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Abstract: Let X be a Banach space with norm || - ||. Let A : D(A) ¢ X — X be an (possibly unbounded) operator
that generates a uniformly bounded holomorphic semigroup. Suppose that € > 0 and T > 0 are two given con-
stants. The backward parabolic equation of finding a function u : [0, T] — X satisfying

ur+Au=0, 0<t<T, |[u(T)- ol <e,
for ¢ in X, is regularized by the generalized Sobolev equation
Ugt + AqUqg =0, 0<t<T, usT) = o,

where0 < a < 1and A = A(I + @A?)~1 with b > 1. Error estimates of the method with respect to the noise level
are proved.
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1 Introduction

Let X be a Banach space with norm || - ||. Let A : D(A) ¢ X — X be an (possibly unbounded) operator that gen-
erates a uniformly bounded holomorphic semigroup. Suppose that € > 0 and T > 0 are two given constants.
Consider the backward parabolic equation of finding a function u : [0, T] — X such that

ur+Au=0, 0<t<T,
(1.1)

lu(T) - ¢l < &,

for ¢ in X and the given positive noise level €. This problem is well known to be severely ill-posed [21] and
regularization methods for it are required. As we noted in [14], although there have been many papers devoted
to backward parabolic equations in Hilbert spaces, there are very few ones devoted to those in Banach spaces.
Among them we list the first work on this problem by Krein and Prozorovskaja [20], and then by Agmon and
Nirenberg [1] and by Miller [23]. Regularization methods have been proposed in [2, 3, 8-10, 17-19, 22]. However,
in these papers no convergence rate with respect to the noise level has been given. Some convergence rate of
Hoélder type has been established in [12] by a mollification method, and in [14] by the Tikhonov regularization
method and by the non-local boundary value problem method, see also our related papers [6, 13, 15, 16]. Finally,
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we note the paper by Chen, Hofmann and Zou [4] where the authors presented an approach to investigate the
convergence and stability of a class of regularized solutions for ill-posed backward evolution equations associ-
ated with sectorial or half-strip operators. They introduced a concept of qualification pairs and index functions
to characterize the explicit convergence rates of the concerned regularized solutions. Some convergence rates
of logarithmic type can be found there.

In this paper, we regularize problem (1.1) by the problem

{uat+Aaua=0, 0<t<T, 12

u(l(T) = (py

where 0 < a <1 and Ay = A(I + aAP)™! with b > 1. We note that Ewing [7] and Showalter [25] (see also [11])
regularized problem (1.1) by the Sobolev equation

{uat+Aua+aAuat =0, 0<t<T,
ua(T)z(P)

which can be rewritten in the form

I+aA)ug +Aug =0, 0<t<T,
{( Yat a 13)

ug(T) = ¢.

Applying (I + aA)™! to the both sides of the first equation of (1.3), we get uq + (I + @A) 'Aug = 0. Formally,
we have (I + aA)™*A = A(I + aA)~!. Thus, we arrive at the equation uge + A(I + @A)~ uy = 0. In this paper we
slightly modify this method. Namely, we use A, = A(I + aA?)~! with b > 1 instead of A(I + aA)~". That is why
we call uq; + Aquq = 0 by generalized Sobolev equation. We note that our paper is close to those by Huang and
his co-author [17, 18]. However, our method is different from theirs and we establish error estimates for our
method, but they did not.

In the next section we will introduce some auxiliary results concerning the operator A,. In the last section
we present the main results on the well-posedness of problem (1.2) and convergence rates of u, to the exact
solution when the noise level ¢ tends to zero and the regularization parameter « is properly chosen.

2 Analytic semigroups generated by A, = A(I + aA®)™"

Definition 2.1 ([5, p. 93]). We will call the (possibly unbounded) operator A, a generator if A generates a uni-
formly bounded strongly continuous holomorphic semigroup {e=*4}ge ;0. By switching to equivalent norm

—ZA
lixil = sup fle”

Rez=0

xl,

if necessary, we may assume that |le~?4|| < 1, whenever Re z > 0. For s > 0, define

1- ira d
G5, = [ L) gra &
R

Remark 2.2 (see [5, Proposition 10]). The following inequality holds:
IG(s,A)ll<s foralls=>0.

