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A B S T R A C T   

In this paper, the nonlinear bending behavior of functionally graded porous (FGP) plates under uniformly 
distributed transverse loads is studied based on the neutral surface concept within the framework of first-order 
shear deformation theory (FSDT) including geometrical nonlinearity. The FGP materials with three porosity 
distribution patterns namely uniform, non-uniform symmetric and non-uniform asymmetric are considered. 
Using the stress function and Galerkin method, the analytical solutions are obtained to examine the load vs 
deflection and load vs bending moment curves for various edges boundary conditions. The present results are 
compared with reference solutions to show the accuracy and the effectiveness of the proposed approach. The 
effects of the geometric, material parameters, elastic foundations and in-plane constraints on the nonlinear 
bending behavior of FGP plates are studied in detail through numerical investigations.   

1. Introduction 

In modern life, the demand for finding and analyzing new materials 
with distinctive properties in comparison with the traditional ones has 
become prevalent. The functionally graded porous materials (FGPMs) 
are known as an important category of lightweight materials with very 
good energy absorption capability, low specific weight, energy dissi-
pation reduction, heat resistance, etc [1–5]. In terms of FGMs, the 
porosity distributions are formed by continuously changing the internal 
pore size and density within the porous structures, so that a smooth 
change in mechanical properties is achieved. The FGP structures have 
wide applications in various engineering branches such as aviation, 
automobile, shipbuilding, defence industries and civil construction. 
Therefore, a deep understanding of mechanical responses relating to 
these structures has drawn the scholars’ attention. 

Magnucki et al. [6] presented an analytical solution to analyze 
bending and buckling behaviors of rectangular FGP plates, the obtained 
results are validated with the finite element (FE) model using ANSYS. 
Chen et al. [7] analyzed the static and buckling behavior of Timoshenko 
FGP beams by the Ritz method. The exact solution for natural fre-
quencies of the FGP thick panel is presented by Rezae and Saidi in [8]. 
Arani et al. [9] used DQM (differential quadrature method) in 

conjunction with higher-order shear deformation theory (HSDT) to 
predict natural frequencies of the FGP rectangular plate rested on the 
Winkler elastic foundation. Akbas [10] explored the porosity effect on 
the free vibration and bending response of FG plates. Wattanasakulpong 
et al. [11] predicted natural frequencies of FGP beams basing on the 
third-order shear deformation theory (TSDT) by the Chebyshev collo-
cation method. The analytical solutions for static analyses of FG beam 
with porosity rested on elastic foundation has been formulated by 
Phuong et al. in [12]. Demirhan and Taskin [13] investigated the 
bending characteristic and natural frequencies of FGP plates subjected 
to the Levy type of boundary condition. Zhao et al. [14] used an 
improved Fourier series method to analyze the free vibration of the 
Mindlin porous plate. Rad et al. [15] investigated the buckling response 
of rectangular FGP plates by an analytical approach using FSDT and 
Reddy’s HSDT. 

Besides the linear analysis of structures, nonlinear analysis is carried 
out by many authors because it reflects more accurately how the 
structure works in practice. Using a 3-D FEM, Shen [16], Na and Kim 
[17] analyzed the nonlinear bending behavior of FG plates under me-
chanical load in a thermal environment. Yu et al. [18] implemented a 
geometrically nonlinear analysis of FG plates using isogeometric anal-
ysis (IGA) in combination with simple FSDT. Dong and Li [19] studied 
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the effect of material heterogeneity, temperature, and geometrical 
dimension on static, buckling and vibration characteristics of porous 
plates by employing the unified nonlinear analytical solution. Using 
smoothed finite element technique, Kumar et al. [20] implemented 
linear and nonlinear analyses of Mindlin quadrilateral composite plates. 
Based on the sinusoidal shear deformation plate theory, the nonlinear 
bending behaviour of FG multilayered graphene platelet-reinforced -
composite plates is investigated by Gholami and Ansari [21] by using 
the generalized differential quadrature (GDQ) method. Nguyen et al. 
[22] explored the effects of porosity patterns and porosity volume 
fractions on the bending and dynamic characteristics of FG plates with 
porosities using the polygonal FEM. Duc et al. [23] presented the 
nonlinear transient analysis of FGP plates subjected to thermo- 
mechanical loads resting on Pasternak’s elastic foundation. Post- 
buckling response of FGP plate resting on Pasternak’s foundations sub-
jected to mechanical loads in thermal environment is studied analyti-
cally by Cong et al. [24] implementing Reddy’s HSDT. Huang et al. [25] 
presented nonlinear dynamic vibrations of FGP plates by using a semi- 
analytical method and asymptotic solutions based on HSDT. Using the 
Galerkin method, Gao et al. [26] analyzed nonlinear dynamic buckling 
of porous beams. Keleshteri and Jelovica [27] analyzed large amplitude 
free vibration of porous cylindrical panels subjected to various boundary 
conditions employing different shell theories. Nonlinear free vibrations 
of stiffened FGP annular spherical shells rested on Pasternak’s founda-
tion are examined by Mirjavadi et al. [28]. Xie et al. [29] adopted the 
energy balance method to predict nonlinear frequencies of FG plates 
with porosities. Tu et al. [30] explored post-buckling behaviors of FGP 
plates including initial geometrical imperfection by using an analytical 
approach. Hung et al. [31] investigated the non-linear buckling and 
post-buckling behavior of FGP variable thickness toroidal shell segments 
surrounded by elastic foundation subjected to axial compressive loads 
using Donnell shell theory. Using variational differential quadrature 
finite element method, Ansari et al. [32] studied the geometrically 
nonlinear static bending of FG graphene platelet-reinforced composite 
porous plates with arbitrary shape. Liu et al. [33] presented the iso-
geometric analysis based on a simple first-order shear deformation 
theory (S-FSDT) to investigate geometrically nonlinear free vibration, 
nonlinear static bending and transient dynamic response of FGP plates 
integrated with piezoelectric composite layers in the thermal environ-
ment. Mahesh et al. [34] predicted large/nonlinear deflection of FG 
magneto-electro-elastic porous flat panels using HSDT and finite 
element method. 

