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Nonlinear buckling and
post-buckling analysis of
imperfect porous plates
under mechanical loads
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Abstract

The nonlinear buckling and post-buckling response of imperfect porous plates is inves-

tigated analytically in this paper. The porous materials with elastic moduli are assumed

to vary through the thickness of the plate according to two different distribution types.

Governing equations are derived based on the classical shell theory taking into account

Von Karman nonlinearity and initial geometrical imperfection. Explicit relations of load–

deflection curves for rectangular porous plates are determined by applying stress

function and Galerkin’s method. The accuracy of present theoretical formulation is

verified by comparing it with available results in the literature. The effects of varying

porosity distribution, porosity coefficient, boundary condition and imperfection on

post-buckling behavior of the porous plate are studied in detail. A parametric study

is carried out to investigate the effects of varying porosity distribution, porosity coef-

ficient, boundary condition and imperfection on post-buckling behavior of the porous

plate. The results show that the critical buckling loads decrease with increasing porosity

coefficient and the post-buckling curves for nonlinear symmetric porosity distribution

are always higher than those for nonlinear non-symmetric porosity.
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Introduction

Fiber reinforced composites are widely used in the aerospace, automotive, marine
and other structural applications. Stress singularities in such composites may occur
at the interface between two different materials, due to the mismatch of materials.
Functionally graded materials (FGMs) are new class of composite materials,
microscopically inhomogeneous, in which the mechanical properties vary smoothly
and continuously from one surface to the other. This eliminates interface problems
of conventional composite material. Functionally graded (FG) porous material is a
novel FGM in which porous materials are characterized by the graded distribution
of internal pores in the microstructure. In the last few years, porous materials such
as metal foams have been widely used for lightweight structures in aerospace,
automotive and civil engineering applications because of their excellent energy-
absorbing capability and low thermal and electrical conductivity [1–5].

Numerous studies on static and dynamic behaviors of composite, FG, and
porous structures have been extensively carried out. Komur et al. [6] investigated
buckling behavior of laminated composite plates by finite element method. Thai
and Choi [7] presented efficient and simple refined theory for buckling analysis of
FG plates. Magnucki and Stasiewicz [8] studied elastic buckling of porous beam;
the critical load is determined analytically then verified with finite element solution.
Using nonlinear hypothesis of deformation of a plane cross-section of the beam,
Magnucka-Blandzi and Magnucki [9] determined the stress state and the critical
force for the simply supported sandwich beam with a metal foam core.

The elastic buckling and static bending behavior of FG porous beams was
investigated by Chen et al. [10] using Timoshenko beam theory. The Ritz
method is employed to obtain the critical buckling loads and transverse bending
deflections. The authors [11] then investigated the free and forced vibration char-
acteristics of FG porous (open-cell metal foam) beams. Natural frequencies and
transient response are examined for porous beams under different types of loading:
a harmonic point load, an impulsive point load and a moving load with con-
stant velocity.

Magnucki et al. [12] investigated the bending of simply supported porous plate
loaded with transverse pressure. The critical load of a bi-axially in-plane
compressed plate is found. In order to compare the analytical results, a finite
element model of a porous plate is built using the ANSYS software. Rezaei and
Saidi [13] developed an analytical solution based on Reddy’s third-order shear
deformation theory for free vibration analysis of rectangular porous plate made
of Berea sandstone.

It can be seen that the majority of the above-mentioned studies are about
the linear analysis of FG porous beams and plates. In engineering practice, the
nonlinear behavior of these structures plays an important role. Chen et al. [14]
analyzed the nonlinear free vibration behavior of sandwich porous beam based on
Timoshenko beam theory. Using Kirchhoff-Love assumption taking into account
the geometrical nonlinearity with Sanders non-linear strain-displacement relation,
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Ebrahimi and Zia [15] investigated the large-amplitude nonlinear vibration char-

acteristics of FG Timoshenko beams made of porous material. Jabbari et al. [16]

presented buckling analysis of a radically loaded circular plate made of FG porous

materials saturated with fluid. Based on higher order shear deformation plate

theory, Mojahedin et al. [17] analyzed the buckling behavior of radially loaded

solid circular plate made of porous material, where pores are assumed to be sat-

urated with fluid.
As a result, there are few literature devoted to the nonlinear behavior of porous

