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A B S T R A C T   

The aim of this study is to develop a hybrid Artificial Neural Network- Particle Swarm Optimi
zation (ANN-PSO) model for improving shear strength prediction of reinforced concrete (RC) 
beams strengthened with fiber reinforced cementitious matrix (FRCM). A set of 89 experimental 
test results of strengthening RC beams are collected and used for developing the ANN-PSO model. 
The performance results of ANN-PSO are compared with those of pure ANN model. Typical 
statistical properties including the coefficient of determination (R2), root mean squared error 
(RMSE), and the number of predicted data falling in a deviation of ± 20% compared with 
experimental data (a20 − index) are calculated to evaluate the accuracy of those models. The 
comparisons reveal that ANN-PSO outperforms the ANN model with R2, RMSE, and a20 − index 
values of 0.937, 6.02, and 0.842, respectively. Moreover, the effects of input parameters (i.e., 
beam geometry, concrete and reinforcement properties, and FRCM composite parameters) on the 
predicted shear strength are quantified. Additionally, an efficient graphical user interface (GUI) 
tool is developed for facilitating the practical design process of the strengthening RC beams.   

1. Introduction 

Reinforced concrete (RC) structures have been constructed worldwide. Overall, civil structures have been designed with a certain 
lifetime. Nevertheless, structural members are degraded its loading capacity after an operating period due to the influence of loadings 
and environmental factors. Therefore, a strengthening of corrored RC structures is required. 

So far, several techniques have been employed for retrofitting RC and masonry structures using advanced materials such as textile- 
reinforced mortar (TRM), self-compacting concrete jacket, and fiber-reinforced polymer (FRP). Normally, textile-reinforced mortar is 
utilized for the shear strengthening of RC beams [5,20,51,67]. Their experiment results emphasized that the shear capacity was 
significantly improved, and a shear failure could be transformed to a flexure failure if using a sufficient TRM layer. In the study of 
Chalioris et al. [11], a series of exprimental tests were carried out to evaluate the improvement of RC beams strengthened by 
self-compacting concrete jacket. They showed that the load bearing capacities of retrofitted beams increased from 35% to 50%. For 
using FRP composite, the RC structures showed a substantial enhancement of flexural and shear strength, ductility, and durability [8, 
25,26,35,56,60,74]. Additionally, the FRP jackets were applied for retrofitting of corroded RC beams [4,17,68]. This retrofitted 
method reduces the construction time and requires a simple process. Nevertheless, there are existing drawbacks such as costly repair 
and debonding at the interface between FRP and concrete. 
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The steel fibers reinforce concrete/mortar (FRC/FRM) is also increasingly used in construction materials. FRC can significantly 
enhance the compressive and tensile strength of concrete. Additionally, it can improve the load-bearing capacity and reduce the crack 
development of structural members [1,46,54]. Shah & Naaman [55] concluded that the flexural strength of steel FRM was significantly 
increased compared to that for the plain mortar specimen. Moreover, since the construction technique is simple, FRC/FRM has been 
utilized for improving the structural capacities of flexural components [28]. 

Fiber reinforced cementitious matrix (FRCM) is a composite material, which is made up of cement-based matrix and high-strength 
fibers [57,61]. The fibers are typically made from materials such as steel, glass, carbon, or synthetic fibers (PBO) are added to the 
cement mixture to increase its strength and durability. FRCM is commonly used in building and construction applications where high 
strength and durability are required, such as in the reinforcement of concrete structures or the repair of damaged concrete surfaces. 
This kind of material was applied for strengthening masonry structures [6], beam-column joints [21]. Numerous experimental studies 
investigated the effects of FRCM on the flexure [18,19,58] and shear capacity [9,15,24,25,32,71] of RC beams. They highlighted that 
FRCM provides a significant role in increasing the flexure and shear strength of the RC beams. However, a rapidly predictive model 
considering a wide range of various input parameters of designed RC beams is necessary. 

Recently, with the development of computing techniques, machine learning (ML) models has been applying popularly in structural 
engineering [29–31,44,65]. Artificial Neural Network (ANN) is one of the most preferential ML models applying for RC structures [3, 
34,40,42,43,52,53,62,64,69,73,75]. Meanwhile, Particle Swarm Optimization (PSO), a computational algorithm inspired by the social 
behavior of bird flocks and fish schools, has been widely employed in civil and structural engineering [12,38]. Specially, PSO is 
normally combined with other ML algorithms for improving the prediction problems of RC structures, in which the PSO-ANN model is 
a typical approach [10,14,27,37,41]. Efficient ML models for shear capacity prediction of RC beams strengthened with various ma
terials are required. 

