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Abstract This study investigates the buckling and free vibration behavior of functionally graded saturated
porous (FGSP) using a refined quasi-3D theory that ensures zero transverse shear stress at the top and bottom
surfaces of the plate. The material properties depend on the porosity coefficient according to three patterns.
Hamilton’s principle and Biot’s poroelasticity theory are employed to derive the equations of motion, which
are then solved using Navier’s technique. After examining the accuracy of the suggested approach, the effect of
fluid compressibility on natural frequency and critical buckling load is investigated in the undrained condition.
Also, the effect of porosity, geometrical parameters, and elastic foundation on the vibration and buckling
response of FGSP plates are examined. The study reveals that saturating the pores with fluid leads to increased
plate stiffness. This translates to higher critical buckling loads and fundamental frequencies.

Keywords Buckling response · Vibration analysis · Saturated porous plate · Analytical solution · Quasi-3D
theory

1 Introduction

Functionally graded porous materials (FGPM) are ones of advanced lightweight materials, which are created
from the idea of combining two different materials, FGMs, and porous materials. The variation of porosity
along certain directions causes a continuous change in their mechanical properties. Possess great permeability,
resistance to shock, and electrical conductivity, FGPMs have been used in different fields such as aircraft,
submarine, energy, sea structures, biophysics, etc. Usually, the pores are filled by the fluid and introduce some
specific properties. To study the mechanical behavior of FGP structures, the poroelasticity theory, which was
first introduced by Biot [1] is used. Biot’s theory includes two conditions: drained and undrained (saturated). In
drained conditions, stress–strain relations are expressed as the conventional theory of elasticity (Hooke law).

To analyze the mechanical response of FGP structures, various plate models have been suggested based on
particular assumptions. These theories first are developed for isotropic plates, and later improved for composite
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plates. The buckling response and vibrational characteristic of plates are important problems in the design
process, thus the studies focused on this topic are always attracted many researchers. There are numerous
works published related to the FGP plates in the drained conditions that Hooke law is used to describe the
stress–strain relation [2–5]. Recently, research on the dynamic response of FGP plates in undrained conditions
(FGSP—functionally graded saturated porous plates) has also received more and more attention.

Based on Kirchhoff’s hypothesis, classical plate theory (CPT) is developed by Love. This is the sim-
plest plate theory and is appropriate only for thin plates because of neglecting the shear and normal strains.
Theodorakopoulos and Beskos [6] presented a vibration analysis of FGSP rectangular plates including the
inertia effects. Leclaire et al. [7] investigated the vibrational characteristics of a thin FGSP plate. Jabbari et al.
[8] reported a stability analysis of FGSP circular plates under only compressive radial loading, and taking into
account the thermal effect [9, 10]. Later, the buckling behaviour of the FGSP rectangular plate embedded with
a piezoelectric actuator is explored by Jabbari et al. [11] by using an analytical approach.

SinceCPTdoes not provide consistent results for thick plates, first-order shear deformation theories (FSDT)
are suggested. FSDT assumes that in-plane displacements are linear functions of plate thickness variables and
have been used widely because of their simplicity. Rezaei and Saidi [12, 13] predicted critical buckling load
and natural frequencies of the FGSP annular sector plate by using an analytical approach. These authors [14]
reported the impact of coupled solid–fluid deformation on the free vibrational characteristics of the FGSP
rectangular plate under the Levy-type boundary condition. Chen et al. [15] investigated the static and buckling
response of an FGP (in drained condition) plate using FSDT and Chebyshev-Ritz method. By employing
the improved Fourier series method, Zhao et al. [16] presented the free vibration of the FGP plate under
different boundary conditions. Utilizing the GDQM, Khouzestani and Khorshidvand [17] predicted the natural
frequencies and stress field of the FGSP annular plate.

Since in-plane displacements of FSDT are supposed to be linearly varied along the plate thickness, it does
not reflect the real parabolic change of the shear stress along the plate thickness, therefore it is necessary to
include the shear correction factor. However, the exact values of these factors depend on several factors, such
as plate geometry, boundary conditions, and material properties. To overcome the drawbacks of FSDT, various
HSDTs are developed. By assuming negligible strains and stresses through the thickness, the 3D elasticity
problem of a plate reduces to 2D plate theories. These theories were initially proposed for isotropic and
laminated composite plates and then extended to FGM and FGSP plates. For example, Sharifan and Jabbari
[18] investigated the stability of the FGSP elliptical plate subjected to in-plane compressive forces. Mojahedin
et al. [19] predicted the buckling load of the FGSP circular plate by applying HSDT, and the obtained results
are compared with those used CLPT and FSDT.Within the framework of Reddy’s HSDT and FSDT, Rad et al.
[20] presented an elastic buckling analysis of an FGSP plate with Levy boundary conditions. Using Reddy’s
HSDT and analytical approach, Rezaei and Saidi [21] predicted the natural frequency of the FGSP plate.

While 3D elasticity theory provides the most general solution, its mathematical complexity makes it
computationally expensive and time-consuming. Therefore, this approach is rarely used for FGSP plates, only
a few studies have been published. Using the 3D elasticity theory, Kiarasi et al. [22] presented the 3D solution
to explore the buckling behavior of rectangular FGSP plates under various loading types by using the FE-
GDQ method (combination of FEM and generalized DQM). Using three-dimensional finite element, Babaei
et al. presented bending and free vibrational characteristics of FGSP annular elliptical sector plate [23], free
vibration, and dynamic response of FGSP annular sector plate and cylindrical panels [24, 25].

Beam, plate, and shell structures on elastic foundations are highly relevant in practical engineering. To
understand their mechanical behavior, researchers have proposed and applied various foundation models to
analyze both static and dynamic responses of these structures, for instance, Winkler/Pasternak model [26],
Winkler/Pasternak/Kerr [27] model, visco-Pasternak model [28–37],

Among the plate theories used in analyzing plate structures, quasi-3D theory is commonly employed. It
is favored for its reduced mathematical complexity compared to 3D elasticity theory and its consideration of
transverse normal strain and transverse shear strains, which are not accounted for in 2D plate theory. Various
quasi-3D theories are used in analyzing FGM plate and shell structures. These theories encompass HSDTs,
where the variation in transverse displacement nonlinearly changes across plate thickness and they do not meet
the conditions of having vanishing transverse shear stress on both the upper and lower surfaces of the plate
[38, 39].

