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Abstract
This study presents the performance of three machine learning (ML) models including gradient boosting regression trees 
(GBRT), artificial neural network model (ANN), and artificial neural network–particle swarm optimization (ANN-PSO) for 
predicting the axial compression capacity (ACC) of cold-formed steel elliptical hollow section (EHS) columns. To achieve 
the goal, a set of 291 data is collected from previous studies to develop GBRT, ANN, and ANN-PSO models. The perfor-
mance of GBRT, ANN, and ANN-PSO models is evaluated based on the statistical indicators, which are R2,RMSE,MAPE, 
and i20 − index . The results show that the ANN-PSO model with R2

= 1.00,RMSE = 41.3631,MAPE = 1.3689, and 
i20 − index = 0.9966 has the best performance compared to GBRT and ANN models. Moreover, a graphical user interface 
tool is developed based on the ANN-PSO model for practical designs.

Keywords Artificial neural network model · Gradient boosting regression trees · Artificial neural network–particle swarm 
optimization · Cold-formed steel elliptical hollow section · Axial compression capacity

Introduction

The cold-formed steel elliptical hollow section (EHS) is 
a special geometric property since it has major and minor 
axes, as shown in Fig. 1. This allows the designer to make 
a reasonable selection between the loading resistance and 
economical use of materials. However, the design process 
of EHS members has not been specified clearly in current 
design codes such as Eurocode 3 (1993-3-1, 2006), ANSI/
AISC360 (ANSI/AISC360, 2016) or AISI-S100 (AISI-
S100, 2016). Thus, this has motivated researchers to investi-
gate structural behaviors of EHS members (Chan & Gardner, 

2009; Chen & Young, 2019a, 2019b, 2019c, 2020; Law & 
Gardner, 2013; Mohammed & Cashell, 2021; Theofanous 
et al., 2009; Yao et al., 2019).

So far, numerous studies were conducted to consider the 
behaviors of cold-formed steel EHS structures (Chan & 
Gardner, 2009; Chen & Young, 2019a, 2019c, 2020; Law 
& Gardner, 2013; Mohammed & Cashell, 2021; Theofanous 
et al., 2009; Yao et al., 2019). Specifically, studies on axial 
compression capacity of EHS columns (Chen & Young, 
2019c), structural response of steel oval hollow members 
(Chen & Young, 2019b; Theofanous et al., 2009; Yao et al., 
2019), beam-column tests of EHS (Chen & Young, 2020), 
flexural buckling of EHS columns (Chan & Gardner, 2009), 
bending behaviors of elliptical sections (Chen & Young, 
2019a), global instability of EHS under biaxial bending 
(Law & Gardner, 2013), and distortional buckling of ellip-
tical tubes (Dias & Silvestre, 2011) were systematically 
performed. However, it is necessary to develop a tool that 
can rapidly predict the axial compression capacity (ACC) 
of EHS columns.

In recent years, machine learning (ML) algorithms have 
been widely used in engineering problems, especially to 
estimate the structural responses (Dias & Silvestre, 2011; 
Kaveh, 2014; Kaveh & Bondarabady, 2004; Kaveh et al., 
2008; Naser et al., 2021; Patel & Mehta, 2018; Tran et al., 
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2019, 2022). Many studies have applied various predicted 
ML techniques such as gradient boost regression tree 
(GBRT) (Friedman, 2001; Hao et al., 2022; Manna et al., 
2017; Nguyen & Nguyen, 2023; Qi et al., 2018), artificial 
neural networks (ANNs) (Manna et al., 2017; Nguyen et al., 
2023; Rönnholm et al., 2005; Tran et al., 2019, 2022), and 
other hybrid optimization models (Alizamir & Sobhanarda-
kani, 2018; Kumar et al., 2022; Shariati et al., 2019; Soltani 
et al., 2022; Toghyani et al., 2016). In addition, comparisons 
of the prediction performance of ML models were presented 
(Alzoubi et al., 2018; Le et al., 2019; Liu et al., 2021; Tran 
& Kim, 2020). However, an evaluation of GBRT, ANN, 
and artificial neural network–particle swarm optimization 
(ANN-PSO) models in predicting ACC of cold-formed steel 
EHS columns is not considered so far.

This study aims to develop three ML models includ-
ing GBRT, ANN, and ANN-PSO for predicting ACC of 
cold-formed steel EHS columns. A set of 291 data, consist-
ing of the larger outer diameter (B), smaller outer diameter 
(D) , thickness (t) , column length (L) , Young’s modulus (E) , 
static ultimate tensile strength ( �u ), tensile strain fracture 

( �u ), and static 0.2% proof stress ( �0.2 ), is considered as the 
input variables. Meanwhile, the ACC value of cold-formed 
EHS columns (P) is the output variable. The predicted per-
formance of GBRT, ANN, and ANN-PSO models is then 
evaluated using typical statistical indicators, which are 
goodness of fit ( R2 ), root mean squared error ( RMSE ), 
mean absolute percentage error ( MAPE ), and a20 − index . 
To apply the efficient ML model in practical designs, a new 
graphical user interface is developed.

