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Abstract

In this paper, we apply the quasi-reversibility method to solve an inverse source problem for a time-space 
fractional parabolic equation. Hölder-type error estimates for the regularized solutions are proved for both 
a priori and a posteriori regularization parameter choice rules. The theoretical error estimates are confirmed 
with numerical tests for one and two dimensional equations.
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1. Introduction

Fractional differential equations (FDEs) are an important tool in modeling many problems 
in biology [12], physics [9,16,30], finance [21], etc. For example, FDEs are used to describe 
underground fluid flows [14], fractal comb structures [28], extreme events like earthquakes [2], 
and stochastic processes [11,24,35]. FDEs can also be used to describe anomalous diffusion 
processes in viscoelastic materials, heterogeneous media, and plasma physics [22,23,25,20,29]. 
Fractional-order equations enable modeling of dynamical processes with memory [25,39].
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In this paper we consider an inverse source problem for an FDE of parabolic type using data 
measured at the final time instant. The statement of the inverse source problem is as follows. Let 
γ ∈ (0, 1) and β > 0 be two given positive numbers. Let H be a Hilbert space with inner product 
〈·, ·〉 and norm ‖ · ‖. Let A : D(A) ⊂ H → H be a self-adjoint closed operator in H such that 
−A generates a compact contraction semi-group {S(t)}t≥0 on H and A admits an orthonormal 
eigenbasis {φi}i≥1 in H. The associated eigenvalues {λi}i≥1 of A are such that

0 < λ1 < λ2 < . . . , and lim
i→+∞λi = +∞.

For p > 0, we define (see [8,27])

D(Ap) :=
{

ψ ∈ H :
∞∑

n=1

λ
2p
n 〈ψ,φn〉2 < ∞

}

and the associated norm

‖ψ‖p :=
( ∞∑

n=1

λ
2p
n 〈ψ,φn〉2

) 1
2

, ψ ∈ D(Ap).

Since λn → +∞, it follows that λ2p
n → +∞. Hence, D(Ap) is a proper subspace of H for 

p > 0. We consider the following inverse source problem of determining a function f ∈ D(Ap)

for the time-space fractional parabolic equation⎧⎪⎪⎨⎪⎪⎩
∂γ u

∂tγ
+ Aβu = f h(t), 0 < t < T,

u(0) = 0,

u(T ) = g,

(1.1)

with g ∈ H being given and h(t) : [0, T ] → H being a continuous time-dependent function. 

Here, the Caputo derivative 
∂γ

∂tγ
is defined as

∂γ u

∂tγ
:= 1

�(1 − γ )

t∫
0

(t − s)−γ ∂u(·, s)
∂s

ds, γ ∈ (0,1), (1.2)

with �(·) being Euler’s Gamma function (see [15,25]).
Function g in the last equation of (1.1) is considered as the measured data. In practice, the 

measured data always contain noise. Denote by ε > 0 the noise level and by gε the noisy data, 
which satisfies

‖g − gε‖ ≤ ε. (1.3)

Several methods have been proposed to solve inverse source problems for fractional parabolic 
equations in the literature. Some of such methods are the truncation method by Zhang and Wei 
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[39], the generalized Tikhonov regularization based on a boundary element method by Zhang 
and Wei [34], the β-mollification method by Ruan and Wang [26], and the Landweber iterative 
regularization method by Yang et al. [38]. Furthermore, Jiang et al. [13], Tatar and Ulusoy [31], 
and Jiang et al. [13] proved the uniqueness of the solution. After that, Liu et al. [19] and Ali et al. 
[1] proved the uniqueness and the stability of the solution. Some more works related to problem 
(1.1) include [13,19,33,26,34,38,39], where a special setting β = 1 is considered.

In this paper, we consider problem (1.1) in a more general setting. In particular, the fractional 
order β is considered as an arbitrary positive real number and the source term is considered to be 
a time-dependent function (rather than a time-independent one as in some of the aforementioned 
works). It is known that the inverse source problem (1.1) is ill-posed (see Remark 2). In this work, 
we apply the quasi-reversibility method for solving this problem. This method was proposed by 
Lattes and Lions [17], and has been used for solving various types of ill-posed problems, e.g., 
sideways heat equation [3], backward heat conduction problem [36], backward parabolic equa-
tions [10] and inverse source problems [4,5,37]. The principle of this method is to approximate 
the unknown source function f in problem (1.1) by the function fα in the following problem:

⎧⎪⎪⎨⎪⎪⎩
∂γ v

∂tγ
+ Aβv = (I + αAb)fαh(t), 0 < t < T,

v(0) = 0,

v(T ) = gε,

(1.4)

where α > 0 is a regularization parameter and b ≥ β is an arbitrary positive real number.
To compare with existing results in the literature, we refer to the papers [4,5]. In [4], a simpler 

version (when b = 1) of the quasi-reversibility method was applied to an inverse source problem 
for a heat equation using final-time data. In [5], a similar method was also applied to an inverse 
source problem for parabolic equations in Banach spaces. Although the method we propose in 
this paper is similar to that in [4], the latter does not work in the case β > 1, see more details in 
Remark 5. Moreover, [4] only considered a classical integer-order heat equation. In [5], we used 
a different technique, which is based on the semigroup theory, in proving the convergence of the 
quasi-reversibility method. Moreover, in [5] we did not prove that the convergence rates of the 
regularized solutions to the exact one are of optimal order.

The main theoretical contributions of this paper include Hölder-type error estimates for the 
solution of the regularized problem (1.4) using both a priori and a posteriori regularization param-
eter choice rules. In addition, we also prove a stability estimate of optimal order for the inverse 
problem (1.1). We also propose a noniterative algorithm to solve the regularized inverse problem. 
We would like to mention that in our earlier work [33] similar results were also obtained using a 
mollification regularization method with more restricted conditions on the time-dependent source 
function h(t).