plates. Thus, the objective of this paper is to investigate the nonlinear buckling

behavior of imperfect porous plates under in-plane mechanical load. The Young’s

moduli and mass density of porous composites (open-cell metal foam) are assumed

to be graded in the thickness direction following a simple cosine rule. The math-

ematical formulation based on the classical plate theory and von-Karman non-

linear kinematics taking to account the initial geometrical imperfection is

developed. The resulting equations are solved using Galerkin procedure to

obtain closed-form expressions of the buckling loads and post-buckling load–

deflection curves. The effects of material’s porosity coefficient, geometric param-

eters and imperfection on the buckling and post-buckling behaviors of the plate are

discussed in detail.

Porous plates and fundamental relations

Porous plates

Consider a thin rectangular porous plate of length a, width b and thickness h,

referring to the rectangular Cartesian coordinates (x, y, z), where (x, y) plane

coincides with the middle surface of the plate and z is the thickness coordinate

�h=2 � z � h=2ð Þ. The plate is subjected to the uniform in-plane compressive

edge loads px and py, which are uniformly distributed along the edges x ¼ 0; a and

y ¼ 0; b, respectively as depicted in Figure 1.
The open-cell metal foam with elasticity moduli and mass density is assumed to

vary through the thickness of the plate according to two different distribution laws

[10, 11].

• For the first case, pore distribution is nonlinear symmetric and the mid-plane of

plate is its symmetry plane. Moduli of elasticity and mass density, which depend

on pore distribution, are as follows (Porosity distribution 1)

E zð Þ ¼ E1 1� e0cos p
z

h

� �� �
; G zð Þ ¼ G1 1� e0cos p

z

h

� �� �
;

q zð Þ ¼ q1 1� emcos p
z

h

� �� � (1)
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where the porosity coefficient for moduli of elasticity e0 ¼ 1� E2

E1
¼ 1� G2

G1
;

(0<e0<1) and the porosity coefficient for mass density em ¼ 1� q2
q1
; (0<em<1).

The relationship between Young’s modulus and shear modulus is Gi ¼ Ei

2 1þ�ð Þ
(i ¼ 1,2) where v is the Poisson’s ratio and is assumed to be constant across the

plate thickness; E2, G2, q2; E1, G1, q1 are the values of Young’s moduli, shear

moduli and mass density at the mid-plane z ¼ 0ð Þ and the upper and lower surfaces

of the plate z ¼ � h
2

� �
, respectively.

The nonlinear symmetric porosity distribution is plotted in Figure 2. It can
be observed that Young’s moduli, shear moduli and mass density reach their max-

imum values at the top and bottom surfaces where the materials are pure.
The minimum values are reached at the mid-surface of the plate.

• For the second case, pore distribution is nonlinear and non-symmetric.

The moduli of elasticity and mass density distribution are expressed as follows

(Porosity distribution 2)

E zð Þ ¼ E1 1� e0cos
p
2

z

h
þ p

4

� �� �
; G zð Þ ¼ G1 1� e0cos

p
2

z

h
þ p

4

� �� �
;

q zð Þ ¼ q1 1� emcos
p
2

z

h
þ p

4

� �� � (2)

E2, G2, q2; E1, G1, q1 are the values of Young’s moduli, shear moduli and mass

density at the upper surface z ¼ h
2

� �
and lower surface of the plate z ¼ � h

2

� �
,

respectively.

Figure 1. Rectangular porous plate under in-plane compressive loads.
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Figure 3 depicts the nonlinear non-symmetric porosity distribution. The plot

shows that Young’s moduli, shear moduli and mass density are maximum at the

top surfaces, where the materials are pure, and are minimum at the bottom surface,

where the porosity coefficient is the largest.

Governing relations and equations

According to the classical plate theory, the strains at the mid-plane of imperfect

porous plate, taking into account geometrical nonlinearity in von Karman sense,

are expressed as follows [18]

e0x ¼ u;x þ 1

2
w2
;x þ w;xw

�
;x; e0y ¼ v;y þ 1

2
w2
;y þ w;yw

�
;y;

c0xy ¼ u;y þ v;x þ w;x:w;y þ w;x:w
�
;y þ w;y:w

�
;x

(3)

Figure 2. Nonlinear symmetric porosity distribution.