From the above-mentioned review, it can be seen that studies 
regarding nonlinear bending of FGP plate are still very limited. There-
fore, this paper’s aimis to enrich this field. Based on FSDT and by 
introducing the physical neutral surface position concept, the governing 
equations in terms of displacements and Airy’s stress function are ob-
tained in a simple form, reducing the computational time, which is 
particularly effective for nonlinear problems. The Galerkin method and 

solution in Fourier series form is applied to give the nonlinear partial 
differential equations, which can be solved directly with a semi- 
analytical method. After validating the proposed model, the influence 
of various material parameters, geometric parameters, elastic founda-
tion, and in-plane constraints on the nonlinear bending response of FGP 
plates are investigated through parametric studies. 

2. The functionally graded porous plate 

Consider a rectangular FGP plate of thickness h, dimensions in x, y - 
axes are length a, and width b, respectively as shown in Fig. 1-a. The 
plate is rested on the Pasternak’s elastic foundation with stiffness co-
efficients: Kw - Winkler stiffness, Ksi (i = x, y) - shear stiffness. 

In this paper, the open-cell porous materials with three porosity 
distribution patterns (Fig. 2) are considered, the material properties are 
expressed as following [35,36]: 

For uniform distribution (Type 1 - Fig. 2-a): 

{E,G} =
{

E*
1,G*

1

}
(1 − e0χ); χ =

1
e0
−

1
e0

(
2
π

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e0

√
−

2
π + 1

)2

(1) 

For non-uniform symmetric distribution (Type 2 - Fig. 2-b): 

{E(z),G(z)} =
{

E*
1 ,G

*
1

}
[1 − e0cos(πz/h) ] (2) 

For non-uniform asymmetric distribution (Type 3 - Fig. 2-c): 

{E(z),G(z)} =
{

E*
1 ,G

*
1

}
[

1 − e0cos
1
2
(πz/h + π/2)

]

(3) 

where e0 is the porosity coefficient and defined by: 

e0 = 1 −
E*

2

E*
1
= 1 −

G*
2

G*
1
; (0 < e0 < 1) (4)  

in which E*
1,G*

1 are maximum values of Young’s modulus and shear 
modulus and similarly, E*

2,G*
2 are minimum values, respectively. The 

extremum values of Young’s moduli are related to the extremum values 
of shear moduli by G*

i = E*
i /[2(1 + ν) ]. Assume that Poisson coefficient v 

is constant along the plate thickness. 
When analyzing the FG one- or two-dimensional structures, the mid- 

surface formulation is most commonly used. However, several studies 
have indicated that by using the neutral surface formulation, governing 
equations for structures become simpler because stretching-bending 
couplings are eliminated [37–39]. 

