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In this paper, we investigate the problem of backward heat equations with time-dependent 
coefficient in the Banach space Lp(R), (1 < p < ∞). For this problem, we first prove the 
stability estimates of Hölder type. After that the Tikhonov-type regularization is applied to 
solve the problem. A priori and a posteriori parameter choice rules are investigated, which 
yield error estimates of Hölder type. Numerical implementations are presented to show the 
validity of the proposed scheme.
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1. Introduction

Let p ∈ (1, ∞), ε, E be given constants such that 0 < ε � E < ∞ and ϕ be a function in Lp(R). We consider the Cauchy 
problem for the heat equation backward in time with inexact final data⎧⎨⎩

∂u

∂t
= a(t)

∂2u

∂x2
, (x, t) ∈ (−∞;+∞) × (0; T ),

‖u(·, T ) − ϕ(·)‖p � ε,

(1.1)

where ‖ · ‖p is Lp norm in R and a(t) is a continuous function on [0, T ] satisfying

0 < a � a(t) � a, ∀t ∈ [0, T ].
The Cauchy problem (1.1) is an inverse problem and well known to be ill-posed, i.e., a small perturbation in the Cauchy 

data may cause a very large error in the solution. It is therefore difficult to develop numerical methods for it, since errors 
of measurements in the Cauchy data, discretization errors, and round-off errors make numerical solutions unstable. To 
overcome this difficulty, we must apply a regularization method in order to solve problem (1.1) in a stable way.

There have been several results concerning inverse problems of parabolic equations with time-independent coefficients in 
Banach spaces (e.g. see [1–3,6,9–11,16] and the references therein). However, results concerning the case of time-dependent 
coefficients as in (1.1) are less popular (see [5]).
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In [9], Dinh Nho Hao used a mollification method to regularize backward heat equations with time-independent coef-
ficient in the Banach space Lp(R) (1 < p � ∞). This method was extended in the works [10] and [16]. In [11], Dinh Nho 
Hao and co-workers used the Tikhonov-type regularization method and the non-local boundary value problem method to 
regularize backward parabolic equations with time-independent coefficients in Banach spaces. However, numerical meth-
ods were not considered in that work. By using the semigroup theory of operators, many researchers have also obtained 
many results for the inverse problems of parabolic equations in Banach spaces such as the backward parabolic equation, 
identifying an unknown source term of parabolic equation in Banach spaces ([1–3,6,5]).

In addition to the topic of the inverse problem, other related problems for parabolic equations have also been investi-
gated, e.g., the forward-backward parabolic equations have been studied and obtained many profound results ([7,13–15]), 
the influence of the fourth-order diffusion term on the well-posedness of solution of Cauchy problems for fourth order 
parabolic equations has been studied in [8], the influence of external force source on the well-posedness of solution of 
semilinear pseudo-parabolic equation with Neumann boundary condition has been investigated in [17].

In this paper, we first establish stability estimates of Hölder type for backward heat equations with a time-dependent 
coefficient (1.1). Then, we apply the Tikhonov-type regularization method to regularize this problem. We suggest a priori 
and a posteriori parameter choice rules and obtain error estimates of Hölder type. Finally, we present numerical results to 
confirm the theory.

2. Stability estimates

Theorem 1. Let u1(x, t) and u2(x, t) be two solutions of problem (1.1) satisfying

‖ui(·,0)‖p � E, i = 1,2, 0 < ε < E. (2.1)

Then, there exists a constant C > 0 such that the following stability estimate holds

‖u1(·, t) − u2(·, t)‖p � Cεν(t)E1−ν(t), ∀t ∈ [0, T ]. (2.2)

Here,

a1(t) =
t∫

0

a(τ )dτ , ν(t) = a1(t)

a1(T )
,

for all t ∈ [0, T ].

Proof. Since a(t) is a continuous function on [0, T ] satisfying 0 < a � a(t) � a for all t ∈ [0, T ], a1(t) is continuous and 
strictly increasing on [0, T ]. This implies that ν(t) is also continuous and strictly increasing on [0, T ] and ν(0) = 0, ν(T ) = 1. 
It is reasonable to set

vi(x, η) := ui
(
x, ν−1 (η)

)
, x ∈R, η ∈ [0,1], i = 1,2. (2.3)

We have

vi(x,0) = ui
(
x, ν−1 (0)

) = ui(x,0), x ∈R, i = 1,2,

vi(x,1) = ui
(
x, ν−1 (1)

) = ui(x, T ), x ∈R, i = 1,2.

Therefore, we obtain

‖vi(·,1) − ϕ(·)‖p � ε, i = 1,2, (2.4)

‖vi(·,0)‖p � E, i = 1,2. (2.5)

Furthermore, from (2.3) we have vi(x, ν(t)) = ui(x, t), ∀t ∈ [0, T ], i = 1, 2. This implies that

∂ui

∂t
(x, t) = ∂

∂t
(vi (x, ν (t))) = ∂

∂t
(vi(x, η)) (η = ν(t))

= ∂

∂η
(vi(x, η))

∂η

∂t
= a(t)

a1(T )

∂

∂η
(vi(x, η)) , (2.6)

∂2ui

∂x2
(x, t) = ∂2 vi

∂x2 (x, ν (t)) = ∂2 vi

∂x2
(x, η). (2.7)

Since 
∂ui

(x, t) = a(t)
∂2ui

2
(x, t), from (2.6) and (2.7), we obtain
∂t ∂x
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∂vi

