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ABSTRACT
A new regularization method for an inverse source problem for a parabolic
equation in a Banach space is proposed. Hölder-type error estimates for the
regularized solutions are proved for both apriori and aposteriori regulariza-
tion parameter choice rules. Some numerical examples are presented for
illustrating the efficiency of the method.
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1. Introduction

Let T be a positive real number and X be a Banach space with norm ‖ · ‖. Let A : D(A) ⊂ X → X be
a densely-defined linear operator in X such that −A generates an analytic semigroup {S(t)}t≥0 on X.
By D(A), σ(A), ρ(A) and R(λ;A), λ ∈ ρ(A), we denote the domain, the spectrum set, the resolvent
set, and the resolvent of operator A, respectively. We assume that the following condition holds:

‖S(T)‖ < 1. (1)

Let u : [0,T] → X be a function from [0,T] to X and F be an element in X. We consider the inverse
problem of determining the element F in the following problem

u′(t)+ Au(t) = F, t ∈ (0,T),
u(0) = 0,
u(T) = g,

(2)

with g ∈ X being given. The first two equations in (2) form a Cauchy problem, which is considered
as the forward problem in which u is to be determined with F being given. A solution u(t) of the
forward problem is assumed to be in C1([0,T];X) and u(t) ∈ D(A) for t ∈ [0,T].

The last equation in (2) is considered as a measured datum in the inverse source problem. In prac-
tical situations, measurements usually contain error. Therefore, we assume that only a noisy datum
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gδ is given, which is merely in X and satisfies

‖g − gδ‖ ≤ δ, (3)

where δ > 0 represents the noise level.
Throughout this paper, we assume that there exists a positive constant E > δ such that the

following condition holds:

‖(I + Ap)F‖ ≤ E, (4)

where p is some positive real number such that p ≥ 1 and Ap is a fractional power of A as defined
in Definition 2.3. If A is a differential operator, as in the case when (2) is a parabolic equation,
condition (4) means that the source term F needs to be regular enough as a function in X, see
Example 2.6.

We note that the inverse source problem arises in several practical applications. Examples include
the problem of determining heat sources in a heat transfer process and the problem of determining
sources of pollution in air or water [1–5]. In [6], the authors considered an application of inverse
source problems in solving a coefficient inverse problem.

There is an extensive literature on inverse source problems for parabolic equations in Hilbert
spaces, see, e.g. [7–13] and the references therein. For an up-to-date list of inverse source problems
for parabolic equations and corresponding references, we refer the reader to Hào et al. [8]. Some of
the earliest works on inverse source problems for parabolic equations in Banach spaces were due to
Iskenderov and Tagiev [14] and Rundell [15]. For other works on this topic, see [16–24]. The unique-
ness of the inverse problem (2) has been proved under the assumption that g ∈ D(A) and no number
of the form 2π ik/T, with integers k 	= 0, is an eigenvalue of A, see [17, 23]. The uniqueness has also
been proved for a more general equation in which F is a function of time, see [15, 24]. For the case
with noisy data gδ , which is generally not in D(A), problem (2) is ill-posed. Therefore, to solve it,
regularization methods need to be applied. Although the theory on regularization of ill-posed linear
equations in Banach spaces have been discussed by various authors, see, e.g. [25] and the references
therein, results on the particular case of inverse source problems for parabolic equations are limited.
In [19], the authors proposed a regularization method based on the conversion of the inverse source
problem into a Fredholm equation of second kind and then approximate the original problem in an
infinite dimensional space by a problem in a finite dimensional space. However, the convergence rate
was not investigated and numerical implementation was not discussed.

In this work, we propose a regularization method, which approximates (2) by the following
problem

v′(t)+ Av(t) = Fα , t ∈ (0,T),
v(0) = 0,
v(T) = (I + αAb)−1gδ ,

(5)

where α > 0 is a regularization parameter, b is a positive integer, and I is the identity operator in X.
We will see that (I + αAb)−1 is a bounded operator on X (Lemma 4.5) and problem (5) is well-posed
(Remark 4.1). We obtain error estimates between Fα and F of Hölder type for both a priori and a
posteriori choice rules for the regularization parameter α.

In the Hilbert space setting, a similar regularization method with b = 1 was proposed in [7] in
which the authors derived a Hölder-type error estimate for an a priori parameter choice rule. The
proof of the result in [7] was based on the eigenfunction expansion method in Hilbert spaces. In this
paper, we obtain Hölder-type error estimates for the regularized solutions using both a priori and a
posteriori parameter choice rules (Theorems 3.1 and 3.2) with a higher rate of convergence than that
in [7] when b> 1. We note that our results are proven in Banach spaces where the techniques used in
[7] are no more applicable.

The remainder of this work is arranged as follows. In Section 2 we present some auxiliary results
which are needed in our analysis. In Section 3, we state error estimates for the regularized solutions
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– the main results of this paper. The proofs of these results are presented in Section 4. In Section 5,
we present some numerical examples for showing the efficiency of our method. Some concluding
remarks are provided in Section 6. In the Appendix, we prove a result concerning eigenvalues of
fractional powers of a linear operator in a Banach space.

2. Auxiliary results

In this section, we state some auxiliary results that we need to use in Section 3 for proving error
estimates. For more details, see the cited references.