For the FGP plate with asymmetric distribution pattern, the neutral 
surface location has not coincided with the middle surface, and is 
indicated from the condition [37]: 

∫ h/2

− h/2
(z − C)E(z)dz = 0 ⇒C =

∫ h/2
− h/2 zE(z)dz
∫ h/2
− h/2 E(z)dz

(5) 

Fig. 1. The geometry and cross-section rectangular FGP plate.  
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3. Theoretical model 

3.1. Basic equations based on the physical neutral position concept 

Based on FSDT, applying the neutral surface position concept as 
shown in Fig. 3, the displacement components u, v, w at an arbitrary 
point (x, y, zns) along x, y and z axes of the FGP plate are expressed as 
follows [40]:  

u(x, y, zns) = u0(x, y) + znsθx(x, y);
v(x, y, zns) = v0(x, y) + znsθy(x, y);

w(x, y, zns) = w0(x, y)
(6)  

where: u0, v0,w0 are the neutral-plane displacements in the x, y, and z 
directions; θx, θy are rotations of transverse normal about the y and x 
axes, respectively. 

Strain components include the von Kármán geometric nonlinearity 
are defined as:  

⎧
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⎩
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γxy
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ε0
x

ε0
y

γ0
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+ zns
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⎫
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xz
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(7)  

in which: ε0
x=u0,x+

1
2w

2
0,x;ε0

y =v0,y+
1
2w

2
0,y; γ0

xy=u0,y+v0,x+w0,xw0,y;kx=θx,x;

ky=θy,y; kxy=θx,y+θy,x; γ0
xz= w0,x+ θx; γ0

yz= w0,y+ θy.

The commas subscript denote the partial differentiation with 
respect to the spatial variables. 

Stresses are determined from Hooke’s law and written as:  
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⎡
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(8)  

where: Q̃11 = Q̃22 =
E(zns)
1− ν2 ;Q̃12 = Q̃21 =

νE(zns)
1− ν2 ; Q̃44 = Q̃55 = Q̃66 =

E(zns)
2(1+v).

The stress resultants of a plate are obtained in the form:  

Fig. 2. The FGP plate with different porosity density distribution patterns.  

Fig. 3. The flowchart of nonlinear bending analysis of FGP plates.  
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(9)   
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where: 
(
Aij,Cij

)
=

∫ h/2− C
− h/2− C Qij

(

1, z2
ns

)

dzns; ij = 11,12,66; and the shear 

correction factor ks = 5/6 is employed in this study. 
The equilibrium equations are derived by using the principle of 

minimum potential energy, and are expressed as bellow [40,41]:  

in which: qf = − Kww0 + Ksxw0,xx + Ksyw0,yy.

Using Airy stress function φ(x, y) defined by: 

Nx = φ,yy; Ny = φ,xx; Nxy = − φ,xy (11) 

It is seen that the first two equations in Eqs. (10) are automatically 
satisfied. 

Applying the relationship of Eqs. (7), (9) and (11), the three rest 
equations are re-written in terms of the displacements and stress func-
tion as follows:  

Meanwhile, the geometrical compatibility equation for the rectan-
gular plate is expressed as [42]: 

ε0
x,yy + ε0

y,xx − γ0
xy,xy = w2

0,xy − w0,xxw0,yy (13) 

Based on the Eqs. (9) and (11), the in-plane strains are determined in 
terms of in-plane stress resultants and stress function: 

ε0
x = c11Nx − c12Ny = c11φ,yy − c12φ,xx;

ε0
y = c11Ny − c12Nx = c11φ,xx − c12φ,yy;

γ0
xy = c66Nxy = − c66φ,xy (14)  

in which: c11 = A11
A2

11 − A2
12

; c12 = A12
A2

11 − A2
12

; c66 = 1
A66

. 

Substituting Eq. (14) into the compatibility equation Eq. (13), we 
have: 

∇4φ = D

⎡

⎣

⎛

⎝∂2w0

∂x∂y

⎞

⎠

2

−
∂2w0

∂x2

∂2w0

∂y2

⎤

⎦ (15)  

where: ∇4 = ∂4

∂x4 +
∂4

∂y4 +2 ∂4

∂x2∂y2; D = A11
(
1 − ν2).

The system consisting of three equations in Eqs. (12) and Eq. (15) are 
the governing equations used to investigate the nonlinear bending 
behavior of FGP plates. This is a system of four nonlinear equations with 
4 independent unknowns. 

3.2. Nonlinear bending analysis 

In this section, based on the Bubnov-Galerkin method, analytical 
solutions for nonlinear bending analysis of FGP rectangular plate under 
six cases of boundary conditions (BCs) are proposed. 