∂η
(x, η) = a1(T )

∂2 vi

∂x2
(x, η). (2.8)

Now, we set wi(x, θ) = vi

(
x, θ

a1(T )

)
, x ∈ R, θ ∈ [0, a1(T )], i = 1, 2. We have wi(x, θ) = vi (x, η) with θ = a1(T )η. Therefore, 

we obtain

‖wi(·,a1(T )) − ϕ(·)‖p = ‖vi(·,1) − ϕ(·)‖p � ε, i = 1,2, (2.9)

‖wi(·,0)‖p = ‖vi(·,0)‖p � E, i = 1,2, (2.10)

∂ wi

∂θ
(x, θ) = ∂2 wi

∂x2
(x, θ). (2.11)

Using Theorem 3.2 in [10], we conclude that there exists a constant C1 > 0 such that

‖w1(·, θ) − w2(·, θ)‖p � C1ε
θ

a1(T ) E
1− θ

a1(T ) , ∀θ ∈ [0,a1(T )]. (2.12)

This implies that there exists a constant C > 0 such that

‖u1(·, t) − u2(·, t)‖p � Cεν(t)E1−ν(t), ∀t ∈ [0, T ].
The theorem is proved. �
Remark 1.

1) If c is a positive number and a(t) = c, ∀t ∈ [0, T ], then ν(t) = t

T
, ∀t ∈ [0, T ].

2) If c is a positive number and a(t) = T + ct, ∀t ∈ [0, T ], then

2

c + 2
.

t

T
� ν(t) � t

T
∀t ∈ [0, T ].

3) If c is a positive number and a(t) = (1 + c)T − ct, ∀t ∈ [0, T ], then

t

T
< ν(t) � 2 + 2c

2 + c
.

t

T
, ∀t ∈ [0, T ).

4) In the general case, let p = min
t∈[0,T ]a(t) and q = max

t∈[0,T ]a(t) then ν(t) � p

q
.

t

T
, ∀t ∈ [0, T ]. Indeed, we have 0 < a � p � a(t) �

q � a, ∀t ∈ [0, T ]. This implies that pt � a1(t) =
∫ t

0 a(τ )dτ � qt, ∀t ∈ [0, T ] and pT � a1(T ) = ∫ T
0 a(τ )dτ � qT . Therefore, 

we obtain

ν(t) = a1(t)

a1(T )
� pt

qT
= p

q
.

t

T
, ∀t ∈ [0, T ].

Since ν(t) ∈ (0, 1], ∀t ∈ (0, T ] and ν(0) = 0, Theorem 1 gives stability estimates of Hölder type for all t ∈ (0, T ] but does 
not give any information about the continuous dependence of the solution of (1.1) at t = 0 on the final data t = T . With our 
best knowledge there are not any result on the convergence rate at t = 0 under condition (2.1) even in Hilbert spaces. To 
establish this, we suppose further that there exists a positive γ satisfying

ω(u(·,0),h)p � Ẽhγ ,∀h > 0. (2.13)

Here, ω( f , h)p = sup
|z|�h

‖ f (·) − f (· − z)‖p is the modulus of continuity of the function f ∈ Lp(R) in the metric of Lp(R) ([12, 

p. 147]). We will see that with assumptions (2.1) and (2.13) a stability estimate of logarithmic type at t = 0 is guaranteed.

Theorem 2. Let u1(x, t) and u2(x, t) be two solutions of problem (1.1) satisfying conditions (2.1) and (2.13). Then

‖u1(·,0) − u2(·,0)‖p � O

((
ln

E

ε

)−γ /2
)

as ε −→ 0+.

Proof. Let vi, wi, i = 1, 2 as in proof of Theorem 1. We have

ui(x,0) = vi(x,0) = wi(x,0), ∀x ∈R, i = 1,2.

Therefore, for i = 1, 2, we get
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‖wi(·,a1(T )) − ϕ(·)‖p � ε,

‖wi(·,0)‖p � E,

∂ wi

∂θ
(x, θ) = ∂2 wi

∂x2
(x, θ),

ω(wi(·,0),h)p � Ẽhγ ,∀h > 0.

Using Theorem 3.3 in [10] and the triangle inequality of norm, we conclude that

‖w1(·,0) − w2(·,0)‖p � O

((
ln

E

ε

)−γ /2
)

as ε −→ 0+.

This implies that

‖u1(·,0) − u2(·,0)‖p � O

((
ln

E

ε

)−γ /2
)

as ε −→ 0+.

The theorem is proved. �
3. Tikhonov-type regularization method and error estimates

We minimize the Tikhonov-type functional

Jα(g) = ‖v(·, T , g) − ϕ(·)‖p
p + α‖g‖p

p (3.1)

over Lp(R), where v = v(x, t, g) is the solution of the well-posed initial problem⎧⎨⎩
∂v

∂t
= a(t)

∂2 v

∂x2
, (x, t) ∈ (−∞;+∞) × (0; T )

v(x,0) = g ∈ Lp(R)

(3.2)

and consider the minimizers of the functional Jα as a regularized solution to problem (1.1). We propose a priori and a 
posteriori parameter choice rules for obtaining error estimates of the same order as that in Theorem 1 and Theorem 2.

In this section, we always assume that problem (1.1) has a solution u(x, t) satisfying

‖u(·,0)‖p � E, (3.3)

with E > ε being a given positive number.