Definition 2.1 ([26], p. 93): We call a (possibly unbounded) operator A a generator if A gener-
ate a uniformly bounded strongly continuous holomorphic semigroup {e−zA}Re z�0. By switching
to equivalent norm |‖x‖| = supRe z�0 ‖e−zA‖, if necessary, we may assume that ‖e−zA‖ ≤ 1, for all
Re z � 0. For s � 0, define

G(s,A) :=
∫

R

1 − cos(sr)
r2

eirA
dr
π
. (6)

Remark 2.1 (See Proposition 10 in [26]): The following inequality holds

‖G(s,A)‖ ≤ s, ∀ s � 0.

Definition 2.2 ([26]): LetAC1[0, 1] be the set defined byAC1[0, 1] := {h : [0, 1] → R|h′is absolutely
continuous on [0, 1]} and AC1[0,∞) := {h ◦ g|h ∈ AC1[0, 1]}, where g(t) = (1 + t)−1, t ∈ [0,∞).
For f ∈ AC1[0,∞), we define the functional calculus

f (A) :=
(
lim
t→∞ f (t)

)
I +

∫ ∞

0
f ′′(s)G(s,A) ds. (7)

In (7), f ′′ is the pointwise second derivative of f. We remark that since f ′ is absolutely continuous on
[0,∞), f ′′ exists almost everywhere.

Definition 2.3 ([27], p. 69): Let A be a densely-defined closed linear operator which satisfies
Definition 2.1 such that ρ(A) ⊃ �+ := {λ : 0 < ω < |argλ| ≤ π} ∪ V , where ω is a given positive
real number and V is a neighborhood of zero in the complex plane C. For b> 0, the power A−b of A
is defined by:

A−b := 1
2π i

∫
C
z−b(A − Iz)−1 dz, (8)

where C is a path running in the resolvent set of A from ∞e−iv to ∞eiv, with ω < v < π . We also
define Ab := (A−b)−1 and A0 = I.

Lemma 2.4 ([28], p. 105–106 and p. 158–160): Assume that A is an operator as in Definition 2.3 and
{S(t)}t≥0 is the semigroup generated by −A. Then,

(i) For given numbers α,β, 0 < α < β < 1, there exists a constant M1 = M1(α,β) � 1 such that

‖Aαx‖ ≤ M1‖Aβx‖, x ∈ D(Aβ). (9)

(ii) For any β � 0, there exits a constant Mβ � 1 such that

‖AβS(t)‖ = ‖Aβe−tA‖ ≤ Mβ t−β , t > 0. (10)
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(iii) For α < β < γ , there exists a constant C = C(α,β , γ ) > 0 such that

‖Aβv‖ ≤ C(α,β , γ )‖Aγ v‖((β−α)/(γ−α))‖Aαv‖((γ−β)/(γ−α)). (11)

Lemma2.5 (See [29], p. 42): Assume that A is an operator as inDefinition 2.3. The following properties
hold:

(a) A−b ∈ B(X) and is injective for b > 0, where B(X) is the space of bounded linear operators in X.
(b) Ab is a closed operator and D(Ab) ⊂ D(Ad) for b>d> 0.
(c) Abx = A(b−n)Anx for x ∈ D(An) and n > b, n ∈ N.

Example 2.6: To illustrate hypothesis (4), we consider the case when X is the Hilbert space L2[0,π]
with norm ‖ · ‖2 and inner product 〈, 〉,A = −(∂2/∂x2)with Dirichlet boundary conditions at x = 0
and x = π , then with p = 1, (4) is equivalent to the condition

F(0) = F(π) = 0, ‖F−F′′‖2 ≤ E.

It follows frompart (c) of Lemma2.5 thatA2 = A(A) = (∂4/∂x4). Therefore, with p = 2, (4) becomes

F(0) = F(π) = 0, ‖F + F(4)‖2 ≤ E.

3. Error estimates for regularized solutions

In this section, we derive error estimates for the regularized solutions for both a priori and a posteriori
parameter choice rules. Our main results are stated in Theorems 3.1 and 3.2. Since their proofs are
quite technical, we present them in Section 4 to enable the reader to understand the results without
being distracted by technical details. At the end of this section, we discuss our results in comparison
with those in the literature.

First, we represent the solutions of the inverse source problem (2) and the regularized problem (5)
via the semigroup S(t). Since u(0) = 0, the solution u(t) of (2) is given by

u(t) = S(t)u(0)+
∫ t

0
S(s)F ds =

∫ t

0
S(s)F ds.

Hence,

Au(T) = A
∫ T

0
S(s)F ds = (S(T)− I)F.

For the last equality, see [27, p. 5]. Since u(T) = g, we have

F = (S(T)− I)−1Ag. (12)

In (12), the operator (S(T)− I)−1 is bounded. The ill-posedness of (12) is due to the unboundedness
of the operator A. Indeed, if g is replaced by the noisy data gδ , Agδ may not exist or if it exists, a
small error in gδ will be amplified by A. We refer the reader to [30] for an extensive discussion on
regularization methods for general linear operator equations in Hilbert spaces, and to [25] for those
in Banach spaces.

In our approach, the solution of the regularized problem (5) is given by

Fα = (S(T)− I)−1A(I + αAb)−1gδ . (13)

Error estimates for the regularized solution Fα in case of a priori parameter choice rules are given in
the following theorem.
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Theorem 3.1: Suppose that b is a positive integer and condition (4) is satisfied for some p ≥ 1. Then
there exist positive constants C∗,C∗∗ such that

‖F − Fα‖ ≤
{
C∗(α−1/bδ + αE) if p ≥ b,
C∗∗ (α−1/bδ + αp/bE

)
if 1 ≤ p < b.