Case 1: All four edges of plates are simply supported and freely 

movable in both the x and y directions and referred to as SSSS-FM. The 
associated BCs are: 

w0 = θs = 0, Nns = 0,Mn = 0,Nn = Nn0 = 0 (16) 

Case 2: All four edges of plates are simply supported and immovable 

and referred to as SSSS-IM. The associated BCs are: 

un = w0 = θs = 0, Nns = 0,Mn = 0 (17) 

Case 3: All four edges of plates are clamped and freely movable in 
both the x and y directions and referred to as CCCC-FM. The associated 
BCs are: 

w0 = θn = θs = 0, Nns = 0,Nn = Nn0 = 0 (18) 

Case 4: All four edges of plates are clamped and immovable and 
referred to as CCCC-IM. The associated BCs are: 

un = w0 = θn = θs = 0, Nns = 0 (19) 

Case 5: Two opposite edges are simply supported, the others are 
clamped and freely movable and referred to as SCSC-FM. The associated 
BCs are: 

At x = 0, a : w0 = θy = 0;Mx = 0;Nx = Nx0 = 0;
At y = 0, bw0 = θx = θy = 0;Nxy = 0;Ny = Ny0 = 0 

Case 6: Two opposite edges are simply supported, the others are 
clamped and immovable and referred to as SCSC-IM. The associated BCs 
are: 

At x = 0, a : u0 = w0 = θy = 0;Nxy = 0;Mx = 0;
At y = 0, b : v0 = w0 = θx = θy = 0;Nxy = 0  

in which: Nx0,Ny0 are in-plane compressive loads at movable edges of 
the rectangular plate and are fictitious compressive edge loads at 
immovable edges. 

The in-plane imovable BCs, such as u0 = 0 (at x = 0, a) and v0 = 0 (at 
y = 0, b) are satisfied on the average sense [43]: 
∫ b

0

∫ a

0
u0,xdxdy = 0;

∫ b

0

∫ a

0
v0,ydxdy = 0 (22) 

In general, for all the above-mentioned BCs, the stress function is 
chosen in the form as below: 

φ = φ(x, y)+Nx0
y2

2
+Ny0

x2

2
(23) 

in which, for moveable in-plane BCs: 

Nx0 =
1
b

∫ b

0
N̂ xdy = 0; Ny0 =

1
a

∫ a

0
N̂ ydx = 0 (24) 

and for immoveable BCs, from Eq. (22) we obtain in-plane support 

Nx,x +Nxy,y = 0; Ny,y +Nxy,x = 0; Nx.w0,xx + 2Nxy.w0,xy +Ny.w0,yy +Qxz,x +Qyz,y + qf + q = 0; Mx,x +Mxy,y − Qxz = 0; My,y +Mxy,x − Qyz = 0 (10)   

As
44

(

w0,xx + w0,yy + θx,x + θy,y

)

+φ,yyw0,xx − 2φ,xyw0,xy +φ,xxw0,yy + qf + q = 0; C11θx,xx +C66θx,yy +(C12 + C66)θy,xy − As
44

(

θx + w0,x

)

= 0; C11θy,yy +C66θy,xx +(C12 + C66)θx,xy − As
44

(

θy + w0,y

)

= 0 (12)   
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reactions as follows: 

Nx0 =
1
ab

∫ b

0

∫ a

0

⎛

⎝ − φ,yy +
A11w2

0,x

2
+

A12w2
0,y

2

⎞

⎠dxdy;

Ny0 =
1

ab

∫ b

0

∫ a

0

⎛

⎝ − φ,xx +
A12w2

0,x

2
+

A11w2
0,y

2

⎞

⎠dxdy (25) 

With the BCs: SSSS-FM and SSSS-IM, the displacement solutions are 
assumed as follows: 

w0 =
∑∞

m=1

∑∞

n=1
w0mnsinλmxsinδny;

θx =
∑∞

m=1

∑∞

n=1
θxmncosλmxsinδny;

θy =
∑∞

m=1

∑∞

n=1
θymnsinλmxcosδny

(26)  

where: λm = mπ
a , δn = nπ

b ; m, n are odd integers and w0mn, θxmn, θymn are 
unknown coefficients to be determined. 

Substituting Eq. (26) into Eq. (15), we obtain: 

φ =
∑

p

∑

q

∑

r

∑

s
w0pqw0rsH(1)

pqrs(x, y) (27) 

where H(1)
pqrs(x, y) are presented in Appendix 1. 

With the BCs: CCCC-FM and CCCC-IM, the displacement solutions 
are chosen as below: 

w0 =
∑∞

m=1

∑∞

n=1
w0mnsin2λmxsin2δny;

θx =
∑∞

m=1

∑∞

n=1
θxmnsin2λmxsin2δny;

θy =
∑∞

m=1

∑∞

n=1
θymnsin2λmxsin2δny

(28) 

Substituting Eq. (28) into Eq. (15), we obtain: 

φ =
∑

p

∑

q

∑

r

∑

s
w0pqw0rsH(2)

pqrs(x, y) (29) 

where H(2)
pqrs(x, y) are presented in Appendix 2. 