Remark 2. In [11], we have used the Tikhonov-type functional ‖v(·, T , g) − ϕ(·)‖2
p + α‖g‖2

p and obtained error estimates 
of Hölder type. In this paper, we use the Tikhonov-type functional (3.1) with noting that p > 1. With this change, the 
functional in the discretized problem of (3.1) is Fréchet differentiable at any point (see in Subsection 4.2) and thus we can 
use some efficient numerical algorithms to solve it.

Theorem 3. Problem (3.2) is well-posed.

Proof. See [18]. �
Theorem 4. There exists a unique solution to problem (3.1)-(3.2).

The proof of this theorem is similar to that of Theorem 3 of [11]. Therefore, we skip its proof here.

Theorem 5. Let {ϕn} be a sequence converging to ϕ∗ and {gn} be the minimizer of problem (3.1)-(3.2) with ϕ replaced by ϕn. Then, 
the sequence {gn} converges to the minimizer g∗ of problem (3.1)-(3.2) with ϕ replaced by ϕ∗ .

The proof of this theorem is similar to that of Theorem 4 of [11]. Therefore, we skip its proof here.
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3.1. Error estimate under an a priori parameter choice rule

Theorem 6. Let u(x, t) be a solution of problem (1.1) satisfying the condition (3.3) and g be the solution of problem (3.1)-(3.2) with 
the a priori parameter choice

α =
( ε

E

)p
.

Then, there exists a constant ̃C > 0 such that

‖u(·, t) − v(·, t, g)‖p � C̃εν(t)E1−ν(t), ∀t ∈ [0, T ].

Proof. Let z(x, t) = u(x, t) − v(x, t, g), x ∈R, t ∈ [0, T ]. Then

∂z

∂t
= a(t)

∂2z

∂x2
, (x, t) ∈ (−∞;+∞) × (0; T ).

Set

m(x, η) := z
(
x, ν−1 (η)

)
, x ∈R, η ∈ [0,1], i = 1,2. (3.4)

Using the same argument as in the proof of Theorem 1, we have

∂m

∂η
(x, η) = a1(T )

∂2m

∂x2
(x, η), (x, η) ∈ (−∞;+∞) × (0;1). (3.5)

Now, we set n(x, θ) = m 
(

x, θ
a1(T )

)
, x ∈R, θ ∈ [0, a1(T )]. We have n(x, θ) = m (x, η) with θ = a1(T )η. Furthermore, we obtain

∂n

∂η
(x, θ) = ∂2n

∂x2
(x, θ), (x, θ) ∈ (−∞;+∞) × (0;a1(T )). (3.6)

Since n(x, θ) solves equation (3.6) and n(x, 0) = m(x, 0) = z(x, 0) = u(x, 0) − v(x, 0, g) = u(x, 0) − g ∈ Lp(R), there exists a 
positive constant C1 such that (see [10,16])

‖n(·, θ)‖p � C1‖n(·,a1(T ))‖
θ

a1(T )

p ‖n(·,0)‖1− θ
a1(T )

p , ∀θ ∈ [0,a1(T )]. (3.7)

Since n(·, 0) = m(·, 0) = z(·, 0) and n(·, a1(T )) = m(·, 1) = z(·, T ), from (3.7) we have

‖n(·, θ)‖p � C1‖z(·, T )‖
θ

a1(T )

p ‖z(·,0)‖1− θ
a1(T )

p , ∀θ ∈ [0,a1(T )]. (3.8)

By choosing θ = a1(T )ν(t), t ∈ [0, T ], we have n(·, θ) = m 
(
·, θ

a1(T )

)
= m(·, ν(t)) = z(·, t). From (3.8), we obtain

‖z(·, t)‖p � C1‖z(·, T )‖ν(t)
p ‖z(·,0)‖1−ν(t)

p , ∀θ ∈ [0, T ].
Therefore, we conclude that there exists a positive constant C1 such that

‖u(·, t) − v(·, t, g)‖p � C1‖u(·, T ) − v(·, T , g)‖ν(t)
p ‖u(·,0) − g‖1−ν(t)

p , ∀t ∈ [0, T ]. (3.9)

On the other hand, we have

‖v(·, T , g) − ϕ‖p
p � ‖v(·, T , g) − ϕ‖p

p +
( ε

E

)p ‖g‖p
p

� ‖u(·, T ) − ϕ‖p
p +

( ε

E

)p ‖u(·,0)‖p
p

� εp +
( ε

E

)p
E p = 2εp .

Therefore, we have ‖v(·, T , g) − ϕ‖p � 2
1
p ε. This implies that

‖u(·, T ) − v(·, T , g)‖p � ‖u(·, T ) − ϕ‖p + ‖v(·, T , g) − ϕ‖p � ε + 2
1
p ε � (1 + 2

1
p )ε. (3.10)

Furthermore, we have
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( ε

E

)p ‖g‖p
p � ‖v(·, T , g) − ϕ‖p

p +
( ε

E

)2 ‖g‖p
p

� ‖u(·, T ) − ϕ‖p
p +

( ε

E

)p ‖u(0)‖p
p

� 2εp .