Several studies developed ML models for predicting structural capacity of RC beams retrofitted with composite materials. Wakjira 
et al. [72] developed ML-based models for flexural capacity prediction of RC beams strengthened with inorganic composites. Abuodeh 
et al. [2] used ML models to investigate the behavior of RC beams strengthened in shear with external FRP sheets. Recently, the shear 
strength prediction of FRP-RC beams using deep learning was conducted by Marani and Nehdi [36]. Various ML models were also 
developed to estimate shear capacity for steel FRC beams [13,33,50,59] and RC beam strengthen with FRP [2,7,22,36,49,70]. Even 
though ANN model has some advantages, however some drawbacks exist such as required large amounts of data to achieve high 
accuracy, susceptible to overfitting problem, interpretation issue, and significant time for training. Therefore, a combination of ANN 
and PSO can be a feasible option for improving the pure ANN model since ANN-PSO contains some merit such as improved accuracy, 
fast training, handling noisy and incomplete data, and automated feature selection. Moreover, the use of PSO-ANN for predicting the 
shear capacity of RC beams strengthened with FRCM composite is not well-studied yet. 

This study develops a hybrid ML model, namely PSO-ANN, for improving the shear strength prediction of RC beams strengthened 
with the FRCM composite. For that, a total of 89 tested specimens of strengthening RC beams are collected and employed to construct 
the ANN-PSO model. The performance of ANN-PSO is compared with that of pure ANN model. Typical statistical properties including 
R2, RMSE, and a20-index are calculated to evaluate the accuracy of those models. Moreover, the effects of input parameters on the 
predicted shear strength are quantified. Finally, a practical graphical user interface (GUI) tool is built for simplifying the design process 
of the RC beams strengthened with FRCM. 

2. Data collection 

To develop the ML model, a set of datasets must be collected. In this study, we gather the database based on the 89 experimental 
results, which were published in the literature [24]. There are 14 input parameters in the datasets including beam width (bw), effective 
beam depth (d), shear span to effective depth ratio (a/d), compressive strength of concrete (f

′

c), longitudinal reinforcement ratio (ρl), 
transverse reinforcement ratio (ρw), spacing of FRCM strips (sf ), width of FRCM strips (wf ), elastic modulus of fibers (Ef ), tensile 
strength of fibers (ft), number of fiber layers (n), fiber reinforcement ratio (ρf ), cementitious matrix compressive strength (f

′

cm), and 
FRCM reinforcement ratio (ρcm). Meanwhile, the shear strength contributed by FRCM (VFRCM) is considered as the output variable. It 
should be noted that the database contains various types of fibers (i.e., carbon, glass, basalt, and synthetic fibers), beam geometry (i.e., 
rectangular and T-beam), strengthening configurations (i.e., side bonded, U-wrapped, and fully wrapped), and number of strength
ening layers. In the database, carbon, glass, and synthetic fibers accounted for 54%, 25%, and 11%, respectively. Moreover, there are 
up to 79% of rectangular cross-sectional beams, and 21% remaining are for T-shaped beams. Meanwhile the number of beams 

Fig. 1. Depiction of RC beams strengthening with FRCM composite.  
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strengthened with one FRCM layer accounted for 55%. Fig. 1 illustrates the strengthening of RC beams using FRCM composites.  
Table 1 summarizes the statistical parameters of the used datasets. The histogram of the datasets is shown in Fig. 2. Moreover, the 
correlation between the input and output variables is demonstrated in Fig. 3. Detailed information of the database is shown in the 
Appendix. 

3. Machine learning models 

3.1. Normalized training data 

To improve the accurate performance of ANN and ANN-PSO models, training data is normalized within the range of − 1 and 1 prior 
to developing the ML models, according to the suggestion of Golafshani & Ashour [23]. The normalization is expressed in Eq. (1). 

Xn = 2 ×
(X − Xmin)

(Xmax − Xmin)
− 1 (1)  

where Xn is the normalized sample, X is the original sample, Xmax and Xmin are the maximum and minimum value of each variable, 
respectively. The normalized values have been put into the ANN model and conducted by the MATLAB tool. 