Remark 2.3 (see [5, Theorem 12]). The functional calculus
fia) = (Jim f))1 + J F(5)G(s, A) ds
t—o0
0

for
f € AC'[0,00) := {hog: h € AC'[0,1]},

where g(t) = (1 + t)"' and

ACY0,1] = if:f " exists and is absolutely continuous on [0, 1]}.
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Definition 2.4 ([24, p. 69] and [18, p. 42]). Let A be the generator of an holomorphic semigroup of angle 8 (where

0 <0< Z),andlet 0 € p(A), the resolvent of A. For b > 0, the fractional power of A is defined by
1
A= — I A -zndz.
i z7(A-z)dz

I(y)
Here, z” is taken as the principle branch, and the path T'(y), %rr - 0 < y < m, connects the points coe™” and coe'
in p(A), while avoiding the negative real axis and the origin. Define A? = (A?)"1 and A° = I.

Lemma 2.5 (see [18, p. 42]). The following statements hold:

(@) A7Y e B(X) is injective for b > 0,

(b) A? is a closed operator and D(A?) ¢ D(AY") for b > b' > 0,

(c) APx =A®-MA"X for x e D(A")andn > b,n € N,

(d) ifB c A’ and D(B) = D(A?") (b’ > b > 0) then B is closable and B = A®, where B is the closure of B.

Theorem 2.6. The operator A, = A(I + aAb)t generates a semigroup {et4a} 5 and

get” ifb =1,
lle*e]l < 1
2b(b +1) exp(t( (bb_+11)a)b) ifb>1.
Proof. Letf(s) = 5- We have
, 1+(1-b)as? " bas®1((b - 1)as? - b -1)
= - - d = .
F® (1+ ash)? and f7(s) (1 + ash)3
If b =1, then
1. [ -2a
Aq =f(A) = EI+ J WG(S,A) ds.
Therefore, we have
(o]
1 2as 2
Aol < — ——ds=—.
lAall < a+J 1+ as)? ds a

0
Hence A is a bounded linear operator and it generates a semigroup {e4«}.. For ¢t > 0, we have

o0

. t? 2ta s
elha — pla'[ 4 J < - )eﬁ G(s, A) ds.
1+as)* (1+as)
This implies that
[e'e] ts (6] ts
- stteTras 2tsaetas
llete] < et "t J ——ds+ J SSAeT™ s, (VA
1+ as)* 1+ as)?
0 0
Since - . . -
st’ems  steTis oo t 2tas g
g 45 = Zlo ~ ( 7 3)8”55
] (1+ as) (1+ as) (1+as) (1+as)
0 _ts
s |00 J’ 2tasetra
= —@1l+as + —_—
0 1+ as)3
0
©0 _ts
_ ettt 1 J 2taseTas
1+ as)?
0
and
T taser's T terts ,
ds < j ds=e'" -1, 2.2
J 1+ as)’ (1 + as)? @2
0 0
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from (2.1)-(2.2) we obtain
lete] < et
If b > 1, then

(o]

_ [ bas’ (b -1)as’ -b-1)
Aa = J (1+ ash)3

G(s,A) ds.

This implies that

(o]

lAdl < j
0

basP1|(b - Das? - b - 1| s ds
(1+ ash)3

a (o)

b1/}, _ b_p_ b-1¢(p _ b_p_
_ _J’ bas’~((b-1)as” - b 1)sds N J bas’~((b-1)as’ - b 1)sds
(1+ash)® (1+ash)3

) (2.3)

where a = ((bb_;ll)a)%. Furthermore,

a

_J bas?((b - 1)as®? - b - l)s ds = —sl +(1-b)as?
(1 + ash)3 B (1 + ash)?

a

a J 1+ (1-b)as?
+ —
0 (1 + ash)?

b+1

= ond

-7 (o a)

-b S

+
b+1\2 b
) l+as

a

S

0

S~ +

)

and -
Jbasb’l((b—l)asb—b—l) b—l( b+1 )%

(1+ ash)3 sds = 2 \(b-1a

(2.4)

a

Hence, from (2.3)-(2.4) we attain

b+1 \b

(b - 1)a> '