Therefore, ‖g‖p � 2
1
p E . This implies that

‖u(·,0) − g‖p � ‖u(0)‖p + ‖g‖p � (1 + 2
1
p )E. (3.11)

From (3.9)–(3.11), we claim that there exists a constant C̃ > 0 such that

‖u(·, t) − v(·, t, g)‖p � C̃εν(t)E1−ν(t), ∀t ∈ [0, T ].
The theorem is proved. �
3.2. Error estimate under an a posteriori parameter choice rule

Lemma 1. Suppose that 0 < ε < ‖ϕ‖p . Let ρ(α) = ‖v(·, T , g∗
α) − ϕ‖p, α > 0 where g∗

α is the solution of problem (3.1)-(3.2). Then

a) ρ(α) is a continuous function on (0, +∞);

b) lim
α→0+ ρ(α) � ε;

c) lim
α→+∞ρ(α) = ‖ϕ‖p .

Proof. a) We first prove that:

If 0 < α1 ≤ α2 then

{
Jα1(g∗

α1
) ≤ Jα2(g∗

α2
)

‖g∗
α1

‖p ≥ ‖g∗
α2

‖p,
(3.12)

where g∗
αi

is the minimum of the functional Jαi , i = 1, 2 (see (3.1) for the definition of the function Jα ).
Indeed, if 0 < α1 ≤ α2, then

Jα1(g∗
α1

) ≤ Jα1(g∗
α2

)

= Jα2(g∗
α2

) + (α1 − α2)‖g∗
α2

‖p
p

≤ Jα2(g∗
α2

).

Furthermore, we have

Jα1(g∗
α1

) ≤ Jα1(g∗
α2

)

= Jα2(g∗
α2

) + (α1 − α2)‖g∗
α2

‖p
p

≤ Jα2(g∗
α1

) + (α1 − α2)‖g∗
α2

‖p
p,

which implies

α1‖g∗
α1

‖p
p ≤ α2‖g∗

α1
‖p

p + (α1 − α2)‖g∗
α2

‖p
p ⇔ (α1 − α2)

(‖g∗
α2

‖p
p − ‖g∗

α1
‖p

p
) ≥ 0. (3.13)

If 0 < α1 = α2 then g∗
α1

= g∗
α2

(since the minimizer of the functional Jα is unique). This implies that ‖g∗
α1

‖p = ‖g∗
α2

‖p . 
If 0 < α1 < α2 then from (3.13), we conclude that ‖g∗

α1
‖p ≤ ‖g∗

α2
‖p .

Let α0 > 0 be an arbitrary real number. Next, we will prove that

lim
α→α+

0

ρ(α) = ρ(α0). (3.14)

Take any sequence {αn}∞n=1 satisfying αn > α0, ∀n ∈ N∗ and lim
n→∞αn = α0. Let h(x) = 0, ∀x ∈ R. Then h ∈ Lp(R) and 

v(·, T , h) ≡ 0. We have

‖v(·, T , g∗
αn

) − ϕ(·)‖p
p + α0‖g∗

αn
‖p

p ≤ ‖v(·, T , g∗
αn

) − ϕ(·)‖p
p + αn‖g∗

αn
‖p

p

= Jαn (g∗
αn

) = min
g∈L p(R)

Jαn (g)

≤ Jαn (h)

= ‖v(·, T ,h) − ϕ‖p
p + αn‖h‖p

p

= ‖ϕ‖p
.
p
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Hence, ‖g∗
αn

‖p, ‖v(., T , g∗
αn

) −ϕ(·)‖p are uniformly bounded by ‖ϕ‖p/α0
1/p, ‖ϕ‖p , respectively, and there exists a subse-

quence αnk such that g∗
αnk

converges weakly to some g∗ ∈ Lp(R). Since Lp(R) is a reflexive Banach space and g �→ v(., T , g)

is a continuous linear operator, it implies that v(., T , g∗
αnk

) − ϕ also converges weakly to v(., T , g∗) − ϕ . By the weak lower 
semicontinuity of the norm, we have

Jα0(g∗) ≤ lim inf
k→∞

Jαnk
(g∗

αnk
) ≤ lim sup

k→∞
Jαnk

(g∗
αnk

)

≤ lim sup
k→∞

Jαnk
(g∗

α0
) = Jα0(g∗

α0
).

Since the minimizer of Jα(g) is unique, we must have g∗
αnk

= g∗ and thus it also follows that

lim
k→∞

Jαnk
(g∗

αnk
) = Jα0(g∗

α0
). (3.15)

Since αnk > α0 for all k we get by (3.12)

‖g∗
α0

‖p
p ≤ lim inf

k→∞
‖g∗

αnk
‖p

p ≤ lim sup
k→∞

‖g∗
αnk

‖p
p ≤ ‖g∗

α0
‖p

p .

This implies that

lim
k→∞

‖g∗
αnk

‖p
p = ‖g∗

α0
‖p

p . (3.16)

From (3.15) and (3.16), we obtain

lim
k→∞

‖v(·, T , g∗
αnk

) − ϕ(·)‖p
p = lim

k→∞

(
‖v(·, T , g∗

αnk
) − ϕ(·)‖p

p + αnk‖g∗
αnk

‖p
p − αnk‖g∗

αnk
‖p

p

)
= lim

k→∞

(
Jαnk

(g∗
αnk

) − αnk‖g∗
αnk

‖p
p

)
= lim

k→∞
Jαnk

(g∗
αnk

) − lim
k→∞

αnk‖g∗
αnk

‖p
p

= Jα0(g∗
α0

) − α0‖g∗
α0

‖p
p

= ‖v(·, T , g∗
α0

) − ϕ(·)‖p
p . (3.17)

It follows from (3.17) that lim
k→∞

ρ(αnk ) = ρ(α0).