Figure 3. Nonlinear non-symmetric porosity distribution.
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where u ¼ uðx; yÞ; v ¼ vðx; yÞ; w ¼ wðx; yÞ are the displacements of the mid-plane
point along x, y and z axes, respectively. The parameter w� ¼ w�ðx; yÞ is an initial
imperfection of the plate and is assumed to be small compared with the thickness
of the plate.

The strains at a point with coordinate z from the mid-plane are in the form [18]

ex ¼ e0x þ zkx; ey ¼ e0y þ zky; cxy ¼ c0xy þ 2zkxy;

kx ¼ �w;xx; ky ¼ �w;yy; kxy ¼ �w;xy

(4)

Hooke’s stress–strain relations for a plate are written as

rx; ryð Þ ¼ E

1� �2
ex; eyð Þ þ � ey; exð Þ� 	

; rxy ¼ E

2 1þ �ð Þ cxy (5)

The force and moment resultants per unit length of the plate are defined as

Nx;Ny;Nxyð Þ; Mx;My;Mxyð Þ
 � ¼
Z h=2

�h=2

rx; ry; rxyf g 1; zð Þdz (6)

Substituting equations (3), (4) and (5) into equation (6) gives the constitutive
relations as

Nx

Ny

Nxy

Mx

My

Mxy

2
66666666666664

3
77777777777775
¼

A10 A20 0 A11 A21 0

A20 A10 0 A21 A11 0

0 0 A30 0 0 A31

A11 A21 0 A12 A22 0

A21 A11 0 A22 A12 0

0 0 A31 0 0 A32

2
66666666666664

3
77777777777775

e0x

e0y

c0xy

kx

ky

2kxy

2
666666666666664

3
777777777777775

(7)

where the stiffness coefficients Aij ði ¼ 1; 2; 3; j ¼ 0; 1; 2Þ are defined in the
forms as

A1j ¼
Z h=2

�h=2

EðzÞ
1� �2ðzÞ z

jdz; A2j ¼
Z h=2

�h=2

EðzÞ �ðzÞ
1� �2ðzÞ z

jdz;

A3j ¼
Z h=2

�h=2

EðzÞ
2 1þ �ðzÞ½ � z

jdz ¼ 1

2
A1j � A2jð Þ

(8)
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The nonlinear equilibrium equations of imperfect plate based on the classical
plate theory are given by [19]

Nx;x þNxy;y ¼ 0 (9)

Nxy;x þNy;y ¼ 0 (10)

Mx;xx þ 2Mxy;xy þMy;yy þNx w;xx þ w�
;xx

� 
þ
þ 2Nxy w;xy þ w�

;xy

� 
þNy w;yy þ w�
;yy

� 
 ¼ 0
(11)

The geometrical compatibility equation obtained from equations (3) and (4),
quantity w�

;ij is assumed to be small enough so the quadratic terms of w�
;ij may be

neglected, becomes

e0x;yy þ e0y;xx � c0xy;xy ¼ w2
;xy � w;xx:w;yy þ 2w;xyw

�
;xy � w;xx:w

�
;yy � w;yyw

�
;xx (12)

Let us introduce the stress function f¼f(x,y) as

Nx ¼ f;yy; Ny ¼ f;xx; Nxy ¼ �f;xy (13)

It is clear that the two equations (9) and (10) are automatically satisfied.
Substitution of equation (13) into the constitutive relations for Nij in equation

(7) and solving conversely, we obtain

e0x ¼ J0 A10f;yy � A20f;xx þ J1w;xx þ J2w;yy

� 

e0y ¼ J0 A10f;xx � A20f;yy þ J1w;yy þ J2w;xx

� 

c0xy ¼

1

A30
2A31w;xy � f;xy
� 
 (14)

where J0 ¼ 1
A2
10
�A2

20

; J1 ¼ A10A11 � A20A21; J2 ¼ A10A21 � A20A11.
Substituting once again equation (14) into the constitutive relations of Mij in

equation (7), thenMij into the equation (11) and taking into account equation (13),
we have