Therefore, A, is a boundedtslinear operator and it generates a semigroup {et4a} 0.
For t > 0, let fi(s) = e1+s? . We have

lAdl < (b - 1)(

t1+(1-bast) s
———————— €@ l+as? |
(1+ ash)?
2 _ b\2 b-1 _ b_p_ ts
t“(1+ (1 -Db)as”) . thas”*((b-1)as” - b 1))e1mb. 2.5)
(1+ ash)? (1+ ash)3

fi(s) =

1 (s) = (

Therefore,

etha J 1 (5)G(s, A) ds. 2.6)
0

From (2.5) and (2.6) we have

(o] (]
2 1 1-— by2 ts b -1 b_p_ 1 ts
"etAa I < st +( b)as”) erasd (S + thas”|(b Jas b |€1+asb ds. 2.7
(1+ash)* (1+ash)3

On the other hand, we have

(9] (o)

J st*(1+ (1 -b)ash?)? _s steirad |oo - J( t(1+ (1 -b)as?) tbasP((b-1as? —b-1)

el+asb ds = —
(1 + ash)4 1+ ash)2lo (1 + ash)? (1 + ash)3

ts
)e 1+ash ds

s [ thasP((b-1)asb —b-1) _s
= —e1+asb — em dS. (28)
(1+ ash)3
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From (2.7) and (2.8) we have

4 by _ b_p_ N
lete] < -2 thas’((b-1)as” - b 1)em ds
(1 + ash)3

a

1 b ts
< 2 J Melwsb ds
! (1+ ash)3

a
<2b(b+1) J te's ds
0

<2mtb s Desp(e( 1))

The theorem is proved. O

3 Regularization and convergence rate

In this section, we suppose that the operator A satisfies the conditions in Definitions 2.1 and 2.4. We will prove
that problem (1.2) is well posed and if we choose the regularization parameter a properly, then we get a conver-
gence rate of u, to u as the noise level tends to zero. In doing so we first prove some auxiliary results.

Lemma 3.1. The following inequality holds:
8+2T + 1—;? ifb=1,

4h?
b-1

"e—TAeTAﬂ " <

ifb>1.

Tasb+1

_TIs _Tas”" "
Proof. Let fy(s) = e TSetwa? = ¢ 1+t , Then

() = (Tz(l +(1-Db)as? ~ )2 ) Thas? (b - Das? = b -1) )e_ s
2 (1 + asb)? 1+ asb)3 '

Therefore, we have

Fo(A) = e TAeTAd — J £()G(s, A) ds.
0

This implies that
(o)
L)1 < [ sif" o)l ds
0
@ _ b 2 bl ® by _ b_p_ b+l
< JS(T1+(1 b)as —T) e‘TMsh ds+j bas’|(b-1)as” — b 1|e_Tl+asb ds.
] (1 + asb)? (1+ash)3

On the other hand,

b+1

2 _ Tas
- T) e ad ds

TS(TI +(1-Db)as?

(1 + ash)?

_ s(Tl +(1-bas® T)e’ rashil o0 T(( 1+(1-b)as® ) . bas?((b - 1)as® - b - 1) )e’ s s
) (1+ashy? (1+ash)? (1+ash)3
(o)

ash+1 b - b_ - as™
= —e_ 1;+asb * h J fhas ((b 1)as b 1) e_ ﬁ*”Sb ds.
1+ asb)3
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Hence

[}

_ Tas®
"fZ(A)" g 46[ (1 s )3e T+as ds

a2 o
Tas  _ras? Tas Tas?
=4 ———e hn ds+4 —————e T ds
1+ as)’ 1+ as)’
a—l /2
a2

o
Tal/2s

<4 J Tasds + 4 J Tase @+ ds (since —

0 a-1/2

(o0

Tros S 1+a —— forall s >

1/2

<2T +4 J Tase™ ds

a-1/2

Sl

16
— 2T (8 —>—
8+ e
16
< 2T + —.
8+ + 7

If b > 1, then

If2(A)N < -

a be(h _ b_p_ ash+1
ZJ Thas®’((b -1)as” —b -1) o Lol ds,
(1+ ash)3

b+1

where a = (72 B-Da

)b This implies that

a
Th(b + 1)as? _ sttt
“fZ(A)" < 2 J‘ W@ Trash ds
0

We have
Tasb+! __b- 1)Tas?+!
1+ash = 2b

b+1 \b
foralls<<m) .