To the best of the authors’ knowledge, no comprehensive vibration and buckling analysis has been per-
formed on FGSP plates, representing the novelty of the paper. This study builds upon our previous work [40],
which introduced a quasi-3D higher-order shear deformation theory with seven displacement unknowns for
static analysis of FGSP plates. This work departs from previous studies by employing Hamilton’s principle to
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Fig. 1 The configuration of the FGSP plate resting on the Pasternak elastic foundation

derive the governing equations for FGSP plates. Navier’s technique is then applied to obtain explicit solutions
for natural frequency and critical buckling load. By employing Biot’s poroelastic theory, the effect of fluid
pressure in the pores on the vibration and buckling response of FGSP plates with three porosity distribution
patterns is investigated. Additionally, the influence of porosity coefficient, porosity distribution patterns, plate
geometry, and foundation stiffness are examined in detail.

2 Theoretical formulation

2.1 The FGSP plate model

The configuration of an FGSP rectangular plate resting on Pasternak elastic foundation is illustrated in Fig. 1,
and the reference coordinate system (x, y, z) located at the mid-plane.

For FGPMs, to determine the effective material properties, different methods have been proposed to link
the mesoscopic/microscopic porous geometric features (relative density mainly) with macroscopic material
parameters.

Variousmodels have been suggested for FGPMs to establish a connection between themicroscopic features
of pores (primarily relative density), and the macroscopic material properties to ascertain effective material
properties, including the Gibson-Ashby, Christensen, Roberts-Garboczi, Menges-Knipschild, Chen models,
and modified rule of mixture [41]. Most of these models were created through experimental or numerical
investigations and can be utilized for both open-cell and closed-cell foams by adjusting specific parameters.
The relative density is often regarded as the primary determining factor, providing a relatively straightforward
method for predicting overall properties. This is achieved by assigning desired distributions of relative density
to the structural components. For metal foams, a specific type of foam material, effective material properties
are assumed to be changed across plate thickness according to three laws as follows [42, 43]:

• UPD: uniform porosity distribution:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{E(z),G(z)} � {Emax,Gmax}(1 − e0ψ);

ρ(z) � ρmax
√
1 − e0ψ ;

ψ � 1

e0
− 1

e0

(
2

π

√
1 − e0 − 2

π
+ 1

)2
(1)

• NUPD-S: non-uniform symmetric porosity distribution [44]:
⎧
⎪⎨

⎪⎩

{E(z),G(z)} � {Emax,Gmax}
[
1 − e0 cos

(π z

h

)]
;

ρ(z) � ρmax

[
1 − em cos

(π z

h

)] (2)
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• NUPD-AS: non-uniform asymmetric porosity distribution [8]:

⎧
⎪⎨

⎪⎩

{E(z),G(z)} � {Emax,Gmax}
[
1 − e0 cos

(π z

2h
+

π

4

)]
;

ρ(z) � ρmax

[
1 − em cos

(π z

2h
+

π

4

)] (3)

where Emax, Gmax, ρmax and Emin, Gmin, ρmin are extremum values of elastic moduli, and mass density.
The Poisson coefficient is assumed to be independent of the thickness coordinate [8, 45]. e0 is the porosity
coefficient (0 < e0 < 1), and is defined by:

e0 � 1 − Emin/Emax � 1 − Gmin/Gmax (4)

The porosity coefficient for mass density em (0 < em < 1) is defined as:

em � 1 − ρmin/ρmax (5)

The relation between extremum Young’s modulus and mass density for an open-cell metal foam [46, 47],
e0 and em [45] is expressed as:

Emin

Emax
�

(
ρmin

ρmax

)2

; em � 1 − √
1 − e0 (6)

2.2 Displacement field

The refined quasi-3D HSDT used in this study originated from eleven unknown HSDT and also satisfies free
transverse shear stresses in the top and bottom surfaces of the plate. The displacement field is given as [40]:

u1(x , y, z, t) � u01(x , y, t) + zθ1(x , y, t) − z2

2

∂θ3

∂x
− z3

3

[

κ

(
∂u03
∂x

+ θ1

)

+
∂u∗

3

∂x

]

;

u2(x , y, z, t) � u02(x , y, t) + zθ2(x , y, t) − z2

2

∂θ3

∂y
− z3

3

[

κ

(
∂u03
∂y

+ θ2

)

+
∂u∗

3

∂y

]

;

u3(x , y, z, t) � u03(x , y, t) + zθ3(x , y, t) + z2u∗
3(x , y, t)

(7)

where κ � 4
h2
; u01, u

0
2, u

0
3 are displacements of a point along (x,y,z) axes, and θ1, θ2 are rotations of a transverse

normal about the y- and x- axes; θ3, u∗
3 are higher-order terms.

The kinematic relations are expressed as:

ε �

⎧
⎪⎨

⎪⎩

εx
εy
εz
γxy

⎫
⎪⎬

⎪⎭
�

⎧
⎪⎪⎨

⎪⎪⎩

ε0x
ε0y
ε0z
γ 0
xy

⎫
⎪⎪⎬

⎪⎪⎭

+ z

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
(1)
x

ε
(1)
y

ε
(1)
z

γ
(1)
xy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ z2

⎧
⎪⎪⎨

⎪⎪⎩

ε
(2)
x

ε
(2)
y
0

γ
(2)
xy

⎫
⎪⎪⎬

⎪⎪⎭

+ z3

⎧
⎪⎪⎨

⎪⎪⎩

ε
(3)
x

ε
(3)
y
0

γ
(3)
xy

⎫
⎪⎪⎬

⎪⎪⎭

;

