 = 2a —28) limsupd (z,, 2)°.
n—oo

Since d(z, T (z)) < d(z, z4) + d(zn, T (z)), it follows that

lim sup d(z,,, T(z)) = limsupd (T (z,), T (z))

n—o0o n—oo
2
< lim sup (1 + %d(va T(Z))>d(2n’ 2)

=0.

Thus {z,, } converges strongly to 7' (z). This implies that 7'(z) = z. Therefore, F(T)
is closed. In view of (15.26), let {u,, } be a subsequence of sequence {u,} such that

1
d(“n/v Zj) =< 2_]
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for each j > 1, where {w;} is a sequence in F(T'). By Theorem 15.5, we have
1
dun,,,»z;) <dun;,z;) < Tk (15.27)
Now, by the triangle inequality and (15.27), we have

d(zj+1,2j) < d(Zjv1, Ung,) +dUn,,,,25)

- 1 1
ST
1
< — .
271

A standard argument shows that {z;} is a Cauchy sequence. Since F(T') is closed, it
follows that {z;} converges to some point z € F(T). Now, we have

d(up;,z) < d(un;, z;) +d(z), 2).

Letting j — oo implies that {u,,} converges strongly to z. By Lemma 15.5,

lim d(u,, z) exists. Hence {u,} converges strongly to z.
n—00

The converse part is obvious. This completes the proof.

Theorem 15.8 Let (A, d, <) be a uniformly convex partially ordered hyperbolic
metric space and &, T and {u,} be same as in Theorem 15.5. Let T satisfy the
condition (I) and F(T) be nonempty. Then {u,} converges strongly to a fixed point
of T.

Proof From Theorem 15.5, it follows that

liminf d(T (u,), u,) = 0. (15.28)
n—00

Since T satisfies the condition (), we have
d(T (un), un) = f(D(uy, F(T))).

From (15.28), we get
liminf f(D(u,, F(T))) = 0.

Since f : [0, c0) — R is a nondecreasing function with f(0) = O and f(r) > O for
all r € (0, 00), we have
liminf D(u,, F(T)) = 0.
n—oo

Therefore, all the assumptions of Theorem 15.7 are satisfied and so {u,} converges
strongly to a fixed point of 7. This completes the proof.
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15.5 Conclusions

Iterative methods of finding fixed points of nonexpansive mappings are a very chal-
lenging problem. There are several methods that have been studied to approximate
them. In this paper, we have proposed a general definition of monotone Suzuki (v, 3)-
nonexpansive mapping and we have proposed the CR-iteration method in partially
ordered hyperbolic metric space for finding a fixed point of the proposed mapping.
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Chapter 16 ®)
Generalized J S-Contractions in o
b-Metric Spaces with Application to

Urysohn Integral Equations

Hemant Kumar Nashine and Zoran Kadelburg

Abstract We introduce the notion of «-G-J S-type contractions for two pairs of self-
mappings in b-metric spaces. Coincidence points, common fixed points, their unique-
ness, as well as periodic points are studied for these mappings under o-compatible and
relatively partially o-weakly increasing conditions on a-complete b-metric spaces.
The results are verified through an example in order to check their effectiveness and
applicability. We apply the results to obtain the existence of solutions for a system
of Urysohn integral equations.

Keywords b-metric space + F-contraction * «-admissible mapping - Common
fixed point + Urysohn integral equation

16.1 Introduction

For recent development of metric fixed point theory and its contributions in various
disciplines from application point of view, we refer to [1] and the references therein.

The notion of b-metric space as an extension of metric space was introduced
by Bakhtin in [3] and then extensively used by Czerwik in [5, 6]. Since then, a
lot of papers on the fixed point theory for a range of classes of single-valued and
multi-valued operators in such spaces have become available.

In 2012, Wardowski [16] and Samet et al. [14] introduced two different notions,
named as F-contraction and «-admissible mappings, respectively, and investigated
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the existence of fixed points for such mappings, thus generalizing Banach Contrac-
tion Principle (BCP). Thereafter a lot of work has been done in fixed point theory
using these concepts and their modified forms. Subsequently, Hussain et al. [7] intro-
duced the concept of a-completeness in metric spaces and, further, Yamaod et al.
[17] extended this notion to b-metric spaces. They introduced also notions of «-
compatible, a-weakly increasing and relatively partially «-weakly increasing map-
pings and derived fixed point results using these notions for four maps in b-metric
spaces. In 2014, Jleli and Samet [12] introduced a new type of control functions and
generalized the BCP.

In the present chapter, we give an improved version of the common fixed point
result given in [17] by considering a new contraction condition for two pairs of
mappings, named as «-G-J S-contraction in «-complete b-metric spaces. We also
present some criteria for the uniqueness of a common fixed point and discuss periodic
points. In order to illustrate the results, we present an example. The considered ¢-G-
J S-contraction condition not only generalizes the known ones but also includes the
contraction conditions considered in [12, 13, 17] and many others as special cases.

Finally, we utilize our results to prove the existence and uniqueness of the follow-
ing system of Urysohn integral equations:

T
u(t) = h;(t) +/ Yt s,u(s))ds, Ve e[0,T], je({l,2,3,4},
0

where T >0, t € [0,T], h;: [0,T] - R and 7;: [0,T]> xR — R (j € {1, 2,
3, 4}) are given mappings.

16.2 Preliminaries

Throughout this chapter, we denote by N, R, R/ and R the sets of positive integers,
positive real numbers, nonnegative real numbers, and real numbers, respectively.

Recall (see, e.g., [5]) that, for a nonempty set 2~ and a given real number s > 1,
afunctiond,: & x 2 — Ra’ satisfying the following conditions:

(B1) dp(x,y) =0if and only if x = y;

(B2) dp(x,y) =d(y, x);

(B3) dp(x,y) <sldy(x,2) +dp(z, y)]forallx,y,z € Z
is called a b -metric on 2 . The pair (2, dp) is called a b -metric space with
coefficient s > 1.

Any metric space is a b-metric space with s = 1, but the class of b-metric spaces
is effectively larger than that of metric spaces. A typical example is the following.

Example 16.1 Let (27, d) be a metric space and the mapping dj,: 2~ x 2" — R*
be defined by
dp(x,y) =[d(x, )", Vx,ye X,
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where p > 1isafixed real number. Then (2", d,,) is a b-metric space with coefficient
s = 2P~! (notbeing ametric spaceif p > 1). The triangular inequality (B;) can easily
be checked using the convexity of function Rj > ¢ > 7.

The concepts of b-convergent sequence, b-Cauchy sequence, b-continuity and b-
completeness in b-metric spaces are introduced in the same way as in metric spaces
(see, e.g., [4]). In particular, a function f: 2~ — % between two b-metric spaces is
called b-continuous at a point x € 2 if it is b-sequentially continuous at x, that is,
if { fx,} is b-convergent to fx in % for each sequence {x,} which is b-convergent
toxin 2.

Each b-convergent sequence in a b-metric space has a unique limit and it is also a
b-Cauchy sequence. However, a b-metric itself might not be continuous. Hence, the
following lemma about b-convergent sequences is required in the proof of our main
results.

Lemma 16.1 (see [2]) Let (27, d) be a b-metric space with coefficient s > 1 and
let {x,} and {y,} be b-convergent to points x,y € X, respectively. Then

1
—dp(x, y) < liminf dj(x,, yo) < limsupdy(x,, ya) < s°dp(x, y).
s n—00 n—00

If x =y, then lim,_, o, dp(x,,, ¥,) = 0. Moreover, for each z € Z°, we have

1
—dp(x, z) <liminf dy(x,, z) <limsupd,(x,, z) < sdp(x, z).
s =00 n—00

For a self-mapping _# on a nonempty set 2 and a point x € £, we use the
following notation: # '(x) ={u € 2" : fu=x}.

Definition 16.1 Let 2~ be a nonempty set, a: Z x 2 — [0, +00) and
I, T X — Z befourmappingssuchthat #(£) € J(Z)and # (X' C
T (Z'). The ordered pair (_7, %) is said to be

(1) a-weakly increasing with respect to 7 if, for all x € 2", we have
a( fx, Zy)>1forall ye ﬂ‘l(jx) and a(H'x, fy)=1forall ye T-!
(A x).

(2) partially a-weakly increasing with respect to 7 if a(_Z x, y) > 1 for all
ye TN 7x).

In particular,

(3)If 7 =theidentity mapping on 2", then the pair (_#, %) is called (partially)
o-weakly increasing [17].

4) If & = ¢#, then we say that ¢ is (partially) a-weakly increasing with
respect to 7. If, moreover, .7 = the identity mapping on 2, then we say that _#
is (partially) a-weakly increasing.

Definition 16.2 ([17]) Let (2", d,) be a b-metric space, &: 2 x Z — [0, +00)
and 7, % : X — Z be three mappings. The pair (¢, %) is said to be o -
compatible if
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nli)ngodb(/%xn’ f%/jxn) =0
whenever {x,} is a sequence in 2 such that «(x,, x,+1) > 1 foralln € N and

lim Zx, = lim Jx, =t

n—oo n—o0
for somet € 2.

Definition 16.3 ([17]) Let (27, d),) be a b-metric space, «: 2" x Z — [0, +00)
and 7 : 2 — Z be two mappings. We say that ¢ is a-continuous at a point
x € Z if, for each sequence {x, } in 2" withx,, — x asn — ocoand a(x,, x,4+1) > 1

for all n € N, we have
lim Zx,= _fx.

The following notion is a modified version (in b-metric spaces) of the one from
the paper [8].

Definition 16.4 Let (27, d;) be a b-metric space, and «: 2" x Z" — [0, +00). A
mapping 7 : & — X issaidtobe « -dominatingon Z" if a(x, # x) > 1foreach
xin 2.

Following Jleli and Samet [12], denote by & the family of all functions
6: (0, 00) — [1, oo) with the following properties:
(61) 0 is strictly increasing;

(62) for all sequences {a,} < (0, 00),

Iim o, =0 < lim 6(a,) = 1;
n—oo n—oo

(03) there exist 0 < r < 1 and £ € (0, +00] such that

0@ —1
lim =

t—0t tr

L.

Note that the ® is arich class of functions. Some examples of functions belonging
to @ are 6, (1) = V', 65 (t) = 2 — 2 arctan () for 0 < a < 1, etc.

Hussain and Salimi [9] introduced «-G F'-contractions with respect to a general
family of functions G. We will use the following slightly modified family A of all
functions G: (R)* — R satisfying

(G1) there exists T > 0 such that G(t1, 1, 13,14) =t for all 11,1, 13,14 € Rg
with t1 61314 = 0;

(G2) there exists T > 0 such that lim, ..o G(#{', t7, 15, t;) = T for all sequences
{t"'}1en of nonnegative real numbers (i € {1, 2, 3, 4}) such that lim,_, o /' = 0 for
some i € {1,2,3,4}.
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Example 16.2 The following are some examples of functions belonging to Ag:

(1) Gy(a, b, c,d) = Lmin{a, b, ¢, d} + t, where L € Rg and T > 0.
(2) Ga(a, b, c,d) = retmnta-b.ed) where L € R} and T > 0.
(3) Gs(a,b,c,d) = Lin(min{a, b, c,d} + 1) 4+ t, where L € Rg and T > 0.

d
@) Gya,b,c.d) =1 — LT—er, where L € R and 7 > 0.

Throughout this chapter, the set of all fixed points (coincidence points, common
fixed points) of a self-mapping _# (and self-mapping .%") on a nonempty set 2" is
denoted by Fix(_#)(C(#,),CF( Z,)),ie.,

Fix(f)={xeZ: Fx=x},
C(JF, )y =kxeZ: Ix=Hx}
CF(Z, %) ={xeX x=_Fx=IHx}

16.3 Main Results

Throughout this chapter, unless otherwise stated, for all elements x and y in a b-metric
space (', dp) with coefficient s > 1 and four mappings ¢, % ,.”, 7 : X — X,
we denote

Ap(x, y) = max | dp(S%, Ty). do( %, F2),dp( Ty, H y),

dp(Lx, Hy) +dp(Ty, FX) }
2s '

Combining approaches from the papers [9, 12], adapted to the ambient of b-metric
spaces, we introduce the following concept.

Definition 16.5 Let (2, d;,) be a b-metric space with coefficients > 1, ¢,.%7, .7,
T: X' > Z and o Z xZ —[0,00) be given mappings. Then
(7, x, S, T)is called an a-G-J S-contraction if the following condition holds:
there exist 0 € ® and G € Ag, such that, forall x, y € 2,

((Fx, Ty)=lora(Tx,Ly) = D) withdy( Zx, Xy) >0 =

Q(Sdb(jx, Ji’y)) < Q(Ab(x, y))G(db(Yx,/x),db(ﬂy,%y),db(f’x,,)i’y),db(ﬂy,/x)).
(16.1)

We denote by =,(Z, a, ®, Ag) the collection of all @-G-J S-contractions on a
b-metric space (2, dp) with coefficient s > 1.
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16.3.1 Discussion on Coincidence Point Results

Theorem 16.1 Let (27, d,) be an a-complete b-metric space with coefficient s > 1,
where a: X' x X' — [0,400), and let J, % ,, T : X — X be given map-
pings. Suppose that the following conditions hold:

(HD) (7,7, ,T) e (X, a,0, Ag);

(H2) Z(2) S T(X)and H (X)) C S (X);

(H3) the pairs (7, X) and (X', ¢ ) are partially a-weakly increasing with
respect to T and .¥, respectively;

(H4) «a is a transitive mapping, that is, forall x, y,z € 2,

ax,y) > 1 and a(y,z) > 1= a(x,2) > 1;
(H5) 7,2, and T are a-continuous,
(H6) the pairs ( 7 ,.”) and (X', T) are a-compatible.
Then there exists x* € X such that x* € C(_7,S)NC (K, T). Moreover, if
a(SLx*, Tx*) = 1ora(Tx*, Sx*) > 1, thenx* e C( F,S, K, T).

Proof Starting from an arbitrary point xo € 2" and using the condition (H2), we can
consider sequences {x,} and {z,} in 2" defined by

Zontt = TXougp1 = I Xon, Loy = S Xopgo = H Xouq

for n e N* = NU {0}. Since x; € y’l(jxo), x, € . 1(Hx|) and the pairs
(f7,2)and (2, 7) satisty (H3), therefore we have

a(zi,22) = a( Fxo, Hx1) =1, a(z2,23) =a(Hx1, Fx) > 1.
Repeating this process, we obtain
a(zn, Zn41) = 1, Vn e N*. (16.2)
First, we need to prove that

lim dp(zn, Zn+l) =0.

n—oQ
For all k € N*, we define p; = dj,(2k, zk+1). If we assume that pr, = 0 for some
ko € N*, then zj, = zg,+1, and the proof is finished. So assume z,, # z,4; for all
n > 0. Then p, > O for all n € N*,

Suppose that n is an odd number. Since «(z,, zu+1) > 1, from ( ¢, %, S, T)
€ Ey(Z,a, ®, Ag), it follows that the condition (16.1) implies that
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O(sPur1)
= 0(sdp(Zn+1> Zn+2))

= 0(sdp(_Z xn, H Xp11))
< G(Ab(xn, xn+1))G(dh(=7xn,/x,l),d;,(yx,,ﬂ,:)’ffxn+1),db(<7xn,Ji/xnﬂ),d;,(yxnﬂ,/xn))

= 0(Ap(xy, xn+1))G(db(ZmZn+l)adb(ZrH»l:Zn+])adb(1m1n+l):db(1n+ls1n+l))

= 0(Ap(xy, Xpyy1)) OO0 (16.3)
where

Ab(xn’ xn-H)

Ap(-L Xy T Xn1), dp (L xpy I X0), dp(T Xpg1s H Xns1),
= max db(yxn,%xnﬂ)-i-db(ﬁxn“,/xn)
2s
dp(Zn, Zn11)s Ap(Zns Zus1)s Ap(Znt1s Zny2),
= max dp(zn, Zna2) + dp(Zasts Zus1)
2s
dp(zn, Znt1) + dp (21, Zn
= max {dp(2n, Zns1) dp(Zns1, Zns2), b(Zns Znv1) 2sb(z 1,2 +2)}

= max {dy(zu, Zn41), dp(Zns1, Zny2)}

= max{pn, Pu+1}-
Also, by the property (G1) of G € Ag, there exists T > 0 such that
G(0n,0, ps,0) = 7.
Therefore the above inequalities with (16.3) yield
0(spn+1) < O(max{py, pp+1})" (16.4)
If Ap(x,, Xu+1)) = pn+1 for some n € N, then the inequality (16.4) implies that
O(sPn+1) < 0(Pny1)"s

which is a contradiction since T > 0. Therefore, A,(x,, X,+1) = p, for all n € N
and so, from (16.3), we have

0(spn) < 0(on-1)". (16.5)

In a similar way, we can establish the inequality (16.5) when n is an even number.
Therefore, we have
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1<06"0m) < 06" o0 ) 06" 2pp0)” <. <0(00)"  (16.6)
for all n € N, that is,
1< 6(p)™. (16.7)
From (16.7), we get 6(s" p,,) — 1 as n — oo. Thus, from (F2), we have

lim s"p, = 0. (16.8)

n—00

Now, by the property (62), we have

lim p, =0, (16.9)

n—o0

and, by the property (63), there exist k € (0, 1) and 0 < £ < oo such that

0" o) — 1 _

lim = (16.10)

noo (57 o)k

Assume that £ < oo and let B = £/2. From the definition of the limit there exists
ng € N such that

0(s"pp) — 1
‘%—z < B, Vn>ng
(8" on)
which implies that
0(s"pn) — 1
—kZK—BZB, VnZno
(" pn)

and so
n(s"pn)* < nA[0 (" py) — 11, ¥n > ny,

where A = 1/B. Now, assume that £ = co. Let B > 0 be a given real number. From
the definition of the limit, there exists ny € N such that

14

0(s"pn) — 1
‘L_ ZB’ VnZno

(S",On)k

which implies that
n(s"p)* < nA[0(s"p,) — 11, Vn > ny,
where A = 1/B. Hence, in all cases, there exist A > 0 and ny € N such that

n(s"pa)* < nA[0(s"p,) — 11, ¥n > no.
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From (16.6) we have
n(s"pu)* < nAl6(p)" =11, ¥n = no. (16.11)
Passing to the limit as n — oo in (16.11), we obtain
lim n(s"p,)* = 0.
n—o0o
Now the last limit implies that the series ZZOZI s" p, is convergent and hence {z,,} is a
b-Cauchy sequence in Z". Since the inequality (16.2) holds, by the a-completeness
of b-metric space (4, dp,), there exists x* € 2" such that
lim dy(z,,x*) =0
n—o00
and so
lim dy(zont1, X*) = Im dp(T x2p41, ™) = lim dp(_F x2,, x*) =0 (16.12)
n—00 n—00 n— 00
and

lim dy(zon42, x*) = im dp (X242, x*) = lim dp(H x2,41, x*) = 0. (16.13)
n—oo n—oQ n—oo

From (16.12) and (16.13), we have ¢ x,, — x* and “x», — x* asn — oo. Since
(7 ,) is a-compatible, by (16.2), we have

lim dy (& _# xon, J S x2,) = 0. (16.14)
By (16.2), the a-continuity of .%, / and Lemma 16.1, we obtain

lim dy(S _# x2,, Lx*) =0 = lim dp(_F S x2,, Fx"). (16.15)
n—00 n—oo
By the (B3) property, we have

dp(Sx*, I x*)
<sldy(Sx*, .S Fx20) + dp(L F x2n, Fx")]
< sdy(Fx*, S _F x2) + S dp(F I X, J S X20) +dp( I S X0, FXx5)]

for all n € N*. Passing to the limit as n — 0o in the above inequality and using
(16.14)—~(16.15), we obtaindy (-“'x*, # x*) < 0. Thisimplies thatd,(-"x*, #x*) =
Oandsox* € C(¢,.Y), thatis, x* is a coincidence point of ¢ and .. Similarly,
we can prove that x* is also a coincidence point of .#" and 7.
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Finally, we prove that x* is a coincidence point of ¢, %", . and .7 provided
that
a(Tx*, Sx*)>1 or a(Sx*, Tx*) > 1.
Suppose, to the contrary, that ¢ x* # ¢ x*. Then, from (16.1), we have

O(sdy( 7 x*, H x"))

< G(Ab (x*’ x*))G(db(,S/’x*,/x*),d,,(yx*,.)f/x*),d,,(,jﬁx*,Jf/y),db(yy,/x*))’ (1616)
where
dy(x*, Tx*), dpy(Sx*, Fx*), dp(Tx*, H x*),
Ap(x™, x™) = max Ap(Fx*, K X*) + dp (T x*, _Fx*)
2s

N

d L x*
— max {db(/x*, ' x"), 0,0, M}
=d,( I x*, Hx").
Also, by the property (G1) of G € Ag, there exists T > 0 such that

Gdp(FLx™*, Fx7), dp(Tx*, H x¥), dpy (S X", H'x*), dp(Tx*, _Fx7))
=G(0,0,dy( Zx*, Hx*), dp(H x*, Fx¥)) =r1.

