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Abstract
Thiswork is dedicated to the investigation of a regularizationmethod for the problemof
determining Caputo fractional derivatives of a function in the Banach space L∞[0, T ].
This regularization method is based on the approximation of the first-order derivative
of the function by the solution of a well-posed problem depending on a regularization
parameter. We then discuss the Hölder type stability results for the method according
to two choice rules for the regularization parameter, which are an a priori parameter
choice rule and an a posteriori parameter choice rule. Some numerical examples are
provided.

Keywords Caputo fractional derivative · Ill-posed problems · Regularization ·
A priori parameter choice rule · A posteriori parameter choice rules · Error estimates

1 Introduction

Introduced by M. Caputo [6] for the purpose of formulating viscoelastic problems
satisfying the dissipation of energy, Caputo fractional derivatives as well as Caputo
partial fractional derivatives have been applied in various fields such as physics, geo-
hydrology [1, 10], and biomedical applications [9]. We also refer the reader to [2–5]
and the references therein some recent works on the Caputo fractional derivative and
Caputo fractional order differential equations.

It is well-known that the problem of determining Caputo fractional derivatives is
ill-posed (see, e.g., [8]); in particular, it is unstable with respect to a small error of
the data (e.g., consider a sequence of functions fn(t) = t2n

nα , 0 < α < 1, t ∈ [0, 1],
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1 ≤ n ∈ Z, and a function f (t) = 0, then ‖ fn − f ‖∞ = sup
t∈[0,1]

| fn(t) − f (t)| =

sup
t∈[0,1]

∣
∣
∣
∣

t2n

nα

∣
∣
∣
∣
= 1

nα
→ 0 as n → ∞, thus fn converges to f in L∞[0, 1] as n → ∞;

but |Dα fn(1) − Dα f (1)| = 1

�(1 − α)

2n

nα

∫ 1

0

s2n−1

(1 − s)α
ds ≥ 1

�(1 − α)

2

2 + α
for all

n, which implies Dα fn(t) does not converge to Dα f (t) in L∞[0, 1]). Therefore, the
search for an efficient regularizationmethod to this problem is of great interest, notably
the Tikhonov regularization [7] and the mollification method [8]. Inspired by the fact
that noisy data are usually given randomly and measured by the L∞ norm, we are
interested in the investigation of a regularization method for such data. The method
that we propose to investigate in this paper is based on approximating the first order
derivative by the solution of a well-posed problem. Details will be described hereafter.
We consider the problem of determining the Caputo fractional derivative of order α

with 0 < α < 1. For each differentiable function q defined in [0, T ], the Caputo
fractional derivative of order α of q is given by

(

D(α)q
)

(t) = 1

�(1 − α)

∫ t

0

q ′(s)
(t − s)α

ds, 0 ≤ t ≤ T , (1)

where � is the Gamma function.
Assume that the exact data, function q in (1), is unknown, but we know instead the
noisy data, denoted by qδ(t) ∈ L∞[0, T ], satisfying

‖qδ − q‖ ≤ δ, (2)

with δ > 0, denotes the noisy level, is given. Here, the notation ‖ · ‖ is to denote the
essential supremum, i.e.,

‖ f ‖ := inf {M ∈ R s.t. | f (t)| ≤ M a.e. in [0, T ]} ,

which is the regular norm in L∞[0, T ].
The objective of the work is to determine D(α)q (approximately) from the knowledge
of qδ . Note that qδ might not be differentiable. And, even if qδ is differentiable,
formula (1) with q is replaced by qδ cannot be used to approximate D(α)q due to
the ill-posedness of the problem. To handle this issue, we develop a regularization
method. That method is based on approximating the first order derivative q ′(t) using
the solution uβ(t) of the following equation:

βuβ(t) +
∫ t

0
uβ(s)ds = qδ(t), t ∈ [0, T ]. (3)

Here, β > 0 is called the regularization parameter. Later on, we will discuss the choice
of β and as well as the Hölder type of estimation of errors. The well-posedness of the
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problem of determining uβ satisfying (3) and the explicit representation of its solution,
that is,

uβ(t) = − 1

β2 e
−t/β

∫ t

0
es/βqδ(s)ds + qδ(t)

β
, t ∈ [0, T ], (4)

are detailed in Appendix A.
The Caputo fractional derivative D(α)q is then approximated by a function uα,β as
follows:

uα,β(t) = 1

�(1 − α)

∫ t

0

uβ(s)

(t − s)α
ds, 0 ≤ t ≤ T . (5)

To study the stability of the method with respect to the regularization parameter β, we
assume further that the exact data q(t) is of twice continuously differentiable function
on [0, T ] satisfying q(0) = q ′(0) = 0, and there exists a constant E > δ > 0 (E is
not required to be given explicitly) such that

‖q ′′‖ ≤ E . (6)

This paper is organized as follows: In Section 2, we briefly introduce some auxiliary
results and some assumptions for later use. In Section3, we present the main results on
the stability corresponding to two choice rules, an a priori parameter choice rule and
an a posteriori parameter choice rule, of the regularization parameter β. The numerical
part is discussed in Section4.