γ�
{

γxz
γyz

}

� (
1 − κz2

)
{

γ 0
xz

γ 0
yz

}

(8)



A refined quasi-3D model for buckling

where

ε0x � ∂u01
∂x

; ε(1)x � ∂θ1

∂x
; ε(2)x � −1

2

∂2θ3

∂x2
; ε(3)x � −1

3

[

κ

(
∂2u03
∂x2

+
∂θ1

∂x

)

+
∂u∗

3

∂x2

]

;

ε0y � ∂u02
∂y

; ε(1)y � ∂θ2

∂y
; ε(2)y � −1

2

∂2θ3

∂y2
; ε(3)y � −1

3

[

κ

(
∂2u03
∂y2

+
∂θ2

∂y

)

+
∂u∗

3

∂y2

]

;

ε0z � θ1; ε(1)z � 2u∗
3; γ 0

xy � ∂u01
∂y

+
∂u02
∂x

; γ (1)
xy �

(
∂θ1

∂y
+

∂θ2

∂x

)

;

γ (2)
xy � − ∂2θ3

∂x∂y
; γ (3)

xy � −1

3

[

κ

(

2
∂2u03
∂x∂y

+
∂θ1

∂y
+

∂θ2

∂x

)

+ 2
∂2u∗

3

∂x∂y

]

;

γ 0
xz � θ1 +

∂u03
∂x

; γ 0
yz � θ2 +

∂u03
∂y

(9)

2.3 Constitutive relations

Based on Biot’s poroelasticity theory, stress–strain relations for FSGP plate are given as follows [48]:

σi � 2Gεi + λuθ − pα0; i � x , y, z

τ j � Gγ j ; j � xy, yz, xz
(10)

where p, α0, and θ are pore fluid pressure, Biot coefficient of effective stress, and volumetric strain that are
defined as:

p � M(ξ − α0θ); α0 � 1 − G

G1
; θ � εx + εy + εz ;

M � 2G(νu − ν)

α2
0(1 − 2νu)(1 − 2ν)

; λu � 2νu
1 − 2νu

G; νu � ν + α0B(1 − 2ν)/3

1 − α0B(1 − 2ν)/3

(11)

in Eq. (9):M is Biot modulus, νu is undrained Poisson ratio, ξ is the variation of the fluid volume content, and
B is Skempton pore pressure coefficient.

Applying the Biot’s theory, the stress–strain relation for FSGP plates can be expressed as:

σ �

⎧
⎪⎨

⎪⎩

σx
σy
σz
τxy

⎫
⎪⎬

⎪⎭
� G(z)

⎡

⎢
⎣

k1 k2 k2 0
k2 k1 k2 0
k2 k2 k1 0
0 0 0 k3

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

εx
εy
εz
γxy

⎫
⎪⎬

⎪⎭
;

τ �
{

τxz
τyz

}

� G(z)

[
1 0
0 1

]{
γxz
γyz

}
(12)

where k1 � 2(2νuν−3ν+1)
1−2νu−2ν+4ννu

; k2 � 2(2νu−2νuν−ν)
1−2νu−2ν+4ννu

; k3 � 1.
Stress resultants are defined as:

⎡

⎢
⎣

Nx Mx
Ny My
Nz Mz
Nxy Mxy

⎤

⎥
⎦ �

h/2∫

−h/2

⎧
⎪⎨

⎪⎩

σx
σy
σz
τxy

⎫
⎪⎬

⎪⎭

{
1 z

}
dz;

⎡

⎣
N∗
x M∗

x
N∗
y M∗

y
N∗
xy M∗

xy

⎤

⎦ �
h/2∫

−h/2

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭

{
z2 z3

}
dz;

{
Rx
Ry

}

�
h/2∫

−h/2

{
τxz
τyz

}
(
1 − κz2

)
dz (13)
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From Eqs. (8), (12), and (13), the stress resultants can be rewritten in the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx
Ny
Nz
Nxy
Mx
My
Mz
Mxy
N∗
x

N∗
y

N∗
xy

M∗
x

M∗
y

M∗
xy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A2 A2 0 B1 B2 B2 0 C1 C2 0 D1 D2 0
A2 A1 A2 0 B2 B1 B2 0 C2 C1 0 D2 D1 0
A2 A2 A1 0 B2 B2 B1 0 C2 C2 0 D2 D2 0
0 0 0 A3 0 0 0 B3 0 0 C3 0 0 D3
B1 B2 B2 0 C1 C2 C2 0 D1 D2 0 E1 E2 0
B2 B1 B2 0 C2 C1 C2 0 D2 D1 0 E2 E1 0
B2 B2 B1 0 C2 C2 C1 0 D2 D2 0 E2 E2 0
0 0 0 B3 0 0 0 C3 0 0 D3 0 0 E3
C1 C2 C2 0 D1 D2 D2 0 E1 E2 0 F1 F2 0
C2 C1 C2 0 D2 D1 D2 0 E2 E1 0 F2 F1 0
0 0 0 C3 0 0 0 D3 0 0 E3 0 0 F3
D1 D2 D2 0 E1 E2 E2 0 F1 F2 0 G1 G2 0
D2 D1 D2 0 E2 E1 E2 0 F2 F1 0 G2 G1 0
0 0 0 D3 0 0 0 E3 0 0 F3 0 0 G3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0x
ε0y
ε0z
γ 0
xy

ε
(1)
x

ε
(1)
y

ε
(1)
z

γ
(1)
xy

ε
(2)
x

ε
(2)
y

γ
(2)
xy

ε
(2)
x

ε
(2)
y

γ
(3)
xy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

{
Rx
Ry

}

�
[
As 0
0 As

]{
γ 0
xz

γ 0
yz

}

(14)

where

(Ai , Bi ,Ci , Di , Ei , Fi ,Gi ) �
h/2∫

−h/2

kiG(z)
(
1, z, z2, z3, z4, z5, z6

)
dz; i � 1, 2, 3;

As �
h/2∫

−h/2

G(z)
(
1 − κz2

)2
dz � A3 − 2κC3 + κ2E3 (15)

2.4 Equations of motion

The governing equations of the FGSP plate are derived by using Hamilton’s principle [49] and are performed
in the variational form:

0 �
T∫

0

(δUP + δUF + δV − δK )dt (16)

where δUP is the virtual strain energy, δUF is the virtual strain energy of the foundation, δV is the virtual
work done by external forces, and δK is the virtual kinetic energy.