With the BCs: SCSC-FM and SCSC-IM, the displacement solutions are 
chosen as below: 

w0 =
∑∞

m=1

∑∞

n=1
w0mnsinαmxsin2δny;

θx =
∑∞

m=1

∑∞

n=1
θxmncosαmxsin2δny;

θy =
∑∞

m=1

∑∞

n=1
θymnsinαmxsin2δny

(30) 

Substituting Eq. (30) into Eq. (15), we obtain: 

φ =
∑

p

∑

q

∑

r

∑

s
w0pqw0rsH(3)

pqrs(x, y) (31) 

where H(3)
pqrs(x, y) are presented in Appendix 3. 

After finding φ from (27), (29) and (31), the in-plane forces Nx0,Ny0 

can be derived from Eq. (25) for particular boundary conditions. 
Finally, obtained φ and Nx0,Ny0 are substituted into Eq. (23) to get 

the stress function φ(x, y); then substituting into Eqs. (12), the new set of 
equations in terms w0, θx, θy are expressed as:  

∑

m

∑

n

(

w0mnl(43)
mn + θxmnl(44)

mn + θymnl(45)
mn

)

= 0;

∑

m

∑

n

(

w0mnl(53)
mn + θxmnl(54)

mn + θymnl(55)
mn

)

= 0 (32) 

Applying the Galerkin method Eqs. (32) become: 

Table 1 
The non-dimensional central deflection w of the simply supported isotropic 
square plate (SSSS-FM, SSSS-IM) under uniformly distributed load.  

P Kapoor and Kapania [44] Present 

m, n = 1 m, n = 2 m, n = 3 m, n = 4  

SSSS-FM     
6.25 0.284  0.2911  0.2819  0.2829  0.2826 
12.5 0.5244  0.5424  0.5236  0.5257  0.5252 
25 0.879  0.9196  0.8804  0.8848  0.8838 
50 1.3341  1.4034  1.3221  1.3319  1.3299 
100 1.8918  1.9841  1.8230  1.8450  1.8409  

SSSS-IM     
6.25 0.2784  0.2720  0.2627  0.2637  0.2635 
12.5 0.4626  0.4624  0.4434  0.4455  0.4450 
25 0.691  0.7075  0.6681  0.6727  0.6716 
50 0.9579  1.0018  0.9209  0.9315  0.9295 
100 1.2696  1.3533  1.1907  1.2166  1.2125  

∑

m

∑

n

(

w0mnl(33)
mn + θxmnl(34)

mn + θymnl(35)
mn

)

+
∑

m

∑

n

∑

p

∑

q

∑

r

∑

s
w0mnw0pqw0rsg(33)

mnpqrs + q = 0;

∑

m

∑

n

(

w0mnL(33)
mnij + θxmnL(34)

mnij + θymnL(35)
mnij

)

+
∑

m

∑

n

∑

p

∑

q

∑

r

∑

s
w0mnw0pqw0rsG

(33)
mnpqrsij +Fij = 0;
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∑

m

∑

n

(

w0mnL(43)
mnij + θxmnL(44)

mnij + θymnL(45)
mnij

)

= 0;

∑

m

∑

n

(

w0mnL(53)
mnij + θxmnL(54)

mnij + θymnL(55)
mnij

)

= 0 (33) 

By using the Newton-Raphson interactive method to solve the Eqs. 

(33), the displacement vector 
{

w0mn; θxmn; θymn

}

is obtained to get dis-

placements, and then strains, stresses, internal force resultants are 

derived to investigate static nonlinear bending of FGP plates. The 
flowchart illustrates the solution procedure is shown in Fig. 3. 

4. Results and discussion 

With the analytical solution set up above, the program in Matlab is 
used to practice the numerical examples. The analyzing results are non- 
linear except for the mentioned cases. Dimensionless formulas are used 
[28,29]: 

w=
1
h
w0

(
a
2
,
b
2

)

; K0 =
Kwa4

E*h3 ; J0 =
Ksxa2

E*h3ν=
Ksyb2

E*h3ν; E* = 1.0 GPa; P=
q0a4

E1h4

(34)  

4.1. Validation 

To obtain a reasonable accuracy and validate the present approach, 
the non-dimensional central deflections of the homogeneous isotropic 
square plate are calculated by increasing the number of terms (m, n) in 
the expansion of the trigonometric series. Table 1 presents the numerical 
results for simply supported boundary conditions (SSSS-FM, SSSS-IM) 
with input data: E = 7.8 × 106 psi; ν = 0.3; h = 1 in.; a = b = 10 h. 
The comparison is made with those of Kapoor and Kapania [44] 
applying the isogeometric element method incorporated with FSDT. 