This paper is organized as follows. In Section 2, we recall some definitions and present some 
inequalities for later use. Section 3 is devoted to the stability estimate for the solution of problem 
(1.1) with optimal order. In Section 4, we present the main results of the paper on convergence 
rates of regularized solutions to the exact solution with both a priori and a posteriori parameter 
choice rules. The proofs of these results are presented in Section 5. In Section 6, we present 
numerical solutions for illustrating the efficiency of our approach. Conclusions are drawn in 
Section 7.
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2. Auxiliary results

Denote by Eγ,� (z) the Mittag-Leffler function [15,25]:

Eγ,� (z) =
∞∑

k=0

zk

�(kγ + �)
, z ∈C, γ > 0, � > 0. (2.1)

Lemma 1. ([27]) Let γ ∈ (0, 1), λ > 0 and t > 0. We have

a)
d

dt
Eγ,1(−λtγ ) = −λtγ−1Eγ,γ (−λtγ ), (2.2)

b)
dγ

dtγ
Eγ,1(−λtγ ) = −λEγ,1(−λtγ ), (2.3)

c)
d

dt

(
tEγ,2(−λtγ )

)= Eγ,1(−λtγ ). (2.4)

Remark 1. ([18]) Eγ,1(−s) is a decreasing function on (0, ∞).

Lemma 2. ([25]) Let 0 < γ < 2 and � > 0 be arbitrary. We suppose that μ is such that πγ/2 <
μ < min{π, πγ }. Then there exists a constant C1 = C1(γ, �, μ) > 0 such that

Eγ,� (z) ≤ C1

1 + |z| , μ ≤ |argz| ≤ π.

Lemma 3. ([25]) Assume that 0 < γ < 1. Then there exist constants C2, C3 > 0 such that

C2

1 − x
≤ Eγ,1(x) ≤ C3

1 − x
, for all x � 0.

Lemma 4. (Young’s inequality) If a, b are nonnegative numbers and m, n are positive numbers 

such that 
1

m
+ 1

n
= 1, then ab ≤ am

m
+ bn

n
.

Lemma 5. ([18]) For 0 < γ < 1, η > 0, we have 0 ≤ Eγ,γ (η) ≤ 1

�(γ )
. Moreover, Eγ,γ (−η) is a 

monotonic decreasing function with η > 0.

Definition 1. Let b ≥ β . For every v ∈ H, we define

Bαv :=
∞∑

n=1

(
1

1 + αλb
n

)
〈v,φn〉φn. (2.5)

Lemma 6. The inverse source problem (1.1) has a unique solution given by

f =
∞∑

n=1

〈g,φn〉φn

T∫
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

.

0
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Proof. The function u(t) in (1.1), which is usually referred to as the solution of the forward 
problem, can be represented by (see [31], p. 2235)

u(t) =
∞∑

n=1

⎧⎨⎩
t∫

0

〈f,φn〉 (t − s)γ−1Eγ,γ (−λβ
n(t − s)γ )h(s)ds

⎫⎬⎭φn. (2.6)

Taking t = T and taking the inner product of (2.6) with φn, we obtain

〈g,φn〉 =
T∫

0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds 〈f,φn〉 . (2.7)

Therefore,

f =
∞∑

n=1

〈g,φn〉φn

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

. (2.8)

The proof is complete. �
Assumption H. A function h : [0, T ] → R is assumed to satisfy Assumption H if h is continuous 
on [0, T ] and there exists a constant T0 ∈ [0, T ) such that |h(t)| ≥ η > 0, t ∈ [T0, T ] for some 
positive constant η. Furthermore, one of the following two conditions is satisfied:

H1 h(t) does not change sign on [0, T ].
H2 If h(t) changes sign on [0, T ] then h(t) is differentiable and there exists a constant θ such 
that |ht (t)| ≤ θ, t ∈ [0, T ]. Moreover, |h(t)| ≤ η(T −T0)

T0
, t ∈ I , where I = {t : h(t)h(T ) ≤ 0}.

Remark 2. Assumption H1 for function h(t) was also used in [33,38]. However, under Assump-
tion H the function h(t) can take more general forms. Indeed, Assumption H2 allows h(t) to 
change sign. In this case, Assumption H2 ensures that the denominator of the fraction on the 
right-hand side of formula (2.8) is non-zero, namely

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds �= 0.

This condition is needed in our analysis.
We note that any continuous function h which does not change sign and h(T ) > 0 will satisfy 

Assumption H1. As an example of a function h(t) which satisfies Assumption H2, but not H1, 

consider h(t) = t − T

6
, t ∈ [0, T ]. Clearly, this function does not satisfy H1 because it changes 

sign on [0, T ]. To show that it satisfies H2, we note that h(t) ≤ 0, t ∈ [0, T/6]. Therefore, I = {t :
h(t)h(T ) ≤ 0} = {t : h(t) ≤ 0} = [0, T/6]. Furthermore, h(t) ≥ T/3, t ∈ [T/2, T ]. Therefore, 
the function h(t) satisfies H2 and Assumption H for T0 = T/2, η = T/3, θ = 1.
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3. Stability estimate

Theorem 1. Suppose that h(t) satisfies Assumption H and f is a solution of problem (1.1). If 
‖u(T )‖ = ‖g‖ ≤ ε and ‖f ‖p ≤ E for some positive constants E and p, then there exists a 
constant C1 > 0 such that

‖f ‖ ≤ C1ε
p

p+β E
β

p+β . (3.1)

Remark 3. The result in Theorem 1 is better than a stability result in [39]. The authors of [39]
only considered problem (1.1) with β = 1 and a time-independent source function. Our result in 
Theorem 1 is valid where β is any positive real number and the source function may depend on 
time.

To prove Theorem 1, we need the following auxiliary result.

Lemma 7. If h(t) satisfies Assumption H then there exists a constant C4 > 0 such that∣∣∣∣∣∣λβ
n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣∣∣∣∣≥ C4, n = 1,2, ...