(14)

In particular,

(i) for p ≥ b and α = (δ/E)b/(b+1), we obtain

‖F − Fα‖ ≤ 2C∗δb/(b+1)E1/(b+1); (15)

(ii) for p< b and α = (δ/E)b/(1+p), we obtain

‖F − Fα‖ ≤ 2C∗∗δp/(1+p)E1/(1+p). (16)

For a posteriori parameter choice rules, we define the function ρ(α) by

ρ(α) := ‖(I + αAb)−1gδ − gδ‖. (17)

We assume that 0 < δ < ‖gδ‖. This assumption is practically reasonable since the measured datum
is useless when its error is too high. As proved in Lemma 4.6, ρ(α) is a continuous function on (0,∞)

and limα→0 ρ(α) → 0 and limα→∞ ρ(α) → ‖gδ‖.
Let τ be a positive constant such that τ > 1 and τδ < ‖gδ‖. Then, there exists a parameter α =

α(δ, τ) such that

ρ(α) = τδ. (18)

Error estimates for the regularized solution Fα with α being chosen using the a posteriori rule (18)
are stated in the following theorem.

Theorem 3.2: Suppose that b is an integer such that b> 1 and condition (4) is satisfied for some p ≥ 1.
Let Fα be the solution of the regularized problem (5) with regularization parameter α given by (18).
Then, there exist positive constants C† and C†† such that

‖F − Fα‖ ≤ C†δ(b−1)/bE1/b, if p ≥ b − 1, (19)

‖F − Fα‖ ≤ C††δp/(1+p)E1/(1+p), if 1 ≤ p < b − 1. (20)

Remark 3.1: Since ρ(α)may not bemonotonic, the regularization parameter satisfying (18)may not
be unique. However, the error estimates (15) and (16) are valid for any α satisfying (18). A theoretical
estimate of the effect of α on the accuracy of the regularized solution is still open.

Remark 3.2: We note that although representing the regularized solution Fα using (13) is conve-
nient in proving the error estimates, its numerical realization is challenging since S(T) is not easy
to calculate. To find the regularized solution Fα , we first convert (5) into the following problem for
w(t) := (I + αAb)v:

w′(t)+ Aw(t) = (I + αAb)Fα ,

w(0) = 0,

w(T) = gδ .

(21)

Then Fα is calculated from (21).
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Remark 3.3: As an example, consider the following one-dimensional inverse source problem, where
X is a Banach space of functions defined on [0,π],

ut(x, t)− uxx(x, t) = F(x), (x, t) ∈ (0,π)× (0,T),

u(0, t) = u(π , t) = 0, t ∈ [0,T],

u(x, 0) = 0, x ∈ (0,π),
u(x,T) = gδ(x), x ∈ [0,π].

(22)

Assume that A admits a set of positive eigenvalues {λn}n≥1 and the corresponding eigenfunctions
{φn}n≥1 which form a Schauder basis of the Banach space X. In this case, using Lemma A.2 in the
appendix, we can write condition (4) in the following form:∥∥∥∥∥

∞∑
n=1
(1 + λ

p
n)fnφn

∥∥∥∥∥ ≤ E, (23)

where {fn}n≥1 are the coordinates of F with respect to basis {φn}n≥1. Hence, under condition (23) we
obtain the error estimates in Theorems 3.1 and 3.2. In Section 5 we present some numerical examples
for this problem.

In the case when X is the Hilbert space L2[0,π], Dou et al. [7] also proposed the same regularized
problem as (21) with b = 1. That means, the right-hand side of the first equation of (21) is Fα(x)−
αF′′

α(x). Note that A = −(∂2/∂x2) with Dirichlet boundary conditions. In this case, we have λn = n
and φn(x) = sin(nx), n = 1, 2, . . . . Then, condition (23) is equivalent to the following condition:

‖F‖Hp ≤ E, (24)

where ‖ · ‖p is the norm in the Sobolev spaceHp[0,π]. Under the same condition, the authors in [7]
obtained the following error estimate for the a priori parameter choice rule α = (δ/E)2/(p+2):

‖F − Fα‖ ≤ C̃δp/(p+2)E2/(p+2) + max{αp/2,α}E, (25)

where C̃ is a positive constant. Note that max{αp/2,α}E ≥ δ1/2E1/2, for all p> 0. This error estimate
is of the same order as our result in Theorem 3.1 for b = 1 (see (15)). For b ≥ 2, our result is better
than [7]. Indeed, when p ≥ b ≥ 2 the error estimate (15) is δb/b+1E1/b+1, which is smaller than or
equal to δ2/3E1/3.

A posteriori parameter choice rules were not considered in [7].

4. Proofs of Theorems 3.1 and 3.2

The following results are needed for proving Theorem 3.1.

Lemma 4.1: The following inequality holds

‖(S(T)− I)−1‖ ≤ 1
1 − ‖S(T)‖ .

Proof: Note that S(T)− I is a bounded linear operator and

1 = ‖I‖ = ‖I − S(T)+ S(T)‖ ≤ ‖I − S(T)‖ + ‖S(T)‖.
This implies that ‖I − S(T)‖ � 1 − ‖S(T)‖ > 0. Therefore, there exists (S(T)− I)−1 which is also

a bounded linear operator and

‖(S(T)− I)−1‖ ≤ 1
1 − ‖S(T)‖ .

