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Abstract
The cold-formed Steel Semi-oval Hollow Section (SSOHS) column is a new cross-section column and has been used a lot 
in construction projects. However, the design standards for steel structures in the world have not covered the cross-section 
classifications for the SSOHS columns in the design process. Therefore, the Axial Load Capacity (ALC) of the SSOHS 
column has been different between the design standards and experiments. This paper develops predictive tools (formula 
and graphical user interface) for calculating the ALC of the SSOHS columns based on an Artificial Neural Network (ANN) 
model. The ANN model has been developed with 219 datasets. The input parameters of the ANN model include the overall 
depth (D), the overall width (B), thickness (t) of the sections, and the length of the pin-ended columns (L). Meanwhile, the 
ALC of the SSOHS column is the output parameter of the ANN model. The predictive formula based on an ANN model is 
compared with three regression models and two existing formulas. The comparison results reveal that the performance of 
the ANN model outperform three regression models and two existing formulas through indicators: R-squared, RMSE, and 
a20-index. The sensitivity analyses of the input parameters to the ALC of the SSOHS column are also performed. Finally, 
a mathematical formula and graphical user interface program are developed to practically calculate the ALC of the SSOHS 
column.

Keywords Semi-oval hollow sections · Pin-ended columns · Cold-formed · ANN model · Predicted formula · Graphical 
user interface

Introduction

The Steel Semi-oval Hollow Section (SSOHS) is a new 
cross-section in the column, it is including a semi-circular 
flange, a flat flange, and two flat web plates as shown in 
Fig. 1. The SSOHS column has superior axial load capacity 
compared to square and circular cross-section columns (Zhu 
& Young, 2011, 2012). However, the design standards for 
steel structures in the world have not covered the SSOHS 
cross-section classification for the SSOHS column in the 
design process.

Recently, there were studies on the Axial Load Capacity 
(ALC) of the SSOHS column were carried out, but these 
studies have been still limited. On the other hand, the axial 
load capacity of the SSOHS column has been different 
between the theoretical and experimental. Reviewing some 
studies: In 2018 Chen and Young published the results 
of the experimental investigation and verification of the 
axial load capacity of the SSOHS column. In addition, this 
study has built a FEM data set to compare and modify the 
formula for the axial load capacity of the SSOHS column 
from the Direct Strength Method (DSM) (Chen & Young, 
2018b). Meanwhile, Chen and Young (2018a) proposed 
some modifications to the DSM for the calculation of the 
axial load capacity of the SSOHS column after perform-
ing investigations of material behavior, cross-section, 
and residual stress. Checking some steel structure design 
standard codes such as ANSI/AISC-360: 2016, AISI-S100: 
2016, AS/NZS-4600: 2005, and EN1993-1-1: 2005 (ANSI, 
2016; AS/NZS-4600, 2005; Chen et al., 2016; Eurocode, 
2005), it can be seen that the AISI S100-16 (Chen et al., 
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2016) has been the only standard used to calculate the 
design strength for any cross-sectional profile.

In the last few decades, with the development of IT, 
cloud computing, and big data, the application of artificial 
intelligence techniques has become popular in many areas 
of social life, especially in civil engineering (Kaveh & 
Bondarabady, 2004; Kaveh & Iranmanesh, 1998; Kaveh 
& Khalegi, 1998; Kaveh & Servati, 2001; Kaveh et al., 
2008; Nguyen et al., 2022; Tran & Nguyen, 2022). Apply-
ing Artificial Neural Networks (ANNs) in the field of steel 
and reinforced concrete structures is a topic of interest to 
numerous researchers (Ahmed et al., 2019; Ho et al., 2022; 
Mai et al., 2022; Nguyen et al., 2021a, 2021b, 2021c; Rön-
nholm et al., 2005; Selvan et al., 2018; Tran & Kim, 2020; 
Tran et al., 2022; Vakhshouri & Nejadi, 2018; Yang et al., 
1992; Zorlu et al., 2008). However, to the knowledge of 
the authors, there is not any research applying the ANN 
algorithm to predict the ALC of the SSOHS column.