Proof. Case 1. h(t) satisfies Assumption H1. Since h(t) is a function that does not change sign 
on [0, T ], we have ∣∣∣∣∣∣λβ

n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣∣∣∣∣
= λβ

n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )|h(s)|ds

≥ η

T∫
T0

λβ
n(T − s)γ−1Eγ,γ (−λβ

n(T − s)γ )ds

= η[1 − Eγ,1(−λβ
n(T − T0)

γ )]
≥ η[1 − Eγ,1(−λ

β
1 (T − T0)

γ )].
Case 2. h(t) satisfies Assumption H2. Let D = {t : h(t)h(T ) ≥ 0},

T1 = max{t : t ∈ [0, T ], h(t) = 0},
and

C5 =
(

2C1
(|h(0)| + θT

)
ηT γ

) 1
β

,
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where C1 is given in Lemma 2. We have 0 < T1 < T0, [T1, T ] ⊆ D, and I ⊆ [0, T1]. With λn ≤
C5, by Lemma 5 we obtain

∣∣λβ
n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣
= λβ

n

∣∣ ∫
D

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds +

∫
I

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣
≥ λ

β
1

∫
D

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )|h(s)|ds

− λ
β
1

∫
I

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )|h(s)|ds

≥ λ
β
1

T∫
T1

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )|h(s)|ds

− η(T − T0)

T0
λ

β
1

T1∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )ds

≥ λ
β
1 (T − T1)

γ−1Eγ,γ (−λβ
n(T − T1)

γ )

⎛⎜⎝ T∫
T1

|h(s)|ds − η(T − T0)

T0

T1∫
0

ds

⎞⎟⎠

≥ λ
β
1 (T − T1)

γ−1Eγ,γ (−λβ
n(T − T1)

γ )

⎛⎜⎝ T0∫
T1

|h(s)|ds +
T∫

T0

ηds − ηT1(T − T0)

T0

⎞⎟⎠

≥ λ
β
1 (T − T1)

γ−1Eγ,γ (−C
β

5 (T − T1)
γ )

⎛⎜⎝ T0∫
T1

|h(s)|ds + η(T0 − T1)(T − T0)

T0

⎞⎟⎠ . (3.2)

With λn ≥ C5, by integration by parts we get

∣∣∣λβ
n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣∣
=
∣∣∣h(T ) − h(0)Eγ,1(−λβ

nT γ ) −
T∫

Eγ,1(−λβ
n(T − s)γ )hs(s)ds

∣∣∣

0
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≥ |h(T )| − |h(0)|Eγ,1(−λβ
nT γ ) −

T∫
0

Eγ,1(−λβ
n(T − s)γ )|hs(s)|ds

≥ |h(T )| − |h(0)|Eγ,1(−λβ
nT γ ) − θ

T∫
0

Eγ,1(−λβ
n(T − s)γ )ds

= |h(T )| − |h(0)|Eγ,1(−λβ
nT γ ) − θT Eγ,2(−λβ

nT γ ).

By Lemma 2 and λn ≥ C5 we have

∣∣∣λβ
n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣∣
≥ |h(T ) − C1|h(0)|

1 + λ
β
nT γ

− θC1T

1 + λ
β
nT γ

≥ η − C1
(|h(0)| + θT

)
λ

β
nT γ

≥ η

2
. (3.3)

From (3.2) and (3.3), there exists a constant C4 > 0 such that

∣∣∣λβ
n

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣∣≥ C4, n = 1,2, .... (3.4)

The lemma is proved. �
Now we prove Theorem 1.

Using Hölder’s inequality, we have

‖f ‖2 =
∞∑

n=1

〈f,φn〉2 =
∞∑

n=1

(
λ

2pβ
p+β
n |〈f,φn〉|

2β
p+β

)(
λ

−2pβ
p+β
n |〈f,φn〉|

2p
p+β

)

≤
( ∞∑

n=1

λ
2p
n |〈f,φn〉|2

) β
p+β
( ∞∑

n=1

λ−2β
n |〈f,φn〉|2

) p
p+β

≤ E
2β

p+β

[ ∞∑
n=1

〈g,φn〉2(
λ

β
n

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)2

] p
p+β

.

From Lemma 7 it follows that there exists a constant C1 > 0 such that
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‖f ‖2 ≤ C
2
1E

2β
p+β ‖g‖ 2p

p+β .

Hence,

‖f ‖ ≤ C1ε
p

p+β E
β

p+β .

The theorem is proved.

Remark 4. The inverse source problem (1.1) is ill-posed. More precisely, the solution f of (1.1), 
if exists, may not depend continuously on the final-time data. Indeed, since h(t) is a continuous 
function on [0, T ], there exists a constant C6 > 0 such that C6 = sup

t∈[0,T ]
|h(t)| < +∞. We have

∣∣∣∣∣∣
T∫

0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

∣∣∣∣∣∣
≤ C6

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )ds

= C6

λ
β
n

(1 − Eγ,1(−λβ
nT γ ))

≤ C6

λ
β
n

. (3.5)

Therefore

( T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

)−1 ≥ λ
β
n

C6
. (3.6)

From (3.6) and Lemma 7, we have 
( T∫

0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)−1
behaves like 

λ
β
n as n → ∞. Hence, a small error in g is amplified by the factor λβ

n in the formula (2.8) of f . 
Since λβ

n → ∞, f does not depend continuously on the data. Consequently, the inverse source 
problem (1.1) is ill-posed.

Theorem 2. In Theorem 1, the estimate

‖f ‖ ≤ C1ε
p

β+p E
β

β+p

is of optimal order.
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Proof. From (3.4), we get

1∫ T

0 (T − s)γ−1Eγ,γ (−λ
β
n(T − s)γ )h(s)ds

= λ
β
n

λ
β
n

∫ T

0 (T − s)γ−1Eγ,γ (−(T − s)γ λ
β
n)ds

≤ λ
β
n

C4
. (3.7)

From (3.6) and (3.7), we obtain

λ
β
n

C6
≤ 1∫ T

0 (T − s)γ−1Eγ,γ (−λ
β
n(T − s)γ )h(s)ds

≤ λ
β
n

C4
(3.8)

or

λ
2p
n

C
2p/β

6

≤
⎛⎝ T∫

0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

⎞⎠−2p/β

≤ λ
2p
n

C
2p/β

4

.

This implies that the condition

‖f ‖2
p =

∞∑
n=1

λ
2p
n 〈f,φn〉2 ≤ E2

is equivalent to the condition

∞∑
n=1

⎛⎝ T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds

⎞⎠−2p/β

〈f,φn〉2 ≤ Ẽ2 (3.9)

with Ẽ = EC
−p/β

4 . On the other hand

∞∑
n=1

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds 〈f,φn〉φn = g.

Let us formulate this equation as an operator equation Bf = g. We have

Bf =
∞∑

n=1

T∫
(T − s)γ−1Eγ,γ (−λβ

n(T − s)γ )h(s)ds 〈f,φn〉φn.
0
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Then B is a continuous linear and self-adjoint operator. Let B∗ be the adjoint operator of B . Since 

B∗ = B , we have BB∗ =
∞∑

n=1

(∫ T

0 (T − s)γ−1Eγ,γ (−λ
β
n(T − s)γ h(s)ds

)2
. Therefore, (3.9) is 

equivalent to

‖(BB∗)−p/βf ‖2 ≤ Ẽ2.