C3r4fþ C4r4wþ f;yy w;xx þ w�
;xx

� 
� 2f;xy w;xy þ w�
;xy

� 
þ f;xx w;yy þ w�
;yy

� 
 ¼ 0 (15)

where C3 ¼ J0J2; C4 ¼ J0 A11J1 þ A21J2ð Þ � A12.

r4 ¼ @4

@x4
þ 2

@4

@x2@y2
þ @4

@y4
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Equation (15) is the stability equation for an imperfect porous plate. This equa-

tion includes two unknown functions w and f. Hence it is necessary to find an

additional function. For this purpose, substituting equation (14) into the compat-

ibility equation (12), we get

r4fþ C1r4w� C2 w2
;xy � w;xxw;yy þ 2w;xyw

�
;xy � w;xxw

�
;yy � w;yyw

�
;xx

� �
¼ 0

(16)

where

C1 ¼ J2=A10; C2 ¼ 1= J0A10ð Þ

The two equations (15) and (16) are the governing equations used to investigate

the buckling and post-buckling behavior of imperfect porous plates. From equa-

tions (15) and (16), if w� ¼ 0, we obtain the governing equations for perfect

porous plates.

Nonlinear buckling and post-buckling analysis

Boundary conditions

Two cases of boundary conditions will be considered for determining the buckling

loads of porous plates under in-plane compressive load.
Case 1 (SSSS): The four edges of plate are simply supported and freely mov-

able. The associated boundary conditions are

w ¼ Mx ¼ Nxy ¼ 0; Nx ¼ �pxh at x ¼ 0; x ¼ a

w ¼ My ¼ Nxy ¼ 0; Ny ¼ �pyh at y ¼ 0; y ¼ b
(17)

Case 2 (SSCC): Two edges loaded x ¼ 0 and x ¼ a are simply supported and

freely movable, the remaining two edges y ¼ 0; y ¼ b are unloaded and clamped.

The associated boundary conditions are

w ¼ Mx ¼ Nxy ¼ 0; Nx ¼ �pxh at x ¼ 0; x ¼ a

w ¼ @w

@y
¼ Ny ¼ Nxy ¼ 0 at y ¼ 0; y ¼ b

(18)
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Imperfect porous plate with Case 1 of boundary condition (SSSS)

To solve equations (15) and (16), the deflection w and stress function f are assumed
in the following forms [19] satisfying boundary conditions (equation (17))

w ¼ Wsin
mpx
a

sin
npy
b

f ¼ F sin
mpx
a

sin
npy
b

� hðxÞ � kðyÞ
� � (19)

where m, n¼ 1,2,3,. . . are the number of half-waves in x and y directions,
respectively; W and F are unknown constant coefficients to be determined.
Functions hðxÞ and kðyÞ should be chosen such that solutions (equation (19))
satisfy the force boundary conditions, thus

F
d2hðxÞ
dx2

¼ pyh; F
d2kðyÞ
dy2

¼ pxh;

The initial imperfections of the plate w� ¼ w�ðx; yÞ in considering the boundary
conditions (equation (17)) are assumed as

w� ¼ nh sin
mpx
a

sin
npy
b

; m; n ¼ 1; 2; 3; . . . (20)

where the coefficient n 2 0; 1½ � expresses an imperfection size of the plate.
By substituting equations (19) and (20) into equations (15) and (16) and then

applying Galerkin’s procedure, we obtain two nonlinear algebraic equations for F
and W in the form

Fþ C1Wþ C2W

mp
a

� 
2 þ np
b

� 
2h i2 16mnp2

3a2b2
ðWþ 2nhÞd1d2 ¼ 0 (21)

mp
a

� �2

þ np
b

� �2
" #2

C3Fþ C4Wð Þ þ 32

3
F Wþ nhð Þmnp2

a2b2
d1d2þ

þ Wþ nhð Þ pxh
mp
a

� �2

þ pyh
np
b

� �2
" #

¼ 0

(22)