Since lim
n→∞αn = α0, it follows that lim

k→∞
αnk = α0. Let δ > 0 be an arbitrarily small real number. From (3.15), (3.16) and 

lim
k→∞

αnk = α0, we conclude that there exists a positive integer k0 such that

0 < αnk0
− α0 <

δ

3
.

α0

‖ϕ‖p
p
, (3.18)

0 ≤ ‖g∗
α0

‖p
p − ‖g∗

αnk0
‖p

p <
δ

3α0
, (3.19)

0 ≤ Jαnk0
(g∗

αnk0
) − Jα0(g∗

α0
) <

δ

3
. (3.20)

Since αn > α0, ∀n ∈ N∗ and lim
n→∞αn = α0, there exists a positive integer n0 such that αn ∈ (α0, αnk0

), ∀n ≥ n0. From 
α0 < αn < αnk0

, ∀n ≥ n0 and (3.12), we obtain for all n ≥ n0⎧⎨⎩ Jα0(g∗
α0

) ≤ Jαn (g∗
αn

) ≤ Jαnk0
(g∗

αnk0
)

‖g∗
α0

‖p ≥ ‖g∗
αn

‖p ≥ ‖g∗
αnk0

‖. (3.21)

From (3.18), (3.19), (3.20) and (3.21), we get for all n ≥ n0

0 < αn − α0 <
δ

3
.

α0

‖ϕ‖p
p
, (3.22)

0 ≤ ‖g∗
α0

‖p
p − ‖g∗

αn
‖p

p <
δ

3α0
, (3.23)

0 ≤ Jαn (g∗
αn

) − Jα0(g∗
α0

) <
δ

3
. (3.24)
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We have for all n ≥ n0∣∣∣‖v(·, T , g∗
αn

) − ϕ(·)‖p
p − ‖v(·, T , g∗

α0
) − ϕ(·)‖p

p

∣∣∣
= ∣∣ Jαn (g∗

αn
) − Jα0(g∗

α0
) + α0(‖g∗

α0
‖p

p − ‖g∗
αn

‖p
p) + (α0 − αn)‖g∗

αn
‖p

p

∣∣
≤ ∣∣ Jαn (g∗

αn
) − Jα0(g∗

α0
)
∣∣ + α0

∣∣‖g∗
α0

‖p
p − ‖g∗

αn
‖p

p

∣∣ + |α0 − αn|‖g∗
αn

‖p
p

≤ δ

3
+ α0.

δ

3α0
+ δ

3
.

α0

‖ϕ‖p
p
.‖g∗

αn
‖p

p

≤ δ

3
+ δ

3
+ δ

3
= δ. (3.25)

This implies that lim
n→∞‖v(·, T , g∗

αn
) − ϕ(·)‖p

p = ‖v(·, T , g∗
α0

) − ϕ(·)‖p
p or lim

n→∞ρ(αn) = ρ(α0). (3.14) has been proven.

The proof of

lim
α→α−

0

ρ(α) = ρ(α0) (3.26)

is carried out in the same way as above, noting that for any sequence {αn}∞n=1 satisfying 0 < αn < α0, ∀n ∈ N∗ and 
lim

n→∞αn = α0, there is a positive real number γ such that 0 < γ < αn < α0 for all n ∈N∗ .

From (3.14) and (3.26), we obtain lim
α→α0

ρ(α) = ρ(α0). Therefore, ρ(α) is a continuous function at α0. Since α0 is an 

arbitrary positive real number, we conclude that ρ(α) is a continuous function on (0, +∞).
The proof of part a) is complete.
b) Let u(x, t) be a solution of problem (1.1) satisfying the condition (3.3). We have

ρ p(α) = ‖v(·, T , g∗
α) − ϕ‖p

p

� ‖v(·, T , g∗
α) − ϕ‖p

p + α‖g∗
α‖p

p

= Jα(g∗
α) = min

g∈L p(R)
Jα(g)

� Jα(u(·,0))

= ‖v(·, T , u(·,0)) − ϕ‖p
p + α‖u(·,0)‖p

p

= ‖u(·, T ) − ϕ‖p
p + α‖u(·,0)‖p

p

� εp + αE p .

This implies that

0 � ρ(α) �
(
εp + αE p) 1

p . (3.27)

Since lim
α→0+ αE p = 0, from (3.27) we obtain lim

α→0+ ρ(α) � ε.

c) Let h(x) = 0, ∀x ∈R. Then h ∈ Lp(R) and v(·, T , h) ≡ 0. Therefore, we obtain

ρ p(α) = ‖v(·, T , g∗
α) − ϕ‖p

p

� ‖v(·, T , g∗
α) − ϕ‖p

p + α‖g∗
α‖p

p

= Jα(g∗
α) = min

g∈L p(R)
Jα(g)

� Jα(h)

= ‖v(·, T ,h) − ϕ‖p
p + α‖h‖p

p

= ‖0 − ϕ‖p
p + α‖0‖p

p

= ‖ϕ‖p
p .

This implies that

ρ(α) � ‖ϕ‖p . (3.28)

Further, we have

ρ(α) = ‖v(·, T , g∗
α) − ϕ‖p � ‖ϕ‖p − ‖v(·, T , g∗

α)‖p . (3.29)
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From (3.28) and (3.29) we obtain

‖ϕ‖p − ‖v(·, T , g∗
α)‖p � ρ(α) � ‖ϕ‖p . (3.30)

We have

α‖g∗
α‖p

p � ‖v(·, T , g∗
α) − ϕ‖p

p + α‖g∗
α‖p

p

= Jα(g∗
α) = min

g∈L p(R)
Jα(g)

� Jα(h)

= ‖v(·, T ,h) − ϕ‖p
p + α‖h‖p

p

= ‖0 − ϕ‖p
p + α‖0‖p

p

= ‖ϕ‖p
p .