Define ψ(λ) : (0, a] → R+ with a ≥ ‖BB∗‖ by ψ(λ) = λp/β and ρ(λ) = λψ−1(λ). Then, ψ(λ)

is strongly monotonic increasing on (0, a] and ρ(λ) = λ(p+β)/p is convex on (0, a]. Therefore, 
ψ(λ) and ρ(λ) satisfy Assumption 1.1 (p. 379) in [32]. Hence, by Theorem 2.1 in [32], the 
optimal order has the form

Ẽ

√
ρ−1

(
ε2

Ẽ2

)
= Ẽ

β
p+β ε

p
β+p .

The proof is complete. �
4. Error estimates for the regularized solution

In this section, we state error estimates for the regularization of problem (1.1) by problem 
(1.4). We propose a priori and a posteriori methods for choosing the regularization parameter 
α which yield error estimates of Hölder type. The theoretical results of this paper are stated in 
Theorem 3 and Theorem 4 below.

4.1. A priori parameter choice rule

Theorem 3. Suppose that h(t) satisfies Assumption H. For b ≥ β , problem (1.4) is well-posed. 
Moreover, if the solution f of problem (1.1) satisfies

‖f ‖p ≤ E, p > 0, E > ε, (4.1)

and fα is solution of problem (1.4) then the following statements hold:

(i) If 0 < p < b, then with α =
( ε

E

) b
p+β

, there exists a constant C2 such that

‖fα − f ‖ ≤ C2ε
p

p+β E
β

p+β .

(ii) If p ≥ b, then with α =
( ε

E

) b
b+β

, there exists a constant C3 such that

‖fα − f ‖ ≤ C3ε
b

b+β E
β

b+β .
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4.2. A posteriori parameter choice rule

Theorem 4. Suppose that h(t) satisfies Assumption H. Let b > 0 and σ ∈ (0, 1). Suppose that 
0 < εσ < ‖gε‖. Choose τ > 1 such that 0 < τεσ ≤ ‖gε‖. If f satisfies (4.1) and ε is sufficiently 
small, then the following statements hold:

(i) If b > β then there exists a unique number αε > 0 such that

‖Bαεg
ε − gε‖ = τε. (4.2)

Furthermore, if fαε satisfies problem (1.4) then there exist constants C4, C5 such that

‖f − fαε‖ ≤
⎧⎨⎩C4ε

p
p+β E

β
p+β if 0 < p < b − β,

C5ε
b

b+β E
β

b+β if p ≥ b − β > 0.

(ii) If b = β , then there exists a unique number αε > 0 such that

‖Bαεg
ε − gε‖ = τεσ . (4.3)

Furthermore, if fαε satisfies problem (1.4) then there exists a constant C6 such that

‖f − fαε‖ ≤ C6

(
ε

σp
p+β E

β
p+β + ε1−σ E

)
.

Remark 5. Our results in Theorems 3 and 4 are better than those of Dou, Fu and Yang in [4]. 
Indeed, in the latter, the authors applied the quasi-reversibility regularization method for identi-
fying a space-dependent unknown source function for the classical heat equation but they only 
consider β = 1 and h(t) = 1, t ∈ [0, T ], whereas we consider β to be an arbitrary positive real 
number and h(t) only satisfies Assumption H. The regularized function fα in [4] is given by

fα =
∞∑

n=1

λ
β
n 〈gε,φn〉φn

(1 + αλn)
(

1 − Eγ,1(−λ
β
nT γ )

) (4.4)

with β = 1 and γ = 1. Note that, for β > 1 we have 
λ

β
n

(1 + αλn)
(

1 − Eγ,1(−λ
β
nT γ )

) ≥

Ĉα−1λ
β−1
n → +∞ as n → +∞. Therefore, the function fα determined by formula (4.4) is 

not stable. This shows that the method in [4] cannot be applied to the case β > 1.
Concerning the convergence rates, [4] proposed an a priori parameter choice rule and obtained 

a convergence rate of the form

ε
p

p+2 E
1

p+2 max{1, ε
2−p
p+2 }. (4.5)

The order of this error estimate does not exceed 1/2 for all p > 0. On the other hand, by choosing 
b ≥ max{β, p} as in Theorem 3 and b ≥ β + p as in Theorem 4, we achieve in this paper a 
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convergence rate of optimal order of the form ε
p

p+β E
β

p+β , which is generally better than that in 
(4.5).

5. Proofs of the main results

5.1. Proof of Theorem 3

First, we present some auxiliary results.

Lemma 8. For b ≥ β , problem (1.4) is well-posed. Furthermore, fα ∈ D(Ab−β), v(t) ∈
D(Ab), t ∈ [0, T ) and there exists a constant C7 such that

‖fα‖ ≤ C7α
−β/b‖gε‖.

Proof. Similar to (2.6), the solution of problem (1.4) exists and is determined by the formula

v(t) =
∞∑

n=1

⎛⎝ t∫
0

(t − s)γ−1Eγ,γ (−λβ(t − s)γ )h(s) 〈fα,φn〉ds

⎞⎠φn.

Similar to Lemma 6, we have

〈
gε,φn

〉 T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )

〈
(I + αAb)fα,φn

〉
h(s)ds

= (1 + αλb
n) 〈fα,φn〉

T∫
0

(T − s)γ−1Eγ,γ (−λβ
n(T − s)γ )h(s)ds.

Therefore, fα in problem (1.4) is given by

fα =
∞∑

n=1

〈gε,φn〉φn

(1 + αλb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

, (5.1)

and

v(t) =
∞∑

n=1

∫ t

0 (t − s)γ−1Eγ,γ (−λβ(t − s)γ )h(s)ds 〈gε,φn〉φn

(1 + αλb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

.

Furthermore, by (3.8) we have
114



N.V. Duc, N.V. Thang and N.T. Thành Journal of Differential Equations 344 (2023) 102–130
‖fα‖2
b−β =

∞∑
n=1

λ
2(b−β)
n 〈gε,φn〉2(

(1 + αλb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)2

≤
∞∑

n=1

λ
2β
n λ

2(b−β)
n 〈gε,φn〉2

C2
4

(
1 + αλb

n

)2
≤ ‖gε‖2

α2C2
4

< +∞.