It follows from (16.16) that
O(sdp( I x*, H'x*)) < 0(dp( Fx*, Hx™))". (16.17)
Now, by the property (61) with T > 0, it follows from (16.17) that
sdp( I x*, Hx*) < dp( I x*, H'x"),

a contradiction, except when d(_# x*, % x*) = 0. Thus _# x* = JZx* and hence
x*eC( 7, x, 7). This completes the proof.

We note that the previous result can still be valid, under some additional assump-
tions, for ¢, ¢, .7, 7 not necessarily a-continuous. We have the following result.

Theorem 16.2 Let (27, dy) be an a-complete b-metric space with coefficient s > 1,
a: X x X - [0,+00)and 7, %, T: X — X be given mappings. Sup-
pose that the assumptions (H1)—(H4) of Theorem 16.1 hold as well as:

(1-7\5) T(X) and S (X)) are b-closed subsets of Z°;

(I-/I\6) the pairs ( ¢ , ) and (K, T) are weakly compatible;

(HT7) X is a-regular, i.e., if {u,} is a sequence in & with a(u,, u,+1) > 1 for
n € Nandu, — u* asn — oo, then a(u,,u*) > 1 foralln € N.
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Then there exists x* € 2 such that x* € C(_7, )N C(HX , T). Moreover, if
a(Ix*, Tx*) = lora(Tx*, Sx*) > 1, thenx* € C( 7, S, H,T).

Proof Following the proof of Theorem 16.1, we obtain a b-Cauchy sequence {z,,} in

the a-complete b-metric space (2, dp). Hence there exists x* € 2" such that

lim dp(z,, x*) = 0.
n—oo

Combining the hypothesis (I-/I\S) for 7(Z) and {z2,11} € T(Z"), we have x* €
T (Z). Hence there exists & € 2 such that x* = & and

lim d(z2n+lv yg) = lim d(<7X2n+1, g‘f) =0.
n— 00 n—00

Similarly, using the hypothesis (I-/I\S) for S (Z°) and {z5,} C ¥ (Z"), we have x* €
L (Z). Hence there exists { € 2 such that x* = & = .¥¢ and

lim d(zan, 7¢) = lim d(Fxa, T¢) = 0.

Further, we prove that x* is a coincidence point of ¢ and .. Since .7 x2,41 —
x* = ¢ asn — 00, it follows from the hypothesis (H7), that is, a-regularity of 2
that «(F X441, 7¢) = 1. Suppose, to the contrary, that # ¢ # x*. Then we have
from (16.1),

O(sdp( 7 ¢, A X2n11))
<0(A,(¢, _x2n+l))Gdb(y§‘/{)'db('?XZVH»Ile2n+l)»db(y§'>%x2n+l)vdb(yXZrH»lv/{)’

(16.18)

where

Ap(E, X2n41)

dy (¢, Txoni1), dp(FLE, FE), dp(T Xons1, H Xony1)s
= max Ap(LE, H Xony1) + dp (T Xopg1, FE)

2s

which implies that

nlgnoo Ap(C, X2n41)

{ dp(F¢, Txn41), dp (L, ), dp(T X241, H X2p41), }

= lim max
n—oo

dp(LE, K x0p11) + dp(T x20 11, F L)
2s

— max {0’ db(x*, fg)’o’ W}

= dp(x*, ). (16.19)
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Since lim,,_, oo dp (T X025 41, H# X2n41) = 0, from the property (G2) of G € Ag, there
exists T > 0 such that

lim G dp (S, JE), dp(T Xang1, H Xons1), 7
db(yga e%/x2n+l), db(yxz,,_,_l, /C) '

n—00

Therefore, it follows from the continuity of F, applying the limit as n — oo in
(16.18) and using (16.19), that

O(sdp( F ¢, x)) < 0(dp(x™, F0))". (16.20)

Now, by the property (61) with 7 > 0, it follows from (16.20) that

Sdb(/é‘v-X*) < db(/é‘vX*)s

which is a contradiction, except when fib( F¢,x*)=0.Hence x* = _Z¢ and so
Lt =x* = _g{. By the hypothesis (H6) for the pair (_¢, ), we have

fx*:/yé':yfgzyx*,

which shows that x* is a coincidence point of _# and .. Likewise, we can obtain
that x* is a coincidence point of the pair (¥, 7). Using similar arguments as in
the previous theorem, we can show that x* € C(_Z, .7, ', 7). This completes the
proof.

16.3.2 Discussion on Common Fixed Point Results

Theorem 16.3 Under the hypotheses of Theorem 16.1 (or Theorem16.2), 7, X,
<, T have a common fixed point in 2 provided the following condition holds:

(H8) .7 or 7 is an a-dominating map.

Proof From Theorem 16.1 (or Theorem 16.2), there exists an x* € 2" such that
x*eC( 7,7, x, 7). Since the pair (_7,.”) is weakly compatible, we have
I ILx* =S Jx*. Let u* = Fx* =.x*. Therefore, we have Zu* = .7 u*.
Similarly, since the pair (", .7) is weakly compatible, we have #" .7 x* = T ¢ x*.
Let u* = # x* = J x*. Therefore, we have # u* = Ju*. Since . (or .7) is an
a-dominating map,

a*, Su*) =a(Tx*, Su*) > 1.

If u* = x*, then x* is a common fixed point of ¢, %", . and 7. If u* # x*, then,
using « (7 x*, Lu*) > 1, from (16.1), we have
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O(sdp( Z x*, Hu™))
< G(Ab(x*, u*))G(db(Yx*,/x*),db(ﬂu*,%u*),db(,Vx*,J/u*),db(ﬁu*,jx*)’ (1621)

where
dp(Lx*, Tu*), dpy(Sx*, Fx*), dp(Tu*, Hu*),
Ap(x™, u*) = max dy(x*, Hu*) + dp(Tu*, Fx%)
2s
= max {db(u*, Hu), 0,0, M}
s
=d,(u*, X u"). (16.22)

Also, since G € Ag, there exist T > 0 such that

G (d;,(lyx*, I x%), dp(Tu*, Hu*),

_ Xk *k\)
db(Yx*,fu*),db(yu*, /x*) ) =G (Oa 0, dp(u , Hu ),dh(,%/u s U )) =T

(16.23)
Therefore, from (16.21)-(16.23), we have
O(sdy(u*, X u*)) <0(d,(u*, Hu*))". (16.24)
Now by the property (61) with 7 > 0, it follows from (16.24) that

sdy(u*, X u*) < d,(u*, HXu"),

which is a contradiction, except when dj, (u*, #u*) = 0. Hence u* = J# u*, which
implies that #* is a common fixed point of ¢, 7", . and .7. This completes the
proof.

16.3.3 Uniqueness of Common Fixed Point

To ensure the uniqueness of the common fixed point for the pair (.7, .#’) of mappings,
we will consider the following hypothesis:

(H9) forallx,y e CF(¥, 7),a(x,y) > lora(y,x) > 1.

Theorem 16.4 Adding condition (H9) for the pair (7 ,.%) to the hypotheses of
Theorem 16.3, the uniqueness of the common fixed point x* of ¢, %, and T is
obtained.

Proof Suppose that * is another common fixed point of ¢, . %", . and  and,
contrary to what is going to be proved, dj,(_# x*, %) = d,(x*, ) > 0. Using (H9)
forall x*,x € CF(7,.7), we have
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a(Tx*, X)) =a(x*, %) > 1. (16.25)

Now, we can replace x by x* and y by X in the condition (16.1) and we get easily
with (16.25):

O(Ap(x*, X)) < 0(sdp( F x*, H'X))
< 0(dy(x*, )BT X I XT3 H D,y HD.l(T 2. F 5)

= 0(dy(x*, £))FOODEDBED) (16.26)
where
dp(Lx*, TX), dp(Sx*, Fx*),dp(T X, H%),
Ap(x*, %) = max dp(Sx*, HX) +dp (TR, Fx*)
2s
dp(x*, x
= max {db(x*, x),0,0, M}
S

= dy(x*, 3). (16.27)

Also, since G € Ag, there exist T > 0 such that
G(O, 0, db(x*,i),db(i,x*)) =T. (16.28)
Therefore, from (16.26)—(16.28), we get
0(dp(x*, X)) < 0(dp(x*, %))".
Now, by the property (61) with T > 0, it follows that
dp(x*, %)) < 0(dp(x*, 1),
a contradiction, which implies that x* = x. This completes the proof.

If, in Theorems 16.3 and 16.4, the mappings .7 and .¥ are identities, then they
can be formulated as results for obtaining the existence and uniqueness of a common
fixed point for two mappings ¢, % .

Corollary 16.1 Let (%, dy,) be an a-complete b-metric space with coefficient s > 1,
a: X x X —[0,+00),and ¢, X : X — X be given mappings. Suppose that
the following conditions hold:

(C1) there exist G € Ag and F € § such that

(a(x,y) = lora(y,x) = 1) withd,( Zx, £y) >0
= G(Sd;,(/x, Jf/y)) < O(A/b(x’ y))G(dh(x,/X),dh(y,v?f/y),dh(x,v}f/y),dh(y,JX))’
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where

dy(x, X'y) +dp(y, 7 x) }

A;;(xs y):max {db(xs )’)7db(x, /x)sdb(ysf%/y)v 2

forallx,y e Z;
(C2) the pair (_f, ') is a-weakly increasing;
(C3) « is a transitive mapping;
(C4 7, are a-continuous.
Then there exists a common fixed point x* € X of # and J . Moreover, if
(CS) forallx,y e Z', a(x,y) = 1ora(y,x) > 1,
then the common fixed point of 7 , X is unique.

16.3.4 Example

We present an example which illustrates a possible usage of our results.

Example 16.3 (inspired by [2]) Let 2 = [0, 1] be equipped by the b-metric
dy(x,y)=(x—y) anda: 2 x 2 — Ra’ be given as

1, ifx <y,
0, otherwise.

alx,y) = {

Then (£, dp) is an a-complete b-metric space with s = 2. Consider the mappings
A xS, T X — Z defined by

0, if0 <x <1/4,

Ix = ) Hx=0for0<x <1;
1/16, if1/4 <x < 1;

, if0<x <1/4, )
*, H0=x<1/ Fx=11/4, if0<x<1/4,

1, ifl/4 <x<1; .
1, ifl/d<x<l.

0, ifx =0,
9)(:{

The only condition of Theorem 16.4 that has to be checked is (H1)—all others are
easily seen to hold true.

Take 6 € © defined by 6(¢) = e*ﬁ, t>0,and G € Ag givenas G(t1, tp, 13, 14) =
min{ty, 1, 13, t4} + T, where T = 1/ (8«/5). We will check the contractive condition
(16.1). Consider the following cases:

1°0<x<1/4,0<y <1. Then db(/x,%/y) = 0 and there is nothing to
prove.
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2° 1/4 <x <1, y=0. Then dy(_Zx, #y) = (1/16)%, Ap(x,y) > dp(Lx,
_ dy(Sx, 7x),dp(Ty, Hy), \ _
Jy)=1and G ( (S, V) d( Ty, F3) ) = 7 and then (16.1) holds true
as
Q(Sdb(/x,%y)) — 6‘\/5/16 — en/d;,(f’x,ﬂy) < er«/A;,(x,y)

of B x, fxxdb(ﬂyww,)

< 0(Ap(x,y)) (d,,(yx, H ). dp(Ty, Jx) )

3°1/4 <x <1,0 <y < 1/4. Then we have
dy( I x, 2y) = (1/16)%, Ap(x,y) > dpy(Lx, Ty) = (1 —y)* > 9/16

and

G <db(fx, Ix), dp(Ty, Xy),

2
dp(Sx, Xy),d,(Ty, Ix) ) =y +1<(1/16) + 7.

In this case, (16.1) reduces to

O(sdy(_Fx, Hy)) = e//10 < [eVT]OHD < [0+
< [EM](yz+r) < [em](szrf)

G(db(&”x,/x),dh(ﬂy,fy)’)
< 0(Ap(x,y)) db(yx’%)’)adb(yy,/x)

and holds true for the chosen value of 7.
4°1/4 <x <1,1/4 <y < 1. Then we have

dy( I x, 0y) = (1/16)%, Ap(x,y) > dp(Ty, X y) =1

and
G <db(5ﬂx, I x),dp(Ty, Xy),

— 2
db(yx,jify),db(yy,/x)>—(15/16) +

In this case, (16.1) reduces to

0(sdy( I x, K y)) = eV?/10 < el H
= [eVBT ¥ A NEP+D < [(VBEDN () +D)

G(db(yx’ Ix),dp(Ty, Jify),)
< 0(Ap(x, y)) dy(Sx, Hy),dy(Ty, 7x)

and also holds true for the chosen value of 7.
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Thus all the conditions of Theorem 16.4 are fulfilled and we conclude that the
mappings ¢, %, .7, 7 have a unique common fixed point (which is x* = 0).

16.3.5 Periodic Point Results

It is an obvious fact that, if _# is a self-map which has a fixed point u, then u is
also a fixed point of _#" for arbitrary n € N. However, the converse is false, i.e., a
self-map can have a “periodic” point (a point u satisfying #"u = u for somen € N)
which is not its fixed point. In this subsection, we prove some periodic point results
for self-mappings on an a-complete b-metric space.

Definition 16.6 ([11]) (1) A mapping ¢ : & — Z is said to have the property
(P) if it has no periodic points, i.e., if Fix(_#") = Fix(_¢#) foreachn € N.

(2) Two mappings ¢, % : & — Z are said to have the property (Q) if
Fix( Z")NFix(X") = Fix(_#)N Fix(X') foreachn € N.

Theorem 16.5 In addition to the hypotheses of Corollary 16.1, let the following
condition hold:

(H10) If w e Fix(_Z")NFix(™) and w & Fix(_Z) N Fix(JX), then we
have
oz(/"_lw, J'w) =1 or a( Z"w, j"‘lw) > 1.
Then ¢ and X have the property (Q).

Proof By Corollary 16.1, _# and " have a unique common fixed point in 2". Sup-
pose w € Fix(_Z") N Fix(Z") and w ¢ Fix(_#) N Fix(J); then dy(w, Zw)
> 0 ordy(w, #w) > 0 (for example, let the latter condition hold). Applying (H 10)
and (H1), we get

O (sdp(w, Hw)) = 0(sdp(_Z (F""'w), H (H"W)))
< 0(A( I w, A w))A, (16.29)

where

A= (@I I I W), dy (K, A W),
o dp( I, W), dp (W, F T w)
= G(dp( " w, ), dy(w, W), dp( 7" 'w, ), 0). (16.30)
Since G € Ag, there exists T > 0, such that

A=G (dp( 7" 'wow), dp(w, W), dp( 7" 'w,w),0) = 1. (16.31)

Also, we have
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Ap( I w, W)

db(fnflw’ %nW), db(/”flw’ /f"flw), db(%”w, %%nw),
= max dp( " w, W) + dp (KW, F I w)
2s

= max {db(/”_lw, w), db(f”_'w, w), dp(w, W),

db(/”_'w, HFw) + dy(w, w) }
2s

db(/"_lw, w) + dp(w, Z'w) }

< maX{db(/”_lw, w), dy(w, H'w), 3

= max{d, (7" "'w, w), dy(w, A w)}
=dp( I w,w). (16.32)
Consequently, from (16.29)—(16.32), we can write

1< 0(sdy(w, W) < 0(dp(_F" " w, _7"w))°
<6(db(/n_2W, /n_lw))‘[z

IN

< 0(dy(w, Fw)".

By taking the limit as n — oo in the above inequality, we have 0 (sd,(w, Zw)) =
1, which is a contradiction and hence we deduce that d,(w, % w) = 0, that is,
Jw = w. From the conclusion of Corollary 16.1, we also have _#w = w. There-
fore, Fix(_Z") N Fix(™") = Fix(_#) N Fix(') for all n € N. This completes
the proof.

16.4 Application

Consider the following system of Urysohn integral equations:

u(t) = hi(6) + [ 11t 5, u(s))ds, t€[0,T],
u(t) = ha(t) + [ Ta(t, s, u(s))ds, t€[0,T],
u(t) = () + [ a(t,s,u(s))ds, 1€[0,T],
u(t) = hy(t) + [ Yalt,s, u(s))ds, 1€l0,T],

(16.33)

where T > 0,t € [0, T1,%;: [0, T] — Rand7;: [0, T]? x R — R( € {1,2,3,4})
are given mappings.
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The purpose of this section is to apply Theorems 16.3 and 16.4 in order to prove the
existence and uniqueness of common solution of (16.33). For more detailed study,
one can refer to [15, 17] and some other related papers.

Let I = [0, T] and 2 := C(I, R) be equipped with the usual maximum norm,
ie., |ull » = max,e; |u(t)| forallu € C(I, R). Then (%, ||-|| ) is a complete met-
ric space. The distance in 2" is given by

doo(u, v) = max lu(t) —v(@)|, Yu,ve Z.
te

Moreover, we can define a b-metric d, on 2" by dj(u, v) = [dso(u, v)]? for some
p > 1landall u,v € 2. Since (%, d) is complete, we deduce that (2, dp) is
a b-complete b-metric space with s = 27~!. Throughout this section, for each i €
{1, 2, 3,4} and 7; in (16.33), we will denote by ¥; : 2~ — 2 the operator defined
by

T
Yiu(t) ::/ Ti(t,s,u(s))ds, Yue X, tel.
0
We will also use the following partial order on 2"
u=<v << u) <v(), veel0,T].

Theorem 16.6 Suppose that the following hypotheses hold:
(U1) There exist . € (0, 1) and p > 1 such that, for allu,v € 4,

(16.34)
2u — Yau — hy <2v—Y30 — Iy

!2u—l1/3u—h3 <2v—Yv — hy or
implies that
Pl max o (u, v)(t) exp{2"~! max o (u, v)(1))
te te
< kmatlx Ap(u, v)(t) exp{ma[x Ap(u, v)(1)}, (16.35)
te te

where

Ap(u, v)(1)
1

— max {%’(u, V). €, v)(0), T, VO, 5516w, v) ) + F (w. v)(t)]}

and
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A (u, v)(t) = [Yu(t) + hi () — Yrv(t) — ()|,

B(u,v)(t) = [2u(t) — Y3u(t) — ha(t) — 2v(t) + Yav(t) + ha(1)|”,
C (u, v)(t) = [Yru(t) + hi(t) = 2u(t) + Y3ut) + h (@),

D(u, v)(t) = [Yrv(t) + M (t) — 20(t) + Wv(1) + ha(1)|7,

&, v)(t) = [Yov(t) + ha(t) — 2u(t) + P3u(t) + Iz ()|,
F(u,v)) = |Wu(t) + hi () —2v@) + Yo (t) + Ay (2)|7.