The lemma is proved. �
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Lemma 4.2: The following inequality holds

∥∥∥A(I + αAb)−1
∥∥∥ ≤

{
2α−1 if b = 1
(b − 1)(b−1)/b(b + 1)1/bα−1/b if b > 1.

(26)

Proof: Let Aα = A(I + αAb)−1 and f (s) = s/(1 + αsb). We have

f ′(s) = 1 + (1 − b)αsb

(1 + αsb)2
, f

′′
(s) = bαsb−1 ((b − 1)αsb − b − 1

)(
1 + αsb

)3 . (27)

If b = 1, then

Aα = f (A) = 1
α
I +

∫ ∞

0

−2α
(1 + αs)3

G(s,A) ds.

Therefore, we have

‖Aα‖ ≤ 1
α

+
∫ ∞

0

2αs
(1 + αs)3

ds = 2
α
. (28)

If b> 1, then

Aα =
∫ ∞

0

bαsb−1 ((b − 1)αsb − b − 1
)

(1 + αsb)3
G(s,A) ds.

This implies that

‖Aα‖ ≤
∫ ∞

0

bαsb−1
∣∣(b − 1)αsb − b − 1

∣∣
(1 + αsb)3

ds

= −
∫ a

0

bαsb−1 ((b − 1)αsb − b − 1
)

(1 + αsb)3
ds +

∫ ∞

a

bαsb−1 ((b − 1)αsb − b − 1
)

(1 + αsb)3
ds, (29)

where a = ((b + 1)/((b − 1)α))1/b. The first integral on the right-hand side of (29) is evaluated as

−
∫ a

0

bαsb−1 ((b − 1)αsb − b − 1
)

(1 + αsb)3
ds = −s

1 + (1 − b)αsb

(1 + αsb)2
∣∣∣a
0
+
∫ a

0

1 + (1 − b)αsb

(1 + αsb)2
ds

= −
(

b + 1
(b − 1)α

)1/b −b(
1 + b+1

b−1

)2 + s
1 + αsb

∣∣∣a
0

= b − 1
2

(
b + 1
(b − 1)α

)1/b
. (30)

By a similar argument, we have∫ ∞

a

bαsb−1 ((b − 1)αsb − b − 1
)

(1 + αsb)3
ds = b − 1

2

(
b + 1
(b − 1)α

)1/b
. (31)

From (29)–(31) we obtain

‖Aα‖ ≤ (b − 1)
(

b + 1
(b − 1)α

)1/b
= (b − 1)(b−1)/b(b + 1)1/bα−1/b.

The lemma is proved. �
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Lemma 4.3: Suppose that F1α , F2α are source terms of (5) corresponding to the final values gδ1 , g
δ
2 .

There exists a positive constant C1 such that

‖F1α − F2α‖ ≤ C1α
−1/b‖gδ1 − gδ2‖.

Proof: From Lemmas 4.1 and 4.2, there exists a positive constant C1 such that

‖F1α − F2α‖ = ‖(I − S(T))−1A(I + αAb)−1(gδ1 − gδ2)‖
≤ ‖A(I + αAb)−1‖‖(I − S(T))−1‖‖gδ1 − gδ2‖
≤ C1α

−1/b‖gδ1 − gδ2‖.
The lemma is proved. �

Remark 4.1: Problem (5) is well-posed. Indeed, from (13) it follows that problem (5) has a solu-
tion Fα . Moreover, Lemma 4.3 implies that this solution is unique and depends continuously on the
data gδ .

Lemma 4.4: For b ∈ N, b > 0 and p ≥ 1, then there exists a positive constant C2 such that

‖Ab(I + Ap)−1‖ ≤ C2, p ≥ b.

Proof: Let f1(A) = Ab(I + Ap)−1, we have f1(s) = sb/(1 + sp) and

f ′1(s) = bsb−1 + (b − p)sb+p−1

(1 + sp)2
,

f
′′
1 (s) = b(b − 1)sb−2 + (b − p)(b + p − 1)sb+p−2

(1 + sp)2
− 2psp−1(bsb−1 + (b − p)sb+p−1)

(1 + sp)3
.

When b = 1, it follows from Lemma 4.2, with α = 1, that there exists a positive constantC3 such that

‖Ab(I + Ap)−1‖ ≤ C3.

Now, we consider b> 1. If p = b, then

f1(A) =
∫ ∞

0

(
p(p − 1)sp−2

(1 + sp)2
− 2p2s2p−2

(1 + sp)3

)
G(s,A) ds.

Therefore,

‖f1(A)‖ ≤ 1 +
∫ ∞

0

∣∣∣∣p(p − 1)sp−2

(1 + sp)2
− 2p2s2p−2

(1 + sp)3

∣∣∣∣ s ds
≤ 1 +

∫ ∞

0

(
p(p − 1)sp−1

(1 + sp)2
+ 2p2s2p−1

(1 + sp)3

)
ds

≤ 1 +
∫ ∞

0

3p2sp−1

(1 + sp)2
ds

= 1 + 3p.