Therefore, we obtain
4b?
b-1

a
Tasb+1
6@ <2 j Th(b + Das®e 5" ds <
0

The lemma is proved.
Lemma 3.2. There exists a constant C which only depends on T and b such that
lePAU - eVAerdo)| < C(BK + p2K + B M),
where B > 0,y > 0. Here, k is an integer satisfying1 <k < b + 3.
Proof. Let
f3(s) = e T5(1 - TS g Trash ).
Then we have

ybas?~1((b - 1)as? - b - 1) B+

ys
el+asb
(1+ ash)

f3(s) = BrePs(1- e‘Vseﬁ) _

DE GRUYTER

71/2)

b b s
_ (zﬁy<M . 1) . yz<M . 1>2)ef(ﬁ+y)selfw'

1+ as)? 1+ as)?

On the other hand, since

F2(A) = e TA(L - e TAeTAa) = j 1 (5)G(s, A) ds,
0
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we get
(o]
If3A) < j SIfFY(s)l ds
0
i ¢ 1+A-bas
s +(1=Dbas s
< J B2sePS(1-eVSerad ) ds + J 2ﬁys|— —1|e" Bt ds
1+ as)?
0
1+(1-b as” s
+ yzs((—) —1)2e" B eTad ds
(1 + as)?

o [Yhas’ i =1as” = b =11 (gayys o125 4o
1+ ash)

S—g o——3

Now we estimate the right-hand side of this inequality. We have
o0 yasbﬂ n yasb” b
J B2sePS(1-e e )ds < Jﬁzse‘ﬁs(l —e b )ds + J B2sePs ds,
0

where n = ((y + 1)a)‘ﬁ. Since s < n, we have yas™ < 1. This implies that

1+asb
_yasbﬂ 1
e trash > — —
= 1 3yash+l

1+asb

Therefore, we obtain
n

U]
_yash+1
J steiﬂs(l - eLW) ds < J’ 3ﬁ2ysb+2ae—ﬁs ds.
0
Taking integration by parts the right-hand side of this inequality k — 1 times, we get

n —_yasb+1 n
Jﬁzse‘ﬁs(l —e e )ds < | 3p%yst2ae P ds < —3ﬁyasb+ze‘ﬁs|g + JBB(b +2)ysP lae s ds
0 0

3B(b + 2)ys"*taePs ds

<

<

383K +2)(b+1)--- (b +3 - k)ys?*>Kae P ds.

SetCi=(b+2)(b+1)b---(b+3-k). We have

b+1

1
n 1
jﬁzse‘ﬁs(l e tad )ds < 3C J B3 Kysh+3-Kae Ps ds + 3¢,
0 0

ﬁB—kysb+3—kae—ﬁs ds

""—;

=

y+

<3yCip¥Ka+ 3¢, | B ryst3Kae P ds

‘“_.a

=

y+

T 430 a

_ 3}161‘8371((1 -3¢ aﬁ3*kysb+37kefﬁs

‘“'—.:.

y+1

+
A

n

< 6yC18%Ka + 3¢ B2 Kay(1 + y)kb2 J e P ds
1
Y+

<6yC18%Ka + 3¢ 1 ay( + y)kb2,

Vsb+2—kefﬁs ds

15

(3D

(3.2)

(3.3)
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Furthermore, we estimate the second term in the right-hand side of (3.2):
o0 o0
J BsePs ds = —psePs|” + J BePs ds = pne™Pn 4 ePn,
n
n n
From
Bne P < P Ki(Bn)* < kg Ka
14 Bk
k!
and 1
ePrs —— —— <(k-DIBNTF < (k-1 Ka
14 B0
(k-1)!
there exists a constant Cy such that
J B2se s ds < Cof"Ka. (34)

n

From (3.2), (3.3) and (3.4) we conclude that there exists a constant C3 such that

(o)

_ Tasb*
I T2se"T5(1 - e 1a? ) ds < C3(B* % + B F)a.
0

On the other hand, we have

2By Ts’

0

[o0]

1’e’(ﬁ*y)se$ ds = 2By J
0

1+ (1-b)as? -
(1 + ash)?