This implies that

0 � ‖g∗
α‖p �

(
1

α

) 1
p ‖ϕ‖p . (3.31)

From (3.31) and

lim
α→+∞

(
1

α

) 1
p ‖ϕ‖p = 0,

we obtain

lim
α→+∞‖g∗

α‖p = 0. (3.32)

Let A(t) = ∫ t
0 a(s)ds, we can check that the solution of the problem⎧⎨⎩

∂v

∂t
= a(t)

∂2 v

∂x2
, (x, t) ∈ (−∞;+∞) × (0; T )

v(x,0) = g∗
α ∈ Lp(R)

is

v(x, t, g∗
α) = 1√

4π A(t)

∞∫
−∞

e− (x−y)2

4A(t) g∗
α(y)dy, t ∈ (0, T ].

Therefore, we have

v(x, T , g∗
α) = 1√

4π A(T )

∞∫
−∞

e− (x−y)2

4A(T ) g∗
α(y)dy.

Let K (x) = 1√
4π A(T )

e− x2
4A(T ) . Then

v(x, T , g∗
α) =

∞∫
−∞

K (x − y)g∗
α(y)dy.

Therefore, v(·, T , g∗
α) = K ∗ g∗

α , where K ∗ g∗
α denotes the convolution of K with g∗

α . Since K ∈ L1(R) and g∗
α ∈ Lp(R), we 

have

‖v(·, T , g∗
α)‖p = ‖K ∗ g∗

α‖p

� ‖K‖1‖g∗
α‖p . (3.33)

Furthermore,
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‖K‖1 = 1√
4π A(T )

∞∫
−∞

e− x2
4A(T ) dx. (3.34)

Let y = x√
4A(T )

. We have

‖K‖1 = 1√
4π A(T )

∞∫
−∞

e− x2
4A(T ) dx

= 1√
4π A(T )

∞∫
−∞

e−y2√
4A(T )dy

= 1√
π

∞∫
−∞

e−y2
dy

= 1. (3.35)

From (3.33) and (3.35) we obtain

0 � ‖v(·, T , g∗
α)‖p � ‖g∗

α‖p . (3.36)

From (3.32) and (3.36) we conclude that

lim
α→+∞‖v(·, T , g∗

α)‖p = 0. (3.37)

From (3.30) and (3.37) we obtain lim
α→+∞ρ(α) = ‖ϕ‖p .

The lemma is proved. �
Theorem 7. Let u(x, t) be a solution of problem (1.1) satisfying the condition (3.3). Suppose that 0 < ε < ‖ϕ‖p and τ > 1 is chosen 
such that 0 < τε < ‖ϕ‖p . Then, there exists a number αε > 0 such that

‖v(·, T , g∗
αε

) − ϕ‖p = τε, (3.38)

where g∗
αε

is the solution of problem (3.1)-(3.2) with α = αε . Furthermore, there exists a constant C∗ > 0 such that

‖u(·, t) − v(·, t, g∗
αε

)‖p � C∗εν(t)E1−ν(t), ∀t ∈ [0, T ].

Proof. From Lemma 1 and 0 < ε < τε < ‖ϕ‖p we conclude that there exists a number αε > 0 satisfying (3.38). We have

‖u(·, T ) − v(·, T , g∗
αε

)‖p � ‖u(·, T ) − ϕ‖p + ‖v(·, T , g∗
αε

) − ϕ‖p

� (τ + 1)ε. (3.39)

It is obvious that

τ pεp = ‖v(T , g∗
αε

) − ϕ‖p
p

� ‖vαε (T , g∗
αε

) − ϕ‖p + αε‖g∗
αε

‖p

� ‖u(T ) − ϕ‖p
p + αε‖u(0)‖p

p

� εp + αε E p .

This implies that (τ p − 1)εp � αε E p or εp � αε E p

τ p − 1
. On the other hand, we have

αε‖g∗
αε

‖p
p � ‖v(T , g∗

αε
) − ϕ‖p

p + αε‖g∗
αε

‖p
p

� ‖u(T ) − ϕ‖p
p + αε‖u(0)‖p

p

� εp + αε E p

� αε E p

τ p − 1
+ αε E p .
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This implies that ‖g∗
αε

‖p �
(

τ p

τ p − 1

) 1
p

E . Therefore,

‖u(0) − g∗
αε

‖p � ‖u(0)‖p + ‖g∗
αε

‖p

�
(

1 +
(

τ p

τ p − 1

) 1
p

)
E. (3.40)

Using the same arguments as in the proof of Theorem 6, we conclude that there exists a positive constant C1 such that

‖u(·, t) − v(·, t, g∗
αε

)‖p � C1‖u(·, T ) − v(·, T , g∗
αε

)‖ν(t)
p ‖u(·,0) − g∗

αε
‖1−ν(t)

p , ∀t ∈ [0, T ]. (3.41)

From (3.39), (3.40) and (3.41), it follows that there exists a constant C∗ > 0 such that

‖u(·, t) − v(·, t, g∗
αε

)‖p � C∗εν(t)E1−ν(t), ∀t ∈ [0, T ].
The theorem is proved. �
4. Numerical solution

4.1. Solution of the forward problem

We notice that the solution to the problem⎧⎨⎩
∂v

∂t
= a(t)

∂2 v

∂x2
, (x, t) ∈ (−∞;+∞) × (0; T ),

v(x,0) = g ∈ Lp(R)

(4.1)

is

v(x, t) = 1√
4π A(t)

∞∫
−∞

e− (x−y)2

4A(t) g(y)dy, (4.2)

where A(t) = ∫ t
0 a(s)ds.