The virtual strain energy is determined by:

δUP �
∫

A

h/2∫

−h/2

(
σ T δε + τ T δγ

)
d Adz (17)

The virtual strain energy of the foundation can be expressed as:

δUF � −
∫

A

f −
e δu−

3 d A � −
∫

A

f −
e

(

δu03 − h

2
δθ3 +

h2

4
δu∗

3

)

d A (18)

where f −
e is the reaction of the Pasternak foundation [50]:

f −
e �

(

−kwu3 + ksx
∂2u3
∂x2

+ ksy
∂2u3
∂y2

)∣
∣
∣
∣
z�−h/2

(19)
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The virtual work done by external in-plane forces is given by [51]:

δV �
∫

A

h/2∫

−h/2

(

σ 0
x
∂u3
∂x

∂δu3
∂x

+ 2σ 0
xy

∂u3
∂x

∂δu3
∂y

+ σ 0
y
∂u3
∂y

∂δu3
∂y

)

dzd A (20)

where σ 0
x , σ 0

y , τ 0xy are in-plane stresses, produced due to applied middle plane loads N 0
x , N

0
y , N

0
xy , and:

(
σ 0
x , σ 0

y , τ 0xy

)
� 1

h

(
N 0
x , N

0
y , N

0
xy

)
.

The virtual kinetic energy can be written in the form:

δK �
∫

A

h/2∫

−h/2

(u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3)ρ(z)d Adz (21)

where the dot-superscript indicates time derivative, e.g. u̇1 � ∂u1/∂t ; ρ(z) is the mass density.
By expressing δUP , δUF , δV and δK in terms of displacements, then substituting into Eq. (16) and

integrating by parts, and then collecting δu01, δu02, δu03, δθ1, δθ2, δθ3, δu∗
3, we obtain the following equations

of motion:

δu01:Nx ,x + Nxy,y � I0ü
0
1 + J1θ̈1 − 1

2
I2θ̈3,x − 1

3
I3
(
κ ü03,x + ü∗

3,x

)
;

δu02:Nxy,x + Ny,y � I0ü
0
2 + J1θ̈2 − 1

2
I2θ̈3,y − 1

3
I3
(
κ ü03,y + ü∗

3,y

)
;

δu03:
κ

3

(
M∗

x ,xx + 2M∗
xy,xy + M∗

y,yy

)
+ Rx ,x + Ry,y + f −

z + Ñ0 � I0ü
0
3 + I1θ̈3 + I2ü

∗
3

+
I3κ

3

(
ü01,x + ü02,y

)
+
J4κ

3

(
θ̈1,x + θ̈2,y

) − I5κ

6
∇2θ̈z − I6κ2

9
∇2ẅ0 − I6κ

9
∇2ẅ∗

0;

δθ1:Rx − Px ,x − Pxy,y � −J1ü
0
1 − K2θ̈1 +

J3
2

θ̈3,x +
J4κ

3
ü03,x +

J4
3
ü∗
3,x ;

δθ2:Ry − Pxy,x − Py,y � −J1ü
0
2 − K2θ̈2 +

J3
2

θ̈3,y +
J4κ

3
ü03,y +

J4
3
ü∗
3,y ;

δθ3:
1

2

(
N∗
x ,xx + 2N∗

xy,xy + N∗
y,yy

)
− Nz − h

2
f −
z + Ñ1 � I1ü

0
3 + I2θ̈3 + I3ü

∗
3

+
1

2
I2
(
ü01,x + ü02,y

)
+
J3
2

(
θ̈1,x + θ̈2,y

) − I4
4

∇2θ̈3 − I5κ

6
∇2ü03 − I5

6
∇2ü∗

3;

δu∗
3:
1

3

(
M∗

x ,xx + 2M∗
xy,xy + M∗

y,yy

)
− 2Mz +

h2

4
f −
z + Ñ2 � I2ü

0
3 + I3θ̈3 + I4ü

∗
3

+
I3
3

(
ü01,x + ü02,y

)
+
J4
3

(
θ̈1,x + θ̈2,y

) − I5
6

∇2θ̈3 − I6κ

9
∇2ü03 − I6

9
∇2ü∗

3 (22)

where

Px � Mx − κ

3
M∗

x ; Py � My − κ

3
M∗

y ; Pxy � Mxy − κ

3
M∗

xy ;

∇2 � ∂2/∂x2 + ∂2/∂y2 is Laplacian operator;
Mass moments of inertia (Ii , Jm , K2) are defined as:

Ii �
h/2∫

−h/2

ziρ(z)dz; i � 1 ÷ 6;

Jm � Im − κ Im+2

3
; m � 1, 3, 4;

K2 � I2 − 2κ I4
3

+
κ2 I6
9

(23)
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and

Ñi � Ni
x
∂2w0

∂x2
+ Ni+1

x
∂2θz

∂x2
+ Ni+2

x
∂2w∗

0

∂x2
+ Ni

y
∂2w0

∂y2
+ Ni+1

y
∂2θz

∂y2
+ Ni+2

y
∂2w∗

0

∂y2

+2Ni
xy

∂2w0

∂x∂y
+ 2Ni+1

xy
∂2θz

∂x∂y
+ 2Ni+2

xy
∂2w∗

0

∂x∂y
; i � 0, 1, 2

(24)

with

{
Ñ i
x Ñ i

y Ñ i
xy

}
� 1

h

h/2∫

−h/2

zi
{
N 0
x N 0

y N 0
xy

}
dz (25)

3 Analytical solution

Consider the rectangular FGSP plate with the geometry shown in Fig. 1, in-plane compressive loads in two
directions (N 0

x � γ1N0, N 0
y � γ2N0, N 0

xy � 0) are applied. The simply supported boundary conditions of
plate edges are demonstrated as follows:

At edge x � 0 and x � a:

v0 � 0, w0 � 0, θy � 0, θz � 0, w∗
0 � 0, Mx � 0, M∗

x � 0 (26)

At edge y � 0 and y � b:

u0 � 0, w0 � 0, θx � 0, θz � 0, w∗
0 � 0, My � 0, M∗

y � 0 (27)

The displacement unknowns are assumed as a double trigonometric series, satisfying the above simply
supported boundary condition:

u01(x , y, t) �
∞∑

m�1

∞∑

n�1

Umne
iωt cos(αx) sin(βy);

u02(x , y, t) �
∞∑

m�1

∞∑

n�1

Vmne
iωt sin(αx) cos(βy);

u03(x , y, t) �
∞∑

m�1

∞∑

n�1

Wmne
iωt sin(αx) sin(βy);

θ1(x , y, t) �
∞∑

m�1

∞∑

n�1

ψxmne
iωt cos(αx) sin(βy);

θ2(x , y, t) �
∞∑

m�1

∞∑

n�1

ψymne
iωt sin(αx) cos(βy);

θ3(x , y, t) �
∞∑

m�1

∞∑

n�1

ψzmne
iωt sin(αx) sin(βy);

u∗
3(x , y, t) �

∞∑

m�1

∞∑

n�1

W ∗
mne

iωt sin(αx) sin(βy)

(28)

where i � √−1; Umn , Vmn , Wmn , ψxmn , ψymn , ψzmn , W ∗
mn are unknown coefficients; ω is the natural

frequency; and m, n � 1, 2, 3, ...



A refined quasi-3D model for buckling

Substituting Eq. (28) into Eqs. (22), the analytical solutions can be obtained from:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s11 s12 s13 s14 s15 s16 s17
s12 s22 s23 s24 s25 s26 s27
s13 s32 s33 + k33 s34 s35 s36 s37 + k37
s14 s24 s34 s44 s45 s46 s47
s15 s25 s35 s45 s55 s56 s57
s16 s26 s36 s46 s56 s66 + k66 s67
s17 s27 s37 + k37 s47 s57 s67 s77 + k77

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− ω2[M]7×7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Umn
Vmn
Wmn
ψxmn
ψymn
ψzmn
W ∗

mn

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(29)

in which the coefficients of [S], and [M] are given in the Appendix, and:

k33 � N0
(
γ1α

2 + γ2β
2); k37 � k66 � h2

12
k33; k77 � h4

80
k33 (30)

By dropping all the inertia terms (ω � 0) in Eq. (29), the buckling loads (Nbl ) corresponding to buckling
modes (m,n) of the plates are obtained. The critical buckling load (Ncr ) is the minimum value among all
buckling loads.

The eigenvalue problem is derived from Eq. (29) by removing all in-plane loads (N0 � 0). The solutions of
this equation represent the natural frequencies (ωmn) of the plate for any combination of (m,n) mode numbers.
The fundamental natural frequency ω f of the FSGP plate is the smallest one: ω f � min{ωmn}.

4 Numerical results

The Matlab program is developed to conduct numerical examples. The simply supported (SS) FGSP plate
resting on the Pasternak substrate is investigated. Input data for aluminum foam [52] are: ν � 0.3, ρmax �
2707 kg/m3, Gmax � 26.923 GPa, Emax � 2Gmax(1 + ν). Firstly, the precision and effectiveness of the
current method are confirmed through a comparison of our results with previously established findings. Next,
different investigations will be implemented to evaluate the effect of different parameters on the buckling and
vibration characteristics of the FGSP plate. Nondimensional parameters are used in the forms [53–55]:

N � Ncr
a2

Emaxh3
; ω � ω f h

√
ρmax

Emax
;

K0 � kw

a4

E0h3
; J0 � ksx

a2

E0h3ν
� ksy

b2

E0h3ν
; E0 � 1 GPa (31)

4.1 Validation examples

Three examples are conducted to validate critical buckling loads and frequencies. Because of no work in the
open literature relating to 3D solutions for FGSP plate (in drained condition), the efficiency of the proposed
quasi-3D theory is indicated by comparison with an isotropic plate. Table 1 listed the nondimensional critical
buckling loads and fundamental natural frequencies of SS isotropic square plate (a � b � 1 m, h � 0.1 m,
E � 151 GPa, ν � 0.3, ρ � 3000 kg/cm3) with various thickness-to-side ratios, under uniaxial compression
(γ1 � −1, γ2 � 0) at edges x � 0, a. The nondimensional formulas are [56, 57]:

N̂ � Ncr
a2

π2D0
; ω̂ � ω f a2

π2

√
ρh

D0
; D0 � Eh3

12
(
1 − ν2

) (32)

The comparison between the present results with the 3D solution of Uymaz and Aydogdu [56, 57] using
the Ritz method was also made. A very good agreement can be found from Table 1.

Table 2 presents the next validation for the critical buckling load of SS-FGSP square plates (a � b � 1 m)
with asymmetric porosity distribution and various porosity coefficients (NUPD-AS, G1 � 24 GPa, ν � 0.25,B
� 0.51 [58]). The results are collated with those of Rad et al. [20] using FSDT and Levy solutions for various
thickness-to-side ratios and different porosity coefficients. Good agreements between the obtained results for
FGSP plates can be observed, and the discrepancy is acceptable due to using different theories (FSDT and
present quasi-3D theory).
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Table 1 Validation of nondimensional critical buckling load N̂ and nondimensional fundamental natural frequency ω̂ of the
isotropic square plate

Source h/a

0.05 0.1 0.2

3D (Ritz) [56] 3.9499 3.8099 3.3299
N̂ Present 3.9471 3.7966 3.2947

Discrepancy (%) 0.07 0.35 1.06
3D (Ritz) [57] 1.9570 1.9339 1.7748

ω̂ Present 1.9828 1.9342 1.7760
Discrepancy (%) 1.32 0.02 0.07

Table 2 Validation of critical buckling load Ncr (MN/m) of SS-FGSP square plate (asymmetric porosity distribution)