2 Some auxiliary results

Before discussing the stability results, we provide the following auxiliary result for
later use.

Theorem 2.1 Let vβ(t) be the solution to the equation

βvβ(t) +
∫ t

0
vβ(s)ds = q(t), β > 0, t ∈ [0, T ], (7)

and vα,β(t) be defined by

vα,β(t) = 1

�(1 − α)

∫ t

0

vβ(s)

(t − s)α
ds, 0 ≤ t ≤ T , 0 < α < 1. (8)

Then, the following estimates hold

a) ‖uβ − vβ‖ ≤ 2 − e−T /β

β
δ,

b) ‖uα,β − vα,β‖ ≤ T 1−α

(1 − α)�(1 − α)

2 − e−T /β

β
δ.
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where uβ(t) and uα,β(t) defined in (4) and (5) respectively.

Proof Let wβ := uβ − vβ and wα,β := uα,β − vα,β in [0, T ]. Then, wβ(t) solves
the equation

βwβ(t) +
∫ t

0
wβ(s)ds = qδ(t) − q(t), t ∈ [0, T ] (9)

and

wα,β(t) = 1

�(1 − α)

∫ t

0

wβ(s)

(t − s)α
ds, 0 ≤ t ≤ T , 0 < α < 1. (10)

It is known that (9) has a unique solution (see Appendix A, Theorem A.1):

wβ(t) = − 1

β2 e
−t/β

∫ t

0
es/α

(

qδ(s) − q(s)
)

ds + qδ(t) − q(t)

β

= gβ(t) + qδ(t) − q(t)

β
, t ∈ [0, T ], (11)

with gβ(t) := − 1

β2 e
−t/β

∫ t

0
es/α

(

qδ(s) − q(s)
)

ds. Thus,

‖wβ‖ ≤ ‖gβ‖ + 1

β
‖qδ − q‖. (12)

In addition, using the analytical formula of gβ(t), we estimate

|gβ(t)|=
∣
∣
∣
∣

1

β2 e
−t/β

∫ t

0
es/β

(

qδ(s)−q(s)
)

ds

∣
∣
∣
∣
≤ 1

β2 e
−t/β

∫ t

0
es/β‖qδ − q‖ds

= ‖qδ−q‖
β

(

1 − e−t/β)

≤
(

1−e−T /β
) ‖qδ − q‖

β
, ∀t ∈[0,T ],

which implies

‖gβ‖ ≤
(

1 − e−T /β
) ‖qδ − q‖

β
. (13)

Combining (12) and (13), we obtain

‖wβ‖ ≤ 2 − e−T /β

β
‖qδ − q‖ ≤ 2 − e−T /β

β
δ,
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which proves the first estimation.
In addition, from (10), we have

∣
∣wα,β(t)

∣
∣ =

∣
∣
∣
∣

1

�(1 − α)

∫ t

0

wβ(s)

(t − s)α
ds

∣
∣
∣
∣
≤ 1

�(1 − α)

∫ t

0

|wβ(s)|
(t − s)α

ds

≤ 1

�(1 − α)

∫ t

0

‖wβ‖
(t − s)α

ds ≤ T 1−α

(1 − α)�(1 − α)
‖wβ‖.

Combine with the first estimation, we end up with

‖wα,β‖ ≤ T 1−α

(1 − α)�(1 − α)

2 − e−T /β

β
δ,

that proves the theorem. 
�
As mentioned in the introduction, the Caputo fractional derivative of the noisy data,
D(α)qδ , is approximated by uα,β , which is determined by (4)-(5). In the next part, we
will discuss the stability of this approximation, i.e., estimate the error between uα,β

and D(α)q knowing (2).

3 Stability results

The stability estimates of the method depend on how to choose the regularization
parameter β. We here propose to discuss two ways to choose the parameter, that are
an a prior parameter choice rule and an a posteriori parameter choice rule.

3.1 A prior parameter choice rule

For this rule, the choice of parameter β is independent on the measured data, but it
depends on the noisy level. The following theorem will summary the error estimates
for an arbitrary choice and a special choice of β.

Theorem 3.1 Let uβ(t) and uα,β(t) be defined by (4) and (5) (respectively). The fol-
lowing estimate holds for all β > 0

∥
∥
∥uα,β −

(

D(α)q
)∥
∥
∥ ≤ T 1−α

(1 − α)�(1 − α)

(
2 − e−T /β

β
δ + (1 − e−T /β)βE

)

.

In particular, if the constant E is known, choose β =
√

2δ

E
, the error estimate is

‖uα,β −
(

D(α)q
)

‖ ≤ T 1−α

(1 − α)�(1 − α)
2
√
2δE;
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otherwise, choose β = √
δ, the error estimate is

‖uα,β −
(

D(α)q
)

‖ ≤ T 1−α

(1 − α)�(1 − α)

√
δ(2 + E).