Herein, note that d1 ¼ 1
2 1� �1ð Þm� 	

; d2 ¼ 1
2 1� �1ð Þn� 	

, so d1d2 ¼ 1 if m and n
are odd numbers, while d1d2¼0 if either m or n is an even number.
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By eliminating F in equations (21) and (22), after some manipulation we get

C4 � C3C1ð Þp4ðm2B2
a þ n2Þ4W� 16mnp2B2

a

3
ðm2B2

a þ n2Þ2

� C2C3 þ 2C1ð ÞWþ 2 C2C3 þ C1ð Þnh� 	
Wd1d2

� 512m2n2B4
a

9
C2W Wþ nhð ÞðWþ 2nhÞd21d22

þ p2b2pxhðm2B2
a þ n2Þ2 m2B2

a þ bn2
� 


Wþ nhð Þ ¼ 0

(23)

where

Ba ¼ b=a; b ¼ py=px

Equation (23) expresses the load–deflection relation, and it is used to analyze
the buckling and post-buckling behaviors of imperfect porous plates subjected to
in-plane loads px and py

px ¼ � C4 � C3C1ð Þp4ðm2B2
a þ n2Þ2

p2b2h m2B2
a þ bn2

� 
 W

W þ n
� 
þ

þ 16mnp2B2
a

3p2b2 m2B2
a þ bn2

� 
 C2C3 þ 2C1ð ÞW þ 2 C2C3 þ C1ð Þn
� 	 W

W þ n
� 
 d1d2þ

þ 512m2n2B4
ah

9ðm2B2
a þ n2Þ2p2b2 m2B2

a þ bn2
� 
C2WðW þ 2nÞd21d22

(24)

In the case where the plate is only subjected to uni-axial compressive load, we
take the pre-buckling force resultants as Nx0 ¼ �pxh; Ny0 ¼ �pyh ¼ 0. From equa-
tion (24), we obtain

px ¼ W

W þ n
� 
p2ðm2B2

a þ n2Þ2
B2
hm

2B2
a

D þ C3C1

� 
þ 512n2B2
aE1

9p2B2
hðm2B2

a þ n2Þ2 WðW þ 2nÞþ

þ 16nh

3b2m

W

W þ n
� 
 E1h

2C3þ2C1

� 

Wþ2 E1h

2C3þC1

� 

n

� 	
(25)
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where m, n are odd numbers, and

D ¼ �C4

h3
; E1 ¼ C2

h
; Bh ¼ b

h
; W ¼ W

h
; C1 ¼ C1

h
; C3 ¼ C3

h2
:

For a perfect plate (n ¼ 0) only subjected to uni-axial compressive load px,

equation (25) leads to

px ¼ p2ðm2B2
a þ n2Þ2

B2
hm

2B2
a

D þ C3C1

� 
þ 16nh

3b2m
E1h

2C3 þ 2C1

� 

W

þ 512n2B2
aE1

9p2B2
hðm2B2

a þ n2Þ2 W
2

(26)

So that the buckling compressive load can be determined from equation (26) by

setting W ! 0 as

pxb ¼ p2ðm2B2
a þ n2Þ2

B2
hm

2B2
a

D þ C3C1

� 

(27)

The buckling loads pxb given by equation (27) depend on the values of m and n.

By minimizing these expressions with respect to m and n, we get the critical buck-

ling load (pcr).

Imperfect porous plate with Case 2 of boundary condition (SSCC)

For this case of boundary condition, the approximate solutions satisfying bound-

ary conditions (equation (18)) are assumed as follows [20]

w ¼ Wsin
mpx
a

1� cos
2npy
b

� �

f ¼ F sin
mpx
a

sin
npy
b

� kðyÞ
� �

; Fk00ðyÞ ¼ pxh

(28)

w� ¼ nh sin
mpx
a

1� cos
2npy
b

� �
; m; n ¼ 1; 2; 3; . . . (29)

Similar to subsection “Imperfect porous plate with Case 1 of boundary condi-

tion (SSSS)”, we substitute equation (28) and (29) into left side of equations (15)
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and (16), and then using Galerkin’s procedure, we obtain

F ¼ 1

A
�W

4C1

3np
d2 3

mp
a

� �4

þ B

" #
� C2WðWþ 2nhÞ 1024mnp2

45a2b2
d1d2

( )
(30)

C3A
4ab

3np
d2Fþ C4W

ab

4
2

mp
a

� �4

þ B

" #
þ F Wþ nhð Þ mnp2

ab

� �2
512ab

45mnp2
d1d2

þ pxh Wþ nhð Þ mp
a

� �2 3ab

4
þ q

2ab

mp
d1 ¼ 0

(31)

where A ¼ mp
a

� 
2 þ np
b

� 
2h i2
; B ¼ mp

a

� 
2 þ 2np
b

� �2
� �2

.