(b+1)asb+1 +a232b+1 P _yasb+l
(1 + ash)?

<2By(b +2)a I sbtlePs gs.
0

Taking integration by parts k — 2 times, we get

2By J sl

1+ (1-Db)as® ~

(o]
1|eB+1serad ds < 2By(b + 2)a J sP*lePs ds
1+ asbh)?
(1+as®) ]

= -2y(b + 2)as’*ePs

(o)
—2y(b+2)(b +1)a I sPePs ds
0

e FSe b (s

"+ 2p(b+ 2)(b + Da j e P ds
0

— 2pB5 Kb+ 2)(b + Db--- (b + 4 K)a I §0*3-KgBs g
0

1

(o)
=2yB**Cya J sP+3Ke s ds 4 2y8° K Cha j sh+3-ke=Bs g
1

0
|oo

< ZVBS_kC4a _ Zyﬁz_kC4aSb+3_ke_ﬁs )

(o)
+2yB*KCy(b + 3 - K)a J sh*2-ko=Bs gg
1

< 2B KCya + 2yB* K Caa + 2yB7KCa(b + 3 - K)a

< 29BKCia + 2B K Caa + 2y K Calb + 3 - K)a,

T

e Ps ds
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where C4 = (b +2)(b+1)b--- (b + 4 — k). Therefore

2By TS|

0

1+ (1-b)as? -

11 ashy? 1|e_(ﬁ+y)s€$ ds < 2C, (B> + BK 4+ B1K(b + 3 - k))a. (3.5)
+

By a similar argument, we claim that there exist constants Cs and Cg such that

Y 1+(1-Db) b 2 Vs @ (1+b) b 202b \2 Vs
J Zs(;as —1) e B erad ds = J 2 ( Fo)as +as ) e BVs e ds
(1+ asb)? (1+ ash)?

b+1

2 [ (1+b)as?\? a’s?t N2 g
P\ (ray) (e JePer as

) 1+ b)zasb a’s2b ps _1y5b+b1 J
{ (1 + ash)? i 1+ asb)z}e ¢ ret as

<4(b + 1) J ysPrle Ps ds
0
< G52 (B + BEK 4+ B1K(b + 3 - k))a (3.6)

and

[ee]

J ybas?|(b - 1)as? — b - 1| -
(1 + ash)3

[o0] (oo}
s _ysh+1
B+1setia ds < 2yba J stePse” T ds < 2yba J sPePs ds
0 0

0

(o]
<20 *ya J sh+3k pBS gg
0

<2Cey(B K + B2+ B Mya 3.7
From (3.1), (3.5), (3.6) and (3.7) we conclude that there exists a constant C such that
Ifs(A)ll = lePA(I - eV erde)| < C(B** + B27F + B F)a
The lemma is proved. O
Theorem 3.3. Problem (1.2) is well posed.

Proof. The solution of problem (1.2) is determined by the formula
Ug(t) = eTD4ag,
Assume that uy, and uy, are solutions of problem (1.2) corresponding the data ¢1 and ¢, respectively:
Uig(t) = T D4eg;, =12,

This implies that
luta(t) - uza(O)ll = 1eT=94(p1 — @2)]| < €T~ - (@1 - @)II. (3.8)

We consider the following two cases:

Case 1: b = 1. From Theorem 2.6 and (3.8) we obtain

lu1a(t) - uza ()] < 4e's o1 — . (3.9)

Case 2: b > 1. From Theorem 2.6 and (3.8) we obtain

b+1 \#
Iuta(t) = ta(Dll < 2600 + Dexp((T - 0 55, ) s - o (310)
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From (3.9) and (3.10) we conclude that for all ¢ € [0, T,