4.2. Discretized problem and quasi-Newton algorithm

We approximate the Tikhonov-type regularization problem on a finite domain � = [−M, M] ×[0, T ]. We divide the inter-
vals, [−M, M] and [0, T ], into equally sub-intervals by the grid points xi, i = 0, . . . , N and t j, j = 0, . . . , m, respectively. Then, 
for each function g ∈ Lp(R) we denote gi = g(xi), vi = v(xi, T ), i = 0, . . . , N (v(x, t) is given by (4.2)). We use boldfaced let-
ters to denote vectors, for examples g = [g0 g1 · · · gN ]T , v(g) = [v0 v1 · · · v N ]T . We also denote gα = [gα

0 gα
1 · · · gα

N ]T . Using 
the trapezoidal rule for approximating integrals, we have

M∫
−M

g(x)dx ≈ wT g,v(g) = (K ◦ W )g := Hg, (4.3)

where w = M
N [1 2 · · · 2 1]T , W is the square matrix whose rows are equal to w T (repeated N + 1 times) and K = (kij) with 

kij = 1√
4π A(T )

e− (xi−x j )
2

4A(T ) , i, j = 0, 1, . . . , N . Here, K ◦ W is the Hadamard product (also known as the elementwise, entry-wise 
or Schur product) that takes two matrices of the same dimensions and produces another matrix of the same dimension as 
the operands, where each element i, j is the product of elements i, j of the original two matrices.

The Tikhonov-type regularization functional is approximated by

J N
α (g) := wT |v(g) − ϕ|p + αwT |g|p (4.4)

= wT |Hg − ϕ|p + αwT |g|p .

For p ∈ (1, ∞) the function J N
α (g) is strongly convex, and it is differentiable with respect to g . By directly computing, the 

gradient of J N
α (g) is given by

∇ J N
α (g) =H T (

w ◦ sign (Hg − ϕ) ◦ |Hg − ϕ|p−1) + α
(
w ◦ sign (g) ◦ |g|p−1) . (4.5)
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The discretized version of problem (3.1) is as follows:

min
g∈RN

J N
α (g). (4.6)

There are many algorithms to find the minimizer of the function (4.4) such as the steepest gradient method, conjugate 
gradient methods, and quasi-Newton methods [4]. In this paper, we use the quasi-Newton method with BFGS update in [4]. 
This algorithm is described below.

Algorithm 4.1 Quasi-Newton method with BFGS’s update.
Input: Initial guess g0, H0 = I and tol = 10−9

1: while ‖∇ J N
α (gn)‖ > tol do

2: dn = −Hn∇ J N
α (gn)

3: gn+1 = gn + dn

4: yn = ∇ J N
α (gn+1) − ∇ J N

α (gn)

5: Hn+1 =
(

I − dn yT
n

yT
n dn

)
Hn

(
I − yndT

n

yT
n dn

)
+ dndT

n

yT
n dn

6: n = n + 1
7: end while

Output: g = gn

4.3. Numerical examples

In this section, we present some numerical examples to illustrate our theoretical results. Here, we only make a compari-
son between theoretical results in Theorem 6 and numerical results. First, we consider the following example.

Example 1. We assume that the coefficients of the forward problem (4.1) are given by a(t) = 1 + t, g(x) = e−x2
, and the 

discretized domain is � = [−M, M] × [0, T ] with M = 20 and T = 1. The interval [−M, M] is divided equally by 601 points. 
We choose p-norm with p = 1.8. The noiseless data uT is computed approximately by (4.3), and a noisy data is generated 
by

unoise = uT + ε
R

‖R‖p
,

where R = randn(size(uT )), where randn() is a Mathlab function that generates a random vector.

Numerical solutions with noiseless data: With ε = 0 and α1 = 10−9 the exact solution u and the recovered solution uα are 
illustrated in Fig. 1. We see that the recovered solution is a good approximation to the exact solution at t > 0. However, at 
t = 0 the quality of reconstruction is reduced. By increasing the number of grid points, the approximate error is reduced, 
but the maximum value of recovered solution at t = 0 still has a violation and could not reach the maximum value of the 
exact solution.

We look closer at the solution at several values of t . Fig. 2 illustrates the numerical exact solution and the recovered 
solution at t = 0, 0.24, 0.75 and t = 1. We see that for t > 0 the recovered solution and the exact solution are almost 
identical, but at t = 0 the maximum value of the recovered solution is smaller than one and there is a violation around 

Fig. 1. Numerical exact solution u and the recovered solution uα for noiseless data.
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Fig. 2. Numerical exact solution u and the recovered solution uα1 for noiseless data. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

the exact solution. This observation is suitable with the result in Theorem 6. Note that Theorem 6 does not consider the 
convergence rate at t = 0.

