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1 Introduction

In tall buildings, large axial shortenings occur in vertical elements like columns
and walls since these elements carry huge vertical loads from many floors [4]. The
amount of axial shortenings among the members is usually not the same because of the
difference in stress levels and other aspects such as reinforcement ratios and volume-
surface ratios. The difference in axial shortening of vertical members can result in
redistribution of loads between vertical members and additional forces in horizontal
clements. Besides effecting on structural elements, differential axial shortenings can
also cause damages in nonstructural elements such as the interior partitions, cladding
systems, and plumbing systems. Therefore, differential axial shortening is of primary
concern in the structural design of tall buildings [1, 3].

To avoid negative effects on structural and nonstructural elements of the building,
differential axial shortenings of vertical elements should be minimized. In the design
stage, this can be carried out by achieving uniformity of compressive stress within
vertical elements, increasing the stiffness of horizontal members [6], and increasing
axial stiffness of vertical elements anticipated to be subjected to large magnitude
of shortening (e.g. by means of providing additional reinforcement) [5]. Neverthe-
less, such approaches in the design stage may not guarantee that differential axial
shortening can be fully controlled due to many other design aspects to be consid-
ered. An effective means for reducing differential shortening is to compensate for
the change in lengths of the vertical elements at the construction stage. For example,
during the construction of columns, the concrete can be ‘overcast’ to accommodate
the anticipated axial shortening. In this approach, floors are often grouped and an
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equal compensation amount will be applied for every floor in a group [7-9, 11]. By
restricting the errors between the calculated differential shortening and the compen-
sation amount, the differential shortening can be controlled [9-11]. In practice, the
number of lumped groups should be minimized for the sake of simplification of the
compensation task.

In this study, the moving-optimal compensation method (MOC) is established to
determine the optimal number of lumped groups as well as the optimal correction
amounts for the compensation of differential axial shortening of the vertical elements
in tall buildings. Instead of solving the optimization problem as a whole, which
may be very costly, the current method successively solves a sequence of smaller
optimization problems by a differential evolution algorithm. The method is examined
for the compensation of the differential shortening of vertical elements in a 70-story
building. The efficiency of MOC is compared with those of two other methods,
including the optimal compensation technique (OC) [9] and the moving average
correction technique (MAC) [11].

2 Compensation Strategy

2.1 Formulation of Moving Optimal Compensation

The moving optimal compensation method (MOC) in this study has a strategy similar
to that of the MAC method proposed by Parket al. [11]. The floors are divided into
groups with an equal correction amount for every floor in a group as described in
Fig. 1. In Fig. 1, xj. is the calculated shortening of a vertical element of the jth floor
in ith group.

To simplify the compensation or the construction process in practice, the number
of lumped groups should be minimized. This can be achieved by maximizing the
number of floors, N;, in each group. On the other hand, there will be errors between the
compensation amounts and the prediction amounts. The correction amount, §;, used
for the ith group, therefore, should be chosen such that the cumulative error between
the predicted differential shortening and the correction amounts is minimum. Thus,
the objective function for the optimal compensation of the ith group is formulated
in the following form:

i—1 N;
Minimize f(Ni, 8;) = —N; +w x [> e+ Y (xf =) (1)
k=1 j=1

where w, (w > 1) is a weighted factor; &, is the cumulative error between the
compensation amount and the predicted differential shortening in the kth group
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To control the slab tilt caused by the axial shortenings, an allowable error value,
0;, 1s introduced [9]. Moreover, the cumulative error is limited to a tolerance, ¢;.
These constraints are written in the following forms [11]:

[xi =8| <6 3)

i—1 J

ng+2(xli —&)| <€ 4)
k=1 =1

The optimal number of floors, N;, together with the correction amount §; for the
ith group is determined by solving the above constrained optimization problem. The
steps of the moving optimal compensation method are as followings:

1. Predict the differential shortenings of vertical elements and set the tolerances for
the compensation errors, 6; and ;.

2. Solve the optimization problem described in Eq. 1 with the constraints in Eq. 3
and Eq. 4 to obtain the optimal number of floors, N;, and the optimal correction
amounts, §;, for the ith group.

3. Seti =i+ 1, and move to the next group.
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The optimal compensation solutions are found by using differential evolution (DE)
[12]. DE is simple, easy to use and applicable for different optimization problems.
The basics of DE are described in the following.

2.2 Differential Evolution

DE utilizes a population of Np candidate vectors of the design variables, a;, k =
I,..., Np (individuals), and an individual is defined as a;, = a1, ax2, ..., Gip,
where a;;,i = 1, ..., D are D design variables.