Proof Apply the triangle inequality

‖uβ − q ′‖ ≤ ‖uβ − vβ‖ + ‖vβ − q ′‖, (14)

where ‖uβ − vβ‖ ≤ 2 − e−T /β

β
δ is obtained by Theorem 2.1. It remains to prove that

‖vβ − q ′‖ ≤
(

1 − e−T /β
)

βE .

Denote by
wβ(t) := q ′(t) − vβ(t), t ∈ [0, T ],

then wβ verifies

βwβ(t) +
∫ t

0
wβ(z)dz = β(q ′(t) − vβ(t)) +

∫ t

0

(

q ′(s) − vβ(s)
)

ds

= βq ′(t) −
(

βvβ(t) +
∫ t

0
vβ(s)ds

)

+ q(s)
∣
∣
∣

t

0

= βq ′(t) − q(t) + q(t) − q(0) = βq ′(t) − q(0) = βq ′(t).
(15)

That deduces, wβ is the solution of (3) with the right hand side is replaced by βq ′(t).
Applying Theorem A.1 yields,

wβ(t) = − 1

β
e−t/β

∫ t

0
es/βq ′(s)ds + q ′(t), t ∈ [0, T ]. (16)

Integrating by part, we can simplify (16) as

wβ(t) = − 1

β
e−t/β

∫ t

0
es/βq ′(s)ds + q ′(t)

= −e−t/β
∫ t

0
q ′(s)d

(

es/β
) + q ′(t)

= −e−t/β
(

(

q ′(s)es/β
)
∣
∣
∣

t

0
−

∫ t

0
es/βd(q ′(s))

)

+ q ′(t)

= −e−t/β
(

q ′(t)et/β − q ′(0) −
∫ t

0
es/βq ′′(s)ds

)

+ q ′(t)

= e−t/β
∫ t

0
es/βq ′′(s)ds, ∀t ∈ [0, T ]. (17)
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Using the boundedness of q ′′ by a constant E , we obtain from (17) that ∀t ∈ [0, T ],

|wβ(t)| ≤ e−t/βE
∫ t

0
es/βds = Ee−t/β (

βes/β
)
∣
∣
∣

t

0
= βE

(

1 − e−t/β)

≤
(

1 − e−T /β
)

βE, (18)

which implies

‖wβ‖ ≤
(

1 − e−T /β
)

βE . (19)

Combining (14), (19), and the first item of Theorem 2.1, we have

‖uβ − q ′‖ ≤
(
2 − e−T /β

β
δ +

(

1 − e−T /β
)

βE

)

. (20)

Next, we have that

∣
∣
∣uα,β(t) −

(

D(α)q
)

(t)
∣
∣
∣ =

∣
∣
∣
∣

1

�(1 − α)

∫ t

0

uβ(s) − q ′(s)
(t − s)α

ds

∣
∣
∣
∣

≤ 1

�(1 − α)

∫ t

0

|uβ(s) − q ′(s)|
(t − s)α

ds

≤ 1

�(1 − α)

∫ t

0

‖uβ − q ′‖
(t − s)α

ds

≤
(
2 − e−T /β

β
δ +

(

1 − e−T /β
)

βE

)
1

�(1 − α)

∫ t

0

1

(t − s)α
ds

=
(
2 − e−T /β

β
δ +

(

1 − e−T /β
)

βE

)
t1−α

(1 − α)�(1 − α)

≤
(
2 − e−T /β

β
δ +

(

1 − e−T /β
)

βE

)
T 1−α

(1 − α)�(1 − α)
, ∀t ∈ [0, T ],

which implies,

∥
∥
∥uα,β −

(

D(α)q
)∥
∥
∥ ≤ T 1−α

(1 − α)�(1 − α)

(
2 − e−T /β

β
δ + (1 − e−T /β)βE

)

. (21)

Substitute β =
√

2δ

E
and β = √

δ into the inequality (21), we obtain the results that

stated in the theorem. 
�

Based on the Theorem 3.1, we establish the following stability estimates.
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Theorem 3.2 (stability estimates) Suppose that qi (t), i = 1, 2 are twice continuously
differentiable functions in L∞[0, T ] satisfying qi (0) = q ′

i (0) = 0, ‖q ′′
i ‖ ≤ E, i =

1, 2, and

‖q1 − q2‖ ≤ δ. (22)

The following estimate holds

‖D(α)q1 − D(α)q2‖ ≤ 4T 1−α
√

δE

(1 − α)�(1 − α)
.

Proof Let q
δ
2 (t) = q1(t) + q2(t)

2
, ∀t ∈ [0, T ]. We have q

δ
2 ∈ L∞[0, T ] and

‖q1 − q
δ
2 ‖ = 1

2
‖q1 − q2‖ ≤ δ

2
(23)

‖q2 − q
δ
2 ‖ = 1

2
‖q1 − q2‖ ≤ δ

2
. (24)

Let denote by fβ(t) the solution to equation

β fβ(t) +
∫ t

0
fβ(s)ds = q

δ
2 (t), β > 0, t ∈ [0, T ], (25)

and fα,β(t) be defined by

fα,β(t) = 1

�(1 − α)

∫ t

0

fβ(s)

(t − s)α
ds, 0 ≤ t ≤ T , 0 < α < 1. (26)

From Theorem 3.1, we obtain

∥
∥
∥ fα,β − D(α)q1

∥
∥
∥ ≤ T 1−α

(1 − α)�(1 − α)

(
2 − e−T /β

β

δ

2
+ (1 − e−T /β)βE

)

,

∥
∥
∥ fα,β − D(α)q2

∥
∥
∥ ≤ T 1−α

(1 − α)�(1 − α)

(
2 − e−T /β

β

δ

2
+ (1 − e−T /β)βE

)

.