Numerical solutions with noisy data: We now illustrate the results in Theorem 6 and Theorem 7. First, we set ε = 10−2 and 
denote by α1 and α2 the regularization parameters which are chosen by the a priori and a posteriori parameter choice rules. 
We have α1 = (ε/E)p as in Theorem 6. For α2 it is computed approximately as follows: from Theorem 7 α2 is a solution of 
the equation

m(α2) := ‖v(·, T , g∗
α2

) − ϕ‖p − τε = 0. (4.7)

Since limα→0+ m(α) ≤ ε − τε < 0, limα→+∞ m(α) = ‖ϕ‖p − τε > 0, equation (4.7) has at least one solution in (0, +∞). 
Thus, we can use the bisection method to find such a solution. Combining the Tikhonov-type regularization and bisection 
method, we obtain the following algorithm.

Algorithm 4.2 Tikhonov-type regularization with a posteriori parameter choice rule.

Input: Initials: k = 0, τ ∈
(

1,
‖ϕ‖p

ε

)
, tol = 10−4 and a = 0, b = 10−1.

1: α = b; gα = argming J N
α (g); tg = m(α)

2: while tg < 0 do
3: a = b; b = 2b
4: α = b; gα = argming J N

α (g); tg = m(α)

5: end while
6: α = (a + b)/2; gα = argming J N

α (g); tg = m(α)

7: while abs(tg) > tol do
8: if tg > 0 then
9: b = α

10: else
11: a = α
12: end if
13: α = (a + b)/2; gα = argming J N

α (g); tg = m(α)

14: end while
Output: α2 = α; gα2 = gα .

With ε = 10−2 the numerical exact solution u and recovered solutions, uα1 , uα2 , are illustrated in Fig. 3. The recovered 
solutions uα1 and uα2 at some values of t are illustrated in Fig. 4. At t > 0 they are good approximations to the exact 
solution, but at t = 0 the recovered solutions have larger error near the maximum of the exact solution.

The Lp errors between the regularized solutions and the numerical exact solution with respect to t are presented in 
Fig. 5. We observe that on one hand for each noise level the errors increase when t decreases to zero. On the other hand 
they are reduced when noise levels are getting smaller. This is suitable with the result in Theorems 6 and 7. It also shows 
that the constant C̃ > 0 in Theorem 6 should be close to one.
N.V. Duc, P.Q. Muoi and N.T.V. Anh Applied Numerical Mathematics 175 (2022) 40–55
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Fig. 3. Recovered solutions uα1 and uα2 in Example 1 with noise ε = 10−2.

Fig. 4. Numerical exact solution u and the recovered solutions uα1 and uα2 in Example 1 with noise ε = 10−2.

Fig. 5. The error ‖uα1 (·, t) − v(·, t)‖p and ‖uα2 (·, t) − v(·, t)‖p with respect to ε = 10−2 (above) and ε = 10−4 (below) in Example 1.
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Fig. 6. Numerical exact solution u and the recovered solutions uα1 and uα2 in Example 2 with respect to ε = 10−2.

Fig. 7. The error ‖uα1 (·, t) − v(·, t)‖p and ‖uα2 (·, t) − v(·, t)‖p with respect to ε = 10−2 (above) and ε = 10−4 (below) in Example 2.

Example 2. We assume that the coefficients of the forward problem (4.1) are given by

a(t) = 4T − t2, g(x) =

⎧⎪⎨⎪⎩
1, if x ∈ [−5,−3],
0.5, if x ∈ [3,5],
0, otherwise.

In this example, the initial condition g is not smooth. We make the same setting as in Example 1. To generate noise 
data, we set ε = 10−2. We denote by α1 and α2 the regularization parameters which are chosen by the a priori parameter 
choice rule and a posteriori parameter choice rule, respectively. Fig. 6 illustrates the solutions at t = 0, 0.24, 0.5 and 0.75. 
Unlike Example 1, it is harder to obtain good approximations in this example (the case of nonsmooth initial condition). 
Here, the recovered solutions are good approximations to the exact solution for large values of t , but they are getting worse 
approximations for small values of t . Furthermore, in neighborhoods of discontinuous points, the qualities of approximation 
are bad. These situations are evident, and they are similar in numerical computations, i.e., if the solution is smoother, then 
the recovered solutions are better.

We now consider the Lp errors between the exact solution and the recovered solutions in L p -norm, which are given 
in Fig. 7. The figure shows that the values εν(t) E1−ν(t) are below the error values for t larger, which is different from 
Example 1. This implies that the constants in Theorems 6 and 7 must be larger than one.

Before closing this section, we want to show that the error values εν(t) E1−ν(t) in this example are larger than those in 
Example 1. This is pointed out in Remark 1.
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5. Conclusion

In this paper, we investigated the Cauchy problem for the heat equation backward in time with time-dependent coef-
ficient a(t) from the final data. We proved some results on stability estimates, which are given in Theorems 1 and 2. To 
recover the initial condition, we used the Tikhonov-type regularization that leads to a smooth and convex optimization 
problem. The wellposedness of the regularized problem proved. Then, we proposed two methods for choosing the regular-
ized parameter, a priori parameter choice rule and a posteriori parameter choice rule. With these rules, the convergent rates 
of the recovered solutions to the exact solution were obtained in Theorems 6 and 7 for t > 0, respectively. Note that the 
convergence rate at t = 0, i.e., the convergence rate of the recovered initial condition to the exact one is still open. Finally, 
two numerical examples were shown to illustrate the performance of our approach and the theoretical results.
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