(U2) For eachu € Z, there is some v € Z such that
Yiu+h =2v— W — hy
and, for eachu € ', there is some v € 2 such that
You + hy = 2v — ¥3v — Ra3.
(U3) Forallu,v € Z', we have
22v—Yyw—ly=%u+h = Yu+h <%v+h,

and
20— —hy=%u+hy = Yu+hy <P v+h.

(U4) The mappings hi: I — Rand 7;: [0, T]> xR — R (i € {1,2,3,4)}) are
continuous.

(U5y) If {u,} is a sequence in 2 such that u, < u,. for all n € N and, for all
yexZ,

max [Pu, (1) + A (t) — y@)|P — 0 asn — oo,
te
malx 2u, (t) — Y3u,(t) — hs(t) — y@)|? — 0 asn — oo,
te
then
max [[A1(2) + W1 Quy (1) — W3u, (1) — ha(1))]

— RWun (@) + 7 (1)) = W3 (W1, () + b (1) — h3(D]I” — 0 asn — oo.

(U3y) If {u,} is a sequence in 2 such that u, < u,. for all n € N and, for all
yeZ,
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maIx [Wou, (t) + ha(t) — y(@)|P — 0 asn — oo,
te

max [2u, (1) — Wity (1) = ha() = ()] — 0 as n — o,
te

then

max [ (1) + W2 Quy (1) — Wau, (1) — ha(1))]
— R2Whu, (1) + hao (1)) — Ya(Wou, (1) + ho (1)) — ha(H)1]? — 0 asn — oo.

(U6) u <2u —W3u — hs forallu € & oru <2u — Wau — hy forallu e Z.

Then the system (16.33) has a solution. Moreover, if
(U7) for any two solutions u*, v* of the system (16.33), u™ < v* or v* < u* holds,
then the solution of (16.33) is unique.

Proof Define the mappings ¢, %, ", T : X — Z by

T
Hu) =Wu(t) + () = / T1(t, s, u(s))ds + hi (1),
0
T
Hu(t) = You(t) + ho(t) = / 1a(t, s, u(s))ds + ha (1),
0
T
Fu(t) =2u(t) — Wsu(t) — ha(t) = 2u(t) — / Y3(t, s, u(s))ds — h3(1),
0

T
Tu(t) = 2u(t) — Yau(t) — ha(t) = 2u(t) — / Yu(t, s, u(s)) ds — ha(2),
0
(16.36)
respectively. Define also a function o : 2> — [0, 00) by

1, ifu(t) <v(t)forallt €I,
0, otherwise.

a(u,v) = {

Now, we check the validity of the conditions (H1)-(H6) of Theorem 16.1 and (HS8)
of Theorem 16.3 as well as (under the assumption (U7)), (H9) of Theorem 16.4.

(H1) By the definition (16.36) of the mappings ¢, %", ., 7 and the definition
of b-metric d,, we have that, forall u, v € 2,
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dp(Ju, £'v) = max [Pu(t) + I (t) — () — ha ()17,

dp(Fu, Tv) = max 12u(t) — Wsu(r) — ha(r) — 20(1) + Yav (1) + ha ()17,
dp(J v, Su) = max [Pru(t) + ha (1) — 2u(t) + Yut) + 3 (0)]”,

dpy(H v, Tv) = tg[lg);] [Phu(t) + (1) — 2u(t) + Wav(t) + hs(2)]7,

dpy( Ju, Tv) = max [Pru(t) + hy(t) — 2v(t) + Pav(t) + ha ()|,

dp(Su, Hv) = max ¥ (1) + Mo () — 2u(t) + W3u(r) + h3 (11",

respectively. Suppose that «(.%u, Zv) > 1. Then we have Su < Jv, i.e., the
assumption (16.34) of (U1) holds and hence also its conclusion (16.35) holds true.
But this means that the implication (16.1) is valid for the function 6 € ® given as
0(t) = exp{/t exp(t)} and G € Ag given as G(t;, o, t3,14) =T (t> = A), T > 0.
Hence (H1) is proved.

(H2) is a direct consequence of the assumption (U2).

(H3) Let u € 2 and v € I (_Zu). Then 2v — ¥yv — hy = Yju + h; and,
by the assumption (U3), ¥ju + Iy < Yhv + hy holds. That is, Zu < JZv and so
a( fu, #v) > 1. Hence the pair (_Z, %) is partially a-weakly increasing w.r.t.
. Similarly, the pair (¢, #) is partially a-weakly increasing w.r.t. ..

(H4) follows easily from the definition of mapping « and (HS) follows from the
assumption (U4).

(H6) Let {u,} be a sequence in 2" such that o (u,, u, 1) > 1,1i.e., u, < u,4; for
neN,andletlim, o fu, =lim, o SLu, = yin (2, dp), i.e.,

malx |[Wu, () + hi(t) — y@)|” — 0 asn — o0,
te

malx 2u,(t) — W3u, (t) — hz(t) — y(@)|? — 0 asn — oo.
te

By the assumption (U35)), it follows that

max 7 (£) + W1 Qup (1) — W3u, () — h3(1))]

= 2Wun (1) + ha (1)) — W3 (Prun (1) + i (1) — ha(D]]” — 0 asn — oo,

ie., lim,_ o dp(_ 7 Su,, S _Zu,) = 0. Hence the pair (_7,.7) is a-compatible.
Similarly, it follows from (U5,) that the pair (¢, .7) is a-compatible.

The condition (H8) (that . or .7 is an «¢-dominating map) follows directly from
the assumption (U6).

Thus all the conditions of Theorem 16.3 are fulfilled and it follows that the map-
pings 7, % ,.”, 7 have a common fixed point u* € 2. Itis easy to see that ™ is
then a solution of the system (16.33).
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Finally, if the assumption (U7) is fulfilled, then it follows that the condition (H9)
of Theorem 16.4 holds and hence the solution of (16.33) is unique. This completes
the proof.

16.5 Conclusion

In this chapter, the notion of o-G-J S-type contraction for four mappings in the
setup of b-metric spaces has been introduced, and coincidence points, common fixed
points, their uniqueness, as well as periodic points have been discussed under o-
compatible and relatively partially «-weakly increasing conditions on «-complete
b-metric spaces. The given notions and results are illustrated by a suitable example,
followed by application to the proof of existence of solutions for a system of Urysohn
integral equations.
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Chapter 17 ®)
Unified Multi-tupled Fixed Point s
Theorems Involving Monotone Property

in Ordered Metric Spaces

Mohammad Imdad, Aftab Alam, Javid Ali, and Stojan Radenovié¢

Abstract In this chapter, we introduce a generalized notion of monotone property
and prove some results regarding existence and uniqueness of multi-tupled fixed
points for nonlinear contraction mappings satisfying monotone property in ordered
complete metric spaces. Our results unify several classical and well-known r-tupled
(including coupled, tripled and quadruple ones) fixed point results in the existing
literature.

Keywords x-fixed point + Ordered metric spaces - Monotone property *
@-contractions

17.1 Introduction

Throughout the chapter, the following symbols and notations are involved.

(1) Asusual,(X, d), (X, <) and (X, d, <) are termed as metric space, ordered set
and ordered metric space, wherein X stands for a nonempty set, d for a metric on
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X and < for a partial order on X. Moreover, if the metric space (X, d) is complete,
then (X, d, <) is termed as ordered complete metric space.

(2) > denotes dual partial order of < (i.e., x > y means y < x).

(3) N and Nj stands for the sets of positive and non-negative integers respectively
(i.e., Ng = NU {0}.

(4) n stand for a fixed natural number greater than 1, while m, [ € Nj.

(5) I, denotes the set {1,2,...,n} and weuse i, j, k € I,.

(6) For anonempty set X, X" denotes the Cartesian product of n identical copies of
X,ie, X" =X x Xx . xX. We call X" the n-dimensional product set induced

by X.

(7) A sequencein X is denoted by {x ™} and a sequence in X" is denoted by {U™}
where U™ = (xf’"), xé’"), ..., x™) such that for each i € I,, {xl.(m)} is a sequence
in X.

Starting from the Bhaskar-Lakshmikantham coupled fixed point theorem [1], the
branch of multi-tupled fixed point theory in ordered metric spaces is progressed in
high speed during only one decade. Then, coupled fixed point theorems are extended
up to higher dimensional product set by appearing tripled (in [2]), quadrupled (in
[3]) and n-tupled (in [4]) fixed point theorems. Here it can be highlighted that exten-
sion of coupled fixed point up to higher dimensional product set is not unique. It
is defined by various authors in different ways. In recent years, some authors paid
attention to unify the different types of multi-tupled fixed points. A first attempt of
this kind was given by Berzig and Samet [5], wherein the authors defined a unified
notion of n-tupled fixed point by using 2n mappings from I, to I,,. Later, Roldan
et al. [6] extended the notion of n-tupled fixed point of Berzig and Samet [5] by
introducing the notion of Y-fixed point based on n mappings from I, to I,,. In 2016,
Alam et al. [7] modified the notion of Y-fixed point by introducing the notion of
x-fixed point depending on a binary operation * on I,,. Although the notion of *-fixed
point is equivalent to that of Y-fixed point (see [7]) but it is relatively more natural
and effective as compared to Y -fixed point due to its matrix representation. Here it
can be pointed out that Choban and Berinde [8] also proved some multidimensional
fixed point results in certain distance spaces for A-contractions.

One of the common properties of multi-tupled fixed point theory in the context
of ordered metric spaces is that the mapping F' : X" — X satisfies mixed monotone
property (for instance, see [9—12]). In order to avoid the mixed monotone property
in such results, authors in [13-21] utilized the notion of monotone property.

The aim of this chapter is to extend the notion of monotone property for the
mapping F : X" — X and utilizing this and to prove some existence and uniqueness
results on *-coincidence points under ¢-contractions due to Boyd and Wong [22].
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17.2 Extended Notions Upto Product Sets

With a view to extend the domain of the mapping f : X — X to n-dimensional
product set X", we introduce the variants of the notions of monotonicity, fixed and
coincidence points, continuity, g-continuity, compatibility, and weak compatibility
for the mapping F' : X" — X.Recall that a binary operation * on a set S is a mapping
from §' x Sto S and a permutation v on aset S is a one-one mapping from S onto itself
(cf. Herstein [23]). Throughout this manuscript, we adopt the following notations:

(1) In order to understand a binary operation * on I,,, we denote the image of any
element (i, k) € I, x I, under * by i rather than (i, k).

(2) A binary operation * on I, can be identically represented by an n x n matrix
throughout its ordered image such that the first and second components run over
rows and columns, respectively, i.e.,

* = [mg]nxn Where m;, =iy for each i, k € I,,.
(3) A permutation 7 on I, can be identically represented by an n-tuple throughout
its ordered image, i.e.,
m=(@ml),n?2),...,nn)).

(4) B, denotes the family of all binary operations * on ,,, i.e.,

Bo={*x:x:1, xI, > I,}.

Remark 17.1 It is clear, for each i € I, that
{ilv i27 e »ln} g In

We define generalized notions of monotone property as follows.

Definition 17.1 Let (X, <) be an ordered set and F : X" - X and g : X — X
two mappings. We say that F has the argumentwise g-monotone property if F is
g-increasing in each of its arguments, i.e., for any xy, x5, ..., x, € X andi € [,,

x;, % € X, glx;) 2g(xy)
- F(XL,.XQ, -~'9xi—17£[9xi+l’ ~~3xn) 5 F(xlvx27 °"9xi—lvfi9xi+lv "‘7xn)'
Definition 17.2 Let (X, <) be anordered setand F : X" — X andg : X — X two

mappings. We say that F' has the g-monotone property if, for any x|, x2, ..., x,, y1,
V2,5 Vn EX»

gx1) X gy, glx2) g, .., g(xn) X gn)
= F(x1,x2, ..., %) X F1, 2,005 Yn)-
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On particularizing with g = I, the identity mapping on X, the notions employed in
Definitions 17.1 and 17.2 are, respectively, called argumentwise monotone property
and monotone property.

Notice that the notion of ‘monotone mappings’ introduced by Borcut [13] is the
same as the notion of ‘argumentwise monotone property’ presented in Definition
17.1 but different from ‘monotone property’ embodied in Definition 17.2. Hence-
forth, coherently with Definition 17.1, we prefer employing the term ‘argumentwise
monotone property’ instead of ‘monotone mappings’.

It is clear that if F' has argumentwise monotone property (resp. argumentwise g-
monotone property) then it also has monotone property (resp. g-monotone property).

Definition 17.3 ([7]) Let X be a nonempty set, x € B, and F : X" — X and
g : X — X two mappings. An element (x, x3, ..., X,) € X" is called an n-tupled
coincidence point of F and g w.r.t. x (or, in short, x-coincidence point of F and g) if

F(xi, Xiyy ..., x;) = g(x;) foreachi € I,.

In this case, (gx1, gx2, ..., gx,) is called a point of *-coincidence of F and g

Notice thatif g is an identity mapping on 7, then the notion employed in Definition
17.3 is called an n-tupled fixed point of F w.r.t. * (or, in short, x-fixed point of F).

Definition 17.4 ([7]) Let X be a nonempty set, x € B, and F : X" — X and g :
X — X two mappings. An element (x, x2, ..., Xx,) € X" is called a common n-
tupled fixed point of F and g w.r.t. x (or, in short, common *-fixed point of F and g)
if

F(xi, xiy, ..., x;,) = g(x;) = x; foreachi € I,.

Definition 17.5 ([7]) A binary operation * on I, is called permuted if each row of
matrix representation of x forms a permutation on 7,.

Example 17.1 ([7]) On I3, consider two binary operations:

123 123
* =|213]|, o=1(213
321 332

* is permuted as each of rows (1, 2, 3), (2, 1, 3), (3, 2, 1) is a permutation on I3,
while o is not permuted as last row (3, 3, 2) is not permutation on /3.

Proposition 17.1 ([7]) A permutation * on I, is permuted if and only if, for each
i € Il‘la
{ilv i2,.. »ln} = I.

Definition 17.6 ([7]) Let (X, d) be a metric space, F' : X" — X be a mapping and
let (x1, x2, ..., x,) € X". We say that F is continuous at (xy, X2, ..., x,) if, for any
sequences {x\"}, (x{"}, ..., (x"} C X,
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d
(m)—>x1, xé ) Sxy, x(m

= F(x{'"), xém), ce, Xy LN F(x1,%2,...,%,).

—))C

Moreover, F is called continuous if it is continuous at each point of X".

Definition 17.7 ([7]) Let (X, d) be a metric space, F : X" — X, g: X — X be

two mappings and let (x, x2,...,x,) € X". We say that F is g-continuous at
(x1, X2, ..., x) if for any sequences {x, (my {x(m)} con My X,
(myy _d (m)y _d (myy _4
gx; ) —> glx1), g(xy ) —> g(x2), ..., g(x,") —> g(xn)
= F(x(m) (m), L)) LN F(X1, X2, ..., Xp).

Moreover, F' is called g-continuous if it is g-continuous at each point of X".

Notice that, setting g = I (: the identity mapping on X), Definition 17.7 reduces
to Definition 17.6.

Let (X, d, <) be an ordered metric space and {x, } be a sequence in X. We adopt
the following notations:

(1) If {x,} is increasing and x,, 4, x, then we denote it symbolically by x, 1 x.

(2) If {x,} is decreasing and x,, 4, x, then we denote it symbolically by x,, | x.

(3) If {x,,} is monotone and x,, —d> x, then we denote it symbolically by x,, 1] x.

Definition 17.8 Let (X, d, <) be an ordered metric space, F' : X" — X be a map-
ping and let (x1, x2, ..., x,) € X". We say that F is

(1) O-continuous at (xi, xa, ..., x,) if, for any sequences {xlm)} {x(m)} e
{x(m)} cX
n 5
x](m) T X1, (m) T X ’(1m) T Xn
d
— FOq", ", ) = F, X, )
(2) O-continuous at (x1, x, ..., x,) if, for any sequences {xlm)} {x(m)} e
{x(m)} cX
n 5
A e 2y L
d
— FOq" 5", ) = F, X, )3
(3) O-continuous at (xy, x,, ..., x,) if, for any sequences {xlm)} {x(m)}

{x’(zm)} - X,
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xfm) M ox1, xém) Moxg, o, XM x,

d
l(m),xém), c XMy s F(x1, X2, ..., Xp).

= F(x
Moreover, F is called O-continuous (resp., O-continuous, O-continuous) if it is
O-continuous (resp., O-continuous, O-continuous) at each point of X".

Remark 17.2 In an ordered metric space, the continuity = the O-continuity =—>
the O-continuity as well as the O-continuity.

Definition 17.9 Let (X, d, <) be anordered metricspace, F : X" — X, g : X — X
two mappings and let (x1, x2, ..., x,) € X". We say that F is

(1) (g, O)-continuous at (x, xa, . . ., X, if, for any sequences {xfm)}, {xé’")}, e

{x{m} C X,

g™ 1 g0, (™) 1 g2,y g™ 1 g(xa)
= F(xfm), xém), c, xm) 4, F(xy,x0, ..., %0);
(2) (g, Q)-continuous at (xy, x3, . .., x,) if for any sequences {xl(m)}, {xém)}, -
{x™} C X,
g™ 1 g0a), 80" | gx), -y gG™) | ()
= F(xfm), xé’"), o xmy N F(X1, X2, ..., %,);
(3) (g, O) -continuous at (xy, xa, .. ., x,,) if, for any sequences {xfm)}, {xém)}, -

{x(m} C X,

g™y 1 g(x), g™ 1) g(x2), ..., g(xI™) A g(x)

d
= F(xl(m),xém), .. .,x,(,’")) — F(x1,%x2,...,%).

Notice that, setting g = I (: the identity mapping on X), Definition 17.9 reduces
to Definition 17.8.

Remark 17.3 In an ordered metric space, the g-continuity = the (g, O)-continuity
= the (g, O)-continuity as well as the (g, O)-continuity.

Definition 17.10 ([7]) Let X be a nonempty setand F : X" — X, g : X — X two
mappings. We say that F and g are commuting if, for all x;, x5, ...,x, € X,

g(F(-xla-XZa "'7-xil)) = F(gxla gx25 "'7g'xn)'
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Definition 17.11 ([7]) Let (X,d) be a metric space and F : X" — X, g:
X — X be two mappings. We say that F' and g are x-compatible if, for any sequences
) My, ™y c Xand 2y, 20, ...z € X,

d .
g(x; (m )) — z; and F(x('") 1(2'"), .. .,x[(’:")) —— z; foreachi €I,

= lim_ d@F ™ x™ L x™) Fgx™, gx™. ... gx"™)) =0 foreachi € I,.

lz i

Definition 17.12 Let (X, d, <) be an ordered metric space and F : X" — X, g:
X — X be two mappings. We say that F and g are
(1) (%, O)-compatible if, for any sequences {x\"}, {x{™}, ..., {x!™} c X and
21,22, -5 Zn € X,
g(x (m)) 4 z;i and F(x('") xm (m)) 4 z; foreachi e I,

12

= lim d(gF(x", l(z'"), o .,xi(:")), Fgx™, gx™, ..., gxi(”’"))) =0;
(2) (%, O)-compatible if, for any sequences {x™}, {x"}, ..., {x!™} C X and
Zl7 sz AR Zn e X’

g(x™) | z and F(x(m) x™ o x™) |z foreachi € I,

12 lu

= 11m d(gF(x(m) (m) ...,xi(’:")), F(gx[(]m), gxi(zm), e gxl.(:"))) =0 foreachi € I,;

17’

(3) (%, O) -compatible if, for any sequences {xfm)}, {xém)}, <o XM} € X and
21,22+, 20 € X,

™)tz and Fx™, x™, ..., x"™) 1] z; foreachi € I,

12 ln

= hm d(gF(x<m I(Zm), e xl.ﬁ")), F(gxi(lm>, gx,.(zm), e, gxl.(:"))) =0 foreachi € I,.
Definition 17.13 ([7]) Let X be a nonempty set and F : X" — X, g: X — X be
two mappings. We say that F' and g are (x, w)-compatible if, for any xi, x2, ...,
x, € X,

g(xi) = F(x;, Xiy, ..., x;,) foreachi € I,

= g(F(xi,, Xiys - - ., X)) = F(gxi,, 8xiy, ..., 8x;,) foreachi e I,.