Eliminating F in equations (30) and (31), we get

a1 Wþ a2 WðWþ 2nhÞ þ a3 W Wþ nhð Þþ

þ a4 W Wþ nhð ÞðWþ 2nhÞ þ pxh Wþ nhð Þ 3bm
2p2

4a
¼ 0

(32)

in which

a1 ¼ � 16abC1C3

9n2p2
d22 3

mp
a

� �4

þ B

" #
þ abC4

4
2

mp
a

� �4

þ B

" #
;

a2 ¼ � 4096mpC2C3

135ab
d1d

2
2

a3 ¼ � 2048mpC1

135abA
3

mp
a

� �4

þ B

" #
d1d

2
2;

a4 ¼ � 524288m2n2p4C2

2025a3b3A
d1d2ð Þ2

(33)

From equation (32), we have

px ¼ �4a

3bm2p2
a1

W

h W þ n
� 
þ a2

WðW þ 2nÞ
W þ n
� 
 þ a3W þ a4hWðW þ 2nÞ

" #
(34)

Herein, we denote W ¼ W=h.

12 Journal of Sandwich Structures & Materials 0(0)



If a plate is perfect n ¼ 0ð Þ, equation (38) becomes

px ¼ �4a

3bm2p2
a1
h

þ a2 þ a3ð ÞW þ a4hW
2

� �
(35)

From this relationship, let W ! 0, we obtain the expression of buckling com-

pressive load as

pxb ¼ �4a

3bm2p2h
a1 ¼ 64a2C1C3

27m2n2p4h
d22 3

mp
a

� �4

þ B

" #
� a2C4

3m2p2h
2

mp
a

� �4

þ B

" #

(36)

Buckling loads pxb given by equation (36) depend on the values of m and n; by

minimizing these expressions with respect to m and n we get the critical buckling

load (pcr).

Numerical calculations and discussions

Validation examples

The first validation is carried out for simply supported isotropic rectangular plate

under uniaxial in-plane compression. Table 1 shows the comparisons of the critical

buckling loads with the results given in the monograph of Brush and Almroth [18],

in which the analytical formulae of critical load is given. The input parameters are

e0¼ 0, h¼ 0.1 in., b¼ 10 in, a¼ 20 in., Px ¼ pxbh where px is found from equa-

tion (27).
For the second validation, the post-buckling load–deflection curves of isotropic

square plate (e0¼ 0) are plotted for perfect and imperfect cases with the following

geometric and material properties: E1 ¼ 380GPa; �1 ¼ 0:3; b=h ¼ 40; a=b ¼ 1.

Figure 4 shows the comparison of the present post-buckling load–deflection

curves of isotropic plate (e0¼ 0) with those of Tung and Duc [19].
As can be seen, a good agreement is obtained in the two above-mentioned

comparisons.

Parametric study

Parametric studies are performed to investigate the effects of the porosity coeffi-

cient, the imperfection and geometrical parameters on the buckling load of porous

plates. The considered porous plates are assumed to be composed of the open-cell

steel foam with E1 ¼ 207GPa and �1 ¼ 0:3.

Tu et al. 13



Two cases of boundary condition and two different porosity distributions
are considered:

• SSSS: All four edges of plate are simply supported
• SSCC: Two edges are simply supported and two edges are clamped
• D1: Porosity distribution 1 – equation (1)
• D2: Porosity distribution 2 – equation (2)

Table 2 presents the critical buckling loads of perfect (n ¼ 0) rectangular (h¼ 2
mm; b/h¼ 30; a/b¼ 2) porous plates for various values of porosity coefficients
corresponding to the buckling mode (m, n). Figure 5 illustrates the effect of poros-
ity coefficient on the critical buckling loads of rectangular porous plates for

Table 1. Critical buckling load for isotropic plate under uniaxial in-plane compression.