If p> b, then f1(A) = ∫∞
0 f

′′
1 (s)G(s,A) ds. Therefore,

‖f1(A)‖ ≤
∫ ∞

0

∣∣∣∣∣b(b − 1)sb−2 + (b − p)(b + p − 1)sb+p−2

(1 + sp)2
− 2psp−1(bsb−1 + (b − p)sb+p−1)

(1 + sp)3

∣∣∣∣∣ s ds
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≤
∫ ∞

0

(
b(b − 1)sb−1 + (p − b)(b + p − 1)sb+p−1

(1 + sp)2
+ 2psp(bsb−1 + (p − b)sb+p−1)

(1 + sp)3

)
ds

≤
∫ ∞

0

(
pbsb−1 + (p − b)(b + p − 1)sb+p−1

(1 + sp)2
+ 2p(bsb−1 + (p − b)sb+p−1)

(1 + sp)2

)
ds

=
∫ ∞

0

3pbsb−1 + (p − b)(b + 3p − 1)sb+p−1

(1 + sp)2
ds

≤
∫ ∞

0

3pbsp−1

(1 + sp)2
ds +

∫ ∞

0

(p − b)(b + 3p − 1)sb−1

1 + sp
ds

= 3b +
∫ 1

0

(p − b)(b + 3p − 1)sb−1

1 + sp
+
∫ ∞

1

(p − b)(b + 3p − 1)sb−1

1 + sp
ds

≤ 3b + (p − b)(b + 3p − 1)+
∫ ∞

1
(p − b)(b + 3p − 1)sb−p−1 ds

= 3b + (p − b)(b + 3p − 1)+ b + 3p − 1

≤ 3b + p(b + 3p)+ b + 3p.

The lemma is proved. �

Lemma 4.5: For b ∈ N, b > 0, p > 0, there exist positive constants C4,C5 such that

(a) ‖(I + αAb)−1‖ ≤ C4,
(b) ‖Ap(I + αAb)−1‖ ≤ C5α

−p/b, p ≤ b.

Proof: Let f2(A) = (I + αAb)−1. We have f2(s) = 1/(1 + αsb) and

f ′′2 (s) = b(b − 1)αsb−2 − b(b + 1)α2s2b−2

(1 + αsb)3
.

Therefore

f2(A) =
∫ ∞

0
f ′′2 (s)G(s,A) ds.

We have

‖f2(A)‖ ≤
∫ ∞

0

∣∣∣f ′′
2 (s)

∣∣∣ s ds
≤
∫ ∞

0

b(b − 1)αsb−1 + b(b + 1)α2s2b−1

(1 + αsb)3
ds

≤
∫ ∞

0

b(b − 1)αsb−1

(1 + αsb)3
ds +

∫ ∞

0

b(b + 1)αsb−1

(1 + αsb)2
ds

= b − 1
2

+ b + 1.

b) Using a similar argument as in the proof of Lemmas 4.2 and 4.4, there exists a positive constant C5
such that

‖Ap(I + αAb)−1‖ ≤ C5α
−p/b, p ≤ b.

The lemma is proved. �



APPLICABLE ANALYSIS 2075

Lemma 4.6: Set

ρ(α) = ‖(I + αAb)−1gδ − gδ‖.
For b ∈ N, b > 0, If 0 < δ < ‖gδ‖, then

(i) ρ(α)is a continuous function,
(ii) limα→∞ ρ(α) = ‖gδ‖,
(iii) limα→0 ρ(α) = 0.

Proof: (i) We have

ρ(α) = ‖(I + αAb)−1gδ − gδ‖ = ‖αAb(I + αAb)−1gδ‖.
With α,α0 > 0, we obtain

|ρ(α)− ρ(α0)| = |‖αAb(I + αAb)−1gδ‖ − ‖α0Ab(I + α0Ab)−1gδ‖|
≤ ‖αAb(I + αAb)−1gδ − α0Ab(I + α0Ab)−1gδ‖
= |α − α0|‖Ab((I + α0Ab)−1(I + αAb)−1gδ‖

Case 1. If b = 1, it follows from Lemmas 4.2 and 4.4 that there exists a positive constant C6 such
that

|ρ(α)− ρ(α0)| ≤ |α − α0|‖A((I + α0A)−1‖‖(I + αAb)−1‖‖gδ‖
≤ C6α

−1
0 |α − α0|.

Case 2. If b> 1, it follows from Lemmas 4.2 and 4.4, then there exists a positive constant C7 such
that

|ρ(α)− ρ(α0)| = |α − α0|‖A(I + α0Ab)−1Ab−1(I + αAb)−1gδ‖
≤ |α − α0|‖A(I + α0A)−1‖‖Ab−1(I + αAb)−1‖‖gδ‖
≤ C7α

−1/b
0 α(1−b)/b|α − α0|.

Therefore ρ(α) is a continuous function.
(ii) From Lemma 4.4, for f2(A) = (I + αAb)−1 we have

f2(A) =
∫ ∞

0

b(b − 1)αsb−2 − b(b + 1)α2s2b−2

(1 + αsb)3
G(s,A) ds.

We obtain

‖f2(A)‖ ≤
∫ ∞

0

∣∣∣∣∣b(b − 1)αsb−2 − b(b + 1)α2s2b−2

(1 + αsb)3

∣∣∣∣∣ s ds.
By Lemma 4.4, we have∫ ∞

0

∣∣∣∣∣b(b − 1)αsb−2 − b(b + 1)α2s2b−2

(1 + αsb)3

∣∣∣∣∣ s ds ≤ b − 1
2

+ b + 1.