Remark 17.4 Evidently, in an ordered metric space, the commutativity => the
x-compatibility = the (*, O)-compatibility = the (*, O)-compatibility as well
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as the (x, O)-compatibility = the (*, w)-compatibility for a pair of mappings F :
X" — Xandg: X — X.

Proposition 17.2 ([7]) If F and g are (x, w)-compatible, then every point of *-
coincidence of F and g is also an x-coincidence point of F and g.

17.3 Auxiliary Results

In this section, we discuss some basic results, which provide the tools for reduction
of the multi-tupled fixed point results from the corresponding fixed point results.

Before doing this, we consider the following induced notations:

(1) Forany U= (x1, x2, ..., x,) € X", % € B,andi € I,, U] denotes the ordered
element (x;,, x;,, ..., x;,) of X".

(2) For each x € B,,, a mapping F : X" — X induces an associated mapping
F, : X" — X" defined by

F.(U) = (FU}, FU;, ..., FU}), VU e X".
(3) Amapping g : X — X induces an associated mapping G : X" — X" defined
by
G(U) = (gx19 g'x27 MR g'xl‘l)7 VU = (xl5x25 AR 7xn) E X”

(4) For a metric space (X, d), A, and V,, denote two metrics on product set X"
defined by: for all U = (x, x2, ..., x,), V= (1, 2, ..., ¥n) € X",

l n
AU, V) = = d (i, i),
i=1

V,(U, V) = mE}xd(xi, yi).
1€l

(5) For any ordered set (X, <), C, denotes a partial order on X" defined by for
alU=(x;,x2,...,%,), V=01, Y2, ..., ) € X",

UL, V<& x; Xy foreachi e I,.

Remark 17.5 The following facts are straightforward:

(1) Fu(X") S (FX™)".

(@) G(X") = (gX)".

(3) (GU)F = G(U}) forall U € X".

“4) %Vn < A, <V, (i.e., both the metrics A, and V,, are equivalent).
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In what follows, we use order-theoretic analogues (namely, O, O, O analogues) of
some frequently used metrical notions (such as completeness, closedness, continuity,
g-continuity and compatibility) introduced by Alam et al. [24, 25]. For the sake of
brevity, we skip to record these notions.

Alam et al. [26] formulated the following notions by using certain properties on
ordered metric space (in order to avoid the necessity of the continuity requirement
on underlying mapping) utilized by earlier authors especially from [1, 9, 27, 28]
besides some other ones.

Definition 17.14 ([26]) Let (X, d, <) be an ordered metric space and g a self-
mapping on X. We say that

(1) (X,d, <) has g-ICU (increasing — convergence — upperbound) property
if g-image of every increasing convergent sequence {x,} in X is bounded above by
g-image of its limit (as an upper bound), i.e.,

Xo T x = g(x,) < gx), Vn € Ny;

(2) (X, d, xX)has g-DCL (decreasing — convergence — lowerbound) property
if g-image of every decreasing convergent sequence {x,} in X is bounded below by
g-image of its limit (as a lower bound), i.e.,

Xp d x = g(x,) = g(x), Vn e Ny;

(3) (X, d, <) has the g-MCB (monotone-convergence-boundedness) property if
X has both g-ICU as well as the g-DCL property.

Notice that under the restriction g = I, the identity mapping on X, the notions of
the g-ICU property, the g-DCL property and the g-MCB property are, respectively,
called the ICU property, the DCL property, and the MCB property.

Definition 17.15 ([25]) Let (X, d, <) be an ordered metric space and Y a nonempty
subset of X. Then d and <, respectively, induce a metric dy and a partial order <y
on Y so that

dy(x,y) =d(x,y), Vx,y €Y,

Xy y<=x=<y, Vx,yeY.

Thus (Y, dy, <y) is an ordered metric space, which is called a subspace of (X, d, <).

Conventionally, we opt to refer ¥ as a subspace of X rather than saying
(Y, dy, <y) a subspace of (X, d, <) and continue to write d and < instead of dy
and <y, respectively.

The following family of control functions is indicated in Boyd and Wong [22],
but was later used in Jotic [29].
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2= {(p 1[0, 00) — [0,00) : @(t) <t, limsupe(r) <t foreacht > 0}.

r—t+
The following coincidence theorems are crucial results to prove our main results:

Lemma 17.1 Let (X, d, <) be an ordered metric space and Y an 6-complete (resp.,
O-complete) subspace of X. Let f and g be two self-mappings on X. Suppose that
the following conditions hold:

(@ f(X) CgX)ny;

(b) f is g-increasing;

(¢) f and g are O-compatible (resp., O-compatible);

(d) gis O-continuous (resp., O-continuous);

(e) either f is O-continuous (resp., O-continuous) or (Y, d, <) has the g-ICU
property (resp., the g-DCL property);

(f) there exists xo € X such that g(xp) < f(xo) (resp., g(x0) > f(x0));

(g) there exists ¢ € §2 such that

d(fx, fy) < o(d(gx, gy)), Vx,y € X with g(x) <> g(y).

Then f and g have a coincidence point. Moreover; if the following condition also

holds:

(h) for each pair x,y € X, there exists z € X such that g(x) <> g(z) and
gy) <> g(2),

then f and g have a unique point of coincidence, which remains also a unique
common fixed point.

Lemma 17.2 Let (X, d, <X) be an ordered metric space and Y an 6-c0mplete (resp.
O-complete) subspace of X. Let f and g be two self-mappings on X. Suppose that
the following conditions hold:

(@ f(X)CY Cg(X);

(b) f is g-increasing;

(c) either f is (g, O)-continuous (resp. (g, Q)-continuous) or f and g are con-
tinuous or (Y, d, <) has the g-ICU property (resp., the g-DCL property);

(d) there exists xy € X such that g(xg) < f(xo) (resp., g(xp) > f(x0));

(e) there exists ¢ € 2 such that

d(fx, fy) < o(d(gx, gy)), Vx,y € X with g(x) <> g(y).

Then f and g have a coincidence point. Moreover; if the following condition also

holds:
(f) for each pair x,y € X, 3z € X such that g(x) <> g(z) and g(y) <> g(2),

then f and g have a unique point of coincidence.
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We skip the proofs of above lemmas as they are proved in Alam et al. [24-26].

Lemma 17.3 ([7]) Let X be anonempty set, Y C X, F : X" — X, g: X - X two
mappings and let x € B .

() FF(X™) CgX)NY, then Fu(X") C(FX")"C GX")NY"

Q) IfF(X") C Y C g(X), then F,.(X") C (FX")" € Y" € G(X").

(3) An element (x1, x2, ..., x,) € X" is x-coincidence point of F and g if and
only if (x1, x2, ..., X,) is a coincidence point of F, and G.

(4) An element (X1, X2, ...,X,) € X" is point of x-coincidence of F and g if and
only if (X1, X2, ..., X,) is a point of coincidence of F, and G.

(5) An element (xy, x2, ..., x,) € X" is common %-fixed point of F and g if and
only if (x1, x2, ..., Xp) is a common fixed point of F, and G.

Lemma 17.4 Let (X, <) be an ordered set, g - X — X a mapping and x € B,. If
GU) 5, G(V) for some U Ve X", then, for eachi € I,, G(U}) C, G(V]).

Proof Let U = (x1,x2,...,x,) and V = (y1, ¥2, ..., y») be such that G(U) C,
G(V), then we have

(gx1, 8%2, .-, 8%n) Eu (815825 -5 &Vn)

= g(x;) < g(y;) foreachi € I,

= g(x;) < g(y;,) foreachi € I,and k € I,

= (8Xi,» &Xiy» -+ » 8%i,) 5o (8Yiy» &ins -+ -» 8Yi,) foreachi € I,

i.e.,
GU) E, G(V}) foreachi € I,.

This completes the proof.

Lemma 17.5 Let (X, <) beanorderedset, F : X" — X, g : X — X twomappings
and let x € By,. If F has the g-monotone property, then F, is G-increasing in ordered
set (X", Ep).

Proof Take U = (x1,x2,...,%,), V=01, ¥2,-..,¥n) € X" with G(U) C,, G(V).
Using Lemma 17.4, we obtain

GU)) E, G(V}) foreachi € I,,
which implies, for all i € I, that
g(x;,) < g(y;,) foreachk € I,. a17.1)
On using (17.1) and the g-monotone property of F, we obtain that, for all i € I,,,

F(xiy, Xiys oo, %0) 2 Fiys Yigs oo o5 Yi)s
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ie.,
F(U;) < F(V)). (17.2)

Using (17.2), we get

F.(U) = (FU!, FU;,..., FU)
C, (FVi, FVi,...,FVY)
= F.(V).

Hence F, is G-increasing. This completes the proof.

Lemma 17.6 ([7]) Let (X, d) be ametric space, g : X — X amapping and * € B .
Then, forany U = (x1, X2, ..., X,), V.= (1, Y2, ..., yu) € X" andi € I,, we have

(1) L3 d(gxi, gyi) =13 d(gx;, gy;) = Au(GU, GV) provided = is per-
k=1 j=1

muted,
) max d(gxi,, 8yi,) = max d(gxj, gy;) = Vu(GU, GV)provided — * s
el JEIy
permuted,
3) max d(gxi,, gyi,) < max d(gxj, gy;) = V,(GU, GV).

Proposition 17.3 ([7]) Let (X, d) be a metric space. Then, for any sequence U™ C
X" and U € X", where U™ = (x{m), xém), cos XMy and U = (x1, X2, . . ., X,), we
have

Ay d .
(1) UM =5 U e x™ 5 x, foreachi € I,

i

V. d .
2) U™ 5 U = x™ 5 x; foreachi € I,

Lemma 17.7 ([7]) Let (X, d) be a metric space, F : X" — X, g : X — X be two
mappings and let x € B,,.

(1) If g is continuous, then G is continuous in both metric spaces (X", A,) and
(X", Vip),

(2) If F is continuous, then F, is continuous in both metric spaces (X", A,) and
(X", V).

Proposition 17.4 ([7]) Let (X, d, <) be an ordered metric space and {U"™} be a
sequence in X", where um = (x{m), xém), e, x,(l’”)).

(1) If {U™Y is increasing (resp., decreasing) in (X", E,), then each of {xl(m)},

{xém) Lo (X} is increasing (resp., decreasing) in (X, <),
(2) If (U™} is a Cauchy sequence in (X", A,) (similarly, in (X", V,)), then each
of (x"™ L {xS™Y, ... {x"™} is a Cauchy sequence in (X, d).

Lemma 17.8 Let (X, d, <) be an ordered metric space, Y € X, F : X" — X, g :
X — X be two mappings and let x € ‘B,,.
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O If(Y,d, <) is6—c0mplete (resp., O-complete), then (Y", A,, C&,)and (Y", V,,
C,) both are O-complete (resp., O-complete),

(2) If F and g are (x, O)-compatible pair (resp., (x, Q)-compatible pair), then
F, and G are O-compatible pair (resp., O-compatible pair) in both ordered metric
spaces (X", Ay, 5,) and (X", V,, E),

B Ifgis O-continuous (resp., O-continuous), then G is O-continuous (resp.,
O-continuous) in both ordered metric spaces (X", A,, C,) and (X", V,, C,),

@A IfFis O-continuous (resp., O-continuous), then F, is O-continuous (resp.,
O-continuous) in both ordered metric spaces (X", A,, C,) and (X", V,, C,),

(5) If F is (g, O)-continuous (resp., (g, O)-continuous), then F, is (G, O)-conti-
nuous (resp., (G, O)-continuous) in both ordered metric spaces (X", A,, C,) and
(X", Vi, B,

(6) If (Y,d, <) has the g-ICU property (resp., the g-DCL property), then
both (Y", A,,C,) and (Y",V,, C,) have the G-ICU property (resp., the G-DCL
property),

(N If (Y,d, <) has the ICU property (resp., the DCL property), then both
Y™, A,,E,) and (Y", V,, C,) have the ICU property (resp., the DCL property).

Proof We prove above conclusions only for O-analogues and only for the ordered
metric space (X", A,, C,). Their O-analogues can analogously be proved. In the
similar manner, one can prove same arguments in the framework of ordered metric
space (X", V,,C,).

(1) Let {U} be an increasing Cauchy sequence in (Y", A,, =,). Denote U™ =
(xim), xém), ..., x™), then by Proposition 17.4, each of {xfm)},{x;m)},. {x™}isan
increasing Cauchy sequence in (Y, d, <). By 6—completeness of (Y,d, <), there
exist xi, X2, ..., X, € Y such that

x(m)

i

d .
—> x; foreachi € I,,

which using Proposition 17.3, implies that

Ay
U™ = U,

where U = (x1, xp, ..., x,,). It follows that (Y", A,, C,) is 6-complete.

(2) Take a sequence {U™} C X" such that {GU™} and {F, U™} are increasing
(w.r.t. partial order C,,) and

GU™) 255 W and F,(U™) 25 w,

for some We X". Write U™ = (xl(m),xém), conx™y and W = (24, 22, - - - Z0)-
Then, by using Propositions 17.3 and 17.4, we obtain

g™ 1 zyand F(x™, x™, ..., x™) 1 z; foreachi € I,. (17.3)
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On using (17.3) and (x, 6)—compatibility of the pair (F, g), we have

llm d(gF(x(m) (m), ce, xl.(:n)), F(gxl.(lm), gxgm), ce, gxi(”f))) =0 foreachi € I,

12 2

ie.,
lim d(g(FU™*), F(GU"*)) =0 foreachi € I,. (17.4)
m—o0

Now, owing to (17.4), we have

l n
A(GFU™, F.GU™) = =3 d(g(FU""), F(GU""))
n
i=l1
— O0asn — oo.

It follows that (F, G) is 6-c0mpatible pair in ordered metric space (X", A,, T,).

The procedure of the proofs of parts (3) and (4) are similar to Lemma 17.5 and
the part (5) and hence is left for readers as an exercise.

(5) Take a sequence {U™} C X" and a U € X" such that {GU®)} is increasing
(w.r.t. partial order ) and

GU™) 2 G,

Write U™ = (x; (m) ('"),...,x,(l’”)) and U = (x1,x2,...,x,). Then, by using
Propositions 17. 3 and 17.4, we obtain

g(x™) 1 g(x;) foreachi € I,.
It follows for each i € I, that
g™y 1 g(xi). g(x™) 1 g(xi). ... g(x™) 1 g(xy,). (17.5)

Using (17.5) and the (g, O)-continuity of F, we get

(m) _ (m) (m)
F(xl.lm,xizm,... m)—)F(x“,x,z,...,x;n)

so that )
F(U"™*) -5 F(U) foreachi €I,

which, by using Proposition 17.3, gives rise
F.(U™) 25 F,(U).

Hence F, is (G, O)-continuous in ordered metric space (X", A,, C,).
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(6) Suppose that (Y, d, <) has the g-ICU property. Take a sequence {U™} C Y"
and a U € Y" such that {U"} is increasing (w.r.t. partial order C,) and

A,
um =5 U,

Write U™ = (x](m), xé’"), coo,x™y and U = (x1,x2,...,%,). Then, by
Propositions 17.3 and 17.4, we obtain

xi('") 1 x; foreachi e I,,
which on using the g-ICU property of (Y, d, <), gives rise
(m) ) .
g(x;"") =% g(x;) foreachi e I,,

or, equivalently,
umc, U

It follows that (Y", A,,, &,) has the G-ICU property.

Analogously, it can be proved that if (Y, d, <) has the g-DCL property, then
(Y", A,, &,) has the G-DCL property.

(7) This result is directly follows from (6) by setting g = I, the identity mapping.
This completes the proof.

17.4 Multi-tupled Coincidence Theorems for Compatible
Mappings

In this section, we prove the results regarding the existence and uniqueness of -
coincidence points in ordered metric spaces for compatible pair of mappings.

Theorem 17.1 Let (X, d, <) be an ordered metric space, Y be an 6—complete sub-
space of X and let x € By. Let F : X" — X and g : X — X be two mappings.
Suppose that the following conditions hold:

(@ F(X") cg(X)NY;

(b) F has g-monotone property;

(c) F and g are (x, 6)—c0mpatible;

(d) gis O-continuous;

(e) either F is O-continuous or (Y, d, <) has the g-ICU property;

(f) there exist xl(o), xéo), e, x,(lo) € X such that

g < F(x” xV, ... x\”) foreachi € I,;

2
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(g) there exists ¢ € §2 such that

1 ¢ 1 ¢
- D d(F (i) Xiy o X0 F iy i 20 93,)) < @(; ;d(gxi, gyi))

i=1

for all xy,xa, ..., %p, Y1, Y2, .-+, Yu € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I,, o, alternately,

(g') there exists ¢ € $2 such that

max d (F(xi, Xiys - -, X)), Fiys Yigs oo -5 i) < w(rlga;xd(gxi, gyi))

iel,

for all xi,x2, ..., X0, Y1, Y2, -+, Yu € X with g(x;) < g(y;) or g(x;) = g(y;) for
eachi € I,. Then F and g have an x-coincidence point.

Proof We can induce two metrics A, and V,, the partial order C, and two self-
mappings F, and G on X" defined as in Sect. 17.3. By item (1) of Lemma 17.8, both
ordered metric subspaces (Y", A,, C,) and (Y", V,, C,) are 6—complete. Further,

(a) implies that F,,(X") € G(X") N Y" by (1) of Lemma 17.3;

(b) implies that F, is G-increasing in ordered set (X", £,) by Lemma 17.5;

(c)implies that F, and G are@—compatible inboth (X", A,,C,)and (X", V,,C,)
by (2) of Lemma 17.8;

(d) implies that G is O-continuous in both (X", A,,Ey)and (X", V,, E,) by 3)
of Lemma 17.8;

(e) implies that either F is O-continuous in both (X", A,,C,) and (X", V,,,C,)
or both (Y", A,, E,) and (Y", V,,, C,) have the G-MCB property by (4) and (6) of
Lemma 17.8;

(f)is equivalentto G(U®) C,, F,(U®) where U® = (xfo), xéo), s xOy e X1y

(g) means that A, (F,U, F,V) < ¢(A,(GU, GV)) for all U = (x1, x3, ..., x,),
V=01y, ..,y € X" withUC,V or UJ,V,

(g’) means that V,(F,U, F,V) < ¢(V,(GU, GV)) for all U = (x1, x3, ..., xy),

V=0i,y,...,y) € X"withUC,VorUd,V.
Therefore, the conditions (a)—(g) of Lemma 17.1 are satisfied in the context of ordered
metric space (X", A,, &,) or (X", V,, C,) and two self-mappings F, and G on X".
Thus, by Lemma 17.1, F, and G have a coincidence point, which is a x-coincidence
point of F and g by (3) of Lemma 17.3. This completes the proof.

Now, we present a dual result corresponding to Theorem 17.1.

Theorem 17.2 Theorem 17.1 remains true if certain involved terms, namely, O-
complete, (x, O)-compatible, O-continuous and the g-ICU property are, respectively,
replaced by O-complete, (x, Q)-compatible, O-continuous and the g-DCL property
provided the assumption (f) is replaced by the following (besides retaining the rest

of the hypotheses):

(f") there exist x}o), xéo), R x,(lo) € X such that
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g(xl.(o)) > F(xl.(lo), xi(zo), e xi(no)) foreachi € I,.
Proof The procedure of the proof of this result is analogously followed, point by
point, by the lines of the proof of Theorem 17.1.