Data collection

A set of 291 data considering a wide range of the outer 
diameter (B), smaller outer diameter (D) , thickness (t) , col-
umn length (L) , Young’s modulus (E) , static ultimate tensile 
strength ( �u ), tensile strain fracture ( �u ), static 0.2% proof 
stress ( �0.2 ), and the ACC of cold-formed EHS columns (P) 
is carefully collected from the literature (Chan & Gardner, 
2009; Chen & Young, 2019a, 2019b, 2019c, 2020; Law & 
Gardner, 2013; Mohammed & Cashell, 2021; Theofanous 
et al., 2009; Yao et al., 2019). The statistical properties are 
shown in Table 1, and frequencies of input database are 
shown in Fig. 2. Moreover, the correlation matrix of the 
dataset is shown in Fig. 3. It can be found that the Pearson’s 
correlation coefficients between pairs of B and D and t and 
P have a significant correlation, while the other parameters 
have a weak correlation.

Background of machine learning models

Artificial neural network (ANN)

ANN is one of the ML algorithms, and it is a computa-
tional model inspired by the structure and function of the 
human brain. ANN has been popularly employed in the 
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Fig. 1  The EHS column under the axial compression

Table 1  The statistical 
properties and range of the 
dataset

SD standard deviation, CoV coefficient of variation

B D t L E �
u

�0.2 �
u

P

(mm) (mm) (mm) (mm) (MPa) (MPa) (MPa) (%) (kN)

Minimum 86.00 50.00 1.50 171.90 185.00 383.00 236.50 0.07 82.00
Mean 271.42 135.18 7.17 2081.25 212.16 464.36 400.57 3.62 1688.10
Maximum 500.00 250.00 25.00 4000.00 213.40 661.00 532.80 4.80 11,397.60
SD 117.23 61.79 5.75 1153.05 2.67 39.06 33.65 0.62 2027.87
CoV 0.43 0.46 0.80 0.55 0.01 0.08 0.08 0.17 1.20
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Fig. 2  The statistical charac-
teristics and frequencies of the 
dataset
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civil engineering major (Naser et al., 2021; Tran et al.; 
Tran et al., 2019). An ANN consists of interconnected 
nodes, called artificial neurons or “units,” organized into 
layers. The most common type of ANN is the feedforward 
neural network, where information flows in one direction, 
from the input layer through one or more hidden layers 
to the output layer. Each neuron in a layer receives inputs 
from the previous layer, applies a weighted sum to those 
inputs, and passes the result through an activation function 
to produce an output. In this study, the ANN structures 
used a back-propagation neural network and a Leven-
berg–Marquardt (L-M) algorithm with a structure of three 
layers, as shown in Fig. 4. The input layer, hidden layer, 
and output layer are connected through weights and biases. 
Its mathematical representation has the form

(1)f ∶ X ∈ RD
→ Y ∈ R1,

where b1,W1 , and fh represent the bias, weight, and acti-
vation function of the hidden layer, respectively, whereas 
b2,W2 , and f0 are the bias, weight, and activation function 
of the output layer, respectively.

The nonlinear function ( tansig ) has been used for the hid-
den layer activation function and linear function ( purelin ) 
has been used for the output layer (Nikbin et al., 2017). Its 
mathematical expression is represented in Eqs. (3–4):

(2)f (X) = f0
(
b2 +W2 ×

(
fh
(
b1 +W1 × X

)))
,

B D t L E P

B 1.000 0.802 0.366 0.333 0.205 -0.163 0.038 0.123 0.649 1.0

D 0.802 1.000 0.337 0.331 0.195 -0.209 -0.014 0.101 0.605

t 0.366 0.337 1.000 0.154 0.133 -0.064 0.047 0.078 0.847

L 0.333 0.331 0.154 1.000 0.286 -0.204 0.058 0.207 0.099

E 0.205 0.195 0.133 0.286 1.000 -0.349 0.323 0.749 0.119

-0.163 -0.209 -0.064 -0.204 -0.349 1.000 0.591 -0.045 -0.084

0.038 -0.014 0.047 0.058 0.323 0.591 1.000 0.659 0.020

0.123 0.101 0.078 0.207 0.749 -0.045 0.659 1.000 0.061

P 0.649 0.605 0.847 0.099 0.119 -0.084 0.020 0.061 1.000 -1.0

0.2 �

�

0.2

Fig. 3  Correlation matrix of the dataset
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Fig. 4  Illustration of ANN model

Table 2  Performance of the 
GBRT, ANN, and ANN-PSO 
models

Model R
2 RMSE (kN) MAPE (%) a20 index P

target
∕P

prediction

Min Mean Max St.D CoV

GBRT model
 All data 0.9988 69.86 7.3322 0.9141 0.5772 1.0177 2.1040 0.1445 0.1419
 Training 0.9989 65.5810 6.9435 0.9064 0.5772 1.0118 1.8158 0.1347 0.1331
 Testing 0.9980 85.5038 8.8835 0.9464 0.8905 1.0430 2.1040 0.1788 0.1715