This implies that

∥
∥
∥ fα,β − D(α)q1

∥
∥
∥ ≤ T 1−α

(1 − α)�(1 − α)

(
δ

β
+ βE

)

,

∥
∥
∥ fα,β − D(α)q2

∥
∥
∥ ≤ T 1−α

(1 − α)�(1 − α)

(
δ

β
+ βE

)

.
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By choosing β =
√

δ

E
, we get

∥
∥
∥ fα,β − D(α)q1

∥
∥
∥ ≤ 2T 1−α

√
δE

(1 − α)�(1 − α)
,

∥
∥
∥ fα,β − D(α)q2

∥
∥
∥ ≤ 2T 1−α

√
δE

(1 − α)�(1 − α)
.

The triangle inequality yields

‖D(α)q1 − D(α)q2‖ ≤
∥
∥
∥ fα,β − D(α)q1

∥
∥
∥ +

∥
∥
∥ fα,β − D(α)q2

∥
∥
∥ ≤ 4T 1−α

√
δE

(1 − α)�(1 − α)
.

The theorem is proved. 
�

3.2 A posteriori parameter choice rule

For this rule, the choice of the parameter β is in terms of themeasured data.We assume
that there exists a constant γ ∈ (0, 1) such that 0 < δγ < ‖qδ‖. Let τ > 1 such that
0 < τδγ < ‖qδ‖, and let βδ > 0 such that

‖βδ uβδ‖ = τδγ , (27)

where uβδ is determined by (4) with β is replaced by βδ . We then choose β = βδ as
the regularization parameter. The existence of βδ is guaranteed thanks to Lemma 3.3
below.

Lemma 3.3 Let ρ(β) := ‖βuβ‖, β > 0. Then,

a. lim
β→+∞ ρ(β) = ‖qδ‖,

b. ρ(β) < τδγ with δ, β are small enough,
c. ρ(β) is a continuous function in (0,+∞).

Proof To prove the first item, we reformulate (4) as

βuβ(t) − qδ(t) = − 1

β
e−t/β

∫ t

0
ez/βqδ(z)dz, t ∈ [0, T ] (28)

and see that the right hand side is upper bounded by a linear quantity of 1
β
for all

t ∈ [0, T ] as follows:
∣
∣
∣
∣
− 1

β
e−t/β

∫ t

0
ez/βqδ(z)dz

∣
∣
∣
∣
≤ 1

β
e−t/β

∫ t

0
ez/β |qδ(z)|dz

≤ 1

β
e−t/β

∫ t

0
ez/β‖qδ‖dz

= 1

β
‖qδ‖

∫ t

0
e(z−t)/βdz ≤ 1

β
‖qδ‖T . (29)

123
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From (28) and (29), we have

‖qδ‖ − 1

β
‖qδ‖T ≤ ρ(β) ≤ ‖qδ‖ + 1

β
‖qδ‖T , (30)

which implies lim
β→+∞ ρ(β) = ‖qδ‖ since lim

β→+∞
1

β
‖qδ‖T = 0.

Next part, we prove the second item. We have that

βuβ(t) = − 1

β
e−t/β

∫ t

0
ez/βqδ(z)dz + qδ(t)

= − 1

β
e−t/β

∫ t

0
ez/β

(

qδ(z) − q(z)
)

dz + (

qδ(t) − q(t)
)

+
(

q(t) − 1

β
e−t/β

∫ t

0
ez/βq(z)dz

)

.

Therefore, for all t ∈ [0, T ]

|βuβ(t)| ≤
∣
∣
∣
∣
− 1

β
e−t/β

∫ t

0
ez/β(qδ(z) − q(z))dz

∣
∣
∣
∣
+ ∥

∥qδ − q
∥
∥

+
∣
∣
∣
∣
q(t) − 1

β
e−t/β

∫ t

0
ez/βq(z)dz

∣
∣
∣
∣
. (31)

Here,

∣
∣
∣
∣
− 1

β
e−t/β

∫ t

0
ez/β(qδ(z) − q(z))dz

∣
∣
∣
∣
≤ 1

β
e−t/β

∫ t

0
ez/β |qδ(z) − q(z)|dz

≤ 1

β
e−t/β

∫ t

0
ez/β‖qδ − q‖dz

= ‖qδ − q‖(1 − e−t/β) ≤ ‖qδ − q‖. (32)

In addition, integrating by part the last term of (31) and using q(0) = 0, we have

q(t) − 1

β
e−t/β

∫ t

0
ez/βq(z)dz = e−t/β

∫ t

0
ez/βq ′(z)dz. (33)