This proves that fα ∈ D(Ab−β). Similarly, we have the following evaluation

‖v(t)‖2
b ≤

∞∑
n=1

λ
2β
n λ2b

n

(∫ t

0 (t − s)γ−1Eγ,γ (−λβ(t − s)γ )h(s)ds
)2 〈gε,φn〉2

C2
4

(
1 + αλb

n

)2
≤ C2

6

∞∑
n=1

λ
2β
n

(∫ t

0 (t − s)γ−1Eγ,γ (−λβ(t − s)γ )ds
)2 〈gε,φn〉2

C2
4α2

= C2
6

∞∑
n=1

(
1 − Eγ,1(−λβtγ )

)2 〈gε,φn〉2

C2
4α2

≤ C2
6‖gε‖2

α2C2
4

< +∞

where C6 is given in Remark 4. Therefore v(t) ∈ D(Ab). On the other hand

‖fα‖2 =
∞∑

n=1

〈gε,φn〉2(
(1 + αλb

n)
T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)2 .

For b > β , using Young’s inequality, we have

1 + αλb
n ≥ b − β

b
.1

b
b−β + β

b

(
αβ/bλβ

n

)b/β ≥ αβ/bλβ
n ,

or

1 + αλb
n ≥ αβ/bλβ

n for all b ≥ β.

It follows that

‖fα‖2 ≤
∞∑

n=1

α
−2β

b 〈gε,φn〉2(
λ

β
n

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)2 . (5.2)
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From Lemma 7 and (5.2), there exists a constant C7 such that

‖fα‖ ≤ C7α
−β/b‖gε‖.

The lemma is proved. �
In the following, we denote by f1α the solution of problem⎧⎪⎪⎨⎪⎪⎩

∂γ w

∂tγ
+ Aβw = (I + αAb)f1αh(t), 0 < t < T,

w(0) = 0

w(T ) = g.

(5.3)

The solution of (5.3) is given by

f1α =
∞∑

n=1

〈g,φn〉φn

(1 + αλb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

. (5.4)

Lemma 9. If f1α is the solution of problem (5.3) and fα is the solution of problem (1.4), then

‖fα − f1α‖ ≤ C7α
−β/bε.

Proof. We see that fα − f1α solves problem (1.4) with gε being replaced by gε − g. Using 
Lemma 8, we have

‖fα − f1α‖ ≤ C7α
−β/b‖gε − g‖ ≤ C7α

−β/bε.

The lemma is proved. �
Lemma 10. If ‖f ‖p � E for some positive constants p, E > 0, then there exists a constant 
C8 > 0 such that

‖f − f1α‖ �
{

αp/bE if p < b,

C8αE if p ≥ b.

Proof. We have

‖f − f1α‖2 =
∞∑

n=1

〈f − f1α,φn〉2

=
∞∑

n=1

{ 〈g,φn〉
T∫
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds
0
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− 〈g,φn〉
(1 + αλb

n)
T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

}2

=
∞∑

n=1

α2λ2b
n 〈g,φn〉2(

(1 + αλb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)2

=
∞∑

n=1

(
αλ

b−p
n

1 + αλb
n

)2

λ
2p
n 〈f,φn〉2 . (5.5)

If p < b, using Young’s inequality, we have

1 + αλb
n ≥ p

b
.1

b
p + b − p

b

(
α(b−p)/bλ

b−p
n

)b/(b−p) ≥ α(b−p)/bλ
b−p
n .

Hence,

‖f − f1α‖2 ≤
∞∑

n=1

α2p/bλ
2p
n 〈f,φn〉2 ≤ α2p/bE2.

If p ≥ b, then

‖f − f1α‖2 ≤
∞∑

n=1

α2λ
2(b−p)
1 λ

2p
n 〈f,φn〉2 ≤ λ

2(b−p)
1 α2E2.

The lemma is proved. �
Now we are in a position to prove Theorem 3.

Proof of part (i) of Theorem 3.
If p < b, from Lemma 9 and Lemma 10 we have

‖f − fα‖ ≤ ‖f − f1α‖ + ‖fα − f1α‖
� αp/bE + C7α

−β/bε.

Choosing α =
( ε

E

) b
p+β

, there exists a constant C2 > 0 such that

‖f − fα‖ � C2ε
p

p+β E
β

p+β .

Part (i) of Theorem 3 is proved.
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Proof of part (ii) of Theorem 3.
If p ≥ b, we have

‖f − fα‖ ≤ ‖f − f1α‖ + ‖fα − f1α‖
� C8αE + C7α

−β/bε.

Choosing α =
( ε

E

) b
b+β

, there exists a constant C3 > 0 such that

‖f − fα‖ � C3ε
b

b+β E
β

b+β .

Part (ii) of Theorem 3 is proved. Therefore, the proof of Theorem 3 is complete.

5.2. Proof of Theorem 4

First, we need the following lemmas.

Lemma 11. ([7]) Set ρ(α) := ‖Bαgε − gε‖ and suppose that gε �= 0. Then
a) ρ is a continuous function,
b) lim

α→0+ ρ(α) = 0,

c) lim
α→+∞ρ(α) = ‖gε‖,

d) ρ is a strictly increasing function.

Lemma 12. Suppose that f is the solution of problem (1.1) satisfying ‖f ‖p ≤ E and f1α is the 
solution of problem (5.3) with b > β . If αε satisfies (4.2) then there exists a constant C9 > 0 such 
that

‖f1αε − f ‖ ≤ C9ε
p/(p+β)Eβ/(p+β).

Proof. Let z(t) = Bαw(t) with w(t) satisfying problem (5.3). Then z(t) solves problem⎧⎪⎪⎨⎪⎪⎩
∂γ z

∂tγ
+ Az = f1αh(t), 0 < t < T,

z(0) = 0

z(T ) = Bαg.