3.2. Artificial neural network algorithm 

Among ML models, ANN has been commonly employed to solve various engineering problems ([39,40,42,43,47,48,63,66,75]). An 
ANN is a type of ML that is inspired by the structure and function of the biological neural networks in the human brain. ANNs consist of 
interconnected processing nodes or "neurons" that can receive, transform, and transmit information in parallel, using weighted con
nections and activation functions. In this study, the back propagation neural network combined with the Levenberg-Marquardt al
gorithm was chosen, in which a three-layers structure was adopted. The model structure includes input, hidden, and output layers. The 
connection between three layers is adjusted by the weights and biases of neurons. The mathematical expressions are shown as follows. 

f : X ∈ RD→Y ∈ R1  

f (X) = f0(b2 +W2(fh(b1 +W1X) ) ) (2)  

where b1,W1, and fh are the biases vectors, the weight matrix, and the activation function of the hidden layer, respectively. Meanwhile, 
b2,W2, and f0 are the biases vector, the weight matric and the activation function of the hidden layer output layer, respectively. 

The used activation function for the hidden layer was a nonlinear function, namely tansig function. And linear function, so-called 
purelin function, was selected for the output layer [45]. The equations representing the activation functions tansig and purelin are 
expressed in Eq. (3) and Eq. (4), respectively, and shown in Fig. 4. 

tansig(x) =
2

(1 + epx( − 2x) )
− 1 (3)  

purelin(x) = x (4) 

The training of the ANN model was performed in terms of continuous feedback loops. To obtain the optimal model during training, 
the mean square error (MSE) was employed, in which MSE is represented by the following expression. 

Table 1 
Statistical properties of input and output parameters.  

Parameter  Units Minimum Mean Maximum Standard deviation (SD) Coefficient of variation (CoV) 

bw (mm) (X1) mm  102.000  300.000  153.101  44.259  0.289 
d (mm) (X2) mm  159.000  419.000  271.371  75.567  0.278 
a/d (X3) -  2.220  4.900  2.797  0.402  0.144 
f
′

c (MPa) (X4) MPa  10.100  46.200  29.008  8.766  0.302 
ρl (X5) -  0.008  0.051  0.025  0.012  0.486 
ρw (X6) -  0.000  0.005  0.001  0.002  1.600 
sf (mm) (X7) mm  1.000  275.000  35.966  78.329  2.178 
wf (mm) (X8) mm  1.000  200.000  19.247  43.784  2.275 
Ef (GPa) (X9) GPa  31.900  270.000  178.227  85.389  0.479 
ft (MPa) (X10) MPa  574.000  5800.000  3046.854  1662.851  0.546 
n (X11) -  1.000  6.000  1.764  1.118  0.634 
ρf (X12) -  0.000  0.006  0.001  0.001  0.909 

f
′

cm 
(X13) MPa  21.800  86.700  44.206  19.457  0.440 

ρcm (X14) -  0.017  0.240  0.107  0.060  0.564 
VFRCM (Output) kN  2.700  87.500  35.282  21.462  0.608  
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Fig. 2. Histograms of the dataset.  
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Fig. 2. (continued). 
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MSE = min
b1 ,b2 ,W1 ,W2

1
N
∑N

i=1
e2

i (5)  

where ei is the difference between the predicted output and the experimental data; N is number of samples of the ANN model. 

3.3. Artificial neural network-Particle swarm optimization (ANN-PSO) model 

PSO is a computational algorithm inspired by the social behavior of bird flocks and fish schools, was first introduced by Eberhart 
and Kenedy [16]. PSO works by creating a group of particles, where each particle represents a potential solution to an optimization 
problem. The particles move through the search space, adjusting their position based on their own experience and the experience of 
their neighbors. By doing so, the particles converge towards the optimal solution of the problem. PSO is commonly used in optimi
zation problems that involve many variables and is known for its simplicity and efficiency. 

The optimization procedure is based on the positions and velocities of all particles corresponding to the states of the system. Let xi
l 

denotes the position vector of the particle i at l-the generation, vi
l represents the velocity vector, yi indicates the best position explored 

by individual particle, and ŷ depicts the global best. The velocity and position vectors of each particle are updated by the following 
expressions. 

Fig. 3. Correlation matrix between the input and output parameters.  

Fig. 4. Activation functions: tansig and purelin.  
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vi
l+1 = wlvi

l + c1R1
(
yi − xi

l

)
+ c2R2

(
ŷ − xi

l

)
(6)  

xi
l+1 = xi

l + vi
l+1 (7)  

where wl is the inertia weight; c1 and c2 are the acceleration coefficients; R1 and R1 ∈ [0,1] are the uniform and independent random 
numbers. 