4e'7 91 - 9ol ifb=1,
lu1a(t) - waa(B)] < b+l \} (34D
zmb+namQT—n(@tTﬁ))wn—¢ﬁ ifh > 1.
Inequality (3.11) shows the continuous dependence of u, on the data ¢.
The theorem is proved. O
Theorem 3.4. If u(t) is a solution of problem (1.1) satisfying the condition
lu(O)ll < E, 3.12)
and u,(t) is the solution of problem (1.2), then there exists a constant C such that for any t € (0, T,
de'T e+ C(B3F 4 2K 4 {10 Eq ifb=1,
lu(®) - ug (Ol < 1
zmb+nem(at4m-ﬁil—y>e+ca&k+ﬂ*+tkhEa ifb>1
(b-1a
By choosing,
E -1
TOnE> ifb =1
a= (3.13)
(22 E) Y ipsa
b-1\" ¢ ’
we obtain, for any t € (0, T],
t ¢ EN!
4eTEVT 4+ CT(E3 K + 27K 4+ tl‘k)E<ln E) ifb=1,
lu() - ua(0)ll < b1/ Enird
2Mb+Dﬁf*%+Cﬂﬁ*+¢Lk+H*H<ETIOnE) ) ifb > 1.

Remark 3.5. To obtain the result of error estimate between the regularized solution and the exact solution,
Chen, Hofmann and Zou [4, Theorem 3.15] assume that u(0) € X, and [u(0)[l, < Q. This means

u(0) € D(p(A)™), (3.14)
lo(A) ™ u()] < Q. (3.15)

Itis clear that D(¢(A)~") c X. Hence our condition u(0) € X is weaker than condition (3.14). Further, since ¢(A)
is bounded, if u(0) satisfies condition (3.15), then

lu©O)l = o)) uO)l < lp@lleA) uO)l < lpA)]Q.
Hence, our condition [u(0)| < E, with E > |[¢(A)]Q, is weaker than condition (3.15). The above mentioned

authors also show a specific case where the logarithmic convergence rate (see [4, p. 3548]) is

IRacs)f® - u(o)l = O([mﬁ as§ 0 (316)

for some exponent ¢ > 0. We want to emphasize that the convergence rate in Theorem 3.4 is better than (3.16)
if b > max{1, &}.

Proof. Let wq, denote the solution of the problem

{ua[+Aaua =0, 0<t<T
uq(T) = u(T).

We have
u(®) — ua (Ol = u(®) = wa(t) + wa(t) — ua(Ol < lwe(t) — ua (Ol + ut) — wa (Ol (3.17)
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We evaluate the first term on the right-hand side of inequality (3.17). Similar to inequality (3.11), we have

4e’< (D) - ol ifb =1,
Iwa(t) - ua(®ll <

2b(b + 1) exp((T- t)( >%>||u(T) —gl ifb>1.

(b-1)a
Since u(T) - ¢| < &, it follows that

4e’T ¢ ifb =1,

Iwa(t) - ua (Ol <

2b(b + 1)exp((T— t)((l)b_;ll)ay)e ifh > 1.

Next, we evaluate the second term on the right-hand side of inequality (3.17). We have
We(t) = eTD4ay(T) forallt e [0, T]

and
u(t) = e u(0) forallt e [0, T].

This implies that
u(T) = e ™u(0) forallt e [0, T].

From (3.19) and (3.21), we conclude that
we(t) = eT-D4e(e"TAy(0)) = eT-V4aeTAy(0) forall t € [0, T].

From (3.20) and (3.22), we obtain

u(t) — we(t) = (e — eT=94ae=T4)y(0) forallt € [0, T].
It follows from (3.23) that

lu(t) = wa (Ol < lle™ - e e ju(0)| forall ¢ € [0, T).
Using Lemma 3.2, we conclude that there exists a constant C such that
e7 — T DAaeTA < (83K 4+ 2K+ 17 F)q,0 < t < T.

From (3.12), (3.24) and (3.25) we obtain

lu(t) — wa(O] < C(37 K + 2 + t1"%)Ea  forallt € (0, T).

It follows from (3.17), (3.18) and (3.26) that, for any ¢t € (0, T,

de'c e+ CE K+ 7% + (M) Eq ifh =1,
lu(®) — uqa (Ol < 1
2b(b +1) exp((:r - t)((bb_;ll)a)” )s + O K+ K4 NEQ ifb > 1.

By choosing a according to formula (3.13), we obtain the assertion as in the theorem.
The theorem is proved.

Funding: The second author was supported by VAST project QTRU01.11/20-21
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