(γ1, γ2) h/a Source e0

0 0.3 0.5 0.7

γ1 � −1,

γ2 � 0
0.1 Rad et al. [20] 200.023 167.163 141.292 109.823

Present 200.443 171.095 146.354 115.004
Discrepancy (%) 0.21 2.35 3.58 4.72

0.2 Rad et al. [20] 1391.442 1157.871 978.262 764.934
Present 1401.846 1187.36 1012.9 799.4139
Discrepancy (%) 0.75 2.55 3.54 4.51

γ1 � −1,

γ2 � −1
0.1 Rad et al. [20] 100.011 83.582 70.646 54.912

Present 100.221 85.547 73.177 57.502
Discrepancy (%) 0.21 2.35 3.58 4.72

0.2 Rad et al. [20] 695.721 578.936 489.131 382.467
Present 700.923 593.680 506.450 399.707
Discrepancy (%) 0.75 2.55 3.54 4.51

Table 3 Nondimensional fundamental natural frequencies � of SS-FGSP square plates with non-uniform asymmetric porosity
distribution

B Sources a/h � 5 a/h � 10 a/h � 20

0.1 Ebrahim and Habibi [59] 0.21275 0.05783 0.01473
Present 0.21152 0.05745 0.01471
Discrepancy (%) 0.58 0.66 0.13

0.3 Ebrahim and Habibi [59] 0.21563 0.05876 0.01495
Present 0.21445 0.05833 0.01494
Discrepancy (%) 0.55 0.73 0.04

0.5 Ebrahim and Habibi [59] 0.21857 0.05954 0.01526
Present 0.21728 0.05919 0.01517
Discrepancy (%) 0.59 0.59 0.58

0.7 Ebrahim and Habibi [59] 0.22162 0.06055 0.01549
Present 0.22002 0.06002 0.01539
Discrepancy (%) 0.72 0.87 0.64

The last validation is conducted for nondimensional fundamental natural frequenciesω of SS-FGSP square
NUPD-AS plates (E1 � 69 GPa, ρ1 � 2260 kg/m3, ν � 0.25 [7], e0 � 0, K0 � J0 � 0). Table 3 presented
the comparison between the present results and those of Ebrahimi and Habibi [59], which used the FEM and
Reddy’s TSDT [60]. Remarkable consistency is evident for all a/h ratios (the maximum discrepancy is only
0.87%).

Through validated examples, it can be concluded that the proposed quasi-3D HSDT can be trustfully
employed to explore the buckling response and free vibrational characteristic of thick FGSP plates.

4.2 Buckling analysis

Consider rectangular SS-FGSP (aluminum foam), subjected to in-plane uni-axial (γ1 � −1, γ2 � 0) and
bi-axial (γ1 � γ2 � −1) uniform compressive loads: N 0

x � γ1Ncr , N 0
y � γ2Ncr .
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Fig. 2 Effect of porosity variation types and porosity coefficient on the non-dimensional critical buckling load of SS-FGSP plates

Table 4 Nondimensional critical buckling load of SS-FGSP plates with different Skempton coefficient B and porosity coefficient
e0

B e0

0.1 0.3 0.5 0.8

0.1 1.1856 1.0330 0.8617 0.5391
0.3 1.1921 1.0500 0.8854 0.5632
0.5 1.1986 1.0668 0.9086 0.5869
0.8 1.2084 1.0917 0.9431 0.6230

Figure 2 shows the effect of porosity variation types and porosity coefficient of FGP materials on the
non-dimensional critical buckling load of FGSP plates. It can be observed that an increase in the porosity
coefficient e0 makes the plate softer, leading to a decrease in the nondimensional critical buckling load for all
porosity variation types. It can be also seen that the FGSP plate with nonuniform symmetric distribution pattern
(NUPD-S) is the stiffest and thus has the highest critical buckling load, while the remaining two distribution
patterns (UPD and NUPD-AS) have almost the same stiffness (withstand lower critical buckling loads and
have similar values).

The influence of Skempton coefficient B on the non-dimensional critical buckling load of FGSP plates
without elastic foundation (NUPD-S, γ1 � γ2 � −1, a/h� 10, b/a� 1.5) is depicted in Table 4 and Fig. 3. The
findings indicate that a higher Skempton coefficient B leads to a slight increase in the nondimensional critical
buckling load. The increased pore pressure leads to a higher equivalent stiffness of the plate, explaining this
observation. Furthermore, the effect of Skempton coefficient B is more pronounced as the porosity coefficient
e0 is larger. For example, with e0 � 0.95, when B � 0.05: N � 0.3120; when B � 0.95: N � 0.3922 (increase
25.72%).

Figure 4 exhibits the relationship between the non-dimensional critical buckling load of FGSP plates
(NUPD-S, B � 0.5, e0 � 0.5, γ1 � γ2 � −1, h � 0.1 m) versus a/h as well as b/a ratios. This figure also
shows that non-dimensional critical buckling load rises as the a/h ratio increases but declines as the b/a ratio
increases. This figure also reveals that non-dimensional critical buckling load increases with increasing a/h
ratio, but decreases with increasing b/a ratio.