Table 2 shows the non-dimensional central deflections of the 
isotropic square plate (h/a = 0.05; ν = 0.3 ; E = 0.3× 107psi) with 
SCSC-IM boundary conditions subjected to uniformly distributed load. 
The present results are compared with those of Lei [45] using the 
boundary element method in conjunction with FSDT, and Azizian and 
Dawe [46] applying the finite strip method based on FSDT. 

As can be seen from Tables 1 and 2, the increasing number of 
expanded terms improves the accuracy of results which converge at m =
n = 3. Thus, in all next calculations, m = n = 3 is used for simplicity. 
Besides, two comparisons also show that the obtained results match well 
with available ones, and thus the validity can be confirmed. 

4.2. Nonlinear analysis 

Considering the FGP (metal foam) rectangular plate (h = 0.1 m, E1 =

200GPa, ν = 1/3) rested on the elastic foundation, under the uniformly 
distributed load P. 

Tables 3 and 4 present the nondimensional central deflection and 
bending moment Mx [Nm/m] of square FGP plate (a/h = 20, b/a = 1, 
Type 3, e0 = 0.6, K0 = J0 = 0) under various boundary conditions and 
subjected to increased uniform loads. 

Figs. 4 and 5 show the nonlinear variation of central displacement 

Table 2 
The non-dimensional central deflection w of isotropic square plate (SCSC-IM) 
under uniformly distributed load.  

P Azizian and 
Dawe [46] 

Lei  
[45] 

Present 

m, n =
1 

m, n =
2 

m, n =
3 

m, n =
4  

0.9158  0.0199  0.0199  0.0199  0.0193  0.0198  0.0197  
4.5788  0.0988  0.0984  0.0992  0.0960  0.0982  0.0981  
6.8681  0.1469  0.1455  0.1477  0.1429  0.1461  0.1461  
9.1575  0.1936  0.1904  0.1950  0.1886  0.1929  0.1927  

Table 3 
Nondimensional central deflection w of square FGP plate under uniform loading.  

P SSSS-FM SCSC-FM CCCC-FM SSSS-IM SCSC-IM CCCC-IM 

1  0.0732  0.0352  0.0234  0.0728  0.0352  0.0234 
2  0.1456  0.0704  0.0469  0.1424  0.0702  0.0469 
5  0.3505  0.1754  0.1169  0.3178  0.1726  0.1166 
10  0.6352  0.3464  0.2319  0.5173  0.3278  0.2298 
15  0.8562  0.5097  0.3433  0.6537  0.4604  0.3370 
20  1.0330  0.6634  0.4501  0.7575  0.5729  0.4369 
25  1.1796  0.8067  0.5515  0.8416  0.6695  0.5292 
30  1.3049  0.9399  0.6474  0.9126  0.7540  0.6142  

Table 4 
Bending moment Mx [MNm/m] of square FGP plate under uniform loading.  

P SSSS-FM SCSC-FM CCCC-FM SSSS-IM SCSC-IM CCCC-IM 

1  0.2467  0.1325  0.1289  0.2452  0.1324  0.1289 
2  0.4899  0.2649  0.2576  0.4783  0.2641  0.2575 
5  1.1697  0.6593  0.6420  1.0529  0.6477  0.6403 
10  2.0716  1.2991  1.2697  1.6645  1.2229  1.2571 
15  2.7186  1.9045  1.8712  2.0441  1.7043  1.8332 
20  3.1930  2.4674  2.4385  2.3057  2.1039  2.3602 
25  3.5532  2.9853  2.9674  2.4975  2.4401  2.8369 
30  3.8355  3.4598  3.4572  2.6439  2.7283  3.2663  

Fig. 4. Nonlinear bending response of FGP plates under various freely moveable boundary conditions: (a) Load vs deflection curves, (b) Load vs bending 
moment curves. 
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and bending moment versus increased load for various freely moveable 
(immoveable) boundary conditions respectively. It is observed that 
deflection in both moveable and immoveable SSSS are greater than 
those under the remaining two types of boundary conditions. Results 

also indicate that the plate with movable edges produces much more 
deflection than the plate with immoveable edges. The law of variation of 
bending moment is more complicated depending on the values of 
applied loading and in-plane constraints. 

Fig. 5. Nonlinear bending response of FGP plates under various immoveable boundary conditions: (a) Load vs deflection curves, (b) Load vs bending moment curves.  