The ANN-PSO model is a machine learning technique that combines two powerful algorithms, ANN and PSO. It is used to train 
neural networks for solving complex problems, such as image recognition, speech recognition, and natural language processing. In this 
model, the neural network is first created and initialized with random weights. Then, the PSO algorithm is applied to find the optimal 
set of weights for the neural network. The PSO algorithm works by simulating the behavior of a swarm of particles, which move 
through a multidimensional search space and look for the optimal solution. By combining these two algorithms, the ANN-PSO model 
can effectively optimize the weights of the neural network, resulting in better accuracy and faster convergence times. The flowchart of 
the hybrid PSO-ANN model is shown in Fig. 5. 

3.4. Statistical indicators for ML model evaluation 

An ANN model achieves the best performance at the split ratio (training, testing, and validation) combined with the number of 
hidden layers and neurons in the hidden layer. To evaluate the optimal model, three statistical indicators, which include coefficient of 
determination (R2), root mean squared error (RMSE), and a20 − index were employed to measure the accuracy of the predictive 
models, as suggested by Zorlu et al. [75]. They are expressed as follows. 

R2 = 1 −

(∑N
i=1(ti − oi)

2

∑N
i=1(ti − o)2

)

(8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
n

)
∑n

i=1
(ti − oi)

2

√

; (9)  

a20 − index =
n20
n

(10)  

where ti and oi represent the target and output of ith data point, respectively; o is the mean of output data samples; n is the number of 
samples; n20 is the number of samples with the ratio of the experimental value to the predicted value between 0.8 and 1.0. 

Fig. 5. Flowchart of the ANN-PSO model.  
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4. Results and discussions 

4.1. Performance results of ANN model 

To obtain the optimum ANN model, a total of 120 ANN structures were tested, in which various data training ratios were changed, i. 
e., 0.6, 0.65, 0.7, 0.75, 0.8 and 0.85. Meanwhile, the data testing and validation ratios were taken a haft of the remaining. Additionally, 
the number of neurons in the hidden layer varied from 1 to 20. The tested models were evaluated using three statistical indicators 

Fig. 6. Ranking of various ANN structures.  

Fig. 7. Proposed structure of ANN.  
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Fig. 8. Regression performance of ANN model.  

Table 2 
Statistical properties of ANN performance.   

R2 RMSE 
(kN) 

a20-index Vtest
FRCM/Vpredict

FRCM 

Min Mean Max SD CoV 

All data  0.7687  6.032  0.6179  0.1180  0.9920  2.4012  0.3568  0.3596 
Training  0.6872  6.000  0.5873  0.2994  0.9747  2.4012  0.3673  0.3768 
Validation  0.6439  4.210  0.6153  0.1180  0.9920  1.7195  0.4169  0.4203 
Testing  0.8800  7.490  0.7692  0.8207  1.0758  1.4973  0.2310  0.2147  

Fig. 9. Errors between predicted ANN model and experiments.  
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including R2, RMSE, and a20 − index, as ranked in Fig. 6. As a result, the optimal model was selected based on the highest R2, and 
smallest values of RMSE, and a20 − index. The used ANN model contained the data training, testing, and validation ratios were 0.7, 
0.15, 0.15, respectively, and 10 neurons in the hidden layer, as shown in Fig. 7. It should be noted that the optimal ANN structure in 
Fig. 7 will be used for development of the hybrid PSO-ANN model. 

Training results of the ANN model are shown in Fig. 8 and Table 2. It can be found that R2 values obtained for training, testing, 
validation, and all data were 0.6872, 0.880, 0.6439, and 0.7687, less than 0.8. Additionally, the a20 − indices were approximately 60%. 
Moreover, the standard deviation of the ratio Vtest

FRCM/Vpredict
FRCM was larger than 0.35. The errors between predicted ANN model and 

experiment are shown in Fig. 9. Those results imply that the ANN model was less reliable for predicting the shear strength of RC beams 
strengthened with FRCM. Therefore, it is necessary to improve the predictive ANN model by an optimization technique. 