The relationship between the non-dimensional critical buckling load of rectangular (a/h � 10, b/a �
1.5) FGSP (NUPD-S,B � 0.5, e0 � 0.5, γ1 � γ2 � −1) plates and elastic foundation parameters is shown in
Fig. 5. It is clear that the attendance of an elastic foundation enhances the stability of FGSP plates, as evidenced
by the increased critical buckling loads. Results further show that a higher value for the elastic foundation
coefficients leads to an increase in the non-dimensional critical buckling load. Furthermore, the Pasternak
foundation coefficient J0 has a more significant impact compared to the Winkler foundation coefficient K0.
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Fig. 3 The relationship between the non-dimensional critical buckling load N of FGSP plates (NUPD-S) and parametersB and
e0

Fig. 4 The relationship between the non-dimensional critical buckling load N of FGSP plates (NUPD-S) and a/h and b/a ratios

Fig. 5 The relationship between the non-dimensional critical buckling load N of FGSP plates and elastic foundation parameters
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Table 5 The nondimensional fundamental natural frequencies SS-FGSP (NUPD-S, a/h � 10, b/a � 1.5) plate with different
Skempton coefficient B and porosity coefficient e0

B e0

0.1 0.3 0.5 0.8

0.1 0.0416 0.0403 0.0386 0.0342
0.3 0.0417 0.0406 0.0392 0.0350
0.5 0.0418 0.0410 0.0397 0.0357
0.8 0.0420 0.0414 0.0404 0.0368

Fig. 6 Change of non-dimensional fundamental natural frequencies ω of FGSP plates (NUPD-S) versus e0 coefficient

Fig. 7 Change of non-dimensional fundamental natural frequencies ω of FGSP plates (NUPD-S) versusB and e0

4.3 Free vibration analysis

Table 5 and Figs. 6, 7, 8, and 9 show the impact of porosity distribution types and porosity coefficient,
Skempton pore pressure coefficient B of FGSP materials, and geometrical and elastic foundation coefficients
on nondimensional fundamental natural frequencies of SS-FGSP plates.

From Fig. 6 can be seen that for UPD and NUPD-AS when e0 increases, the free space of the FGSP plate
rises, resulting in a decrease in the stiffness of the plate, which, in turn, leads to a reduction in the nondi-
mensional fundamental natural frequencies. However, for NUPD-S, the variation tendency of nondimensional
fundamental natural frequency is the opposite, when e0 increases, the frequency increases. This phenomenon
can be explained by the correlation between the mass effect and the bending stiffness of the plate. Additionally,
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Fig. 8 Variation of nondimensional fundamental natural frequencies ω of FGSP plates versus a/h and b/a ratios

Fig. 9 Effect of elastic foundation parameters on nondimensional fundamental natural frequencies ω of FGSP plates

the influence of porosity distribution becomes more pronounced with increasing porosity coefficient. This is
evident from the larger gaps between curves corresponding to different porosity patterns.

Table 5 and Fig. 7 describe the relationship between the Skempton pore pressure coefficient and the
nondimensional fundamental natural frequencies. It can be seen that as the Skempton coefficient B rises,
it increases the natural frequency. This is due to the fact that by increasing the Skempton coefficient, the
compressibility of fluid within the pores decreases and the natural frequencies increase. The influence of
coefficient B is more significant when the porosity coefficient e0 is larger. For example, with e0 � 0.95: ω �
0.0295 when B � 0.05; and ω � 0.0330 when B � 0.95 (an increase of 11.97%).

The impact of geometrical parameters on the natural frequencies ω of FGSP plates without elastic foun-
dation (NUPD-S, B � 0.5, e0 � 0.5) can be indicated in Fig. 8. As the thickness-to-side ratio a/h increases
(plate becomes thinner), the nondimensional fundamental natural frequency decreases motonically. The non-
dimensional fundamental natural frequency exhibits a decrease with increasing aspect ratio. This decrease is
most pronounced for small values of the b/a ratio. As the b/a ratio increases, the rate of decrease becomes
more gradual. For example, at an aspect ratio a/h at 10: when b/a� 1, the nondimensional fundamental natural
frequency ω is 0.0544. Doubling the b/a ratio to 2 reduces ω to 0.0345 (a 1.58-fold decrease), at b/a � 4, ω
further decreases to 0.00294 (a 1.17-fold decrease compared to b/a � 2).

Figure 9 illustrates the impact of foundation coefficients on natural frequencies ω of FGSP (NUPD-S, B �
0.5, e0 � 0.5) rectangular plates (a/h � 10; b/a � 1.5) have the same trend as the above-mentioned in buckling
analysis. The fundamental natural frequency increases as foundation parameters increase, and the Pasternak
foundation parameter affects natural frequency more significantly than Winkler foundation parameters.
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5 Conclusion

In this paper, the new quasi-3D HSDT is employed to explore the buckling behavior and free vibrational
characteristic of FGSP plates for the first time. This quasi-3D theory satisfies zeros stress-free conditions
on the top and bottom surfaces of the plate and simultaneously considers both transverse normal strain and
transverse shear strains. The model shows high similarity to the 3D solution, making it suitable for thick plate
analysis. Three porosity variation types are considered, in which the non-uniform distributions are described
by simple cosine law. Based on Navier’s technique, the critical buckling loads and natural frequencies of SS-
FGSP plates are determined. The accuracy of the proposedmodel is confirmed by comparison with the solution
given by 3D elasticity theory for isotropic plate and within the framework of the HSDT solution for drained
and undrained functionally grade porous plate. A comprehensive investigation is performed to highlight the
impact of porosity, saturation, geometrical, and elastic foundation parameters on FGSP plate response. The
major findings are listed below:

• The increased porosity coefficient reduces the stiffness of FGSP plates, resulting in a decrease in the uniaxial,
and biaxial critical buckling loads for all types of porosity distribution.Due to the relative correlation between
mass effect and plate stiffness, the fundamental natural frequency decreases as the porosity coefficient
increases for UPD and NUPD-AS plates, and vice versa for the NUPD-S plate.

• The porosity distribution patterns affect significantly the buckling and free vibration behavior of FGSP
plates. For a certain value of porosity coefficient, the NUPD-S plate provided the highest critical buckling
loads and fundamental natural frequencies, UPD and NUPD-AS plates provided smaller ones and their
values are close. Moreover, the influence of porosity distribution patterns becomes increasingly noticeable
as the porosity coefficient rises.

• Increasing the Skempton pore pressure coefficient B caused a decrease in the compressibility of fluid within
the pores, leading to an increase in critical buckling load and fundamental natural frequency. This increment
is greater as the Skempton coefficient increases.