Therefore, there exists a number ηε > 0 such that

‖gδ‖
∫ ηε

0

∣∣∣∣∣b(b − 1)αsb−2 − b(b + 1)α2s2b−2

(1 + αsb)3

∣∣∣∣∣ s ds ≤ ε/2.
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Hence

‖(I + αAb)−1gδ‖ ≤ ε/2 + ‖gδ‖
∫ ∞

ηε

∣∣∣∣∣b(b − 1)αsb−2 − b(b + 1)α2s2b−2

(1 + αsb)3

∣∣∣∣∣ s ds
≤ ε/2 + ‖gδ‖

(∫ ∞

ηε

b(b − 1)αsb−1

(1 + αsb)3
ds +

∫ ∞

ηε

b(b + 1)α2s2b−1

(1 + αsb)3
ds

)

≤ ε/2 + ‖gδ‖
(∫ ∞

ηε

b(b − 1)αsb−1

(1 + αsb)2
ds +

∫ ∞

ηε

b(b + 1)αsb−1

(1 + αsb)2
ds

)

= ε/2 + 3b2‖gδ‖
∫ ∞

ηε

αsb−1

(1 + αsb)2
ds

≤ ε/2 + 3b2‖gδ‖
∫ ∞

ηε

1
αsb+1 ds = ε/2 + 3b‖gδ‖

αηbε
.

With α ≥ ((6b‖gδ‖)/(εηbε )), we obtain

‖(I + αAb)−1gδ‖ ≤ ε.

This implies that

lim
α→∞ ‖(I + αAb)−1gδ‖ = 0.

On the other hand

‖gδ‖ − ‖(I + αAb)−1gδ‖ ≤ ρ(α) = ‖(I + αAb)−1gδ − gδ‖
≤ ‖gδ‖ + ‖(I + αAb)−1gδ‖.

We obtain

lim
α→∞ ρ(α) = ‖gδ‖.

iii) Note that

R(S(T)) = X. (32)

Let ε > 0. By (32), there exists a ψ ∈ X such that

‖S(T)ψ − gδ‖ ≤ ε

2C5
. (33)

where C5 is the constant in part b) of Lemma 4.5. We have

ρ(α) = ‖αAb(I + αAb)−1gδ‖
= ‖αAb(I + αAb)−1(S(T)ψ − gδ + S(T)ψ)‖
≤ ‖αAb(I + αAb)−1(S(T)ψ − gδ)‖ + ‖αAb(I + αAb)−1(S(T)ψ)‖
≤ α‖Ab(I + αAb)−1‖‖S(T)ψ − gδ‖ + ‖α(I + αAb)−1‖AbS(T)‖‖ψ‖
≤ C5‖S(T)ψ − gδ‖ + C4α‖AbS(T)‖‖ψ‖. (34)
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From (10), (33), (34) and Lemma 4.4, there exists a positive constant C8 such that

ρ(α) ≤ ε/2 + C8α‖ψ‖. (35)

For 0 < α < (ε/(2C11‖ψ‖ + 1)), (35) implies that ρ(α) < ε. Therefore

lim
α→0

ρ(α) = 0.

The lemma is proved. �

4.1. Proof of Theorem 3.1

We have

‖F − Fα‖ = ‖(I − S(T))−1A(I + αAb)−1gδ − A(I − S(T))−1g‖
=
∥∥∥(I − S(T))−1A(I + αAb)−1(gδ − g)

+ (I − S(T))−1A(I + αAb)−1g − A(I − S(T))−1g
∥∥∥

≤ ‖(I − S(T))−1A(I + αAb)−1(gδ − g)‖
+ ‖(I − S(T))−1A(I + αAb)−1g − A(I − S(T))−1g‖

≤ ‖A(I + αAb)−1‖‖(I − S(T))−1‖‖gδ − g‖
+ ‖αAb+1(I + αAb)−1(I − S(T))−1g‖.

From Lemmas 4.1 and 4.2, there exists a positive constant C9 such that

‖F − Fα‖ ≤ C9α
−1/bδ + α‖Ab(I + αAb)−1F‖

= C9α
−1/bδ + α‖Ab(I + αAb)−1(I + Ap)−1(I + Ap)F‖.

If p ≥ b, from Lemma 4.4, there exists a positive constant C∗ such that

‖F − Fα‖ ≤ C9α
−1/bδ + α‖(I + αAb)−1‖‖Ab(I + Ap)−1‖‖(I + Ap)F‖

≤ C∗(α−1/bδ + αE).

Choose α = (
δ

E
)b/(b+1), we obtain

‖F − Fα‖ ≤ 2C∗δb/(b+1)E1/(b+1).

If 1 ≤ p < b, from Lemmas 4.3 and 4.4, there exists a positive constant C∗∗ such that

‖F − Fα‖ ≤ C9α
−1/bδ + α‖Ab−p(I + αAb)−1Ap(I + Ap)−1(I + Ap)F‖

≤ C9α
−1/bδ + α‖Ab−p(I + αAb)−1‖‖Ap(I + Ap)−1‖‖(I + Ap)F‖

≤ C∗∗
(
α−1/bδ + αp/bE

)
.

Choose α = (
δ

E
)b/(1+p), we obtain

‖F − Fα‖ ≤ 2C∗∗δp/(1+p)E1/(1+p).