4.2. Performance results of ANN-PSO model 

The convergence of PSO-ANN model was obtained after 1000 iterations and the mean square error (MSE) was very small (almost 
zero). Moreover, performance results of the PSO-ANN model are shown in Fig. 10 and Table 3. It can be observed that R2 values 
obtained for training, testing, validation, and all data were 0.917, 0.960, 0.937, and 0.937. Besides, the a20 − indices were larger than 
80%. The standard deviation of the ratio Vtest

FRCM/Vpredict
FRCM was smaller than 0.2. The errors between predicted PSO-ANN model and 

experiment are shown in Fig. 11. Those performance results indicate that the hybrid PSO-ANN model significantly improved the shear 
strength prediction of RC beams strengthened with FRCM. 

A comparison of performance results between ANN and PSO-ANN is shown in Fig. 12. It can be found that the PSO-ANN out
performed ANN model in terms of R2, RMSE, and a20 − index indicators. Specifically, R2 values of the training set were increased from 
0.69 up to 0.92, from 0.88 to 0.96 for testing set, and from 0.64 to 0.94 for validation set. Additionally, a20 − index was increased from 
0.59 to 0.79 for training set, from 0.77 to 1.0 for testing set, and from 0.61 to 0.92 for validation set. The SD and CoV of the ratio 
Vtest

FRCM/Vpredict
FRCM for PSO-ANN were quite smaller compared to those of ANN model. Once again, it can be highlighted that PSO-ANN 

model is capable of shear strength prediction of RC beams strengthened with FRCM composite. 

4.3. Effects of input parameters on the output 

To evaluate the influence of input parameters on the shear capacity of strengthened RC beams, a series of sensitivity analyses were 
performed. In this study, we used Shapley value to identify the effects of input features on the output. Shapely value is a concept in 
cooperative game theory that provides a way to fairly distribute the worth or value among the players in a game. The Shapely value 

Fig. 10. Performance of the ANN-PSO model.  
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Table 3 
Statistical properties of PSO-ANN performance.  

Data sets R2 RMSE 
(kN) 

a20-index Vtest
FRCM/Vpredict

FRCM 
Min Mean Max S CoV 

All data  0.9377  6.022  0.8426  0.3653  0.9698  1.4900  0.1634  0.1685 
Training  0.9177  5.940  0.7936  0.3653  0.9719  1.4900  0.1830  0.1883 
Validation  0.9376  4.240  0.9230  0.6278  0.9646  1.1890  0.1330  0.1379 
Testing  0.9600  7.680  1.0000  0.8637  0.9651  1.1496  0.0709  0.0735  

Fig. 11. Error between ANN-PSO and experimental results.  

Fig. 12. Comparison between the results of ANN and PSO-ANN models.  
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considers all possible coalitions of players and assigns a share of the total value generated by each coalition to each player. In machine 
learning, the Shapely value can be used to explain the predictions of a model by attributing a value to each feature or input variable in a 
dataset. This can be useful for understanding which features are the most important and how they contribute to the output of the 
model. By using the Shapely value, any interactions or dependencies that may exist between the features can be also identified. 

To calculate the Shapely value, the following basic steps can be followed:  

• Define the characteristic function: This function maps any coalition of variables to a value that represents the worth of that 
coalition.  

• Calculate the marginal contribution of each variable to each coalition: Marginal contribution is the difference between the worth of 
a coalition with and without a variable.  

• Calculate the average marginal contribution of each variable across all possible coalitions in which they participate: This is done by 
taking the sum of the marginal contributions for each coalition in which the variable participates and dividing by the total number 
of such coalitions.  

• Sum the average marginal contributions over all possible subsets of variables: This gives the Shapely value for each input variable. 

The Shapley value result for each variable is shown in Fig. 13. It can be found that the elastic modulus of fibers (Ef ) showed to be the 
most influential parameter on the shear capacity of RC beams strengthen with FRCM, followed by tensile strength of fibers (ft), 
longitudinal reinforcement ratio (ρl), transverse reinforcement ratio (ρw), and width of FRCM strips (wf ). Meanwhile, the spacing of 
FRCM strips (sf ) and compressive strength of concrete (f

′

c) negatively affected the output result. 

4.4. Practical GUI tool 

To simplify the design process, a practical tool should be developed for rapidly calculating the shear strength of RC beams 
strengthened with FRCM. In this study, we constructed a graphical user interface (GUI) tool, in which designers only need to provide 
14 input values, then they can immediately obtain the output (i.e., the shear strength) after one click. Fig. 14 shows the developed GUI 
tool using MATLAB. This GUI is freely to access, and it is available at https://github.com/duyduan1304/ 
GUI_RCbeams_FRCMstrengthening. 