Now, combining Theorems 17.1 and 17.2, we obtain the following result:

Theorem 17.3 Theorem 17.1 remains true if certain involved terms, namely, O-
complete, (x, O)-compatible, O-continuous and the g-ICU property are, respectively,
replaced by O-complete, (x, O)-compatible, O-continuous and the g-MCB property
provided the assumption (f) is replaced by the following (besides retaining the rest
of the hypotheses):

(") there exist xfo), xéo) R x,(lo) € X such that
g™y < F(x", x”, ..., x") foreachi e I,
or
g = F(x” x”, ... x") foreachi € I,

l\lotice that Theorems 17.1, 17.2, and 17.3 provide their consequences, in which
the O, O and O analogous of metrical notions can be replaced by their usual senses.
Now, we present some consequences of Theorems 17.1, 17.2, and 17.3.

Corollary 17.1 Theorem 17.1 (similarly, Theorems 17.2 and 17.3) remains true if
we replace the condition (g) by the following condition:

(g") there exists ¢ € §2 such that
1 n
AP, %) FOL Y2, ) < 0 D d(gxis g
-

for all xy,xa, ..., X, Y1, Y2, - Yo € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I, provided that % is permuted.

Proof SetU = (x1,x2,...,x,)and V = (y1, y2, ..., ¥u), Then we have G(U) C,
G(V)orG(U) 3, G(V).As G(U) and G (V) are comparable, foreachi € I,, G(U})
and G(V}) are comparable w.r.t. the partial order =,. Applying the contractivity
condition (g’) on these points and using Lemma 17.6, for each i € I,, we obtain

l n
dOF (i X6 F O i 33) = 0= 3 d(gxi g3i))
n k=1

= w(% Xn:d(ng, gy,-))
j=1

as * is permuted, so that
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Taking summation over i € I, on both the sides of above inequality, we obtain
n n
1
D d(F (i Xiys %) F Qi Yigs -0 93,)) < "fﬂ(— > d(gx;, gyj)),
i=1 5o
so that
1 ¢ 1 ¢
- Edw(xil,x,-z, ) PO i) < o Zld(ng’ &)
i= j=

for all xy, x2, ..., X, Y1, Y2, .-+, Yo € X with g(x;) < g(yi) or g(x;) > g(y;) for
each i € I,. Therefore, the contractivity condition (g) of Theorem 17.1 (similarly,
Theorems 17.2 and 17.3) holds and hence Theorem 17.1 (similarly, Theorems 17.2
and 17.3) is applicable. This completes the proof.

Corollary 17.2 Theorem 17.1 (similarly, Theorems 17.2 and 17.3) remains true if
we replace the condition (g') by the following condition:

(g"") there exists ¢ € $2 such that
d(F(x1,x2, s x0), FO1, y2, oo ) < w(glea}xd(gxi,gyi))

for all xi,xa, ..., %p, Y1, y2, ..., yn € X with g(x;) = g(yi) or g(x;) = g(yi) for
eachi € I, provided that either * is permuted or ¢ is increasing on [0, 00).

Proof Set U = (x1,x2,...,%,), V.= (1,2, ..., yu). Then, similar to previous
corollary, for each i € I,,, G(U}) and G(V}) are comparable w.r.t. the partial order
C,. Applying the contractivity condition (g”’) on these points and using Lemma
17.6, for each i € I,,, we obtain

d(F(Xila Kigs enns 'xin)’ F(yil’ Yigs + o+ yi"))
< <p<maxd(gxik,gyik)>
kel,

(ma;xd(ng,gyj)) if * is permuted,
j€l

=9
< go(mz}x d(gx;, gyj)) if ¢ is increasing,
Jjel,
so that

d(F(Xiy, Xiys o3 X))y F iy Yigs oo+ ¥iy)) < (p(riréa}xd(gx,-, gyi)) foreachi € I,.
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Taking maximum over i € I, on both the sides of above inequality, we obtain

maxd(F (x5 %) F O i) < o maxd(ex;. g3,)

iel,

for all xy, x2, ..., X, Y1, Y2, -+, Yo € X with g(x;) < g(y;) or g(x;) > g(y;) for
each i € I,. Therefore, the contractivity condition (g') of Theorem 17.1 (similarly,
Theorems 17.2 and 17.3) holds and hence Theorem 17.1 (similarly, Theorems 17.2
and 17.3) is applicable. This completes the proof.

Now, we present multi-tupled coincidence theorems for linear and generalized
linear contractions.

Corollary 17.3 In addition to the hypotheses (a)—(f) of Theorem 17.1 (similarly,
Theorems 17.2 and 17.3), suppose that one of the following conditions holds:

(h) there exists o € [0, 1) such that

1 n o n
- D d(F (i) Xiy o X0 F (i Yigs 20 93,)) < - > d(gxi. gvi)

i=1 i=1

for all xy,xa, ..., %p, Y1, Y2, .-+, yu € X with g(x;) < g(yi) or g(x;) > g(yi) for
eachi € I,,;

(i) there exists o € [0, 1) such that

maXd(F(xi]a xiza RN -xin)a F(yil 5 yizv L] yi,l)) S aI;.I'EIle(g-xiv gyl)

iel,
for all xy,x2, ..., %n, Y1, Y2, ... yu € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I,.
Then F and g have an x-coincidence point.

Proof On setting ¢(t) = at with o € [0, 1), in Theorem 17.1 (similarly, Theorems
17.2 and 17.3), we get our result.

Corollary 17.4 In addition to the hypotheses (a)—(f) of Theorem 17.1 (similarly,
Theorems 17.2 and 17.3), suppose that one of the following conditions holds:

(j) there exists a € [0, 1) such that

d(F(-xl’-XQA "'7-xn)7 F(yh y29 ~~-’)’n)) S aIlIéaIXd(g'xlﬂ g)’z)

Sforall xi,x2, ..., %, Y1, Y2, ..., Y0 € X with g(x;) < g(yi) or g(x;) = g(y) for
eachi € I,,;

(k) there exist a1, ay, ..., o, € [0, 1) with > o; < 1 such that

i=1
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d(F(x1, X2, . X), 1, 2,0 y) < Y ond(gxi, gvi)

i=1

Jor all xy,xa, ..., Xp, Y1, Y2, ..., yu € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I,;
(1) there exists a € [0, 1) such that

o n
d(F(x1, %2, xn), FOryas o)) < — > d(gxi, g3:)
n

i=1

for all xy,xa, ..., %p, Y1, Y2, .-+, yu € X with g(x;) < g(yi) or g(x;) > g(yi) for
eachi € I,.

Then F and g have an x-coincidence point.

Proof Setting ¢(t) = at with « € [0, 1), in Corollary 17.2, we get the result cor-
responding to the contractivity condition (j). Notice that here ¢ is increasing on
[0, 00).

To prove the result corresponding to (k), let 8 = Y «; < 1, then we have
i=1

n
d(F(x1, X2, .o X), 1y, -0 yn) < ) ond(gxi, gvi)
i=1
n
< (Z on) max d(gx;, 8;)
1=

= ﬂr}gx d(gx;j, gyj)s

so that result follows from the result corresponding to (j).
Finally, setting o; = % for all i € I,,, where o € [0, 1) in (k), we get the result

corresponding to (1). Notice that here Y «; = o < 1. This completes the proof.
i=1
Now, we present uniqueness result corresponding to Theorem 17.1 (resp., Theo-
rems 17.2 and 17.3), which runs as follows:

Theorem 17.4 In addition to the hypotheses of Theorem 17.1 (resp., Theorems 17.2
and 17.3), suppose that, for every pair (x1,X2,...,%Xn), (Y1, Y2, ..., ) € X",
there exists (21,22, .-.,2n) € X" such that (gz1, 822, ..., 8Zn) is comparable to
(gx1, 8x2, ..., 8x,) and (gy1, &2, - .., &Yn) W.IL. the partial order &, then F and
g have a unique point of *-coincidence, which remains also a unique common *-fixed
point.

Proof Set U = (-xl’-x21 ""xn)v V = ()’1,)72, "‘7yn) and W = (Z17127 ~'-»Zn)~
Then, by one of our assumptions G (W) is comparable to G(U) and G (V). There-
fore, all the conditions of Lemma 17.1 are satisfied. Hence, by Lemma 17.1, F, and
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G have a unique common fixed point, a unique point of coincidence as well as a
unique common fixed point, which is indeed a unique point of x-coincidence as well
as a unique common *-fixed point of F' and g by (4) and (5) of Lemma 17.3. This
completes the proof.

Theorem 17.5 In addition to the hypotheses of Theorem 17.4, suppose that g is
one-one, then F and g have a unique *-coincidence point.

Proof Let U = (x1,x3,...,%x,) and V = (y1, y2,..., yu) be two x-coincidence
point of F and g then, using Theorem 17.4, we obtain

(gx1, 8%2, ..., 8%y) = (Y1, &Y2> - --» &Yn)

or, equivalently,
g(x;) = g(y;) foreachi € I,.

As g is one-one, we have
x; =y; foreachi € I,.

It follows that U=V, i.e., F and g have a unique *-coincidence point. This completes
the proof.

17.5 Multi-tupled Coincidence Theorems Without
Compatibility of Mappings

In this section, we prove the results regarding the existence and uniqueness of -
coincidence points in an ordered metric space X for a pair of mappings F : X" — X
and g : X — X, which are not necessarily compatible.
Theorem 17.6 Let (X, d, <) be an ordered metric space, Y an O-complete subspace
of Xand x € B,. Let F : X" — X and g : X — X be two mappings. Suppose that
the following conditions hold:

(@) F(X") €Y < g(X);

(b) F has g-monotone property;

(c) either F is (g, O)-continuous or F and g are continuous or (Y, d, <) has the

g-ICU property;
(d) there exist xfo), xéo), e, x,go) € X such that

g(xi(o)) <F (xi(lo), xl.(zo), ...,xi(no) ) foreachi € I;

(e) there exists ¢ € §2 such that

1 < 1 &
- E d(F(xilaxiza"-’-xin)aF(yila }’ig,---,Yi,,)) S(p(_ E d(g'xi? gyl))
" e

i=1
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Jorall xi,x2, ..., %n, Y1, Y2, - -» Yo € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I,

or, alternately,

(&) there exists ¢ € §2 such that

max d(F (x;, Xiy, -« o, Xi,), Fiys Yigs -5 Yip)) < w(rgﬂ;xd(gxi, gyi))

iel,

for all xy,xa, ..., %p, Y1, Y2, .-+, yu € X with g(x;) < g(yi) or g(x;) > g(yi) for
eachi € I,.

Then F and g have an x-coincidence point.

Proof We can induce two metrics A, and V,, the partial order T, and two self-
mappings F, and G on X" defined as in Sect.17.3. By (1) of Lemma 17.8, both
ordered metric subspaces (Y, A,, E,) and (Y", V,,C,) are 6—complete. Further,

(a) implies that F,(X") C Y" € G(X") by (2) of Lemma 17.3;

(b) implies that F, is G-increasing in an ordered set (X", C,) by Lemma 17.5;

(c) implies that either F, is (G, O)-continuous in both (X", A,,C,) and
(X", V,,C,) or F, and G are continuous in both (X", A,) and (X", V,) or both
(Y", A,,E,) and (Y", V,, C,) have the G-ICU property by Lemma 17.7 and (5)
and (7) of Lemma 17.8;

(d) is equivalent to G(U®) &, F,(U®) where U® = (x”, x{”,...,x©®) e
X"

(e) means that A, (F, U, F,V) < ¢(A,(GU, GV)) for all U = (x1, x2, ..., X,),
V=01 y2, o) € X" with GU) &, G(V) or G(U) 2, G(V);

(¢/) means that V,(F,U, F,V) < ¢(V,(GU, GV)) for all U = (x1, x2, ..., X,),
V=01y,...,0) € X"withG(U) C,, G(V) or G(U) J,, G(V).
Therefore, the conditions (a)—(e) of Lemma 17.2 are satisfied in the context of ordered
metric space (X", A,, &,) or (X", V,, C,) and two self-mappings F, and G on X".
Thus, by Lemma 17.2, F, and G have a coincidence point, which is a x-coincidence
point of F and g by (2) of Lemma 17.3.

Now, we present a dual result corresponding to Theorem 17.6.

Theorem 17.7 Theorem 17.6 remains true if certain involved terms, namely: O-
complete, (g, O)-continuous and the g-ICU property are respectively replaced by
O-complete, (g, O)-continuous and the g-DCL property provided the assumption (d)
is replaced by the following (besides retaining the rest of the hypotheses):

(d") there exist xl(o), xéo), e, x,go) € X such that

0) ©) (O ) .
g(x;”) = F(xi] X e X ) foreachi € I,.

2

Proof The procedure of the proof of this result is analogously followed, point by
point, by the lines of the proof of Theorem 17.6.
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Now, combining Theorems 17.6 and 17.7, we obtain the following result:

Theorem 17.8 Theorem 17.6 remains true if certain involved terms, namely, O-
complete, (g, O)-continuous and the g-ICU property are, respectively, replaced by
O-complete, (g, O)-continuous and the g-MCB property provided the assumption
(d) is replaced by the following (besides retaining the rest of the hypotheses):

(d") there exist xfo) , xéo), e x,ﬁo) € X such that
g™ < F(x”, x”, ..., x") foreachi e I,
or
©0) © 0 (0) .
g(x; ) = F(x; ", x;",...,x; ") foreachi € I,.

hlotice that Theorems 17.6, 17.7, and 17.8 provide their consequences, in which
the O, O and O analogues of metrical notions can be replaced by their usual senses.

Similar to Corollaries 17.1-17.4, the following consequences of Theorems 17.5,
17.6, and 17.7 hold:

Corollary 17.5 Theorem 17.6 (similarly, Theorem 17.7 or Theorem 17.8) remains
true if we replace the condition (e) by the following condition:

(€) there exists ¢ € S2 such that
1 n
d(F(x1, X2, s Xn), FOy1s y2, o000 90) < w(— D d(gxi, gyi))
o

for all xy,xa, ..., Xn, Y1, Y2, .. yu € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I, provided that % is permuted.

Corollary 17.6 Theorem 17.6 (similarly, Theorem 17.7 or Theorem 17.8) remains
true if we replace the condition (€) by the following condition:

(€) there exists ¢ € §2 such that
d(F @205 PO 2, )) < o maxd (g, i)
for all xi,xa, ..., %p, Y1, y2, ..., yn € X with g(x;) = g(yi) or g(x;) = g(yi) for
eachi € I, provided that either * is permuted or ¢ is increasing on [0, 00).

Corollary 17.7 In addition to the hypotheses (a)—(d) of Theorem 17.6 (similarly,
Theorem 17.7 or Theorem 17.8), suppose that one of the following conditions holds:

(f) there exists a € [0, 1) such that

I « o
=D A Gy iy X)), F Qi Yoo o0 3i)) < — ) d (8%, 8)
pa i1
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Jorall xi,x2, ..., %n, Y1, Y2, - -» Yo € X with g(x;) < g(yi) or g(x;) = g(yi) for
eachi € I,;
(g) there exists « € [0, 1) such that
max d (F (x;,, Xi,,

cens X)), Figs Yigs oo ¥iy)) < amaxd(gx;, gyi)
iel, iel,

Sor all xi,x2, ..., %0, Y1, Y2, ..., Yo € X with g(x;) < g(y;) or g(x;) > g(y:) for
eachi € I,.

Then F and g have an x-coincidence point.

Corollary 17.8 In addition to the hypotheses (a)—(d) of Theorem 17.6 (similarly,

Theorem 17.7 or Theorem 17.8), suppose that one of the following conditions hold:
(h) there exists o € [0, 1) such that

d(F(xi,x2, ..., %), Fyi, y2, ... yw)) < arirgxd(gxi, gyi)

forall xi,x2, ..., X0, Y1, Y2, -+, Yu € X with g(x;) < g(y;) or g(x;) = g(yi) for
eachi € I,;

n
(i) there exist oy, o, ..., o, € [0, 1) with Y o; < 1 such that
i=1

n
d(F(x17 X2y oeny xn)a F(yh Yo, ..y yn)) S Zaid(g'xi9 gyl)
i=1
for all x1, x3, .
eachi € I,,;

(j) there exists a € [0, 1) such that

c X Y1 Y2s o Yn € X with g(x;) < g(yi) or g(xi) = g(yi) for

o n
d(F (1, X, Xn) FO1s 2,0 m) < > d(gxi, gyi)
i=1

for all xi,x2, ..., X, Y1, Y2, -+, Yu € X with g(x;) < g(y;) or g(x;) = g(y;) for
eachi € I,.

Then F and g have an x-coincidence point.

Now, we present uniqueness results corresponding to Theorems 17.6, 17.7 and
17.8, which run as follows:
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Theorem 17.9 In addition to the hypotheses of Theorem 17.6 (similarly,
Theorem 17.7 or Theorem 17.8), suppose that, for every pair (xi, X2, ..., Xp),
V1, Y2, .-, Yu) € X", there exists (21,22, ...,2,) € X" such that (gz1, 822, ...,
gz,) is comparable to (gx1, gxa, ..., gx,) and (gy1, €Yz, - . ., 8Yn) W.L.L the partial
order T, then F and g have a unique point of x-coincidence.

Proof Set U = (x1,x2,...,%,), V=01,y2,..., ) and W = (21,22, ..., 2n),
then, by one of our assumptions G (W) is comparable to G(U) and G (V). Therefore,
all the conditions of Lemma 17.2 are satisfied. Hence, by Lemma 17.2, F, and G
have a unique point of coincidence, which is indeed a unique point of x-coincidence
of F and g by (4) of Lemma 17.3. This completes the proof.

Theorem 17.10 In addition to the hypotheses of Theorem 17.9, suppose that g is
one-one, then F and g have a unique *-coincidence point.

Proof Let U = (x1,x2,...,%x,) and V = (y1, ¥2, ..., ¥») be two x-coincidence
points of F and g then, using Theorem 17.9, we obtain

(gx1,8%2, ..., 8%,) = (81,82, -+ &Yn)

or, equivalently,
g(x;) = g(y;) foreachi e I,.

As g is one-one, we have
x; =y; foreachi € I,.

Itfollowsthat U = V,i.e., F and g have aunique *-coincidence point. This completes
the proof.

Theorem 17.11 [n addition to the hypotheses of Theorem 17.9, suppose that F and
g are (x, w)-compatible, then F and g have a unique common *-fixed point.

Proof Let(x1, x2, ..., x,) beax-coincidence point of F and g. Write F' (x;,, x,, . . .,
x;,) = g(x;) =X, foreachi € I,. Then, by Proposition 17.2, (x1, X3, ..., X,) being
a point of x-coincidence of F' and g is also a x-coincidence point of F' and g. It
follows from Theorem 17.9 that

(gx1, 8%2, ..., 8%,) = (X1, 8X2, ..., &Xn),
ie., x; = g(x;) for each i € I, which, for each i € I,, yields that
F(xi, iy, o0, %) = g(x) = X;.

Hence (X1, X5, ..., X,) is a common *-fixed point of F and g.
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To prove the uniqueness, assume that (x{, x5, ..., x;) is another common *-fixed
point of F' and g. Then, again from Theorem 17.9, we have

(gx7, 8x5,...,8%,) = (X1, 8X2, ..., 8Xn),

ie.,
(x5, o, x) = (X1, X2, -0y Xn).

This completes the proof.

17.6 Multi-tupled Fixed Point Theorems

On particularizing g = I, the identity mapping on X, in the foregoing results con-
tained in Sects. 17.4 and 17.5, we obtain the corresponding *-fixed point results,
which run as follows.