This paper presents the predicted method of the ALC 
of the SSOHS column based on an ANN model. The ANN 

model has been developed with 219 datasets. Accordingly, 
the dataset was collected from the literature (Chen and 
Young, 2018a, b). The performance results of the ANN 
model were compared with that of three regression mod-
els and two existing formulas. Three statistical indicators 
for measuring the performance of predictive models were 
used. The sensitivity analysis of the input parameters 
to the ALC of the SSOHS column was also performed. 
Finally, practical tools, i.e., formula and graphical user 
interface program, were developed to calculate the ALC 
of the SSOHS column.

A dataset for the proposed ANN model

The ANN model has been developed with 219 datasets. 
The dataset was collected from the literature (Chen & 
Young, 2018a, b). Input parameters include the overall 
depth (D), the overall width (B), thickness (t) of the cross-
sections, and the length of the pin-ended columns (L). 

Fig. 1  The cross-sectional and 
geometry of the SSOHS column P
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Table 1  The statistical 
description of the input and 
output parameters

Input parameters D (mm) B (mm) T (mm) L (mm) P(kN)

(X1) (X2) (X3) (X4) (Output)

Minimum 93.00 60.00 2.00 200.00 176.00
Mean 301.51 174.88 7.13 2393.38 3445.07
Maximum 450.00 360.00 20.00 4000.00 16,250.50
Standard deviation (SD) 136.22 84.56 5.34 1115.52 3793.75
Coefficient of variation (CoV) 0.451 0.482 0.747 0.465 1.099
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Meanwhile, the ALC of the SSOHS column is the output 
parameter of the ANN model. The statistical description 
of the input and output parameters is shown in Table 1. 

The probability distribution of data parameters is shown 
in Fig. 2. 

The relationships between the four input param-
eters including the overall depth (D), the overall width 
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Fig. 2  The probability distribution of input and output parameters
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(B), thickness (t) of the cross-sections, the length of the 
pin-ended columns (L), and the output parameter of the 
ALC of the SSOHS column are shown in Fig. 3. Figure 4 
shows the correlation between input parameters and output 
parameters. It can be seen that the strongest correlation 
between the input parameters the overall depth (D) and the 
overall width (B) was 0.85, while the correlation between 
the thickness (t) and the length of the pin-ended columns 
(L) was 0.05. This confirms predicting the ALC of the 
SSOHS column with the collected data sets is even more 
meaningful.

Design code has been used for calculating 
the ALC of the SSOHS column

So far, determining the ALC of the SSOHS column was 
using the design codes AISI-S100 (2016) (Chen et al., 2016) 
or the expression proposed by Chen and Young (2018b). To 

demonstrate the performance of the ANN model, formulas 
specified by design codes AISI-S100 (2016) and the expres-
sion proposed by Chen and Young (2018b) were considered, 
as shown in Table 2.

Developed regression models

For the purpose of further confirming the performance 
of the ANN model in predicting the ALC of the SSOHS 
column, we used three regression models, which are First 
order (MLR1), Quadratic order (MLR2), and Quadratic 
with mixed terms (MLR3) based on the above datasets. The 
results obtained from the regression models are presented 
in Table 3.
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Fig. 3  Relationship between input and output parameters
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The proposed ANN models

ANN model

Nowadays, ANN has been widely used in life and technol-
ogy (Naser et al., 2021; Nguyen et al., 2021a, 2021b, 2021c; 
Patel & Mehta, 2018; Patil & Subbareddy, 2002; Tran et al., 
2019, 2021; Zorlu et al., 2008). ANN is a computing system, 
which simulates the animal brain. The model contains con-
nected units or nodes, so-called neurons. Basically, neurons 
are aggregated into layers. Typically, an ANN model has 

three layers, which are the input layer, hidden layer(s), and 
output layer, in which, these layers are connected through 
weights and biases. Different layers may perform different 
transformations on their inputs. Signals travel from the first 
layer (i.e., the input layer), to the last layer (i.e., the out-
put layer). This study used a back-propagation (B-P) neural 
network and a Levenberg–Marquardt (L-M) algorithm. The 
mathematical representation of ANN model has the follow-
ing form.

f ∶ X ∈ RD
→ Y ∈ R1
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Fig. 4  Correlation between input and output parameters
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where b1andW1 represent the biases and weights; and fh 
denotes the activation function of the hidden layer. Whereas 
b2andW2 are the biases and weight; and f0 denote the activa-
tion function of the output layer.