From q ′(0) = 0 and ‖q ′′‖ ≤ E , it follows that for all z ∈ [0, T ]

|q ′(z)| = |q ′(z) − q ′(0)| =
∣
∣
∣
∣

∫ z

0
q ′′(s)ds

∣
∣
∣
∣

≤
∫ z

0
|q ′′(s)|ds ≤

∫ T

0
|q ′′(s)|ds

≤
∫ T

0
‖q ′′‖ds ≤ E

∫ T

0
ds = ET . (34)
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We obtain from (33) and (34) that

∣
∣
∣
∣
q(t)− 1

β
e−t/β

∫ t

0
ez/βq(z)dz

∣
∣
∣
∣
≤ ETe−t/β

∫ t

0
ez/βdz ≤ βET (1−e−t/β) ≤ βET .

(35)

From (31), (32), and (35), we have

|βuβ(t)| ≤ 2‖qδ − q‖ + βET ≤ 2δ + βET , ∀t ∈ [0, T ]. (36)

Thus,

ρ(β) = ‖βuβ‖ ≤ 2δ + βET ≤ 3δ (37)

for all β ∈
(

0,
δ

ET

)

. We note that if 0 < δ <
(

τ
3

) 1
1−γ then

ρ(β) ≤ 3δ < τδγ .

Therefore, ρ(β) < τδγ with δ, β are small enough.
For the proof of the last item, we first see that function β 
→ βuβ in (0,+∞) is con-

tinuous due to the continuitivity function β 
→ 1

β
e−t/β

∫ t

0
ez/βqδ(z)dz on (0,+∞).

As a result,

∣
∣ρ(β) − ρ(β1)

∣
∣ = ∣

∣‖βuβ‖ − ‖β1uβ1‖
∣
∣ ≤ ‖βuβ − β1uβ1‖ → 0, as β → β1, ∀β1 ∈ (1,+∞)

which implies ρ(β) is continuous with respect to β on (0,+∞). 
�
Theorem 3.4 below summarizes the error estimate according to the a posteriori choice
of the regularization parameter.

Theorem 3.4 If uβδ (t) is the solution of problem (4) and uα,βδ (t) is determined by (5)
with β is replaced by βδ , the following estimate holds for δ that is small enough

∥
∥
∥uα,βδ −

(

D(α)q
)∥
∥
∥ ≤ 2T 1−α

(1 − α)�(1 − α)

(

2
√

(τδγ + 2δ)E + δ1−γ T E
)

.

Proof The proof of this theorem is directly obtained from Lemma 3.5 and Lemma 3.6
below and the triangular inequality of norms. 
�
Lemma 3.5 If vβδ (t) is the solution of problem (7) and vα,βδ (t) is determined by (8)
with β is replaced by βδ , the following estimate holds

∥
∥
∥vα,βδ −

(

D(α)q
)∥
∥
∥ ≤ 4T 1−α

(1 − α)�(1 − α)

√

(τδγ + 2δ)E .
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Proof Denote by uβδ (t) the solution to (3) with βδ > 0 is solution to (27). From
Theorem 2.1 a), we have

‖uβδ − vβδ‖ ≤ 1 − e−T /βδ

βδ

δ <
2

βδ

δ,

which implies

‖βδuβδ − βδvβδ‖ < 2δ. (38)

Combining (38) with ‖βδuβδ‖ = τδγ and the triangular inequality of norms, we have

‖βδvβδ‖ = ‖βδvβδ − βδuβδ + βδuβδ‖ ≤ ‖βδvβδ − βδuβδ‖ + ‖βδuβδ‖ < 2δ + τδγ .

Set q̃(t) =
∫ t

0
vβδ (z)dz, t ∈ [0, T ]. Clearly, q̃(0) = 0.Moreover, vβδ solves equation

βδvβδ (t) +
∫ t

0
vβδ (s)ds = q(t),

which yields

‖q − q̃‖ =
∥
∥
∥
∥
q(t) −

∫ t

0
vβδ (z)dz

∥
∥
∥
∥

= ‖βδvβδ‖ < τδγ + 2δ. (39)

Similar to (4), vβδ is represented by

vβδ (t) = − 1

βδ
2 e

−t/βδ

∫ t

0
ez/βδq(z)dz + q(t)

βδ

, t ∈ [0, T ]. (40)

The assumption q(0) = 0 and (40) implies q̃ ′(0) = vβδ (0) = 0. Differentiating both
side of (40) with respect to t obtains

q̃ ′′(t) = v′
βδ

(t)= − 1

βδ
2

(

− 1

βδ

)

e−t/βδ

∫ t

0
ez/βδq(z)dz− 1

βδ
2 e

−t/βδet/βδq(t)+ q ′(t)
βδ

= 1

βδ
3 e

−t/βδ

∫ t

0
ez/βδq(z)dz − 1

βδ
2 q(t) + q ′(t)