• When the a/h ratio is increased, the nondimensional critical buckling loads rise but nondimensional funda-
mental natural frequencies decrease. Conversely, when the b/a ratio is increased, the nondimensional critical
buckling load and fundamental natural frequency decrease.

• The elastic foundation plays a substantial role in influencing critical buckling loads and fundamental natural
frequencies. Specifically, the impact of the Pasternak foundation coefficient J0 is more prominent than that
of the Winkler foundation coefficient K0.
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Appendix: The global linear stiffness matrix [S], and global mass matrix [M] Coefficients of matrix [S]:

s11 � A1α
2 + A3β

2; s12 � (A2 + A3)αβ; s13 � −D1

3
κα3 −

(
D2

3
+
2D3

3

)

καβ2;

s14 �
(

B1 − D1κ

3

)

α2 +

(

B3 − D3κ

3

)

β2; s15 �
(

B2 + B3 − D2κ

3
− D3κ

3

)

αβ;

s16 � s61 � −C1

2
α3 − A2α −

(
C2

2
+ C3

)

αβ2; s17 � −D1

3
α3 − 2B2α −

(
D2

3
+
2D3

3

)

αβ2;
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s22 � A3α
2 + A1β

2; s23 � −
(
D2

3
+
2D3

3

)

κα2β − D1

3
κβ3;

s24 �
(

B2 + B3 − D2κ

3
− D3κ

3

)

αβ; s25 �
(

B3 − D3κ

3

)

α2 +

(

B1 − D1κ

3

)

β2;

s26 � −
(
C2

2
+ C3

)

α2β − A2β − C1

2
β3; s27 � −

(
D2

3
+
2D3

3

)

α2β − 2B2β − D1

3
β3;

s33 � G1κ
2

9
α4 + Asα2 +

2(G2 + 2G3)κ
2

9
α2β2 + Asβ2 +

G1κ
2

9
β4 + ξ ;

s34 �
(
G1κ

2

9
− E1κ

3

)

α3 + Asα −
(
E2κ

3
+
2E3κ

3
− G2κ

2

9
− 2G3κ

2

9

)

αβ2;

s35 � s53 � −
(
E2κ

3
+
2E3κ

3
− G2κ

2

9
− 2G3κ

2

9

)

α2β + Asβ +

(
G1κ

2

9
− E1κ

3

)

β3;

s36 � F1κ

6
α4 +

D2κ

3
α2 +

(
F2
3

− 2F3
3

)

κα2β2 +
D2κ

3
β2 +

F1κ

6
β4 − h

2
ξ ;

s37 � G1κ

9
α4 +

2E2κ

3
α2 +

(
2G2

9
+
4G3

9

)

κα2β2 +
2E2κ

3
β2 +

G1κ

9
β4 +

h2

4
ξ ;

s44 �
(
G1κ

2

9
− 2E1κ

3
+ C1

)

α2 +

(
G3κ

2

9
− 2E3κ

3
+ C3

)

β2 + As ;

s45 � s54 �
(

C2 + C3 +
G2κ

2

9
+
G3κ

2

9
− 2E2κ

3
− 2E3κ

3

)

αβ;

s46 � −
(
D1

2
− F1κ

6

)

α3 +

(
D2κ

3
− B2

)

α −
(
D2

2
+ D3 − F2κ

6
− F3κ

3

)

αβ2;

s47 � −
(
E1

3
− G1κ

9

)

α3 +

(
2E2κ

3
− 2C2

)

α −
(
E2

3
+
2E3

3
− G2κ

9
− 2G3κ

9

)

αβ2;

s55 �
(
G3κ

2

9
− 2E3κ

3
+ C3

)

α2 +

(
G1c20
9

− 2E1κ

3
+ C1

)

β2 + As ;

s56 � −
(
D2

2
+ D3 − F2κ

6
− F3κ

3

)

α2β +

(
D2κ

3
− B2

)

β −
(
D1

2
− F1κ

6

)

β3;

s57 � −
(
E2

3
+
2E3

3
− G2κ

9
− 2G3κ

9

)

α2β +

(
2E2κ

3
− 2C2

)

β −
(
E1

3
− G1κ

9

)

β3;

s66 � E1

4
α4 + C2α

2 +

(
E2

2
+ E3

)

α2β2 + C2β
2 +

E1

4
β4 + A1 +

h2

4
ξ ;

s67 � F1
6

α4 + 2D2α
2 +

(
F2
3

+
2F3
3

)

α2β2 + 2D2β
2 +

F1
6

β4 + 2B1 − h3

8
ξ ;

s77 � G1

9
α4 +

4E2

3
α2 +

(
2G2

9
+
4G3

9

)

α2β2 +
4E2

3
β2 +

G1

9
β4 + 4C1 +

h4

16
ξ ;

with ξ � kw + ksxα2 + ksyβ2.
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Coefficients of matrix [M]:

[M] �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m11 0 m13 m14 0 m16 m17
0 m22 m23 0 m25 m26 m27
m13 m23 m33 m34 m35 m36 m37
m14 0 m34 m44 0 m46 m47
0 m25 m35 0 m55 m56 m57
m16 m26 m36 m46 m56 m66 m67
m17 m27 m37 m47 m57 m67 m77

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

m11 � m22 � I0;m13 � −ακ

3
I3;m14 � J1;m16 � −α

2
I2;m17 � −α

3
I3;

m23 � −βκ

3
I3;m25 � J1;m26 � −β

2
I2;m27 � −β

3
I3;

m33 � I0 +

(
α2 + β2

)
κ2

9
I6;m34 � −ακ

3
J4;m35 � −βκ

3
J4;

m36 � I1 +

(
α2 + β2

)
κ

6
I5;m37 � I2 +

(
α2 + β2

)
κ

9
I6;m44 � m55 � K2;

m46 � −α

2
J3;m47 � −α

3
J4;m56 � −β

2
J3;m57 � −β

3
J4;

m66 � I2 +

(
α2 + β2

)

4
I4;m67 � I3 +

(
α2 + β2

)

6
I5;m77 � I4 +

(
α2 + β2

)

9
I6.
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