The nonlinear activation function namely tansig is used 
for the hidden layer, while the linear function namely purelin 
has been used for the output layer (Nikbin et al., 2017). The 
expressions that represent the tansig and purelin activation 
function are shown in Eqs. (4) and (5) and Fig. 5.

(3)f (X) = f0
(
b2 +W2

(
fh
(
b1 +W1X

)))

(4)tansig(x) =
2

(1 + epx(−2x))
− 1

(5)purelin(x) = x

According to Golafshani and Ashour (2016), during the 
training of the network, the input and output data must be 
normalized in the interval [− 1, 1]. The normalization equa-
tion is shown in Eq. (6).

The training process is continued until a convergence 
of the mean square error (MSE) obtained. The MSE is 
expressed by the following equation.

where ei is the error between the output and the experiment 
data; n is number of data samples.

(6)Xn = 2 ×
(X − Xmin)

(Xmax − Xmin)
− 1

(7)MSE = min
b1,b2,W1,W2

1

n

∑n

i=1
e2
i

Table 2  Expression for determining the ALC of the SSOHS column
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Evaluation of optimal ANN model

For obtaining the best ANN model, various ratios of training 
data should be used. Also, different numbers of neurons in 
hidden layers need to be considered. To evaluate the opti-
mal model, three indicators: R2, RMSE, and a20-index were 
utilized (Zorlu et al., 2008). The equations for determining 
the R2, RMSE, and a20-index, respectively, are as follows.

(8)R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)

2

(9)RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)
2

where yi is the ith value of the experimental data; ̂yi is the ith 
value of the predicted value of ANN model; y is the average 
value of the experiment; n is the number of samples; m20 
is the number of samples with the ratio of the experimental 
value to the predicted value between 0.8–1.0.

For the current study, a total of 120 ANN models were 
tested with six training ratios (0.6, 0.65, 0.70, 0.75, 0.8, 
0.85). While the number of neurons in the hidden layer 
was varied from 1 to 20. The optimal model was the model 
with the highest ranking (i.e., largest R-squared and a20-
index, smallest RMSE). The ranking results of 120 models 
are shown in Fig. 6. It can be seen that the best-performing 
models have training, testing, and validation ratios (0.7, 
0.15, 0.15), respectively. And 13 hidden layer neurons as 
shown in Fig. 7.

(10)a20 − index =
m20

n

Table 3  The coefficients of three regression models

Regression model Regression function, y Regression coefficients

First order (MLR1) a0 + a1X1 +⋯ + a4X4 a0 = −2784.89, a1 = 3.12, a2 = 6.58

a3 = 514.75, a4 = −0.12,R2 = 0.9448.

Quadratic order (MLR2) a0 + a1X1 +⋯ + a4X4

+a11X
2
1
+ a22X

2
2
+⋯ + a44X

2
4

a0 = −1829.94, a1 = 19.55, a2 = −18.30,

a3 = 252.68, a4 = −0.28, a11 = −0.02,

a22 = 0.05, a33 = 13.05, a44 = 1.0e − 05,

R2 = 0.9462.

Quadratic with mixed terms
(MLR3)

a0 + a1X1 +⋯ + a4X4

+a11X
2
1
+ a22X

2
2
+⋯ + a44X

2
4

+a12X1X2 +⋯ + a34X3X4

a0 = −192.45, a1 = −0.18, a2 = 0.23

a3 = 35.50, a4 = 0.10, a11 = −0.01, a22 = −0.10,

a33 = −7.40, a44 = 1.0e − 7,

a12 = 0.01, a13 = 1.43, a14 = 1.0e − 5,

a23 = 0.82, a24 = 1.0e − 5, a34 = −0.04,

R2 = 0.9986.
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Performance of ANN models with the datasets

The training results of the ANN model with the input data-
sets are shown in Fig. 8. It can be seen that the training stops 
at the 22th epoch at MSE = 9.89e−05. This confirms that the 
proposed ANN model has been trained very well with the 
input data.