Fig. 6. Effect of in-plane constraints on linear (LL) and nonlinear (NL) bending behavior of SSSS square FGP plates: (a) Load vs deflection curves, (b) Load vs bending 
moment curves. 

Fig. 7. Effect of porosity distribution patterns on the nonlinear bending response of FGP square plates: (a) Load vs deflection curves, (b) Load vs bending 
moment curves. 
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Fig. 6 depicts the influence of in-plane boundary conditions on the 
linear and nonlinear behavior FGP square plates (SSSS, a/h = 20, b/a =
1, e0 = 0.6, K0 = J0 = 0) subjected to uniform transverse loading. As 
expected, it is seen that the results obtained by linear analysis are always 
higher than by nonlinear analysis, and higher applied load causes a 

bigger gap between two approaches. Linear bending behavior for both 
moveable and immoveable is the same, while according to nonlinear 
analysis the load–deflection and load-bending moment curves of FGP 
plates under moveable boundary conditions are always higher than 
those under immoveable boundary conditions. 

Fig. 8. Effect of porosity coefficient on the nonlinear bending response of FGP square plates: (a) Load vs deflection curves, (b) Load vs bending moment curves.  

Fig. 9. Effect of aspect ratio (b/a) on the nonlinear bending response of FGP (a/h = 20) plates: (a) Load vs deflection curves, (b) Load vs bending moment curves.  

Fig. 10. Effect of length-to-thickness ratio (a/h) on the nonlinear bending response of square FGP plates: (a) Load vs deflection curves, (b) Load vs bending 
moment curves. 
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The nonlinear bending response of SSSS-FM (freely moveable simply 
supported) FGP plates with three porosity distribution patterns is plotted 
in Fig. 7. This figure indicates that the deflection 

with symmetric porosity distribution (Type 2) is the smallest, but the 
bending moment is the highest. There is a slight discrepancy of obtained 
results between uniform porosity distribution (Type 1) and non- 
symmetric porosity distribution (Type 3). 

The influence of porosity coefficient on nonlinear bending response 
of SSSS-FM square FGP (Type 3) plate is illustrated in Fig. 8. It can be 
seen that at the given applied load, the central nondimensional deflec-
tion gets bigger as the porosity coefficient increases and this trend is 
opposite to the bending moment. This is because the increasing porosity 
coefficient increases the size and amount of internal pores which results 
in a decrease of the FGP plate stiffness. Furthermore, the larger the 
porosity coefficient, the greater load–deflection nonlinearity. 

Figs. 9 and 10 present the effect of aspect ratio b/a and length-to- 
thickness ratio a/h on nonlinear bending behaviors of FGP plates 
(SSSS-FM, e0 = 0.6, K0 = J0 = 0). The plots show that the nondimen-
sional central displacement and bending moment increase as the b/a 
ratio increases. This can be explained by the fact that a large plate more 
easily deforms under bending. 

Observing Fig. 10 we can see that the load-bending moment curve is 
significantly sensitive to the a/h ratio, while the load–deflection curve is 
only slightly sensitive. Furthermore, as the a/h ratio increases, both 
nondimensional central deflection and bending moment decrease. 

Fig. 11 illustrates the effect of various types of elastic foundation (K0 
= 1000, J0 = 100 for Pasternak’s foundation; K0 = 1000, J0 = 0 for 
Winkler’s foundation; and K0 = J0 = 0 for plate without foundation) on 
the load–deflection and load-bending moment curves. It appears that the 
elastic foundation significantly influences the nonlinear bending 
behavior of FGP plates. The deflections, as well as bending moment of 
the plates resting on Winkler’s elastic foundation are between those of 
foundationless plates and the plates resting on Pasternak elastic 
foundation. 

5. Conclusion 

Based on the first-order shear deformation theory, the nonlinear 
bending behavior of the FGP plate resting on the elastic foundation 
subjected to uniformly transverse distributed loading is investigated. 
Using stress function in conjunction with the Galerkin method, the 
analytical solutions are derived to determine the load–deflection and 

load–bending moment curves for various edges boundary conditions. 
Three porosity distribution patterns with varied porosity coefficients are 
considered. After convergence and validation study, parametric studies 
have been performed to study the influence of geometrical parameters 
(b/a and a/h ratios), material parameters (porosity distribution patterns, 
porosity coefficients), boundary conditions and elastic foundations on 
nonlinear bending behavior of FGP plates. Major findings are listed as 
follows:  

• By introducing the physical neutral surface concept, the stretching- 
bending coupling effect is eliminated, the governing equations for 
analyzing nonlinear bending response in the simple form are 
obtained.  