Pcr [pound]

Present

Px ¼ pupperbh

Brush and Almroth [18]

Px ¼ mb
a
þ a

mb

� �2
p2D
b
; D ¼ Eh3

12 1��2ð Þ

E¼ 10� 106psi, v¼ 0.3

Aluminum (Al)

3615.2397 (2, 1)a 3620 (2, 1)

E¼ 15.1� 106 psi, v¼ 0.3

Titanium alloy (Ti-6Al-4V)

5459.0120 (2, 1) 5459 (2, 1)

E¼ 30.1� 106 psi, v¼ 0.3

Stainless steel (SUS 304)

10881.8715 (2, 1) 10882 (2, 1)

aThe numbers in the parenthesis denote the buckling modes (m, n).
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Figure 4. Post-buckling load–deflection curves of isotropic square plate.
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different boundary condition (BCs) (SSSS and SSCC) and porosity distributions
(D1 and D2). For both distributions, it is found that the critical buckling loads pcr
of porous plates decrease with increasing e0. Figure 5 also indicates that varying
porosity coefficient has a more significant effect on the stiffness of the porous
plates with porosity distribution 2 (D2).

Figures 6 and 7 show post-buckling curves of perfect n ¼ 0ð Þ and imperfect
n ¼ 0:2ð Þ rectangular a=b ¼ 2ð Þ porous (e0¼ 0; 0.2; 0.4; 0.6) plates under uniaxial
compression with two different porosity distributions (D1 and D2) for two cases
of BC: (a) SSSS and (b) SSCC corresponding to the buckling mode with
m ¼ 3; n ¼ 1ð Þ. As can be seen, the postbuckling curves for lower porosity coeffi-
cient are always higher than those for higher porosity coefficient. It is also evident
that the post-buckling curves under the SSCC boundary condition are always
higher than those under the SSSS boundary condition.

Figure 8 illustrates the post-buckling curves of perfect n ¼ 0ð Þ and imperfect
n ¼ 0:2ð Þ rectangular a=b ¼ 2ð Þ porous e0 ¼ 0:2ð Þ plates under uniaxial

Table 2. Critical buckling loads of perfect rectangular of porous plates with different values of
porosity coefficients of two types of porosity distribution, and various boundary conditions.

Pcr (MPa)

Porosity distribution 1 – D1 Porosity distribution 2 – D2

SSSS SSCC SSSS SSCC

e0 ¼ 0 831.5051 (2, 1)a 1514.8022 (3, 1) 831.5051 (2, 1) 1514.8022 (3, 1)

e0 ¼ 0.2 771.3398 (2, 1) 1405.1954 (3, 1) 731.4276 (2, 1) 1332.4850 (3, 1)

e0 ¼ 0.4 711.1745 (2, 1) 1295.5887 (3, 1) 622.0666 (2, 1) 1133.2556 (3, 1)

e0 ¼ 0.6 651.0092 (2, 1) 1185.9819 (3, 1) 497.6846 (2, 1) 906.6615 (3, 1)

e0 ¼ 0.8 590.8438 (2, 1) 1076.3752 (3, 1) 346.5888 (2, 1) 631.4014 (3, 1)

aThe numbers in the parenthesis denote the buckling modes (m, n).

Figure 5. Effects of porosity coefficient e0 on buckling loads Pcr . (a) For SSSS porous plates.
(b) For SSCC porous plates.
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Figure 6. Effects of porosity coefficient e0 on post-buckling load–deflection curves (D1). (a) For
SSSS porous plates. (b) For SSCC plates.

Figure 7. Effects of porosity coefficient e0 on post-buckling load–deflection curves (D2). (a) For
simply SSSS plates. (b) For SSCC plates.