5. Conclusions 

This study develops a hybrid PSO-ANN model for predicting the shear strength of RC beams strengthened with the FRCM com
posite. A set of 89 tested specimens of strengthening RC beams is collected and employed to construct the ANN-PSO model. The 
performance results of ANN-PSO are compared with those of pure ANN model. Statistical parameters including R2, RMSE, and a20- 
index are calculated to evaluate the accuracy of those models. Moreover, the effects of input parameters on the predicted shear 
strength are quantified. Finally, a practical graphical user interface (GUI) tool is built for simplifying the design process of the RC 
beams strengthened with FRCM. The following conclusions are obtained. 

Fig. 13. Effects of input parameters on the output using Shapley value.  
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▪ The PSO-ANN model can accurately predict the shear strength of RC beams strengthened with FRCM composite.  
▪ The elastic modulus of fibers (Ef ) shows to be the most influential parameter on the shear capacity of RC beams strengthen 

with FRCM, followed by tensile strength of fibers (ft), longitudinal reinforcement ratio (ρl), transverse reinforcement ratio 
(ρw), and width of FRCM strips (wf ).  

▪ Meanwhile, the spacing of FRCM strips (sf ) and compressive strength of concrete (f
′

c) negatively affect the output result.  
▪ An efficient GUI tool is developed to simplify the design process of RC beams strengthened with FRCM. 

Even though the ANN-PSO developed in the current study shows an acceptable performance, the accuracy of the prediction needs 
to be improved with a larger number of used datasets. Moreover, more advanced ML models should be investigated to identify the 
optimal algorithm. 
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Appendix. Detailed information of the database  

ID Geometry Concrete Reinforcement FRCM composite Output 

bw 
(mm) 

d (mm) a/d fc’ (MPa) ρl ρw sf 
(mm) 

wf 
(mm) 

Ef 
(GPa) 

ft 
(MPa) 

n ρf f’
cm ρcm VFRCM 

(kN) 

1  150  272  2.85  25.3  0.015  0.0014  1  1  225  3350  2  0.0013  30.6  0.07  63.7 
2  150  272  2.85  25.3  0.015  0.0014  1  1  225  3350  2  0.0012  30.6  0.07  60.6 
3  150  272  2.85  25.3  0.015  0.0014  1  1  225  3350  1  0.0006  30.6  0.047  41.8 

(continued on next page) 

Fig. 14. Practical GUI tool.  
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ID Geometry Concrete Reinforcement FRCM composite Output 

bw 
(mm) 

d (mm) a/d fc’ (MPa) ρl ρw sf 
(mm) 

wf 
(mm) 

Ef 
(GPa) 

ft 
(MPa) 

n ρf f’
cm ρcm VFRCM 

(kN) 