(5.6)

We have

‖f − f1αε‖p =
∞∑

n=1

λ
2p
n

(
〈f,φn〉 − 〈g,φn〉

(1 + αελb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

)2

=
∞∑

λ
2p
n

(
〈f,φn〉 − 〈f,φn〉

(1 + αελb
n)

)2
n=1
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=
∞∑

n=1

λ
2p
n

(
αλb

n 〈f,φn〉
1 + αελb

n

)2

≤
∞∑

n=1

λ
2p
n 〈f,φn〉2 ≤ E2 (5.7)

and

‖u(T ) − z(T )‖ = ‖Bαεg − g‖
≤ ‖Bαεg − Bαεg

ε‖ + ‖Bαεg
ε − gε‖ + ‖gε − g‖

≤
∥∥∥∥αελ

b
n 〈g − gε,φn〉φn

1 + αελb
n

∥∥∥∥+ τε + ε

≤ ‖g − gε‖ + (τ + 1)ε ≤ (τ + 2)ε. (5.8)

From (5.7), (5.8) and Theorem 1, there exists a constant C9 > 0 such that

‖f1αε − f ‖ ≤ C9ε
p/(p+β)Eβ/(p+β).

The lemma is proved. �
Lemma 13. Suppose f is a solution of problem (1.1) satisfying ‖f ‖p ≤ E and f1α is the solution 
of problem (5.3) with b = β . If αε satisfies (4.3) with ε is sufficiently small then there exists a 
constant C10 > 0 such that

‖f1αε − f ‖ ≤ C10ε
pσ/(p+β)Eβ/(p+β).

Proof. From the proof of Lemma 12, we have

‖f − f1αε‖p ≤ E.

Similar to (5.8), with ε is sufficiently small, we obtain

‖u(T ) − z(T )‖ ≤ ‖Bαεg − Bαεg
ε‖ + ‖Bαεg

ε − gε‖ + ‖g − gε‖
≤ ε + τεσ + ε ≤ (τ + 2)εσ .

Using Theorem 1, there exists a constant C10 > 0 such that

‖f1αε − f ‖ ≤ C10ε
pσ/(p+β)Eβ/(p+β).

The lemma is proved. �
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Now we are in a position to prove Theorem 4.

Proof of part (i) of Theorem 4.
It follows from Lemma 11 that there exists a unique number αε > 0 satisfying (4.2). From 

Lemma 9 and Lemma 12, we have

‖f − fαε‖ ≤ ‖f − f1αε‖ + ‖f1αε − fαε‖
≤ C9ε

p/(p+β)Eβ/(p+β) + C7α
−β/b
ε ε. (5.9)

On the other hand,

τε = ‖Bαεg
ε − gε‖ =

∥∥∥∥∥
∞∑

n=1

αελ
b
n 〈gε,φn〉φn

1 + αελb
n

∥∥∥∥∥
=
∥∥∥∥∥

∞∑
n=1

αελ
b
n 〈g,φn〉φn

1 + αελb
n

−
∞∑

n=1

αελ
b
n 〈g − gε,φn〉φn

1 + αελb
n

∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥
∞∑

n=1

αελ
b
n

( T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

) 〈f,φn〉φn

1 + αελb
n

∥∥∥∥∥∥∥∥∥
+
∥∥∥∥∥

∞∑
n=1

〈
g − gε,φn

〉
φn

∥∥∥∥∥ .
From (3.5), we obtain

τε ≤ C6

∥∥∥∥∥
∞∑

n=1

αελ
b
n 〈f,φn〉φn

λ
β
n(1 + αελb

n)

∥∥∥∥∥+ ε

≤ C6

∥∥∥∥∥
∞∑

n=1

αελ
b−β
n 〈f,φn〉φn

1 + αελb
n

∥∥∥∥∥+ ε. (5.10)

If 0 < p < b − β , it follows from Lemma 4 that

αελ
b
n + 1 ≥ b − p − β

b

(
(αελ

b
n)

b−p−β
b

) b
b−p−β + p + β

b
.1

b
p+β

≥ (αελ
b
n)

b−p−β
b . (5.11)

From (5.10) and (5.11), we have

(τ − 1)ε ≤ C6α
p+β

b
ε

∥∥∥∥∥
∞∑

n=1

λ
p
n 〈f,φn〉φn

∥∥∥∥∥≤ C6α
p+β

b
ε E. (5.12)
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Hence, from (5.9) and (5.12), there exists a constant C4 > 0 such that

‖f − fαε‖ ≤ C4ε
p/(p+β)Eβ/(p+β).

If p ≥ b − β , then from (5.10) we have

(τ − 1)ε ≤ C4αε

∥∥∥∥∥
∞∑

n=1

λb−β
n 〈f,φn〉φn

∥∥∥∥∥
≤ C6λ

b−β−p

1 αε

∥∥∥∥∥
∞∑

n=1

λ
p
n 〈f,φn〉φn

∥∥∥∥∥
≤ C6λ

b−β−p

1 αεE. (5.13)

From (5.9) and (5.13), there exists a constant C5 > 0 such that

‖f − fαε‖ ≤ C5

(
εp/(p+β)Eβ/(p+β) + ε(b−β)/bEβ/b

)
.

The Part (i) of Theorem 4 is proved.

Proof of part (ii) of Theorem 4.
It follows from Lemma 11 that there exists a unique number αε > 0 satisfying (4.3). From 

Lemma 9 and Lemma 13, we have

‖f − fαε‖ ≤ ‖f − f1αε‖ + ‖f1αε − fαε‖
≤ C10ε

pσ/(p+β)Eβ/(p+β) + C7α
−β/b
ε ε. (5.14)

Similar to (5.10), with b = β we obtain

τεσ ≤ C6

∥∥∥∥∥
∞∑

n=1

αε 〈f,φn〉φn

1 + αελ
β
n

∥∥∥∥∥+ ε

= C6

∥∥∥∥∥
∞∑

n=1

αελ
−p
n λ

p
n 〈f,φn〉φn

1 + αελ
β
n

∥∥∥∥∥+ ε

≤ C6αελ
−p

1

∥∥∥∥∥
∞∑

n=1

λ
p
n 〈f,φn〉φn

∥∥∥∥∥+ ε

≤ C6αελ
−p
1 E + ε. (5.15)

If ε is sufficiently small then

(τ − 1)εσ ≤ C6αελ
−p

1 E. (5.16)

Hence, from (5.14) and (5.16) we arrive at the conclusion of part (ii) of Theorem 4. Theorem 4
is proved.
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6. Numerical algorithm and examples

In this section we analyze the effectiveness of the proposed regularization method using 
numerical examples with simulated data. The noniterative numerical algorithm used in the fol-
lowing tests is based on the representation (5.1) of the source function fα . Assuming that the 
eigenvalues and eigenfunctions of operator A are known, the algorithm approximates the regu-
larized solution fα using the following partial sum of the series (5.1).

fα ≈
Ni∑

n=1

〈gε,φn〉φn

(1 + αλb
n)

T∫
0
(T − s)γ−1Eγ,γ (−λ

β
n(T − s)γ )h(s)ds

, (6.1)

where Ni is an integer. We recall that the regularization parameter is calculated using either the 
a priori or a posteriori parameter choice rules presented in Theorems 3 and 4. In the latter, the 
operator Bα in (2.5) should also be approximated using a similar truncated sum.