• The solution of governing equations for nonlinear bending problems 
have been carried out by using m and n terms in Fourier’s series 
expansion. The number of terms m = n = 3 is chosen for the sake of 
convenience, which is enough for convergence.  

• The deflection with symmetric porosity distribution is the smallest, 
but the bending moment is the highest. There is a slight discrepancy 
of obtained results between uniform porosity distribution and non- 
symmetric porosity distribution.  

• The nonlinear deflections are smaller than linear deflections. The 
larger the porosity coefficient, the greater the effect on the nonlinear 
bending behavior of FGP plates.  

• Nondimensional central displacement and bending moment increase 
as the b/a ratio increases, and decrease as the a/h ratio increases.  

• A plate with movable edges produces much more deflection with 
larger bending moments than a plate with immovable edges.  

• Boundary conditions and elastic foundation significantly affect the 
nonlinear bending behavior of FGP plates. 
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Appendix 1:. The coefficients in Eq. (27) for SSSS boundary condition 

H(1)
pqrs(x, y) = κ1cos

(
λp − λr

)
xcos

(
δq − δs

)
y + κ2cos

(
λp + λr

)
xcos

(
δq + δs

)
y

+κ3cos
(
λp − λr

)
xcos

(
δq + δs

)
y + κ4cos

(
λp + λr

)
xcos

(
δq − δs

)
y;

κ1 =
D
4 (λpλrδqδs − λ2

p δ2
s )[

(λp − λr)
2
+(δq − δs)

2
]2; (when p = r and q = s : κ1 = 0); 

κ2 =

D
4

(
λpλrδqδs − λ2

pδ2
s

)

[(
λp + λr

)2
+
(
δq + δs

)2
]2; κ3 =

D
4

(
λpλrδqδs + λ2

pδ2
s

)

[(
λp − λr

)2
+
(
δq + δs

)2
]2;

κ4 =

D
4

(
λpλrδqδs + λ2

pδ2
s

)

[(
λp + λr

)2
+
(
δq − δs

)2
]2  

Appendix 2:. The coefficients in Eq. (29) for CCCC boundary condition 

H(2)
pqrs(x, y) = κ1cos2

(
λp − λr

)
xcos2

(
δq − δs

)
y + κ2cos2

(
λp + λr

)
xcos2

(
δq + δs

)
y

+κ3cos2
(
λp − λr

)
xcos2

(
δq + δs

)
y + κ4cos2

(
λp + λr

)
xcos2

(
δq − δs

)
y

+κ5cos2λpxcos2δsy + κ6cos2λpxcos2
(
δq − δs

)
y

+κ7cos2λpxcos2
(
δq + δs

)
y + κ8cos2

(
λp − λr

)
xcos2δsy

+κ9cos2
(
λp + λr

)
xcos2δsy;

κ1 =
D
16(λpλrδqδs − α2

p δ2
s )[

(λp − λr)
2
+(δq − δs)

2
]2; (when p = r and q = s : κ1 = 0); 

κ2 =

D
16

(
λpλrδqδs − λ2

pδ2
s

)

[(
λp + λr

)2
+
(
δq + δs

)2
]2; κ3 =

− D
16

(
λpλrδqδs + λ2

pδ2
s

)

[(
λp − λr

)2
+
(
δq + δs

)2
]2;

κ4 =
− D

16

(
λpλrδqδs + λ2

pδ2
s

)

[(
λp + λr

)2
+
(
δq − δs

)2
]2; κ5 =

− D
4λ2

pδ2
s

(
λ2

p + δ2
s

)2; κ6 =

D
8λ2

pδ2
s

[
λ2

p +
(
δq − δs

)2
]2;

κ7 =

D
8λ2

pδ2
s

[
λ2

p +
(
δq + δs

)2
]2; κ8 =

D
8λ2

pδ2
s

[(
λp − λr

)2
+ δ2

s

]2; κ9 =

D
8λ2

pδ2
s

[(
λp + λr

)2
+ δ2

s

]2  

Appendix 3:. The coefficients in Eq. (31) for SCSC boundary condition 

H(3)
pqrs(x, y) = κ1cos

(
λp − λr

)
xcos2

(
δq − δs

)
y + κ2cos

(
λp + λr

)
xcos2

(
δq + δs

)
y

+κ3cos
(
λp − λr

)
xcos2

(
δq + δs

)
y + κ4cos

(
λp + λr

)
xcos2

(
δq − δs

)
y

+κ5cos
(
λp − λr

)
xcos2δsy + κ6cos

(
αp + αr

)
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κ1 =
D
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p δ2
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(λp − λr)
2
+4(δq − δs)

2
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D
4

[
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pδ2
s
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(
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