4  150  256  3.91  23.2  0.032  0  1  1  75  574  2  0.0015  77.2  0.08  25.5 
5  150  256  3.91  23.2  0.032  0  1  1  75  574  3  0.0022  77.2  0.053  43.5 
6  120  372  2.69  25.5  0.042  0.0042  1  1  75  574  2  0.0018  82.8  0.1  44.7 
7  120  372  2.69  26.3  0.042  0.0042  1  1  75  574  4  0.0037  85.3  0.167  41.5 
8  120  372  2.69  28.6  0.042  0.0042  1  1  75  574  6  0.0055  79.3  0.233  46.8 
9  120  372  2.69  27.1  0.042  0.0042  1  1  75  574  2  0.0018  70.6  0.1  51.3 
10  120  372  2.69  25.6  0.042  0.0042  1  1  75  574  4  0.0037  86.7  0.167  67.4 
11  120  372  2.69  28.7  0.042  0.0042  1  1  75  574  6  0.0055  75.4  0.233  72.4 
12  120  372  2.69  28  0.042  0.0042  1  1  75  574  3  0.0027  72  0.133  34.1 
13  120  372  2.69  34  0.042  0.0042  1  1  75  574  3  0.0027  79.1  0.133  42.1 
14  120  372  2.69  32  0.042  0.0042  1  1  75  574  4  0.0037  63.3  0.167  56.9 
15  180  419  2.98  46.2  0.032  0  1  1  253  3800  1  0.0002  45  0.222  59.9 
16  180  419  2.98  46.2  0.032  0  1  1  253  3800  1  0.0002  45  0.222  58.4 
17  180  419  2.98  46.2  0.032  0  1  1  201  3800  1  0.0002  77  0.222  55 
18  180  419  2.98  46.2  0.032  0  1  1  253  3800  1  0.0002  45  0.222  41.5 
19  180  419  2.98  46.2  0.032  0  1  1  253  3800  1  0.0002  45  0.222  63.4 
20  180  419  2.98  46.2  0.032  0  1  1  253  3800  1  0.0002  45  0.222  40.7 
21  180  419  2.98  46.2  0.032  0  1  1  262  2950  1  0.0002  22  0.222  27.5 
22  150  159  2.52  20  0.013  0  1  1  31.9  623  2  0.0017  23.9  0.08  10.9 
23  150  159  2.52  20  0.013  0  1  1  31.9  623  2  0.0012  23.9  0.08  11.3 
24  150  159  2.52  20  0.013  0  1  1  31.9  623  4  0.0034  23.9  0.133  14 
25  150  159  2.52  20  0.013  0  1  1  31.9  623  4  0.0024  23.9  0.133  15.8 
26  150  159  2.52  20  0.013  0  1  1  31.9  623  2  0.0017  56.4  0.08  11.3 
27  150  159  2.52  20  0.013  0  1  1  31.9  623  2  0.0012  56.4  0.08  11.3 
28  150  159  2.52  20  0.013  0  1  1  31.9  623  4  0.0034  56.4  0.133  17.7 
29  150  159  2.52  20  0.013  0  1  1  31.9  623  4  0.0024  56.4  0.133  26.6 
30  120  204  3.18  25.6  0.026  0  1  1  74  1102  1  0.0012  42  0.083  30.3 
31  120  204  3.18  25.6  0.026  0  120  100  74  1102  1  0.001  42  0.139  28.3 
32  120  204  3.18  25.6  0.026  0  120  100  74  1102  1  0.001  42  0.069  25.3 
33  120  204  3.18  25.6  0.026  0  200  40  74  1102  1  0.0002  42  0.017  5.8 
34  120  204  3.18  35.2  0.026  0  200  100  74  1102  1  0.0006  42  0.042  11 
35  120  204  3.18  35.2  0.026  0  1  1  74  1102  1  0.0012  42  0.033  3 
36  150  308  3.25  37.5  0.021  0  1  1  75  2300  1  0.0006  58  0.093  11.4 
37  150  308  3.25  37.5  0.021  0  1  1  75  2300  1  0.0006  58  0.093  28.4 
38  150  308  3.25  37.5  0.021  0  1  1  230  3800  1  0.0005  58  0.093  16 
39  150  308  3.25  37.5  0.021  0  1  1  230  3800  1  0.0005  58  0.093  14.2 
40  150  308  3.25  37.5  0.021  0  1  1  230  3800  1  0.0012  58  0.093  61 
41  150  308  3.25  37.5  0.021  0  1  1  230  3800  1  0.0012  58  0.093  65 
42  150  310  2.9  41.6  0.03  0.0021  275  200  75  2300  1  0.001  40  0.058  35.5 
43  150  310  2.9  41.6  0.03  0.0021  275  200  75  2300  1  0.001  40  0.058  38.5 
44  150  320  2.5  16.7  0.016  0  1  1  225  3375  1  0.0006  21.8  0.053  9.6 
45  150  320  2.5  18  0.016  0  1  1  225  3375  2  0.0013  21.8  0.08  11.4 
46  150  320  2.5  19.4  0.016  0  1  1  225  3375  1  0.0013  21.8  0.053  19.9 
47  150  320  2.5  19.2  0.016  0  1  1  225  3375  2  0.0026  21.8  0.08  33.1 
48  150  320  2.5  20.1  0.016  0  1  1  225  3375  2  0.0013  21.8  0.08  51.8 
49  150  320  2.5  19.2  0.016  0  1  1  225  3375  2  0.0013  21.8  0.08  55.6 
50  150  320  2.5  10.1  0.016  0  1  1  225  3375  2  0.0013  21.8  0.08  84.3 
51  150  320  2.5  10.7  0.016  0  1  1  225  3375  1  0.0013  21.8  0.053  51.9 
52  150  320  2.5  11.1  0.016  0  1  1  225  3375  2  0.0026  21.8  0.08  48 
53  150  320  2.5  20.8  0.016  0  1  1  225  3375  2  0.0026  21.8  0.08  45.6 
54  300  254  2.76  28  0.008  0.0007  1  1  95  2990  1  0.0004  24.6  0.067  29.9 
55  300  254  2.76  28  0.008  0.0007  1  1  240  4320  1  0.0003  25  0.067  34.3 
56  300  254  2.76  28.3  0.008  0.0007  1  1  240  4320  1  0.0003  25  0.067  11.9 
57  300  254  2.76  28.3  0.008  0.0007  1  1  270  5800  1  0.0003  30  0.067  31.9 
58  300  254  2.76  28.3  0.008  0.0007  1  1  270  5800  1  0.0003  30  0.067  39.2 
59  300  254  2.76  28.3  0.008  0.0007  1  1  90  2610  1  0.0003  35.4  0.067  33.4 
60  150  270  2.22  28  0.015  0  1  1  240  4300  1  0.0014  45  0.067  19 
61  150  270  2.22  28  0.015  0  1  1  240  4300  2  0.0029  45  0.1  23.5 
62  150  270  2.22  28  0.015  0  183  50  240  4300  1  0.0004  45  0.018  6 
63  150  270  2.22  28  0.015  0  138  50  240  4300  1  0.0005  45  0.024  9 
64  150  270  2.22  28  0.015  0  110  50  240  4300  1  0.0006  45  0.03  11 
65  150  270  2.22  28  0.015  0  250  100  240  4300  1  0.0006  45  0.027  8 
66  150  270  2.22  28  0.015  0  167  100  240  4300  1  0.0009  45  0.04  19.5 
67  150  270  2.22  28  0.015  0  1  1  240  4300  1  0.0014  45  0.067  28.5 
68  150  225  3  30.8  0.019  0.0023  1  1  270  5800  1  0.0006  30.4  0.107  19 
69  150  225  3  30.8  0.019  0.0023  260  150  270  5800  1  0.0004  30.4  0.062  9.9 
70  150  225  2.78  45  0.028  0.0032  1  1  270  5800  1  0.0006  30.4  0.107  34.2 