The theorem is proved.
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4.2. Proof of Theorem 3.2

From Lemma 4.5, we have

τδ = α‖Ab(I + αAb)−1gδ‖
= α‖Ab(I + αAb)−1(gδ − g)+ Ab(I + αAb)−1g‖
≥ ‖αAb(I + αAb)−1g‖ − α‖Ab(I + αAb)−1(gδ − g)‖
≥ ‖αAb−1(I + αAb)−1(I − S(T))F‖ − C5‖gδ − g‖
≥ C10‖αAb−1(I + αAb)−1F‖ − C5δ, (36)

where C10 = 1 − ‖S(T)‖. Therefore, there exists a positive constant C11 such that

‖αAb−1(I + αAb)−1F‖ ≤ C11δ. (37)

From (36), there exists a positive constant C12 such that

‖F − Fαδ‖ ≤ C12α
−1/bδ + α‖Ab(I + αAb)−1F‖ (38)

Let w = αAb−1(I + αAb)−1F, applying (11) with α = 0,β = 1, γ = p + 1, we obtain

‖Aw‖ ≤ ‖Ap+1w‖‖w‖p/(p+1)

≤ ‖αAp+b(I + αAb)−1F‖1/(p+1)‖αAb−1(I + αAb)−1F‖p/(p+1)

= ‖αAp+b(I + αAb)−1(I + Ap)−1(I + Ap)F‖1/(p+1)‖αAb−1(I + αAb)−1F‖p/(p+1)

≤
(
‖αAp+b(I + αAb)−1(I + Ap)−1‖‖(I + Ap)F‖

)1/(p+1)‖αAb−1(I + αAb)−1F‖p/(p+1)

≤
(
‖αAb(I + αAb)−1‖‖Ap(I + Ap)−1‖E

)1/(p+1)‖αAb−1(I + αAb)−1F‖p/(p+1). (39)

From (37) and (39) and Lemma 4.5 there exists a positive constant C13 such that

‖Aw‖ = α‖Ab(I + αAb)−1F‖ ≤ C13E1/(p+1)δp/(p+1). (40)

From (38) and (40), we get

‖F − Fαδ‖ ≤ C12α
−1/bδ + C13E1/(p+1)δp/(p+1). (41)

On the other hand, there exists a positive constant C14 such that

τδ = α‖Ab(I + αAb)−1gδ‖
= α‖Ab(I + αAb)−1(gδ − g)+ Ab(I + αAb)−1g‖
≤ α‖Ab(I + αAb)−1(gδ − g)‖ + ‖αAb(I + αAb)−1g‖
≤ C5‖gδ − g‖ + ‖αAb−1(I + αAb)−1(I − S(T))F‖
≤ C5δ + C14‖αAb−1(I + αAb)−1F‖. (42)

Case 1. If p ≥ b − 1, from (42), there exists a positive constant C15 such that

τδ ≤ C5δ + C18‖αAb−1(I + αAb)−1(I + Ap)−1(I + Ap)F‖
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≤ C5δ + C18‖αAb−1(I + αAb)−1(I + Ap)−1‖E
≤ C5δ + C15αE. (43)

From (41), (43) and E ≥ δ, we obtain

‖F − Fαδ‖ ≤ C†E1/bδ(b−1)/b. (44)

Case 2. If 1 ≤ p < b − 1, then from (42), there exists a positive constant C16 such that

τδ ≤ C5δ + C18‖αAb−1(I + αAb)−1(I + Ap)−1(I + Ap)F‖
≤ C5δ + C18‖αAb−1(I + αAb)−1(I + Ap)−1‖E
≤ C5δ + C16α

(p+1)/bE. (45)

From (41) and (45), we obtain

‖F − Fαδ‖ ≤ C††E1/(p+1)δp/(p+1). (46)

The theorem is proved.

5. Numerical examples

To demonstrate how the proposed regularization method works, we consider here the one-
dimensional problem (22) again. In this case, we solve problem (21) using the eigenfunction expan-
sion method. Denote by {λn,φn}n≥1 the set of eigenvalues and eigenfunctions of A. Since {φn}n≥1
forms a Schauder basis of X, the following representations of w and Fα are unique:

w(t) =
∞∑
n=1

bn(t)φn, Fα =
∞∑
n=1

fαnφn.

The first equation of (21) can be rewritten as

∞∑
n=1

[b′
n(t)+ λnbn(t)]φn =

∞∑
n=1
(1 + αλbn)fαnφn.

Again, due to the uniqueness of the representation with respect to the Schauder basis, it follows that
b′
n(t)+ λnbn(t) = (1 + αλbn)fαn, n = 1, 2, . . . , which results in

bn(t) = cne−λnt + (1 + αλbn)fαn
λn

, n = 1, 2, . . . ,

where cn, n = 1, 2, . . . , are coefficients to be determined. Thus,

w(t) =
∞∑
n=1

[
cne−λnt + (1 + αλbn)fαn

λn

]
φn.

The zero initial condition implies that cn = −(((1 + αλbn)fαn)/λn). Therefore, at t = T, we have

gδ =
∞∑
n=1

(
−e−λnT + 1

) (1 + αλbn)fαn
λn

φn. (47)
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Denote by {gδn}n≥1 the coordinates of gδ with respect to basis {φn}n≥1. Then from (47) we have

fαn = λngδn
(1 − e−λnT)(1 + αλbn)

.

Finally, Fα is approximated by the truncated series:

Fα ≈ FαN :=
N∑

n=1

λngδn
(1 − e−λnT)(1 + αλbn)

φn,

where N is a positive integer to be chosen numerically.
As examples, we show below the reconstruction of F(x) in (22) when X = L∞[0,π] for the

following functions.