Figures 9, 10 and 11 show the ALC of the SSOHS col-
umn obtained from the ANN model and the test datasets 
including all data, training data, testing data, and validation 
data. Can be seen that the error frequency converges at zero 
and is mostly smaller than 0.035. Once again confirm that 
the proposed ANN model structure is reliable for predicting 
the ALC of the SSOHS column.
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Comparison between the proposed ANN model 
and existing formulas

The prediction a formula based on an ANN model was com-
pared with three regression models (First order—MLR1, 
Quadratic order—MLR2, and Quadratic with mixed terms—
MLR3) and two existing formulas (AISI-S100 (2016) (Chen 
et  al., 2016) and the expression proposed by Chen and 
Young (2018a). The comparison result of the performance 
of the ANN model to predict the ALC of the SSOHS col-
umn with three regression models and two existing formulas 
based on the R-squared, RMSE, MAPE, and Pearson cor-
relation coefficient (r) was presented in Fig. 12 and Table 4. 

Figure 14 shows the difference of the R-squared, RMSE, 
MAPE, and Pearson correlation coefficient (r) of the dif-
ferent models. However, the proposed ANN model out-
performs, the smallest RMSE, MAPE indexes while the 
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R-squared and Pearson correlation coefficient (r) has reached 
the maximum value (close to 1.0).

Table 4 shows the R-squared, RMSE, MAPE, Pearson cor-
relation coefficient (r), and probability statistics (Minimum, 
Maximum, Mean, St.D, CoV) of the ratio predicted/dataset. It 
can be seen the mean value of the ANN model is close to 1.0. 
Once again confirm that the proposed ANN model structure is 
reliable for predicting the ALC of the SSOHS column.

The predictive formula for ALC of SSOHS columns

The proposed ANN model predicting the ALC of the SSOHS 
column has been presented. This study has been proposed 
an expression to determine the ALC of the SSOHS column 
using the activation function, weight, and biases vector with 
the normalized Eq. (6), which is expressed as follows.

where the coefficients 7027.60 and 176.0 are half the value 
of the maximum and minimum ALC difference, and the 
minimum ALC value of the input datasets, respectively. PN 
is the normalized ALC values determined by the following 
expression.

(11)P = 7027.60
(
PN + 1

)
+ 176.0

In which, the h0, hi và ci0, ..., ci4 are obtained from the 
ANN model, and collected in Table 5.

Sensitivity analysis of input parameters 
on the ALC of the SSOHS column 

The effects of the input parameters on the ALC of the 
SSOHS column will be helped designers and managers to 
assess which parameters are significant and important for 
the bearing capacity of the structure. The input parameter 
has been changed from minimum (L) to maximum (H). At 
the time to assess Xi parameter, the remaining parameters 
have been also changed from minimum (L) to maximum (H) 
value. All databases are shown in Table 6.

The effect of the input parameter on the ALC of the 
SSOHS column was presented in this section. The four 

PN = h0 +
∑13

i=1
hiHi

(12)Hi = ���h
(
ci0 + ci1X1 + ci2X2 + ci3X3 + ci4X4

)

Table 4  Performance of different predictive models

Predicted model R
2 RMSE(kN) MAPE(%) r Pprediction/PTest

Min Max SD Mean COV

AISI-S100 (2016) (Chen et al., 2016) 0.9137 1176.905 0.0465 0.9559 0.1984 1.9669 0.4734 0.7634 0.6139
Chen and Young (2018a, 2018b) 0.9857 571.024 0.0339 0.9928 0.6930 3.0704 0.6324 1.4319 0.4393
MLR1 0.9448 831.842 0.0039 0.9720 0.0630 3.2305 0.5932 1.2740 0.4627
MLR2 0.9462 791.968 0.0012 0.9728 0.1088 3.9422 0.6650 1.2547 0.5265
MLR3 0.9986 124.756 0.0001 0.9993 0.0960 1.3309 0.1562 0.9816 0.1576
ANN model 0.9996 61.833 0.0001 0.9998 0.6061 1.2860 0.0919 0.9931 0.0917