Theorem 17.12 Let (X, d, <) beﬁn ordered metric space, F : X" — X be a map-
ping and let x € B,,. Let Y be an O-complete subspace of X such that F(X") C Y.
Suppose that the following conditions hold:

(a) F has the monotone property;
(b) either F is O-continuous or (Y, d, <) has the ICU property;

(c) there exist x{o) , xéo) ey x,(lo) € X such that

xi(o) < Fx?, x©

0 .
i s X, ,...,xél)) foreachi € I,;

(d) there exists ¢ € $2 such that

1 ¢ 1 ¢
- D d(F (i, Xy - X0, F iy Yigs - ¥i,)) = 90(; > d(xi, yi))
il

i=1

forall x1,x2, ..., X0, Y1, Y2, .., Yu € X with x; X y; or x; = y; foreachi € I, or,
alternately,

(d’) there exists ¢ € 2 such that

maxd(F(x;, Xiy, ..., %), FYips Yins o005 i) = go(rl%a}xd(xi, yi))

iel,

for all xi,x2, ..., %X, Y1, Y2, ..., Yn € X with x; < y; or x; = y; for each i € I,.
Then F has an x-fixed point.
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Theorem 17.13 Theorem 17.12 remains true if certain involved terms, namely:
O-complete, O-continuous and the ICU property are, respectively, replaced by
O-complete, O-continuous and the DCL property provided the assumption (c) is
replaced by the following (besides retaining the rest of the hypotheses):

(¢') there exist x{o) , xéo), el x,ﬁo) € X such that
xi(o) > F(xi(lo), xi(zo), e, xi(no)) foreachi € I,.
Theorem 17.14 Theorem 17.12 remains true if certain involved terms, namely,
O-complete, O-continuous and the ICU property are, respectively, replaced by

O-complete, O-continuous and the MCB property provided the assumption () is
replaced by the following (besides retaining the rest of the hypotheses):

(c") there existxl(o), xéo), R x,(lo) € X such that
xl.(o) < F(xi(lo), xl.(zo), R xl.(no)) foreachi € I,
or
xi(o) > F(xi(lo), xi(zo), el xi(no)) foreachi € I,.

Corollary 17.9 Theorem 17.12 (similarly, Theorem 17.13 or Theorem 17.14)
remains true if we replace the condition (d) by the following condition:

(d) there exists @ € $2 such that
1 n
d(F (132 %) FOr o) < 0= 3 d (i)
i=1

forall xi,x3, ..., X, V1, Y2, .., Yn € X withx; < y; foreachi € I, or x; > y; for
each i € I, provided that * is permuted.

Corollary 17.10 Theorem 17.12 (similarly, Theorem 17.13 or Theorem 17.14)
remains true if we replace the condition (d) by the following condition:

(d) there exists ¢ € $2 such that
d(F (1,2, 20 FO v 0)) < o maxd(i, o)

forall xi,x3, ..., X, Y1, Y2, .-, Yn € X Withx; < y; for eachi € I, or x; > y; for
eachi € I, provided that either * is permuted or ¢ is increasing on [0, 00).

Corollary 17.11 Theorem 17.12 (similarly, Theorem 17.13 or Theorem 17.14)
remains true if we replace the condition (d)(resp(d’)) by the following condition:
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(e) there exists a € [0, 1) such that

1 n a n
- > d(F (i, Xiys oo x0) F Qi Yigs -2 93,)) < - > d(xi, i)
i=1 i=l

forall xi,x2, ..., X0, Y1, Y2, .-, Yn € X withx; < y; or x; > y; foreachi € I,; or,
alternately

(€") there exists a € [0, 1) such that
rlge}xd(F(xil,xiz, coes X))y FOigs Yigs o o0 03,)) < WI}EXd(xiv Vi)

forall xi,x2, ..., X0, Y1, Y2, -+, Yn € X withx; < y; or x; > y; foreachi € I,.

Corollary 17.12 Theorem 17.12 (similarly, Theorem 17.13 or Theorem 17.14)

remains true if we replace the conditions (d) and (d") by one of the following condi-
tions:

(f) there exists o € [0, 1) such that
d(F (i, x2, s 2n), O y2, o0 yn)) < emaxd(xi, i)

forall xi1,x2, ..., X0, V1, Y2, -+, Yn € X Withx; <X y; or x; > y; foreachi € I,;

(g) there exist ay, oz, ..., o, € [0, 1) with Y o; < 1 such that
i=1

d(F(x1, %2, %), F1, yas o, ) < ) cad (xi, )
i=1
forall xi,x2, ..., %Xy, Y1, Y2, ..
eachi € I,;
(h) there exists a € [0, 1) such that

., Yn € X with x; X y; foreachi € I, or x; > y; for

o n
d(F(-xla-XZa"'a-xn)vF(ylay25'~'ayn))5_ § d('xi7yi)
n

i=1
forall xi1,x, ..., X0, Y1, Y2, -+, Yn € X Withx; < y; or x; > y; for eachi € I,.

Theorem 17.15 In addition to the hypotheses of Theorem 17.12 (similarly, Theorem
17.13 or Theorem 17.14), suppose that, for every pair (x1, X2, ..., Xn)s (Y1, Y2, « - -,
vn) € X", there exists (z1, 22, ..., 2n) € X" such that (z1, 22, . . ., Zu) is comparable

to (x1,x2,...,%,) and (¥1, ¥2, ..., Yp) W.LL. the partial order T,. Then F has a
unique *-fixed point.
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17.7 Conclusion

We have seen that *-fixed point theorems proved in Alam et al. [7] unify all multi-
tupled fixed point theorems involving mixed monotone property. Analogously, all *-
fixed point theorems proved in this chapter unify all multi-tupled fixed point theorems
involving monotone property, which substantiate the utility of our results. For the
sake of demonstration, in the following lines, we consider some special cases of our
newly proved results by choosing suitable involved terms: n and .

The following family of control functions is introduced by Lakshmikantham and
Ciri¢ [9]:

D = {go 1[0, 00) — [0, 00) : (t) < t, lim+ o(r) <t foreacht > O}.
r—t

It is clear that the class £2 enlarges the class @, i.e., @ C £2.

Corollary 17.13 ([16]) Let (X, d, X) be an ordered complete metric space and
F : X? — X be a mapping. Suppose that the following conditions hold:

(a) F has the argumentwise monotone property;
(b) either F is continuous or (X, d, <) has the MCB property;
() there exist x©, y(o) € X such that x© < F(x©, y(o)) and y(o) =< F(y(o),
©)y.
x9);
(d) there exists o € [0, 1) such that

o
d(F(x,y), F(u,v)) < E[d(x, u) +d(y,v)]
forall x,y,u,v € X withx <uandy < v.
Then F has a coupled fixed point.

Here it can be pointed out that merely the /CU property can serve our purpose
instead of the MCB property.

Corollary 17.14 ([17]) Let (X, d, <) be an ordered metric space and F : X* — X
and g : X — X two mappings. Assume that there exists ¢ € @ such that

max{d(F(x, y), F(u,v)),d(F(y,x), F(v,u))} < g(max{d(gx, gu), d(gy, gv)})

Jorallx,y,u,v e Xwithg(x) < g(u)and g(y) < g(v)org(x) > g(u)and g(y) >
g(v). If the following conditions hold:

(a) F(X?) C g(X);

(b) F has the argumentwise g-monotone property;

(c) there exist x©@, y© e X such that

g < Fx @y, () < FG@,x@)
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or
gx @) = F(x @,y ¢y @) = F©, xO);

(d) F and g are continuous and compatible and (X, d) is complete or
(e) (X, d, <) has the MCB property and one of F(X?) or g(X) is complete.
Then F and g have a coupled coincidence point.

Corollary 17.15 ([13]) Let (X, d, <) be an ordered complete metric space and
F : X3 — X be a mapping. Suppose that the following conditions hold:

(a) F has the argumentwise monotone property;
(b) either F is continuous or (X, d, X) has the ICU property;
() there exist x©, y(o), 7O e X such that

¥ @ < F®,y©, 20,59 < PO, 29, 29)

and
Z(0) < F(Z(O), y(0)7 x(O));

(d) there exista, B,y € [0, 1) witho + B8+ y < 1 such that
d(F(x,y,2), Flu,v,w)) < ad(x,u) + Bd(y,v) + yd(z,w)

forallx,y,z,u,v,w e X withx <u,y <vandz < w.

Then F has a tripled fixed point (in the sense of Borcut [13]), i.e., there existx, y, 7 €
X such that F(x,y,z) =x, F(y,x,z) =yand F(z,y,x) = z.

Corollary 17.16 ([14]) Let (X, d, <) be an ordered complete metric space and

F:X?>— Xandg: X — X two mappings. Suppose that the following conditions
hold:

(a) F(X?) € g(X);

(b) F has the argumentwise g-monotone property;

(c) F and g are commuting;

(d) g is continuous,

(e) either F is continuous or (X, d, <) has the g-ICU property;
() there exist x©, y(O), 7O e X such that

g @) < F(x®. y®. 2. g3 = FOO . x0.29)

and
2@ < F(z?@, y© x©y,

(g) there exists ¢ € @ such that

d(F(x,y,2), Fu,v,w)) < p(max{d(gx, gu), d(gy, gv), d(gz, gw)})
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forallx,y,z,u,v,w € X with g(x) < g(u), g(y) < gv) and g(z) < g(w).

Then F and g have a tripled coincidence point (in the sense of Borcut [14)), i.e., there
exist x, v,z € X such that F(x,y,z) = g(x), F(y,x,2) =g() and F(z,y,x) =
8(2).

Corollary 17.17 ([15]) Let (X, d, <) be an ordered complete metric space and
F:X*— Xandg: X — X two mappings. Suppose that the following conditions
hold:

(a) F(X*) C g(X);

(b) F has the g-monotone property;

(c) F and g are commuting;

(d) g is continuous,

(e) either F is continuous or (X, d, <) has the g-ICU property;

(f) there exist x©, y(o) , 29 w9 e X such that

g ) < Fa@ y@ 2@ w®), g(v) < F @ w®, 2@, y®),
8@ < FE?, y @ x @ w®), gw®) < FEO,w®,x©, yO);

(g) there exists ¢ € @ such that

A(F(x. y. 2.w). F(uv.r. 1)) < @(d(gx,gu) +d(gy, gv) +d(gz, gr) +d(gw, gt))

4

for all x,y,z,w,u,v,r,t € X with g(x) < gu), g(y) <g), gz2) < g(r) and
gw) = g(0).

Then F and g have a quartet coincidence point (in the sense of Karapinar [11]),
i.e., thereexistx,y,z,w € X suchthat F(x,y,z,w) = gx), F(x,w, z,y) = g(»),
F(z,y,x,w) =g(2) and F(z,w, x,y) = g(w).
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Chapter 18

Convergence Analysis of Solution Sets for | ¢
Minty Vector Quasivariational Inequality
Problems in Banach Spaces

Nguyen Van Hung, Dinh Huy Hoang, Vo Minh Tam, and Yeol Je Cho

Abstract In this paper, we consider convergence analysis of the solution sets for
vector quasi-variational inequality problems of the Minty type. Based on the nonlin-
ear scalarization function, we obtain a key assumption (Hj) by virtue of a sequence
of gap functions. Then we establish the necessary and sufficient conditions for the
Painlevé—Kuratowski lower convergence and Painlevé—Kuratowski convergence.

Keywords Minty vector quasivariational inequality + Gap function *
Painlevé—Kuratowski convergence - Continuous convergence - Convergence
analysis

18.1 Introduction

Vector variational inequality was first introduced and studied by Giannessi [19] in
finite-dimensional spaces. Since then, vector variational inequality problems in finite
and infinite dimensional spaces were studied by many authors. Recently, there has
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been an increasing interest in the study for the existence conditions and stability of
solution sets, as the closedness, the lower semi-continuity and upper semi-continuity,
some kinds of the continuity, the connectedness for different problem models as
vector variational inequality problems, see [1, 11, 13, 21, 23, 25, 32, 40, 45],
equilibrium problems, see [3, 5, 12, 14, 15, 24, 34, 36] and references therein.

It is well known that the notion of gap function for finite-dimensional variational
inequalities was introduced by Auslender [8] in 1976. Using the gap function, a
variational inequality can be reformulated as an optimization problem. Fukushima
[18] and Yamashita et al. [42] developed various kind of regularized gap functions
for variational inequalities. Based on regularized gap functions, they also established
error bounds for variational inequalities under some suitable assumptions. Since then,
the study of gap functions and error bounds for equilibrium problems, variational
inequalities and hemivariational inequalities has become an interesting topic, see e.g.
[2, 6, 9, 26-31] and the references therein.

In 1994, Luc et al. [38] established the Painlevé—Kuratowski convergence and
Attouch-Wets convergence of the efficient and weak efficient solution sets for opti-
mization problems. After that, many authors considered the convergence of the
solution sets for various kinds of the optimization problems, variational inequal-
ity problems and equilibrium problems, see [16, 17, 20, 29, 35, 38, 39, 44]. In [20],
Huang studied the Painlevé—Kuratowski convergence and Mosco convergence of the
approximate sets to the efficient sets for optimization problems.

Recently, Li et al. [37] established Painlevé—Kuratowski convergence of the
approximate solution sets for generalized Ky Fan inequality problems by contin-
uous convergence of the bifunction sequence and Painlevé—Kuratowski convergence
of the set sequence. Very recently, Hung et al. [22] extended and studied general-
ized Ky Fan inequality problems to generalized vector quasiequilibrium problems
of the Minty type and Stampacchia type. After that, Hung et al. [22] discussed the
Painlevé—Kuratowski upper convergence, lower convergence and convergence of
the approximate solution sets for these problems by using a sequence of mappings
I'c-converging.

On the other hand, in 2008, Fang et al. [17] used the nonlinear scalarization func-
tion method to study the Painlevé—Kuratowski convergence of the solution sets of the
perturbed set-valued weak vector variational inequality problems of the Stampacchia
type. The authors used the key hypothesis (H,) to establish sufficient conditions for
the Painlevé—Kuratowski lower convergence of the solution sets for these problems.
Based on the approach of Fang et al. [17].

In 2017, Anh et al. [4] established necessary and sufficient conditions for the
Painlevé—Kuratowski upper convergence, the Painlevé—Kuratowski lower conver-
gence and the Painlevé—Kuratowski convergence of solution sets to generalized set-
valued quasiequilibrium problems of the Stampacchia type by virtue of a sequence
of gap functions based on the nonlinear scalarization function in metric spaces.
However, to the best of our knowledge, up to now, there are not any works on
establishing the necessary and sufficient conditions for Painlevé—Kuratowski lower
convergence and Painlevé—Kuratowski convergence for the generalized vector qua-
sivariational inequality problems of the Minty type by using nonlinear scalarization
function method.
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Motivated by the research works mentioned above, in this paper, we introduce
generalized vector quasi-variational inequality problems of the Minty type (for short,
(MQVIP) and (MQVIP),,) in real Banach spaces. Based on the nonlinear scalarization
function, we obtain a key assumption (Hj) by virtue of a sequence of gap functions.
Then we establish the necessary and sufficient conditions for Painlevé—Kuratowski
lower convergence and Painlevé—Kuratowski convergence of the solution sets of
these problems. Our results are new and an improvement the existing ones in the
literature. Some examples are given for the illustration of our results.

The structure of our paper is as follows: In Sect. 18.2, we introduce the problems
(MQVIP) and (MQVIP),,, recall some definitions and important properties. We also
establish gap functions for the problems (MQVIP) and (MQVIP),, and consider
their continuity. In Sect. 18.3, we prove that the hypothesis (H}) is a sufficient and
necessary condition for the Painlevé—Kuratowski lower convergence and Painlevé—
Kuratowski convergence of the solution sets of these problems.

18.2 Preliminaries

Let .2" be a real Banach space. A nonempty subset € of 2" is called a convex
cone if € +% C € and L6 C € for all A > 0. A cone % is said to be pointed if
€ N (—%) = {0} and solid if it has nonempty interior, i.e., int% # .

Throughout this paper, we assume that X and Y be two real Banach spaces. Let
the norm in X be denoted by || - ||, A C X be a nonempty subset and let x € X. Then
distance between of the point x and the set A is defined by

dist(x, A) = inf{||x — a||}.
aceA

Let L(X, Y) be the space of all linear continuous operators from X to Y. Let K :
X = X,T:X = L(X,Y) be set-valued mappings and C : X = Y be a set-valued
mapping such that, for all x € X, C(x) is a pointed, closed convex and solid cone
in Y with apex at 0. Denoted by (z, x) the value of a linear operator z € L(X, Y) at
x e X.

Now, we consider the following generalized vector quasi-variational inequality
problem of the Minty type (for short, MQVIP)):
(MQVIP) Find X € K (x) such that

(z,y—x) e Y\ —intC(x), Vye K(x), ze T().

For the sequences of set-valued mappings K,, : X = X, T, : X = L(X,Y), we
consider the following sequence of vector quasi-variational inequality problems of
the Minty type (for short, (MQVIP),):

(MQVIP), Find x,, € K,,(x,,) such that
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(Z’ y _fn) € Y \ —il’ltC(.Yn), V)’ € Kn(fn)v Z € Tn(y)

We denote the solution sets of the problems (MQVIP) and (MQVIP), by S(T, K)
and S(7,, K,), respectively. Since the existence of solutions for vector quasi-
variational inequality problems of the Minty type has been studied intensively (see,
for example, [40]), we always assume that S(7, K) and S(7,, K,,) are not equal
empty sets.

In the following, we recall concepts related to the convergences of set and mapping
sequences studied in Rockafellar et al. [41] and Durea [15].

Foreache > Oandasubset A C X, let the open e-neighbourhood of A be defined
as%(A,e)={x e X |3dy e A : ||y — x| < e}. The notation Z(x, r) denotes the
open ball with center x and radius » > 0.

Let X be a normed space. A sequence of sets {D,}, D, C X, is said to be upper
convergent (resp., lower convergent) in the sense of Painlevé—Kuratowski to D if
limsup D, C D (resp., D C liminf D,). {D,} is said to be convergent in the sense

n—oo

n—o00

of Painlevé—Kuratowski to D if lim sup D,, C D C liminf D, with

n— 00 n—oo

n— 00 k—o00

limsup D, := {x € X :x = lim x,,, x, € D,,, {x, }asubsequence of {xn}} ,

liminf D, := {x € X :x = lim x,, x, € D, for sufficiently large n} .
n—oo n—oQ

A set-valued mapping G : X =3 Y is said to be outer semi-continuous (resp. inner

semi-continuous) at xg if lim sup G (x) C G(xg) (resp., liminf G(x) D G(x¢) ) with
X—Xg X—>Xo

limsup G(x) = U lim sup G (x,,)

X—> X0 n—00
Xp—> X0

= {y eY: 3)Cn — X0, 3yn S G(xn) Ve ™Y, Vn > l}a
liminf G(x) = () liminf G(x,)
n—00

X—>Xp
Xp—> X0

={yeY  :Vx, = x0, 3V, € G(xp) : ¥y, > y, Vn > 1}.

Let G, : X =2 Y be a sequence of set-valued mappings and G : X =2 Y be a
set-valued mapping. {G,} is said to be outer convergent continuously (resp., inner
convergent continuously) to G at xo if limsup G, (x,) C G(xg) (resp., G(xg) C

n—00
liminf G, (x,)) when x,, — x¢.{G,} is said to be convergent continuously to G at x
n—o0

if lim sup G, (x,) C G(xp) C liminf G, (x,) when x, — x¢. If {G,} is convergent
n—00 n—00
continuously to G at every xo € X, then {G,} is said to be convergent continuously

to Gin X.
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Definition 18.1 (see [7]) Let G : X == Y be a set-valued mapping and xy € X be
a given point. Then we have the following:

(1) G is said to be lower semi-continuous in the sense of Berge (shortly, B-1.s.c.)
at xo € X if, for any open set V with G(xg) NV # &, there exists § > 0 such that,
forall x € B(xp,48),G(x)NV # @.

(2) G is said to be upper semi-continuous in the sense of Berge (shortly, B-u.s.c.)
at xo € X if, for any open set V with G (x¢) C V, there exists § > 0 such that, for all
x € B(xp,68),G(x) C V.