Figure 8. Effects of imperfection n on post-buckling load–deflection curves. (a) For SSSS porous
plates. (b) For SSCC porous plates.
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compression with two different porosity distributions (D1 and D2) for two cases of
BC: (a) SSSS and (b) SSCC corresponding to m ¼ 3; n ¼ 1ð Þ. It is observed that the
postbuckling curves for D1 porosity distribution are always higher than those for
D2 porosity distribution. The effect of imperfection parameter on the post-
buckling behavior of porous plates under uniaxial compression is illustrated in
Figures 9 and 10. It is clear that the post-buckling curves of imperfect plates are
lower than those of perfect plates when deflection is small as expected.

It is also shown that the post-buckling curves become lower as n increases. It
means, initial imperfection makes porous plates more stable under uniaxial
compression.

Figure 9. Effects of imperfection n on post-buckling load–deflection curves (D1). (a) For SSSS
porous plates. (b) For SSCC plates.

Figure 10. Effects of imperfection n on post-buckling load–deflection curves (D2). (a) For SSSS
porous plates. (b) For SSCC porous plates.
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Figure 11 depicts the px �W=hð Þ post-buckling curves versus the aspect ratio a/
b. It is shown that the buckling load decreases remarkably with increasing
aspect ratio.

Figures 12 and 13 illustrate the effect of thickness-to-side ratio on the post-
buckling load–deflection curves for porous plate for both porosity distributions
and for two different boundary conditions. As can be observed, the buckling loads
decrease significantly with increasing thickness-to-side ratios.

Figure 13 also shows the effect of boundary conditions on the post-buckling of
porous plates under uniaxial compressive loads. The post-buckling load–deflection
curve in the case of SSCC boundary condition is always higher than in the case of
SSSS boundary condition. In addition, with certain boundary condition, the buck-
ling loads for porosity distribution D1 are always higher than for porosity distri-
bution D2.

Figure 11. Effects of ratio a/b on post-buckling load–deflection curves. (a) For SSSS porous
plates. (b) For SSCC porous plates.

Figure 12. Effects of ratio b/h on post-buckling load–deflection curves. (a) For SSSS porous
plates. (b) For SSCC porous plates.
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Conclusions

This paper presents an analytical approach to study buckling and post-buckling
response of thin porous plates under in-plane edge compressive loads. Theoretical
formulations are within the framework of classical plate theory with both geomet-
rical nonlinearity in von Karman sense and initial imperfection.

Galerkin’s method is employed to obtain the closed-form expressions of post-
buckling load–deflection curves of a porous plate with two types of porosity dis-
tribution. The effects of porosity coefficient, imperfection and geometric parame-
ters of porous plates are investigated. The results show that post-buckling behavior
of porous plates is significantly influenced by porosity coefficient, porosity distri-
bution, imperfection, geometric parameters and in-plane boundary conditions.
Furthermore, a few conclusions can be summarized from the numerical results:

1. The critical buckling loads decrease and the porous plate will be unstable by
increasing porosity coefficient. Therefore, porosity distribution has a major role
on the buckling behavior and should be considered in stability analysis of
porous plates.

2. The post-buckling curves for nonlinear symmetric porosity distribution are
higher than those for nonlinear asymmetric porosity distribution. This indicates
that the FGM plates with symmetrically distributed porosity can achieve the
higher stiffness hence the better mechanical performance.

3. The buckling load decreases remarkably with increasing aspect ratio and
thickness-to-side ratios.
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Figure 13. Effects of ratio b/h on post-buckling load–deflection curves.
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4. The post-buckling curves of imperfect plates are lower than those of perfect

plates. It is evident that the perfect plate has a better mechanical loading capac-

ity than those of the imperfect plate.

Finally, it is concluded that the analysis and thereafter results presented in this

paper would be very useful for engineering design of such structures.

Highlights

• Analytical approach to investigate the nonlinear buckling and post-buckling

behavior of imperfect porous plates under in-plane edge compressive loads.
• Galerkin’s method is employed to obtain the closed-form expressions of post-

buckling load–deflection curves of a porous plate with two types of porosity

distribution.
• The effects of porosity coefficient, imperfection and geometric parameters of

porous plates are investigated. The results show that post-buckling behavior of

porous plates is significantly influenced by porosity coefficient, porosity distri-

bution, imperfection, geometric parameters and in-plane boundary conditions.
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