βδ

= 1

βδ
2 e

−t/βδ

∫ t

0
q(z)d

(

ez/βδ
) − 1

βδ
2 q(t) + q ′(t)

βδ

= 1

βδ
2 e

−t/βδq(z)ez/βδ

∣
∣
∣

t

0
− 1

βδ
2 e

−t/βδ

∫ t

0
ez/βδq ′(z)dz − 1

βδ
2 q(t) + q ′(t)

βδ

= − 1

βδ
2 e

−t/βδ

∫ t

0
ez/βδq ′(z)dz + q ′(t)

βδ
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= − 1

βδ

e−t/βδ

∫ t

0
q ′(z)d

(

ez/βδ
) + q ′(t)

βδ

= − 1

βδ

e−t/βδez/βδq ′(z)
∣
∣
∣

t

0
+ 1

βδ

e−t/βδ

∫ t

0
ez/βδq ′′(z)dz + q ′(t)

βδ

= 1

βδ

e−t/βδ

∫ t

0
ez/βδq ′′(z)dz.

By assumption
‖q ′′‖ ≤ E (41)

we can estimate

|̃q ′′(t)| = |v′
βδ

(t)| =
∣
∣
∣
∣

1

βδ

e−t/βδ

∫ t

0
ez/βδq ′′(z)dz

∣
∣
∣
∣

≤ 1

βδ

e−t/βδ

∫ t

0
ez/βδ |q ′′(z)|dz

≤ 1

βδ

e−t/βδ

∫ t

0
ez/βδ‖q ′′‖dz

≤ ‖q ′′‖e−t/βδez/βδ

∣
∣
∣

t

0
= ‖q ′′‖(1 − e−t/βδ )

≤ ‖q ′′‖(1 − e−T /βδ ) ≤ ‖q ′′‖ ≤ E, ∀t ∈ [0, T ], (42)

which implies

‖q̃ ′′‖ = ‖v′
βδ

‖ ≤ E . (43)

Therefore, q̃ and q satisfy the hypothesis of Theorem 3.2, that is, q(0) = q ′(0) = 0,
q̃(0) = q̃ ′(0) = 0, ‖q ′′‖ ≤ E , ‖q̃ ′′‖ ≤ E , and

‖q̃ − q‖ ≤ τδγ + 2δ.

Thus, by Theorem 3.2:

∥
∥
∥vα,βδ −

(

D(α)q
)∥
∥
∥ =

∥
∥
∥D(α)q̃ − D(α)q

∥
∥
∥ ≤ 4T 1−α

(1 − α)�(1 − α)

√

(τδγ + 2δ)E .

The lemma is proved. 
�
Lemma 3.6 If uβδ (t), uα,βδ (t), vβδ (t), vα,βδ (t) are determined by (3), (5), (7) and (8)
respectively with βδ > 0 is solution to (27) and δ is small enough, the following
estimates hold

‖uα,βδ − vα,βδ‖ ≤ 2δ1−γ T 2−αE

(1 − α)�(1 − α)
.
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Proof Recall from (27) and (38) that ‖βδuβδ‖ = τδγ and ‖βδvβδ − βδuβδ‖ < 2δ
(respectively), so we have

‖βδvβδ‖ = ‖βδvβδ − βδuβδ + βδuβδ‖ ≥ ‖βδuβδ‖ − ‖βδvβδ − βδuβδ‖ > τδγ − 2δ.

On the other hand, lim
δ→0+ 2δ1−γ = 0, hence for δ is small enough (τ −1)−2δ1−γ > 0.

This implies

τδγ − 2δ = δγ +
(

(τ − 1) − 2δ1−γ
)

δγ > δγ

and therefore

‖βδvβδ‖ > δγ (44)

with δ is small enough.
From the proof of Lemma 3.5, we see that ‖v′

βδ
‖ ≤ E . It implies from (40) and

q(0) = 0 that vβδ (0) = 0. For t ∈ (0, T ], by Lagrange’s Theorem there exists
t̃ ∈ (0, t) such that

|vβδ (t)| = |vβδ (t) − vβδ (0)| = |t − 0||v′
βδ

(̃t)| = t |v′
βδ

(̃t)| ≤ T ‖v′
βδ

‖ ≤ T E .

This implies that

‖vαδ‖ ≤ T E . (45)

From (44) and (45), we have the estimate

δγ < ‖βδvβδ‖ = βδ‖vβδ‖ ≤ βδT E (46)

with δ is small enough. Therefore, βδ >
δγ

T E
with δ is small enough. From Theorem

2.1, with δ is small enough

‖uβδ − vβδ‖ ≤ 2

βδ

δ <
2
δγ

T E

δ = 2δ1−γ T E .