(continued on next page) 
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ID Geometry Concrete Reinforcement FRCM composite Output 

bw 
(mm) 

d (mm) a/d fc’ (MPa) ρl ρw sf 
(mm) 

wf 
(mm) 

Ef 
(GPa) 

ft 
(MPa) 

n ρf f’
cm ρcm VFRCM 

(kN) 

71  150  225  2.78  29.2  0.028  0.0032  1  1  270  5800  2  0.0012  30.4  0.16  27.4 
72  150  225  2.78  29.2  0.028  0.0032  210  100  270  5800  2  0.0006  30.4  0.076  27.5 
73  150  225  2.78  38.3  0.028  0.0032  210  100  270  5800  1  0.0003  30.4  0.051  10.2 
74  150  225  2.78  38.3  0.028  0.0032  210  100  270  5800  3  0.0009  30.4  0.102  10.2 
75  102  177  2.6  21.6  0.022  0  1  1  225  3800  1  0.0019  31.1  0.078  2.7 
76  102  177  2.6  22.6  0.022  0  1  1  225  3800  2  0.0037  28.2  0.118  15.1 
77  102  177  2.6  22.6  0.022  0  1  1  225  3800  3  0.0056  26.9  0.157  34 
78  102  177  2.6  23.8  0.022  0  1  1  225  3800  1  0.0019  31.1  0.078  21.1 
79  102  177  2.6  23.8  0.022  0  1  1  225  3800  2  0.0037  31.1  0.118  39.1 
80  102  177  2.6  22.6  0.022  0  1  1  225  3800  3  0.0056  26.9  0.157  57.8 
81  102  177  2.6  21.6  0.022  0  1  1  225  3800  1  0.0019  31.1  0.078  32.7 
82  102  177  2.6  21.6  0.022  0  1  1  225  3800  2  0.0037  28.2  0.118  45.4 
83  150  204  4.9  42.9  0.051  0.0013  200  100  270  5270  1  0.0003  29  0.04  70.1 
84  150  250  3  36  0.05  0  1  1  230  3800  1  0.0004  74  0.16  66.8 
85  150  250  3  36  0.05  0  1  1  230  3800  2  0.0008  74  0.24  87.5 
86  150  250  3  36  0.05  0.0025  1  1  230  3800  1  0.0004  74  0.16  68.4 
87  150  250  3  36  0.05  0.0025  1  1  230  3800  2  0.0008  74  0.24  72.1 
88  150  250  3  36  0.05  0.005  1  1  230  3800  1  0.0004  74  0.16  67.7 
89  150  250  3  36  0.05  0.005  1  1  230  3800  2  0.0008  74  0.24  73.6  
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