(3) G is said to be continuous in the sense of Berge at xy € X if it is both lower
semi-continuous and upper semi-continuous at xy. G is said to be continuous in X
if it is both lower semi-continuous and upper semi-continuous at each xy € X.

(4) G is said to be closed at xo € X if, for each of the sequences {x,} in X
converging to xo and {y,} in Y converging to yy such that y, € G(x,), we have
o € G(xp). G is said to be closed on X if it is closed at each xp € X.

Lemma 18.1 (see [7]) Let G : X = Y be a set-valued mapping and xo € X be a
given point. Then we have the following:

(1) G is lower semi-continuous at xq if and only if, for any sequence x,, — Xg
and yo € G(xy), there exists a sequence {y,} C G(x,) such that y, — yo.

(2) If G has compact values, then G is upper semi-continuous at xq if and only
if, for any sequence {x,} C X which converges to xo and {y,} C G(x,), there are
y € G(x) and a subsequence {y,,} of {yn} such that y,, — y.

Lemma 18.2 (see [10, 14]) Let e : X — Y be a vector-valued mapping and, sup-
pose that, for any x € X, e(x) € C(x). Then the nonlinear scalarization function
& : X x Y — R defined by

E(x,y):=infreR:yere(x)—Cx)}, Vix,y) e X XY,

has the following properties:

(1) &(x,y) <7 <y €re(x) — intC(x).
2) &, (x,y) > r &y ¢ re(x) —intC(x).

Lemma 18.3 (see [10, 14]) Let X, Z be two locally convex Hausdorff topological
vector spaces and C : X — 2% be a set-valued mapping such that, for any x € X,
C(x) is a proper, closed and convex cone in Z with intC (x) # . Furthermore, let
e : X — Z be the continuous selection of the set-valued mapping intC(-). Define
a set-valued mapping V : X = Z by V(x) = Z \ intC(x) for all x € X. Then the
nonlinear scalarization function &, : X x Z — R defined by

E(x,2)=inflreR:zere(x)—Cx)}, Vix,2) e X X Z,

has the following properties:

(1) If V is upper semi-continuous in X, then &, is upper semi-continuous in X x Z.
(2) If C is upper semi-continuous in X, then &, is lower semi-continuous in X x Z.
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(3) If V and C are both upper semi-continuous in X, then &, is continuous in X x Z.

Now, we suppose that K (x), T (x), K, (x) and T,(x) are compact sets for all
x € X. We define functions 2 : X — R and &, : X — R as follows:

h(x) = max max {—&.(x, (z,y —x))}, VYx € K(x),
yeK (x) zeT (y)

and

hn(xn) = max max {_Se(xn» (Z, y - xn>)}v Vx, € Kn(xn)-
YEK, (x) z€T, (y)

Since K (x), T'(x), K,,(x), T,,(x) are compact sets for all x € X and &, is continuous,
h and h,, are well-defined.

Proposition 18.1 We have the following:

(a) If xo € K(xp), h(xo) = 0ifand only if xo € S(T, K).
®) h(x) > 0forallx € K(x)\ S(T, K).
(c) h(x) = O forall x € K (x).

Proof (a) For any xy € K (x), by the definition of &, h(x¢) = 0 if and only if

max max {—&,(x, {(z,y —x))} =0,
yeK(xO)ZeT(y){ Ee(x, {z,y —x)}

which shows that

—&,(x0, (z0, ¥y — x0)) <0, Vy e K(xp), z€ T(y),

or
£e(x0, (z0, y —x0)) 2 0, Vy € K(x0), z € T(y).

By Lemma 18.2 (2), this implies that
(z0, y — x0) ¢ —intC(xo), Yy € K(xo), z € T(y),

or
(20, y —x0) € Y\ —intC(xp), Vy € K(x0), z € T(y),

ie., xg € S(T, K).
(b) For any given x € K (x), but x ¢ S(T, K). Then there exist yo € K (x) and
zo0 € T (yp) such that
(z0, yo — x) € —intC(x).

So, it follows from Lemma 18.2 (2) that
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&.(x, (zo, yo — x)) <0,

that is,
—&.(x, (20, yo — x)) > 0,

Hence we have

h(x) = max max {—&.(x, (z,y —x))} > 0.
yeK (x) zeT (y)

(c), From (a) and (b), we directly get h(x) > O for all x € K (x). This completes
the proof. O

Remark 18.1 If the function £ satisfies the properties (a)—(c) of Proposition 18.1,
then 4 is called the gap function for the problem (MQVIP).

Similarly, we have the gap functions %, for the problem (MQVIP),, in the follow-
ing:

Proposition 18.2 We have the following:
(a) Ifx,? € K, (x,(l)), then h,,(x,?) = 0 if and only ifx,? e S(T,, K,)
(®) hy(xy) > 0 forall x, € Ky(xp) \ S(T,, Ky).
©) h,(x,) = 0forall x, € K, (x,).

Now, we consider the continuity of z and &, as follows:

Proposition 18.3 Consider the problem (MQVIP),,. Ifthe following conditions hold:

(a) K, is continuous with compact values in X ;

(b) T, is continuous with compact values in X;

(¢) V and C are upper semi-continuous in X and e(-) € intC(-) is continuous
in X.

Then h,, is continuous in X.

Proof First, we prove that 4, is lower semi-continuous in X. Indeed, let » € R and
suppose that {x¥} C X satisfies h,(x¥) < r and x*¥ — x¥ as k — co. Moreover, it
follows from /1, (x*) < r that

hp(xf) = max max {—&(xf, (z,y — X)) <, Vxb e K, (D),
yeK, (x}) z€T, (y)

and so
— (K, y =Xk <1, Vy e K (D), z € TL(). (18.1)

Since K, is upper semi-continuous with compact values in X, we have x,? e K, (x,?).
Since K, is lower semi-continuous in X, for any y,? e K, (x,?), there exists y,’j S
K, (x*) such that y¥ — y9 as k — oo. Since 7, is lower semi-continuous in X,
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for any z0 € T,(?), there exists z& € 7, (y¥) such that z§ — z0 as k — co. From
vk € K,(x*) and ¥ € T, (x}), it follows from (18.1) that

—E (X, (Th v — X)) <1 (18.2)
From the continuity of &,, taking the limit in (18.2), we have

—E(x0, (20, y) — X)) <. (18.3)
Since y? € K, (x?) and z° € T, (y°) are arbitrary, it follows from (18.3) that

h,(x%) = max max {— xo, z, —x"MY<r
(X)) yeK,l(xf,))ZETn(y){ e(xy, (2, y —x, )} <

This proves that, foreach r € R, the level set {x,’,‘ eX:h, (x,’j) < r}isclosed. Hence
h, is lower semi-continuous in X.

Next, we show that &, is upper semi-continuous in X, i.e., —h, is lower semi-
continuous in X. Indeed, let » € R and suppose that {x’,j} C X satisfies —hn(x,’j) <r
and x* — x0 as k — co. Moreover, it follows from —#,(x*) < r that

k k k k
— max max {—&(x,,(z,y —x,D} =1, Vx, € K,(x,),
yeK, (xf) zeT, (y)

that is,

min - min &(x}, (2. y —x}) <1 Vab € K, (x). (18.4)
yEK, (xK) z€T, (y)

Since K, is upper semi-continuous with compact values in X, we have x,? e K, (x,? ).
Since K, and T, have compact values in X, from (18.4), there exist ifl € K, (x,’f ) and
Z¢ € T,(3%) such that

E(xk, (2,3 —xfy) = min min £&E 2,y —xf) < (18.5)
yeK, (xk) zeT, (y)

Since K, is upper semi-continuous with compact values in X, there exists y? €
K, (x,? ) such that y’;l — y,? (taking a subsequence if necessary) as k — oo. Since 7},
is upper semi-continuous with compact values in X, there exists z0 € T,(y?) such
that Zf; — 7Y (taking a subsequence if necessary) as k — oco. From the continuity of
&,, taking k — oo in (18.5), we have

E(x0, (20, y0 —x)) <. (18.6)

Thus, for any y € K,(x?) and z € T,,(»), it follows from (18.6) that
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: . 0 0
min  min & (x’,{(z,y—x.)) <r,
yeK, (x0) z€T,(y) é,.:e " < Y n>

that is,

—h,(x% = — max max {—&G°, (z,y —x"D) <1,
) = = maxmax (<6.(x), (2, =) <

This proves that, for r € R, the level set {x* € X : —h,(x*) < r} is closed. Hence
—h,, is lower semi-continuous in X. This completes the proof. ([

For the problem (MQVIP), we also obtain a similar conclusion as well as
Proposition 18.3.

Proposition 18.4 Consider the problem (MQVIP). If the following conditions hold:

(a) K is continuous with compact values in X;

(b) T is continuous with compact values in X;

(c) V and C are upper semi-continuous in X and e(-) € intC(-) is continuous
in X.

Then h is continuous in X.

Remark 18.2 Noting that Fang et al. [17] and Anh et al. [4] discussed the gap func-
tions for set-valued weak vector variational inequality problems of the Stampacchia
type and generalized set-valued quasiequilibrium problems of the Stampacchia type,
respectively, while we consider the gap functions for generalized vector quasivari-
ational inequality problems of the Minty type. Therefore, our propositions in this
section are new and different from the results from Fang et al. [17] and Anh et al. [4].

18.3 Main Results

Motivated by the hypothesis (H;) of [33, 43], the assumption (H,) in [11, 17,
36] and the assumption (Hj) in [2, 4], by virtue of the gap functions / and #,,
we introduce the following key hypothesis and employ it to study the Painlevé—
Kuratowski lower convergence and Painlevé—Kuratowski convergence of the solution
sets for the problems (MQVIP) and (MQVIP),:

(Hp): For any ¢ > 0, there exists « > 0 and an 7n such that &, (x,) > « for all
n>nandx, € K,(x,)\ Z(S(T,, K,), €).

To illustrate assumption (Hj,), we give the following example:
Example 18.1 Let X =Y = Rand C(x) = R, forall x € X. Define the set-valued
mappings K, K, : X = Xand T, T, : X = L(X, Y) as follows;

1
K@) =[0,1+x], Ku(x,) = [o, 4o ﬂg],
n



450 N. Van Hung et al.

| ; 1 o
Ty =[51+2], To=[51+-+2]
2 2 n

Consider the problems (MQVIP) and (MQVIP),,. It follows from the direct compu-
tation that

Now, we show that 4, (x,) is a gap function of the problem (MQVIP),,. Indeed,
we taking e(-) = 1 € intR,, we have

hn(-xn) = max max {_Ee(-xna (Zv y = -xn))}
YEK, (xy) €T, (y)

= max max {z(xp — )}
ye [0,1+§+x3] ze[%,whzw}
1
:(2 + —)x,,.
n

Clearly, hn(x,?) =0 if and only if x,? =0 € S(T,, K,,). Moreover, for all x, €
K, (x,)), h,(x,) > 0and, forall x, € K,,(x,) \ S(T,,, K,) = (0, +00), h,(x,) > 0.
Thus £, (x,) is a gap function of the problem (MQVIP),,.

For any ¢ > 0, we take « = 2¢ > 0 and n = 1. Then, for all » > 7 and x, €
K,(x)\% (S(Ty,, K,,), ) = [&, +00), it follows that 4, (x,) = (2 + ﬁ)xn > o and
the assumption Hj, holds.

Lemma 18.4 Suppose that

(a) {K,} converges continuously to K with compact values in X;
(b) {T,} converges continuously to T with compact values in X;
(c) V, C are upper semi-continuous in X and e(-) € intC () is continuous in X.

Then, for any § > 0, xog € K (xo) and the sequence {x,} with x,, € K, (x,) and x,, —
Xo, there exists ng > 0 such that h,(x,) — 6 < h(xg) < h,(x,) + 6, foralln > ny.

Proof For any x( € K (xo) and sequence {x, } with x,, € K, (x,,) and x,, = xg, since
K, and T, have compact values in X, there exist y, € K, (x,) and z,, € T,(y,) such
that

max max {—§e(X,, (Zn, — Xp = —&,(Xn, (Zn, Y — Xn)). 187
yeKnofn)zeTn(y){ §e(Xns {2, ¥ N} Ee(Xns (2n» Y ) (18.7)

From the compactness of K,(x,), we may assume, without loss of generality, that

Y» = Yo (can take a subsequence if necessary). From lim sup K, (x,) C K (xo),
n—oQ
we have yy € K(x9). Similarly, by the compactness of 7,(y,), we may assume,

without loss of generality, that z, — zo (can take a subsequence if necessary).
From limsup 7,,(y,) C T (xp), we get zo € T (yo). By the continuity of (-, -) and

n—oo
(Xn, Zn, Yn) = (x0, 20, Yo), We have
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(Zn’ Yn — xn) - <ZOa Yo — Xo).
Since &, is continuous, we take the limit in (18.7) as follows:

nli)n(}o{_%_e(xns (Zn> Yn — X))} = —&.(x0, (20, Yo — X0))

< max max {—&.(xo, {2,y — x0))}

yeK (x0) z€T (y)

= h(xp).
So, for all § > 0, there exists no > 0 such that
=& (X, (2ns yn — Xn)) — 8 < h(x), Vn = ny.
From (18.7), we have
hy(xp) —6 = max max {—& (X, (Zp, ¥y — X))} — &

YEK, (x,) z€T, (y)

= —Ee(x,,, (Zn, yn - xn)) - 8
< h(xp).

On the other hand, since K and T have compact values in X, there exist yp € K (xg)
and zo € T (yo) such that

h(xo) = max max {—&,(xo, (o, Yo — X0))} = —&.(x0, {20, Yo — X0)). (18.8)
yeK(x) zeT (y)

From K (x¢) C liminf K, (x,), we can assume that there exist y, € K, (x,) such that
n—oQ
Yn = Yo. Similarly, since T (yo) C liminf 7, (y,), there exist z, € T,,(y,) such that
n—oo

Zy — Zo. By the continuity of (-, -) and (x,, z,, y») = (X0, 20, Yo), We have
{Zns Yn = Xn) = (20, Yo — X0)-
It follows from the continuity of &, and (18.8) that
i (=8 (X, {2y yn = Xn))} = —Ee(xXo, (20, Yo — X0)) = h(x0).
From h,,(x,) > {—&.(xu, (20, Yn — xu))}, for any 6 > 0, there is ny € N such that
hn(n) + 8 = Hm {=&e (xn, {2y Yo = X0))} = —Ee (X0, (20, Yo — %0)) = h(xo)

for all n > ny. This completes the proof. (]

Example 18.2 Let X =Y = Rand C(x) = R, forallx € X.Define the set-valued
mappings K, K, : X =2 Xand T, T, : X = L(X,Y) as follows:
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2 1 )
K@x) =[0,1+x2], Ky(x,) = [0, 1+ o +xn],

1 , (IR T
Ty =[51+2], Lo =[51+-+2]
2 2 n

The conditions (a)—(c) in Lemma 18.4 are satisfied. From Example 18.1, we have

1
hn(xn) = (2 + _) Xn
n

is a gap function of the problem (MQVIP),,. Similarly, we have the following function,
that is,
h(x) =2x

is a gap function of the problem (MQVIP). For any x¢ € K (x¢) and x, € K, (x,)
such that x,, — xp, we have

1
(2 + —)xn — 2Xxg.
n
Thus we have &, (x,) — h(xo) and, for any § > 0,
hn(xn) -4 = h(XO) =< hn(xn) + 8.

Next, we prove the compactness of the solution sets for the problems (MQVIP)
and (MQVIP),.

Proposition 18.5 Suppose that

(a) K is inner semi-continuous with compact values in X;
(b) T is inner semi-continuous in X;
(¢) Kand V() =Y \ —intC(:) are closed in X.

Then S(T, K) is a compact set.

Proof First, we prove that S(T, K) is a closed set. Take any x, € S(7T, K) with
X, — Xo. Since K is closed in X, we have xo € K (xg).

Now, we show that xy € S(T, K). Suppose that xo ¢ S(T, K). Then there exist
yo € K (xp) and zg € T (yp) such that

(20, yo — x0) € —intC (xo). (18.9)

By the inner semi-continuity of K and T in X, there exist y, € K (x,) andz, € T (y,)
such that y, — yg and z,, — z. Since x,, € S(T, K), we have

(Zns Yo — xn) € Y \ —intC(x,). (18.10)
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From (18.10), the continuity of (-, -) and the closedness of V(-) =Y \ —intC(-), it
follows that
(20, Yo — x0) € ¥ \ —intC (xp),

which contradicts (18.9). Hence it follows that xg € S(T, K) and S(T, K) is aclosed
set. Further, since S(T, K) C K(x) and K (x) is compact for all x € X, it follows
that S(7, K) is a compact. This completes the proof. O

Using the proof lines for Proposition 18.5, we have the following result:

Proposition 18.6 Suppose that

(a) K, is inner semi-continuous with compact values in X ;
(b) T, is inner semi-continuous in X;
(¢) Kyand V() =Y \ —intC(-) are closed in X.

Then S(T,, K,) is a compact set.

Lemma 18.5 Suppose that all the conditions in Propositions 18.5 and 18.6 are sat-
isfied. Then S(T, K) C liminf S(T,,, K,,) if and only if, for all ¢ > 0, there exists
n—oo

N > O such that S(T, K) C % (S(T,,, K,)), €) foralln > N.

Proof We assume that S(7, K) C liminf S(7,, K,)) and there exists &y > 0 such
n—0oQ
that, for all N > 0, there exists N, > N satisfying

S(T,K) ¢ % (S(T,, Kn,), €0).

Then there exists a sequence {x,} with x, € S(T, K),butx, ¢ % (S(Ty,. Kn,). €0)-
From Proposition 18.5, we know that S(7', K) is a compact set. Without loss of gener-
ality, we assume thatx, — x andx € S(T, K). Thus, for any sequence {¢, } satisfying
t, — t with t, € S(T,,, K,,), we have ||ty, — x,|| > g0 > 0. Taking n — oo, we get
It — x| > &p > 0. Therefore, there does not exist ¢, € S(7T,,, K,,) satisfying t, — x.
This is a contradiction to S(T', K) C linrgiorgf S(T,, K,).

Conversely, suppose that, for any ¢ > 0, there exists N > 0 such that
S(T,K) Cc % (S(T,, K,),e), Vn>N.

From Proposition 18.6, we derive that S(7,, K,;) is compact. Thus, for any x €
S(T, K), there exists x,, € S(T,,, K,,) such that

Xy —xIl =d(x, S(T,, Kn)) <€, Vn= N

and hence x, — x and S(7, K) C liminf S(7,,, K,)). Therefore, the result of this
n—o00
lemma follows. This completes the proof. (I

Lemma 18.6 Suppose that all the conditions in Proposition 18.3 are satisfied. Then
(Hpy) holds if and only if, for any ¢ > 0,
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lim inf h,(x,) >0,
Xn €Ky ) )\ (S(T,,,K}),€)
where
lim inf h,(x,) = lim inf ( h,,(xn)>.
Xn €K )\ (S(T,,,K}),€) n—00 X0 €K )\ (S(T,,,K)),€)

Proof 1f (Hp,) holds, then, forany ¢ > 0, thereexistoe > Oandn suchthath, (x,) > o
foralln > n and x, € K,(x,) \ Z (S(T,, K,), €). This implies that

lim inf hp(xn) > a > 0.
Xn €Ky ) \% (S(T,,K),€)

Conversely, suppose that, for any ¢ > 0, there exists 7 € N such that

T = h,(x,) >0, Vn >n,

lim inf
X €Ky X\ (S(T,, K1), €)

where a := %r. Hence, for any x, € K, (x,) \ Z (S(T,,, K,,), €), we have h,(x,) >
a > 0, which shows that (Hj,) holds. This completes the proof. O

Theorem 18.1 Suppose that all the assumptions in Propositions 18.5 and 18.6 are
satisfied and the following additional conditions:

(a) {K,} converges continuously to K with compact values in X;
(b) {T,.} converges continuously to T with compact values in X;
(c) V and C are upper semi-continuous in X and e(-) € intC(-) is continuous
in X.
Then S(T, K) C liminf S(T,,, K,,) if and only if (Hy) holds.
n—0o0

Proof First, we prove the sufficient condition. Suppose to the contrary that (H,)
holds, but S(7, K) ¢ liminf S(7,, K,,). Then, by Lemma 18.5, that there exists
n—o00

€o > 0 such that, for any m > 0, m, > m satisfying
S(T,K) & %(S(Ty,, Kn,), €0),
that is, there exists a sequence {x,,, } such that
Xm, € S(T, K)\ % (S(T,, K, €0). (18.11)

From the compactness of S(7', K), we can assume that x,,, — x € S(T, K). Then
there exists 7; > 0 such that

%, — x|l < &0/4, VYn > mj.