Next, we prove for δ is small enough

∣
∣uα,βδ (t) − vα,βδ (t)

∣
∣ =

∣
∣
∣
∣

1

�(1 − α)

∫ t

0

uβδ (s) − vβδ (s)

(t − s)α
ds

∣
∣
∣
∣

≤ 1

�(1 − α)

∫ t

0

|uβδ (s) − vβδ (s)|
(t − s)α

ds

≤ 1

�(1 − α)

∫ t

0

‖uβδ − vβδ‖
(t − s)α

ds
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≤ 2δ1−γ T E

�(1 − α)

∫ t

0

1

(t − s)α
ds

= 2δ1−γ T E
t1−α

(1 − α)�(1 − α)

≤ 2δ1−γ T 2−αE

(1 − α)�(1 − α)
, ∀t ∈ [0, T ],

which implies

‖uα,βδ − vα,βδ‖ ≤ 2δ1−γ T 2−αE

(1 − α)�(1 − α)
.

The lemma is proved. 
�

4 Numerical implementation

In this section, we provide some numerical examples to illustrate the error estimates
of the method, discussed in Theorem 3.1 and Theorem 3.4, associated with the a
prior parameter and the a posteriori parameter choice rules. Recall that, the method
aims to find an approximation of the Caputo fractional derivative of a differentiable
function q ∈ L∞[0, T ] where the (unknown) data q is perturbed by some noise. The
relation between the exact data q and the measured data qδ is given by (2). In each
of the following examples, the exact data q and its Caputo fractional derivative Dαq
are given explicitly, and the noisy data qδ is taken from C[0, T ]. In particular, we
construct qδ ∈ C[0, T ] as follows: We first discretize the interval [0, T ] by N points
tn = (n − 1)	t , n = 1, . . . , N , where 	t := T /(N − 1) is the step-size. The noisy
data qδ is then defined by the following:

{
qδ(tn) = q(tn) + δqn, n = 1, . . . , N ,

qδ is linear in each interval [tn, tn+1], n = 1, . . . , N − 1,
(47)

where qn , n = 1, . . . , N are uniformly distributed random numbers in (−1, 1). The
proposed regularization method is summarized in two steps:
Step 1: Define uβ by (4) as a regularized approximation of q ′ with noisy data qδ .
Step 2: Dαq is approximated by uα,β defined by (5).
The integrals that appear in (4) and (5) are calculated numerically using the trapezoidal
rule. For the prior parameter choice rule, we choose β = √

2δ/E (the value of E will
be provided in each example). For the a posteriori parameter choice, the value of βδ

is chosen such as relation (27) holds (which depends on two parameters τ and γ ).
The values of τ and γ will be specified in each example. The relative error will be
calculated using the l2−norm.
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Example 1 The exact data is given by q(t) = t2eλt with λ < 0. Note that, the Caputo
derivatives of the exponential function eλt is given explicitly by

Dαeλt = λt1−αE1,2−α(λt), ∀ 0 < α < 1,

where Ea,b(z) =
∞
∑

k=0

zk

�(ak + b)
is the two - parameter function of Mittag - Leffeler

type. Therefore, the Caputo fractional derivative Dαq can be calculated explicitly
(using integrating by part), which is

Dαq(t) = λu2 − (2λt + 2)u1 + 1

λ
(2t + λt2)Dαeλt ,

where

u1 = 1

�(1 − α)

−1

λ
t1−α + 1 − α

λ2
Dαeλt

u2 = 1

�(1 − α)

−1

λ
t2−α + 2 − α

λ

(
1

�(1 − α)

−1

λ
t1−α + 1 − α

λ2
Dαeλt

)

.

We here choose particularly λ = −1. The noisy data qδ is defined from q by (47),
where qn , n = 1, . . . , N are generated numerically. Figure1 plots the data for Example
1 where the measured data are perturbed by 5% of noise. Figure2 plots the analytical

0 0.5 1 1.5 2 2.5 3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Exact data
Noisy data

Fig. 1 Data for Example 1. The exact data (the smooth blue curve) and the measured data with 5% of noise
(the zigzag orange curve)
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0.5

0.6

The analytical CFD
Regularization, 1%
Regularization, 2%
Regularization, 5%

Fig. 2 The analytical CFD and the regularization with 1%, 2%, and 5% for Example 1 using the a priori
parameter choice

Caputo fractional derivative (CFD) with α = 0.1 and the numerical approximation for
Example 1 using the prior parameter choice rule with the data contain 1%, 2%, and
5% of noise. The relative error for the prior parameter choice rule is shown in Table 1.
Here, T = 3, 	t = 10−3, E = 23.
For the a posteriori parameter choice, parameter γ = 0.95 should be taken close to 1
in order to ensure the existence of τ such that τ > 1 in practice. Here, we fix γ = 0.95
for all examples. In Fig. 3 (left), we plot the regularization results for Example 1 using
the a posteriori parameter choice with α = 0.1, and the data are perturbed by 1%,
2%, and 5% of noise (similar to the setup for the numerical results that are shown
in Fig. 2). The case of 5% of noise is also plotted separately (in comparing with the
analytical CFD) in Fig. 3 (right). In the tests, the parameter τ and the regularization
parameter βδ are chosen numerically. In particular, τ = 1.6353, 1.2995, 1.1346, βδ =
0.0210, 0.0210, 0.0260 corresponding with δ = 0.01, 0.02, 0.05. The relative errors