(1) F(x) = F1(x) := sin(x)+ sin(4x). In this case, we have g(x) = (1 − e−T) sin(x)+ (1 − e−42t)
sin(4x).
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Figure 1. Reconstruction of the source function F(x) = F1(x) := sin(x)+ sin(4x), x ∈ [0,π ], using data at T = 1. (a) Data at 2%
noise. (b) Reconstruction at 2% noise. (c) Data at 10% noise. (d) Reconstruction at 10% noise.
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(2)

F(x) = F2(x) :=

⎧⎪⎨⎪⎩
x, π/3 ≤ x ≤ π/2,
π/2 − x, π/2 ≤ x ≤ 2π/3,
0 otherwise.

(48)

(3) F(x) = F3(x) := 1
0.1

√
2π

e−((x/π−0.5)2)/0.12 , x ∈ [0,π].

Functions F2 and F3 in cases (2) and (3) were also used in [7]. In these cases, the data at the final
time t = T was calculated using the eigenfunction expansion method using 200 Fourier terms, while
in the inverse problem we used N = 100 Fourier terms. The data was assumed to be measured at
T = 1. Parameter p was chosen to be p = 2. To simulate measurement error, we added a pseudoran-
dom noise of normal distribution, with zero mean and the standard deviation equal to a chosen noise
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Figure 2. Reconstruction of the piecewise linear source function F(x) = F2(x) given by (48) using data at T = 1. (a) Data at 2%
noise. (b) Reconstruction at 2% noise.
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Figure 3. Reconstruction of the Gaussian source function F(x) = F3(x) := (1/(0.1
√
2π))e−(((x/π−0.5)2)/0.12) , x ∈ [0,π ], using

data at T = 1. (a) Data at 2% noise. (b) Reconstruction at 2% noise.
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level, to the ”exact” data, i.e.

gδ = g + δ · randn,
where randn is the function which generate pseudorandom numbers of normal distribution. The
noise level δ represents the L∞ norm of of gδ − g.

We have observed in our numerical tests that for functions F1 and F3, the accuracy was improved
when b was increased, as depicted by the theoretical results. For F2, however, the accuracy near the
corners could not be improved by increasing b.

We depict in Figures 1–3 the reconstructions of the functions F1, F2, F3, respectively. In these
tests, the bound E in (23) was numerically chosen as 104. We can observe from these figures that the
reconstruction were quite accurate at locations where the function F was smooth, even at rather high
noise levels. This shows the good performance of the proposed regularization algorithm in the case
of smooth source functions.

6. Concluding remarks

We proposed a regularization method for an inverse source problem in the Banach space setting and
proved theHölder-type error estimates for the regularized solution using both a priori and a posteriori
parameter choice rules. Numerical examples showed good reconstruction results for a simple case.
Numerical realization in more general cases is under consideration and will be reported in a future
work.

The proposed regularization method should be able to be extended to the case of nonzero initial
condition of the form u(0) = u0, where u0 ∈ D(A).We are also investigating the case when the source
term depends on t.
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Appendix. Eigenvalues of fractional powers of a linear operator

In this appendix, we prove a result concerning eigenvalues of fractional powers of the operator A used in this paper.
First, we need the following identity:

Lemma A.1: Let γ be a real number in (0, 1). Then, the following identity holds:∫ ∞

0

sγ−1

1 + s
ds = π

sin(πγ )
. (A1)

Proof: We observed that this result has been used in some references. However, we could not find a proof. For the sake
of completeness, we prove it here again.

Denoting t = (1/(s + 1)), we have s = (1/t)− 1. Therefore, ds = − 1
t2
dt. We have∫ ∞

0

sγ−1

1 + s
ds =

∫ 1

0
tγ−1(1 − t)−γ dt =

∫ 1

0
tγ−1(1 − t)β−1 dt,
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where β = 1 − γ . By Theorems D.3 and D.6 in [31] (p. 228–229), we have∫ 1

0
tγ−1(1 − t)β−1 dt = B(γ ,β) = B(γ , 1 − γ ) = π

sin(πγ )
,

where B(γ ,β) is the beta function. The lemma is proved. �

Lemma A.2: Assume that A is a linear operator in a Banach space X such that −A is the infinitesimal generator of
an analytic semigroup. Assume that A has a positive eigenvalue λ and φ is the corresponding eigenfunction, i.e. Aφ =
λφ. Then, for an arbitrary positive real number γ , λγ is an eigenvalue of Aγ , where Aγ is the power of A defined in
Definition 2.3.

Proof: The assertion is obvious if γ is a positive integer. Now we consider the case 0 < γ < 1. Since −A generates an
analytic semigroup, it follows from (6.16) of [27] (p. 72) that

Aγ φ = sinπγ
π

∫ ∞

0
tγ−1A(tI + A)−1φ dt. (A2)

On the other hand, since (tI + A)φ = (t + λ)φ, we have

A(tI + A)−1φ = A
(

1
t + λ

φ

)
= λ

t + λ
φ. (A3)

From (A2) and (A3), we obtain

Aγ φ = sinπγ
π

∫ ∞

0

tγ−1

t + λ
(λφ) dt.

Using the change of variable s := t/λ and (A1), we obtain

Aγ φ =
(
sinπγ
π

∫ ∞

0

sγ−1

1 + s
ds
)
λγ φ = λγ φ.

For n < γ < n + 1, where n is an integer, we have

Aγ φ = Aγ−nAnφ = λnAγ−nφ = λγ φ.

The proof is complete. �
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