Itis clear that, foralln > 0, B(x, &9/m,) (| K (x) # &. By the assumption (a), there
exists asequence a,, € K,,, (x,,,) satisfying a,,, — x.Then there existsm; > Osuch
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that

a, € B(x, g0/my) m Ky, (x,), Vn >my;.

Now, we claim that a,,, ¢ % (S(Tp,, Km,), €0/4). Otherwise, there exists t,,, €
S(Tw,, Km,) such that ||a,, — t,, || < &o/4. Consequently, for my = max{m;, m>},
we get

”xmn - tm” ”

Xm, = xIl + X = am, | + llam, = tm,|I

& &
< 24—

&0 _
+ — < &9, Vn > my.
4 m, 4

This implies that x,,, € Z (S(T,, K, ), €0), which contradicts (18.11). Thus we
have

c%¢%@mme%)

By the assumption (Hj,), there exists 8 > 0 such that 4, (a,) > . By Lemma 18.4,
with n large enough, for any § > 0, we have

hmn (am,,) -4 S h(x)
We can take § such that § — § > 0. Thus we have

h(x) > hmn(am”) - 6 = IB - 8 > O

and so

h(x) = max max {_Se(-xv (Z» y _x>)} > 01
yeK (x) zeT (y)

which contradicts x € S(T, K) (by Proposition 18.1(a)). Therefore, we have
S(T, K) C liminf S(7,, K,,).
n—0oQ
Conversely, we prove the necessary condition. Suppose to the contrary that
S(T, K) C liminf (7, K,,),
n—0oQ
but (H},) does not hold. By Lemma 18.6, there exists &g > 0 such that, for any 7 > 0
andn > n,
lim in h,(x,) =0.
X €Ky (x)\ (S(Ty,K),0)

Using the compactness of K, (x,) \ Z (S(T,, K,,), &) and the continuity of /,, from
Proposition 18.3, we can assume that there exists x, € K, (x),) \ Z (S(T,, K,), €0)
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such thatlim,,_, o /1, (x;,) = 0. Since {K,,} converges continuously to K with compact
values in X, we can assume that x;, — xo € K(x¢). From Lemma 18.4, we have
h(xo) = 0. Indeed, if h(x¢) = o > 0, we take § := . Since {h,(x,)} converges to
0, there exists n; € N such that &, (x,) < < forall n > n;. By Lemma 18.4, we can
assume that there exists ng € Nsatisfying &, (x;) + 8 > h(xo) foralln > ny. Putting
n, = max{ng, n}, we have

Q

+— == >=hy(x,)+8 = h(xg) =0 >0, Vn=ny,

o
42

A Q

which is impossible. So, it follows from Proposition 18.1 that xo € S(T, K). Since
S(T, K) C liminf,_, . S(T,, K,), there exists w,, € S(T,,, K,,) such that {w,} con-
verges to xy. Since x;, € K, (x,) \ (S(T,, K,,) + U),w, — x,, ¢ U for all n, which is
impossible since {w, } and {x,} converge to the same point x¢. Thus (H},) holds. This
completes the proof. (]

Now, we give the following examples to illustrate Theorem 18.1:

Example 18.3 Let X = Y = Rand C(x) = R, forall x € X. Define the set-valued
mappings K, K, : X =2 Xand T, T, : X = L(X,Y) as follows:

2 1 )
K(x)=1[0,14x2, K,(x,) = [0, 1+ +xn],

1 1 1 ,

To) =[51+2], Lo =[51+-+2]
2 2 n

The assumption (Hj,) hold by Example18.1 and so are all the conditions of

Theorem 18.1. From Example 18.1, we have 11m mf S(T,, K,) ={0} = S(T, K).

Thus the solution sets of the problem (MQVIP),, is lower convergent in the sense of
Painlevé—Kuratowski to the solution set of the problem (MQVIP).

Example 18.4 Let X =R, Y =R? and C(x) = ]R%r. Define the set-valued map-
pings K, K, : X =2 Xand T, T, : X = L(X,Y) as follows:

K0 = Kn() = | = % %]

T(y>={(8>}, Tn<y)=([°’ ])

Consider the problems (MQVIP) and (MQVIP),,. It follows from the direct compu-
tation that S(T', K) = [—%, %] and S(T,,, K,,) = {——} Hence S(T,, K,) is not lower
convergent to S(7, K) in the sense of Painlevé—Kuratowskl

Now, we show that the condition (H},) does not hold. Taking e = (1, 1) € intR?,
we have
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h,(x,) = max max {—&.(x,, {(z,y —x
l’l( II) yEKn(xn) ZET,,()'){ g(’( n ( y I’l))}

= max max max[(z,y — x,))];
yeK, (x,) z€T, (y) 1<i<2

1
= max max [z(xn -y, —(x, — y)}
vel=3.51z¢[0, 2] n

= max {1(xn - y)}

yel-3.31 41

1( n 1)
=—(x,+=).

n 2

It follows that &, is a gap function of the problem (MQVIP),. For any ¢ with 0 <
&< % and o > 0, taking n € N such that, for alln > 1, 0 < ﬁ <aandx, =0 €
K, () \ % (S(T,., K,), €) = [—1 + &, 11, we have h,(x,) = 5- < a. Hence (Hj)
does not hold.

Next, we discuss the sufficient and necessary conditions for the Painlevé—
Kuratowski convergence of the solution sets for the problems (MQVIP) and
(MQVIP),,.

Theorem 18.2 Suppose that all the conditions in Theorem 18.1 are satisfied. Then
{S(T,, K,,)} converges to S(T, K) in the sense of Painlevé—Kuratowski if and only if
(Hy) holds.

Proof From Theorem 18.1, we only need to prove that

limsup S(7,,, K,,) C S(T, K).

n—o0o

Indeed, we suppose to the contrary thatlim sup,,_, ., S(T,,, K,) ¢ S(T, K), i.e., there
exists xo € lim sup S(7,, K,,),butxg ¢ S(T, K).Since xy € lim sup S(7,, K,), there

. n—0oQ n—0oQ
exists a sequence {x,,}, x,, € S(Ty,, K»,), such that x,, — xo. Then, for all y €

Ky, (xp,) and z € T, (y), we have
(z,y —xp,) € Y\ —IntC (xy,). (18.12)

From lim sup K,,, (x,,) C K (x¢) and x,,, € K, (x,), we have xo € K (xp).
k—o00

Now, we prove that xo € S(T, K). If xo ¢ S(T, K), then there exist yg € K (xo)
and zo € T (yo) such that

(20, Yo — x0) € —intC (xp). (18.13)
Since {K,} is inner convergent continuously to K and {7,} is inner convergent

continuously to T, for all yo € K (x¢), zo € T (o), there exist y,, € K, (x,,), Zn, €
T,,, (yu,) such that y, — yo, 2y, = 20 as k — oo.From x,, € S(T,,, K,,), we have
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(an7 Y — xnk> ey \ _intc(xnk). (1814)

From (18.14) and the continuity of (-, -), since V(-) =Y \ —intC(-) is closed, we
have
(z0, yo — x0) € ¥ \ —intC (xo),

which is a contradiction to (18.13), and so xy € S(T, K). This completes the
proof. O

18.4 Conclusion

In this paper, we first established gap functions for the problems (MQVIP) and
(MQVIP),, and consider their continuity. Then we proved that the hypothesis (Hj,) is a
sufficient and necessary condition for the lower convergence of Painlevé—Kuratowski
and the convergence of Painlevé—Kuratowski of solution sets of these problems.
As mentioned in Introduction and Remark 18.2, up to now, there have not been
any works on the sufficient and necessary conditions for the lower convergence of
Painlevé—Kuratowski and the convergence of Painlevé—Kuratowski of solution sets
for generalized vector quasivariational inequality problems of the Minty type by the
gap function method. Hence our main results are new and different from the results
in Fang et al. [17] and Anh et al. [4].
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Chapter 19 ®)
Common Solutions for a System of o
Functional Equations in Dynamic
Programming Passing Through the

J C L R-Property in Sj-Metric Spaces

Oratai Yamaod, Wutiphol Sintunavarat, and Yeol Je Cho

Abstract In this chapter, we introduce the new concept of the joint common limit in
the range property (shortly, (J CL R)-property) in S,-metric spaces and prove some
common fixed point theorems by using the JC L R-property in S,-metric spaces
without the completeness of S,-metric spaces. We also give some examples to illus-
trate our results. As applications of our results, we show the existence of common
solutions for a system of functional equations in dynamic programming.

19.1 Introduction and Preliminaries

Throughout this chapter, we denote by N, R, and R the sets of positive integers,
non-negative real numbers and real numbers, respectively.

In 1993, Czerwik [1] introduced the concept of b-metric spaces as a generalization
of metric spaces and proved the Banach contraction principle in b-metric spaces,
which is a generalization of the Banach contraction principle in metric spaces. For
more details on the Banach contraction principle, refer to [2].
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Later, several researchers have studied many results in b-metric spaces (see in
[3-5] and references therein).

Next, we recall some definitions from b-metric spaces as follows:

Definition 19.1 ([1]) Let X be a nonempty set and b > 1 be a fixed real number.
Suppose thatd : X x X — R, is a mapping satisfying the following conditions for
allx,y,z € X:

(BM1) d(x, y) = 0if and only if x = y;

(BM2) d(x,y) =d(y, x);

(BM3) d(x,z) <bld(x,y) +d(y, )]
Then the mapping d is called a b-metric and the pair (X, d) is called a b-metric space
with coefficient b.

In 2015, Sedghi et al. [6] introduced the concept of S-metric spaces as follows:

Definition 19.2 ([6]) Let X be a nonempty set. Suppose that S : X x X x X — Ry
is a mapping satisfying the following conditions for all x, y, z,a € X:

(SM1) 0 < S(x, y,z) withx # y # z # x;

(SM2) S(x,y,z) =0ifandonlyifx =y = z;

(SM3) S(x,y,2) < S(x,x,a)+ S(y,y,a) + S(z, z, a).
Then the mapping S is called an S-metric on X and the pair (X, S) is called an
S-metric space.

Recently, Sedghi et al. [7] introduced the concept of S,-metric spaces as a gen-
eralization of S-metric spaces by replacing the right-hand side of (SM3) with the
generalized condition as follows:

Definition 19.3 ([7]) Let X be a nonempty set and b > 1 be a real number. Suppose
that S, : X x X x X — R, is a mapping satisfying the following conditions for all
X, y,z,a € X:

(SbM1) 0 < Sp(x,y,z) withx # y # z # x;

(SbM2) Sp(x,y,z) =0ifandonlyif x =y = z;

(SbM3) Sp(x, y, 2) = b[Sp(x, x,a) + Sp(y, y,a) + S(z, z, a)].
Then the mapping S is called an Sj-metric on X and the pair (X, S;) is called an
Sp-metric space with the coefficient b.

It should be noted that the class of Sj,-metric spaces is effectively larger than that
of S-metric spaces. Indeed, each S-metric space is an S,-metric space with b = 1.
A known example of an S,-metric space is as follows:

Example 19.1 ([7]) Let (X, S) be an S-metric space, p > 1 be a real number and
S, 1 X x X x X - R, be a mapping defined by

S*()C, Y, Z) = [S(-xv Y, Z)]p

forall x, y, z € X. Therefore, S, is an S,-metric with the coefficient b = 2P~ and
so (X, S,) is an Sp-metric space.
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Next, we give some definitions and lemma in Sj-metric spaces which are needed
for our results.

Definition 19.4 ([7]) Let (X, S;) be an S,-metric space, x € X and r > 0. The
open ball Bs(x, r) and closed ball Bg[x, r] with center x and radius r are defined as
follows, respectively:

Bs(x,r):={ye X :S(,y,x) <r}

and
Bslx,r]l:={ye X :S((,y,x) <r}.

Lemma 19.1 ([7]) Let (X, Sp) be an Sp-metric space with the coefficient b > 1.
Then the following assertions hold:

(1) Sp(x, x,y) <bSp(y, y,x) forallx,y € X;

2) Sp(y, y,x) <bSp(x,x,y) forallx,y € X;

(3) Sp(x,x,2) <2bSp(x,x,y) +b*Sp(y,v,2) forallx, v,z € X.

Definition 19.5 ([7]) Let (X, S;) be an S,-metric space.
(1) A sequence {x,}in X is said to be an S;-Cauchy sequence if, for each ¢ > 0,
there exists N € N such that
Sb(xna Xns xm) <Eé&

forallm,n > N.
(2) A sequence {x,} in X is said to be S,-convergent to a point x € X if, for each
e > 0, there exists N € N such that

Sp(Xp, Xn,x) <€ or Sp(x,x,x,) <&
for all n > N, which is denoted by

lim x,, = x.
n—oo
(3) An Sp-metric space X is said to be complete if and only if every S,-Cauchy
sequence is S,-convergent in X.

Remark 19.1 For a sequence {x,} in an S,-metric space (X, S;) and x € X, we
obtain the following assertions:

(1) {x,} is an S,-Cauchy sequence if and only if lim Sp(x,, x,, X)) = 0;
m,n— 00

2) lim x,, = x < lim S,(x,, x,, x) = 0.
n—oo

n—oo

Lemma 19.2 ([7]) Let (X, Sp) be an Sp-metric space with the coefficient b > 1.
Suppose that {x,} is an Sp-convergent to a point x € X. Then we have
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1
ﬁsb(xy X, y) E hmlnf Sb(-xrhxnv y) S hm sup Sb(xn’xns y) E szb(xy X, y)

forall y € X. In particular,
lim Sp(x,, x,, x) = 0.
n—o00

Definition 19.6 Let X be anonempty setand f, g : X — X be two given mappings.
The pair (f, g) is said to be weakly compatible if fz = gz for some z € X, then

fez=2gfz.

The aim of this chapter is to present the idea of the joint common limit in the
range property in S,-metric spaces. With the help of this property, we prove some
unique common fixed point theorems in S,-metric spaces without completeness. We
also present an example to illustrate our results. Finally, we show the existence of a
common solution for a system of functional equations in dynamic programming.

19.2 Main Results

First, we introduce the idea of the joint common limit in the range property in
Sp-metric spaces and then we prove some common fixed point theorem for the gen-
eralized nonlinear contractive-type mappings in S,-metric spaces using the joint
common limit in the range property.

Definition 19.7 Let (X, S;) be an S,-metric space with the coefficient b > 1 and
f, g, H, T : X — X be four given mappings.

(1) The pairs (f, H) and (g, T) are said to satisfy the joint common limit in
the range of H and T property (shortly, (JCLRyr)-property) if there exist two
sequences {x,} and {y,} in X such that

lim fx, = lim Hx, = limgy, = lim Ty, = Hu = Tu (19.1)
n—oo n—oo n—0o0 n—0oo
for some u € X.
(2) The pair (f, H) is said to satisfy the common limit in the range of H property
(shortly, (CL Ry )-property) if there exists a sequence {x,} in X such that
lim fx, = lim Hx, = Hu (19.2)
n—oo n—o0
for some u € X.

Now, we give the main result in this chapter.
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Theorem 19.1 Let (X, Sp) be an Sp-metric space with the coefficient b > 1 and
.8 H,T: X — X be four mappings. Suppose that the pairs (f, H) and (g, T)
satisfy the (JCLRyr)-property and

Sp(fx, fx,gy) < %max {Sb(Hx, Hx,Ty), Sy(fx, fx, Hx), Sp(gy, 8y, Ty),

1
E(Sb(Hx,Hx,gy)vLSb(fx,fx,Ty))} (19.3)

forall x,y € X, where 0 < g < %. Then f, g, H and T have a coincidence point
in X. If the pairs (f, H) and (g, T) are weakly compatible, then f, g, H and T have
a unique common fixed point in X.

Proof Since the pairs (f, H) and (g, T') satisfy the (J C L Ry7)-property, there exist
the sequences {x,} and {y,} in X such that

lim fx, = lim Hx, = lim gy, = lim Ty, = Hu =Tu (19.4)
n—oo n—oo n—00

n—oo

for some u € X.
Now, we will show that gu = Tu. By using (19.3) with x = x,, and y = u, we
have

Sb(fxn’ fxnv gI/t)

% max { Sy(Hxa, H, Tu), $y(f 0, [0 Hx,), Sp(gu, gu, Tw),

IA

1
E(Sb(Hxnv Hxnv gu) + Sb(fxnv fxns TM))}

IA

2 ax {Sb(Hx,,, Hx,,Tu),

b
b(Sp(fxn, fXn, Tu) + Sp(fXn, fXn, Tu) + Sp(Hxn, Hx,, Tu)),
b(Sb(gua gl/l, .fxn) + Sb(gua guv fxn) + Sb(Tl/l, TM, fxn))v

1
E[b(Sb(H-xna H)Cn, TM) + Sb(Hxn» Hxn» TM) +b(Sb(guv gu, fxn)

58t g4, fx0) + Sp(Tat, Tty f00) + $y(f s f0, T}

for all n € N. Taking the limit superior as n — oo in the above inequality, we obtain

2
limsup Sp(fxn, fxn, gu) < b_z limsup Sp(fxn, fXxn, gu).

n—oo n—oo

This implies that
2
(1= 25 )timsup Sy(fx. fx,. gu) <0

n—o00
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and so
lim Sp(fx,, fx,, gu) =0.
n—oo

This yields that
Tu = lim fx, = gu. (19.5)

n—oo

Next, we will claim that fu = Tu. From (19.3) withx = u and y = y,, we have

Sb(fuv fl/t, gyn)
q
L max {Sb(Hu, Hu, Ty,), Sp(fu, fu, Hu), Sy(gVn: ¥n: TVn),

IA

1
S (So(Hu, Hu, gy,) + Sy(fu. fu. Ty,)]

IA

L max {8, (Hu, Hu, Ty,). $y2S,(fu. fu, gy,) + Sy(Hu, Hu, g3,).
b(2Sp(gyns 8yns Hu) + Sp(Tyn, Tyn, Hu)),
1
E(Sb(H”v Hu, gyn) +bQ2Sy(fu, fu,gyn) + Sp(Tyn, Tyn, gyn))}

for all n € N. Taking the limit superior as n — o0 in the above inequality, we have

2
lim sup S,(fu, fu, gyn) < b—an sup Sy(fu. f1u, gyn).

n—00 n—o0

This yields that
2
(1 _ b_Z) limsup S,(fu, fu, gy, <0

n—oo
and so
lim Sy (fu, fu, gy,) = 0.
n—0oQ

This implies that
Tu = lim gy, = fu. (19.6)
n—o0

Thus, from (19.4), (19.5) and (19.6), it follows that u is a coincident point of f, g, H
and T.

Next, we will show that f, g, H and T have a common fixed point provided that
the pairs (f, H) and (g, T') are weakly compatible. Assume that z = fu = gu =
Tu = Hu. Since the pair (f, H) is weakly compatible, we have

fHu=Hfu

and then
fz=fHu=Hfu= Hz.



19 Common Solutions for a System of Functional Equations ... 467
Also, since the pair (g