The computation of fα using (6.1) requires the evaluation of the Mittag-Leffler function Eγ,γ

and the weakly singular integrals in the denominator. For the former, we use an implementa-
tion in Matlab by Garrappa using an optimal parabolic contour algorithm [6]. The Matlab code 
is available for download at https://www.mathworks .com /matlabcentral /fileexchange /48154 -the -
mittag -leffler-function. For the latter, we use the following approximation method, see also in 
[33]. Denote by wn(s) := Eγ,γ (−λ

β
n(T − s)γ )h(s), n = 1, 2, . . . Note that for each n, wn(s)

is a continuous function on [0, T ]. Divide [0, T ] into k equal intervals by the grid points 

0 = t0 < t1 < ... < tk = T with step size �t = T

k
. In each interval (ti , ti+1), wn(s) is approx-

imated by the linear function:

wn(s) ≈ 1

�t

[
wn(ti)(ti+1 − s) + wn(ti+1)(s − ti )

]
, ti ≤ s ≤ ti+1. (6.2)

The integrals in the denominator of (6.1) are approximated by

T∫
0

(T − s)γ−1wn(s)ds =
k−1∑
i=0

ti+1∫
ti

(T − s)γ−1wn(s)ds

≈ 1

�t

k−1∑
i=0

[
wn(ti)

ti+1∫
ti

(ti+1 − s)(T − s)γ−1ds + wn(ti+1)

ti+1∫
ti

(s − ti )(T − s)γ−1ds
]
.

The last integrals are elementary. Their values are given by

ti+1∫
ti

(ti+1 − s)(T − s)γ−1ds = ti+1 − T

γ

[
(T − ti+1)

γ − (T − ti )
γ
]

+ 1 [
(T − ti+1)

γ+1 − (T − ti )
γ+1
]
,

γ + 1
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ti+1∫
ti

(s − ti )(T − s)γ−1ds = T − ti

γ

[
(T − ti+1)

γ − (T − ti )
γ
]

− 1

γ + 1

[
(T − ti+1)

γ+1 − (T − ti )
γ+1
]
.

To generate simulated data, we solve the forward problem (i.e., the first two equations of 
(1.1)) with the exact source function f using expansion (2.6). More precisely, we approximate 
the infinite series in (2.6) by the following partial sum

u(t) ≈
Np∑
n=1

〈f,φn〉φn

t∫
0

(t − s)γ−1Eγ,γ (−λβ
n(t − s)γ )h(s)ds, (6.3)

where Np represents the number of eigenvalues taken in the partial sum. Here Np is chosen 
different from Ni to avoid the inverse crime. We have also observed numerically that Ni should 
be chosen relatively small in order to enhance the stability of the inverse algorithm. Additive 
uniformly distributed random noise of L2-norm ε is added to u(T ) to obtain noisy measured 
data gε . Although ε is the absolute noise level, in the following discussion, we will use relative 
noise as it represents the signal-to-noise ratio.

In the following we discuss the performance of the proposed algorithm for some fractional 
equations in one and two spatial dimensions. In the following examples, we chose operator A
whose eigenvalues and eigenfunctions are available in closed forms.

Example 1. Consider the following one-dimensional initial boundary value problem as the for-
ward problem:

∂γ u(x, t)

∂tγ
= �βu(x, t) + f (x)h(t), x ∈ (0,π), t ∈ (0, T ),

u(0, t) = u(π, t) = 0, t ∈ (0, T ),

u(x,0) = 0, x ∈ (0,π), (6.4)

where � is the Laplacian with respect to the spatial variable x. The eigenvalues and orthonormal 
eigenfunctions of the Laplacian with the Dirichlet boundary conditions are given by λn = n2 and 

φn(x) =
√

2
π

sin(nx), n = 1, 2, . . . .

The time-dependent function h(t) was chosen as h(t) = e−t and the final time was chosen 
as T = 1. To approximate the integrals in the denominator of (6.1), we divided the time interval 
(0, 1) into 50 equal subintervals. The fractional orders were chosen as γ = β = 1/2. In solving 
the forward problem, 100 eigenvalues and eigenfunctions were used in (6.3), i.e., Np = 100.

The exact source function f (x) was chosen as

f (x) := 5e−8(x−1)2 + 2e−8(x−2)2
.

The inner products in (6.1) and (6.3) were approximated by the trapezoidal rule using 101 
uniform grid points on [0, π]. In the inverse problem, the parameters were chosen as follows: 
Ni = 10, p = 2, E = 106, and b = 3. We considered 4 noise levels of 1%, 2%, 5%, and 10%.
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Table 1
Relative error ‖f − fα‖L2/‖f ‖L2 between the exact and reconstructed source 
functions in Example 1. In the a priori parameter choice rule, E = 106, p = 2. In the 
a posteriori parameter choice rule, α was chosen according to (4.2) with τ = 1.01. 
The relative error of f is between 2% and 13.57%. The errors were obtained as the 
average of 100 runs.

Relative noise level (%) 1.00 2.00 5.00 10.00

Relative error, a priori choice rule (%) 2.08 2.88 5.81 11.38
Relative error, a posteriori choice rule (%) 2.44 3.81 7.45 13.57

Table 2
Relative error ‖f −fα‖L2/‖f ‖L2 between the exact and recon-
structed source functions in Example 1 for four values of b. The 
effect of b on the reconstruction is insignificant.