Table 1 The relative error for
Example 1 using the a priori
parameter choice

α = 0.1 α = 0.25 α = 0.5

δ = 0.01 0.0201 0.0244 0.0419

δ = 0.02 0.0281 0.0335 0.0560

δ = 0.05 0.0443 0.0525 0.0851

δ = 0.1 0.0628 0.0739 0.1177
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Regularization, 1%
Regularization, 2%
Regularization, 5%
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0.5

0.6

The analytical CFD
Regularization, 5%

Fig. 3 The analytical CFD and the regularization for Example 1 using the a posteriori parameter choice.
Left: with 1%, 2%, and 5% of noise. Right: with 5% of noise

Table 2 The relative error for
Example 1 using the a priori
parameter choice

α = 0.1 α = 0.25 α = 0.5

δ = 0.01 0.0163 0.0212 0.0406

δ = 0.02 0.0171 0.0246 0.0598

δ = 0.05 0.0228 0.0369 0.1081

δ = 0.1 0.0337 0.0548 0.2441

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

Exact data
Noisy data

Fig. 4 Data for Example 2. The exact data (the smooth blue curve) and the measured data with 5% of noise
(the zigzag orange curve)
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Regularization, 2%
Regularization, 5%
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Fig. 5 The regularization results for Example 2 with 1%, 2%, and 5% of noise in the data, using the a priori
parameter choice rule. Left: α = 0.1. Right: α = 0.5
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Regularization, 2%
Regularization, 5%

Fig. 6 The regularization results for Example 2 with 1%, 2%, and 5% of noise in the data, using the a
posteriori parameter choice rule. Left: α = 0.1. Right: α = 0.5

Table 3 The relative error for
Example 2 using the a priori
parameter choice

α = 0.1 α = 0.25 α = 0.5

δ = 0.01 0.0887 0.1007 0.1226

δ = 0.02 0.1240 0.1407 0.1671

δ = 0.05 0.1904 0.2160 0.2506

δ = 0.1 0.2578 0.2931 0.3357

Table 4 The relative error for
Example 2 using the a posteriori
parameter choice

α = 0.1 α = 0.25 α = 0.5

δ = 0.01 0.0313 0.0354 0.0488

δ = 0.02 0.0314 0.0355 0.0510

δ = 0.05 0.0320 0.0373 0.0588

δ = 0.1 0.0335 0.0417 0.0796
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are shown in Table 2. The results above also shows that the a posteriori parameter
choice rule is more accurate than the a priori parameter choice rule if α < 0.5.

Example 2 In this example, we choose the exact data q(t) = 1−cos(2t) and the noisy
data qδ is defined by (47), where qn , n = 1, . . . , N are generated numerically. The
exact Caputo derivatives is given by

Dαq(t) = −Dα cos(t) = −i t1−α
(

E1,2−α(i2t) − E1,2−α(−i2t)
)

, ∀ 0 < α < 1.

Figure4 gives an illustration for the noisy data in comparing with the analytical for-
mulation. Similar to Example 1, we here provide some numerical results for the
regularization using the a priori and the a posteriori parameter choices. The results
for the use of the a priori parameter choice are shown in Fig. 5. Here, E = 4, T = 3,
	t = 0.001. The value of the parameter β does not depend on α. In particular,
β = √

2δ/E = 0.0707, 0.1000, 0.1581 for δ = 0.01, 0.02, 0.05 (respectively).
For the a posteriori parameter choice rule, the value of βδ as well as the value of
parameter τ are chosen numerically and they depend on the order α. In particular,
for α = 0.1 τ = 4.2282, 2.6495, 1.6996 and βδ = 0.0210, 0.0210, 0.0210 corre-
sponding with δ = 0.01, 0.02, 0.05; and for α = 0.5 τ = 4.2163, 2.6335, 1.6750 and
βδ = 0.0210, 0.0220, 0.0220 corresponding with δ = 0.01, 0.02, 0.05. The numeri-
cal results are shown in Fig. 6

Finally, the relative results for both choice rules are given in Tables 3 and 4.

Appendix A: The uniqueness theorem

Theorem A.1 (The uniqueness theorem) Problem (3) admits a unique solution in
L∞[0, T ]. In addition, the solution is given by

uβ(t) = − 1

β2 e
−t/β

∫ t

0
ez/βqδ(z)dz + qδ(t)

β
, t ∈ [0, T ].

Proof Multiplying both side of (3) by
et/β

β
, we get

et/β

β

(

βuβ(t) +
∫ t

0
uβ(z)dz

)

= et/β

β
qδ(t),

which is equivalent to

d

dt

(

et/β
∫ t

0
uβ(z)dz

)

= et/β

β
qδ(t). (48)

Integrating both sides of (48) from 0 to t , we get

et/β
∫ t

0
uβ(z)dz = 1

β

∫ t

0
ez/βqδ(z)dz
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or

∫ t

0
uβ(z)dz = 1

β
e−t/β

∫ t

0
ez/βqδ(z)dz. (49)

Differentiating both sides of (49) with respect to t , we obtain (4). This formula also
guarantees the uniqueness of the solution. 
�
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