Initially, a population is randomly sampled from the solution space. For each
individual a; (named the target vector) of the current population, a trial vector ¢, is
generated by the ‘mutation’ and ‘crossover’ operators as follows.

Mutation: A mutant vector by is first created as:

bk =a, + F x (arZ - ar3) (5)

where a,1, a,, and a,; are different individuals randomly chosen from the
population;F is a scaling factor chosen in the interval [0, 1].
Crossover: the mutant vector is then exchanged with the target vector ag,
producing the trial vector ¢, as:
by; if (rand[0, 1] < C,)orr =i
Chi = : (6)
ki otherwise

where r is a randomly chosen integer in the interval [1, D]; C, is the crossover
parameter given in the interval [0,1].

Then, the trial vector ¢, is compared with the target vector a, and the better one
will survive in the next generation. The evolution stops when a termination criterion
is satisfied.

2.3 Handling Constraints and Comparison of Solutions

The considered optimization problem has inequality constraints, which can be
expressed in the form

ci(ag) <0,j=1,...,n¢ (7)

where n¢ is the number of constraints and ¢ (ay) is the jth constraint function. The
constraint violation of an individual a; is given by
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Ck:max{max{o,cj(ak)}},j:1,...,nc (8)
J

Deb’s rules [2] are applied in this constrained optimization problem to compare
two individuals. Deb’s constraint rules are described as:

1. A feasible individual is better than any infeasible one.

2. Of two feasible individuals or two individuals with equal constraint violations,
the smaller objective function value is the better.

3. Of two infeasible individuals, the smaller constraint violation is the better.

3 Illustration Example

In this section, a 70-story building [4] is considered to demonstrate the performance
of the moving-optimal compensation method. Figure 2 shows the typical floor plan
of the building. The differential shortening between the interior wall and the exterior
column given in references [9, 11] is used as input data. The shortening of columns
and walls includes both elastic and inelastic (creep and shrinkage) shortenings. The
performance of the proposed method is compared with those of two other methods,
the OC using simulated annealing (SA) [9] and the MAC method [11].

For the comparison, in the MOC method, the tolerance of 0.4 in is also given for
both the compensation error and the cumulative correction error. Figure 3 depicts
the compensation curves of the considered methods. The correction values for each
group from the three methods are given in Table 1. The compensation error curves
are depicted in Fig. 4 and the cumulative compensation error curves are shown in
Fig. 5. It is seen from these results that the differential shortening values at every
floor are controlled within the 0.4 in. limit. Considering the maximum accumulated
compensation error, the OC using SA results in 1.07 in. on the 47th floor, whereas,

Fig. 2 Typical layout of the
70-storey building [4]
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Table 1 Comparison of compensation solutions of different methods
OC with SA MAC MOC
Group | Floor | Correction | Group | Floor | Correction | Group | Floor | Correction
(in.) (in.) (in.)
| 14 0.096 1 1-9 0.182 1 1-11 0.192
2 5-11 0.282 2 10-20 | 0.496 2 12-25 | 0.596
3 12-24 | 0.582 3 21-28 | 0.794 3 26-52 | 1.012
4 25-57 | 0.962 4 29-49 | 1.023 4 53-64 | 0.712
5 58-68 | 0.530 5 50-61 | 0.798 5 65-70 | 0.221
6 69-70 | 0.075 6 62-68 | 0.433 - - -
- - - 7 69-70 | 0.076 - - -
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Fig. 5 Accumulated 70
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the MOC method gives 0.4 in. at the 46th and 59th floors, which is similar to the
MAC does (0.38 in. on the 65th floor).

The advantage of the MOC method is that it can give a smaller number of lumped
groups in comparison with the OC using SA and the MAC methods. For this example,
the number of lumped groups of the MOC method is five, whereas those of the OC
using SA and the MAC method are six and seven, respectively. Another benefit of the
proposed method is the low computational cost to produce the optimal solution since,
in the moving optimization compensation, the optimization problem is performed in
a sequence of small optimization problems with only two variables.

4 Conclusion

The moving optimal compensation method (MOC) for controlling the differential
shortening of the vertical members in tall buildings is presented in this paper. Different
from the existing methods, the proposed method determines the optimal compensa-
tion solution including the number of floor groups, the number of floors in each group
and the average correction amount for each floor by solving a sequence of small opti-
mization problems. The classical differential evolution algorithm is utilized as the
optimizer. The MOC method is examined with a 70-story building example and its
performance is compared with those of two existing methods previously reported in
the literature. It is demonstrated that a smaller number of compensation groups can
be found by the proposed method. By using the MOC method, the optimal solution
for the compensation purpose can be derived systematically with low computational
cost.
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