Table 5  Coefficients for 
formulation (11)

i h
i

c
io

c
i1

c
i2

c
i3

c
i4

0 0.3656
1 0.0271 2.5149 0.0960 − 2.2318 − 0.4123 1.7187
2 − 0.2515 − 2.2446 1.1335 0.3315 − 2.4424 − 0.0642
3 − 0.4833 2.7420 − 0.8580 − 0.0956 − 1.4865 0.3825
4 − 0.0887 1.4028 − 1.0597 − 1.3898 − 2.5042 − 0.3967
5 − 0.0671 0.8466 − 1.4945 0.0742 − 0.8591 − 0.5840
6 0.1743 − 0.7059 1.3489 0.5655 − 0.9924 0.1258
7 − 0.0145 0.4132 0.4951 1.3809 − 0.4869 2.2319
8 0.5083 − 0.1978 − 0.0763 0.2869 0.8851 − 0.1627
9 0.0299 1.0169 0.9286 − 1.8839 0.6058 − 1.0941
10 − 0.1905 − 1.2064 − 1.9231 0.3176 1.3781 0.1023
11 − 0.0258 − 1.8770 − 0.7883 − 1.1975 − 1.2928 − 1.7768
12 − 0.4352 2.8659 0.9236 − 1.4506 − 0.9770 1.5943
13 − 0.1044 2.9864 0.8462 − 1.7417 − 1.6454 − 0.7403
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input parameters were changed from the low value (L) to 
the high value (H), while the other input parameters were 
changed in turn corresponding to the data set given in 
Table 6. The results of the sensitivity analysis are shown 
in Fig. 13.

Figure 13 shows the effect of the input parameters on 
the ALC of the SSOHS column. It can be seen that the 
ALC of the SSOHS column value tended to increase with 

Table 6  The databases of the input parameters

L low, LM middle low, M medium, MH middle high, H high

Input parameters L ML M MH H

D (mm) (X1) 93.00 197.26 301.51 375.76 450.00
B (mm) (X2) 60.00 117.44 174.88 267.44 360.00
t (mm) (X3) 2.00 4.57 7.13 13.57 20.00
L (mm) (X4) 200.00 1296.69 2393.38 3196.69 4000.00
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Fig. 13  Effects of input parameters on the ALC of the SSOHS column
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the increase of the overall depth D (i.e. X1) and the overall 
width (B) (i.e. X2), and the thickness (t) (i.e. X3) of the 
cross-section. Meanwhile, the ALC of the SSOHS col-
umn value was reduced with the length of the pin-ended 
columns (L) (i.e. X4) being increased.

Figure 14 shows the effect of the input parameters on 
the ALC of the SSOHS column. The ALC of the SSOHS 
column value corresponds to the maximum value of each 
variable. The maximum sensitivity value belongs to the 
thickness (t). Thus, increasing thickness (t) gives the most 
efficient for the ALC of the SSOHS column.

Graphical user interface program

The graphical user interface (GUI) program was devel-
oped using MATLAB. It is easy to calculate the ALC of 
the SSOHS column for designers and managers as shown 
in Fig. 15. The four input parameters include the over-
all depth (D), the overall width (B), thickness (t) of the 
cross-sections, the length of the pin-ended columns (L). 
This tool is convenient and it is provided freely. To deter-
mine the ALC of the SSOHS column, we put all the input 
variables and click to “Start Predict”. This GUI tool was 
developed using the proposed ANN model, the accuracy 
of the prediction has been verified and demonstrated in 
the previous section.

It should be noted that the ANN model only predicts 
results within the range of input data (i.e., from the 
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Fig. 14  Sensitivity of input parameters on the ALC of the SSOHS 
column

Fig. 15  Graphical user interface programs
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minimum to the maximum). For enlarging the boundary 
of the model a wide range of collected data samples should 
be considered.

Conclusions

This paper developed an ANN model to predict the ALC of 
the SSOHS column based on 219 experimental data. The 
training process of the ANN model shows that the prediction 
results were reliable. Some important conclusions are drawn.

• The study uses 219 datasets for the proposed ANN 
model. Based on a comparison with other existing mod-
els, the proposed ANN model shows that the prediction 
results are more reliable.

• A formulation to determine the ALC of the SSOHS column 
is proposed based on the training results of the ANN model.

• The developed GUI program is convenient for designers 
and managers in practical calculations.

• The effects of input parameters on the ALC of the 
SSOHS column are assessed. Thickness (t) gives the 
most efficient for the ALC of the SSOHS column.
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