Relative noise level (%) 1.00 2.00 5.00 10.00

Relative error, b = 1 2.07 2.88 5.76 10.92
Relative error, b = 2 2.08 2.85 6.06 11.01
Relative error, b = 3 2.08 2.88 5.81 11.38
Relative error, b = 4 2.05 2.78 5.75 11.47

Table 1 shows the relative L2-norm errors of the reconstructed source function for both a 
priori and a posteriori regularization parameter choice rules. To avoid the effect of a particular 
set of additive noise, the error was averaged over 100 runs with random noise regenerated in each 
run. As the table shows, the errors reduce when the data error reduces. We also can see that the 
a priori parameter choice rule provides slightly better accuracy than the a posteriori parameter 
choice rule. However, the former depends on the value of E. In this test, E was chosen larger 
than the exact H2 norm of the source function.

The reconstruction accuracy is also illustrated in Fig. 1 for data corrupted with 5% and 10% 
noise. We can see that the reconstructed source function follows well the behavior of the exact 
one, even at 10% noise.

Next, we analyzed the effect of the parameter b on the reconstruction result. For this purpose, 
we considered four values of b: 1, 2, 3, 4. For each value of b we also took the average error of 
100 runs. Table 2 shows that the difference in the reconstruction errors is insignificant. Therefore, 
in the following examples fixed b at b = 3.

Example 2. In the second example, we also considered the same equation as in Example 1. 
However, the source term was chosen to be the piecewise linear function given by f (x) =
4f1(x) + f2(x), where

f1(x) =

⎧⎪⎨⎪⎩
4(x − 1.2)/0.3, 1.2 ≤ x ≤ 1.5

4(1.8 − x)/0.3, 1.5 < x ≤ 1.8

0, otherwise.

f2(x) =

⎧⎪⎨⎪⎩
(x − 2.2)/0.3, 2.2 ≤ x ≤ 2.5

(2.8 − x)/0.3, 2.5 < x ≤ 2.8

0, otherwise.
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Fig. 1. Measured data (first row) and the reconstruction results of the source function in Example 1 with 5% noise (second 
row) and 10% noise (third row).

Table 3
Relative error ‖f − fα‖L2/‖f ‖L2 between the exact and reconstructed source 
functions in Example 2. In the a priori parameter choice rule, E = 103, p = 1. 
In the a posteriori parameter choice rule, α was chosen according to (4.2) with 
τ = 1.01. The errors were obtained as the average of 100 runs.

Relative noise level (%) 1.00 2.00 5.00 10.00

Relative error, a priori choice rule (%) 4.79 8.31 16.77 26.70
Relative error, a posteriori choice rule (%) 5.07 6.71 11.87 19.37

We note that the source function f (x) in this example has a bounded H1 norm. Therefore we 
chose p = 1 in the inverse algorithm. Since f (x) is not smooth, the number of eigenfunctions 
in (6.3) should be chosen large enough. Our numerical experiments have indicated that Ni = 20
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Fig. 2. Measured data (first row) and the reconstruction results of the source function in Example 2 with 5% noise (second 
row) and 10% noise (third row).

resulted in good approximation. The parameter E was chosen to be E = 103 since the H1 norm 
of f (x) was approximately 200. Other parameters were chosen the same as in Example 1.

Table 3 and Fig. 2 show the results of this example for both a priori and a posteriori parameter 
choice rules. As can be seen from Fig. 2, the reconstruction accuracy is still very good at 5% of 
measurement noise. The result at 10% is still reasonably accurate, except at the largest peak of 
f (x). Note that since the eigenfunctions are smooth, a large number of terms in (6.1) must be 
required for an accurate approximation of f (x). However, when the number of terms is too large, 
the inverse problem becomes less stable. This is a trade-off between the accuracy and stability of 
the proposed inverse algorithm.

Example 3. As the last example, we considered a two-dimensional problem. For the clarity of 
notation, in this example we use f (x, y) to denote the source function instead of f (x). The 
forward problem reads:
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Table 4
Relative error ‖f − fα‖L2/‖f ‖L2 between the exact and reconstructed source 
functions in Example 3. In the a priori parameter choice rule, E = 103, p = 2. 
In the a posteriori parameter choice rule, α was chosen according to (4.2) with 
τ = 1.01. The errors were obtained as the average of 100 runs.

Relative noise level (%) 1.00 2.00 5.00 10.00

Relative error, a priori choice rule (%) 0.75 1.72 3.76 6.08
Relative error, a posteriori choice rule (%) 1.01 1.81 4.20 7.51

Fig. 3. Result of Example 3: First row: measured data with 10% noise and a cross section of the source function at 
y = π/2. Second row: 3-d plots of the exact and reconstructed source function. Third row: 2-d plots of the exact and 
reconstructed source function. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

∂γ u(x, y, t)

∂tγ
= �βu(x, y, t) + f (x, y)h(t), (x, y) ∈ (0,π)2, t ∈ (0, T ),

u(0, y, t) = u(π,y, t) = 0, t ∈ (0, T ), y ∈ (0,π),
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u(x,0, t) = u(x,π, t) = 0, t ∈ (0, T ), x ∈ (0,π),

u(x, y,0) = 0, (x, y) ∈ (0,π)2. (6.5)

For this problem, the eigenvalues and eigenfunctions are given as follows:

λnm = n2 + m2, φnm(x, y) = 2 sin(nx) sin(my)

π
, n,m = 1,2, . . .

In this example, we reconstructed the source function f (x, y) of the form:

f (x, y) := e−4(x−1)2−4(y−1.5)2 + 2e−5(x−2)2−5(y−1.5)2
.

Since the source function is smooth, we again chose p = 2 as in Example 1. The parameters 
were chosen as E = 103, Np = 400, Ni = 100. All other parameters were chosen the same as in 
the previous examples.

The reconstruction results are summarized in Table 4. Fig. 3 shows the reconstructed source 
function together with the exact one using the a priori parameter choice rule at 10% of noise. The 
corresponding result using the a posteriori method is very similar, so we do not show it here. As 
in the previous examples, the source function was accurately reconstructed even at 10% of noise 
added to the measured data.

7. Conclusions

In summary, we proved a stability estimate of optimal order for the inverse source problem 
(1.1) under Assumption H. We also proved Hölder-type error estimates for the regularized solu-
tion using the quasi-reversibility method. The numerical examples confirmed that the proposed 
regularization method provided accurate reconstruction results, especially for a smooth source 
function.
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