ANN model
 All data 0.9846 41.4337 28.4896 0.6048 0.2815 1.0759 7.5511 0.6093 0.5664
 Training 0.9845 41.2368 31.5565 0.5784 0.2815 1.1300 7.5511 0.6856 0.6067
 Testing 0.9358 31.4530 30.6033 0.5238 0.3825 0.9862 2.7003 0.4353 0.4414

ANN-PSO model
 All data 1.000 41.3631 1.3689 0.9966 0.9808 0.9890 1.3882 0.0236 0.0239
 Training 1.000 41.1693 1.4281 0.9951 0.9808 0.9896 1.3882 0.0281 0.0284
 Testing 1.000 31.1362 1.1583 1.0000 0.9858 0.9884 0.9977 0.0026 0.0026
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Continuous feedback loops are performed in the training 
process. The training process stops through the mean square 
error index ( MSE ). The mathematical expression defining 
MSE is represented as follows:

where ei is the deviation between the actual data and output 
data; N is the sample number of trained ANN models.

ANN‑PSO model

For improving the performance of ANN, the optimization 
of weights and biases values should be conducted. In fact, 
there are many different techniques for optimizing weights 
and biases of the ANN model. The PSO technique emerges 
as an effective method (Eberhart et al., 2001). It is used to 
optimize continuous nonlinear functions. Moreover, the PSO 
technique is easy to use in conjunction with ANN training 
in MATLAB. The training process of ANN—PSO can be 
implemented using the following basic steps, and the flow-
chart is shown in Fig. 5:

 1. Collection data
 2. Input data
 3. Create the ANN structures

(3)tansig(x) =
2

(1 + epx(−2x))
− 1,

(4)purelin(x) = x,

(5)MSE = min
b1,b2,W1,W2

1

N

∑N

i=1
e2
i
,

 4. Configure the ANN
 5. Initialize the weights and biases
 6. Training using PSO with fitness MSE

 7. Update PSO operators
 8. Optimum weights and biases
 9. Validate ANN structures
 10. Use the network.

Gradient boosting regression trees (GBRT)

GBRT is a ML technique that combines multiple decision 
trees to create a powerful predictive model. It is a popu-
lar algorithm for both regression and classification tasks 

Fig. 5  Flowchart for the training 
process of the ANN-PSO model
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(Friedman, 2001; Manna et al., 2017; Nguyen & Nguyen, 
2023). Moreover, GBRT combines the strengths of decision 
trees and boosting to create accurate and robust predictive 
models. It works by building an ensemble of decision trees 
sequentially, with each tree learning from the mistakes made 
by the previous tree. According to Prettenhofer and Louppe 
(2014), the basic steps for performing GBRT are as follows, 
and the flowchart is shown in Fig. 6:

1. Decision trees: GBRT starts by building an initial deci-
sion tree, which is a flowchart-like structure that makes 
sequential decisions based on the input features. Each 
decision tree splits the data based on the values of dif-
ferent features, aiming to minimize the prediction error.

2. Gradient boosting: GBRT uses a boosting technique 
called gradient boosting to improve the performance of 
decision trees. Boosting involves training multiple weak 
models (in this case, decision trees) sequentially, where 
each subsequent model focuses on correcting the errors 
made by the previous models.

3. Gradient descent: The “gradient” in GBRT refers to the 
gradient of the loss function with respect to the model’s 
predictions. GBRT uses gradient descent to optimize 
the model by iteratively updating the model’s predic-

tions to minimize the loss function. The gradient descent 
process involves calculating the gradients and adjusting 
the model’s predictions in the opposite direction of the 
gradients.

4. Weak learners: GBRT treats decision trees as weak 
learners because they are simple and prone to overfit-
ting. By combining multiple decision trees, GBRT cre-
ates a strong ensemble model that can capture complex 
relationships in the data.

5. Ensemble of trees: GBRT builds an ensemble of decision 
trees, where each subsequent tree is trained to correct the 
mistakes made by the previous trees. The final prediction 
is obtained by aggregating the predictions of all the trees 
in the ensemble.

Data normalization

The accuracy in training the network depends on the input data 
normalization (Golafshani & Ashour, 2016). Input data and 
output data normalized in the range [−1, 1] . Before training the 
network, the input and output data must be data normalized 
according to the Eq. (9):

Fig. 9  ANN model structure
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where Xn is data normalized sample; X, X
max

 , and X
min

 are 
the value, maximum, and minimum of the sample under 
consideration, respectively.

Performance of ML models

Performance indicators

In this study, the predictive performance of three ML models 
is assessed using R2 , RMSE , MAPE , and a20 − index. The 
determinations of these indexes are expressed as follows:

(9)Xn = 2 ×
(X − X

min
)

(X
max

− X
min

)
− 1,

(10)R2
= 1 −

�∑n

i=1

�
ti − oi

�2

∑n

i=1
o2
i

�

,
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where ti is the ith ACC of collected dataset; oi is the ith ACC 
of the ML models; n is the number of samples; n20 is the 
number of samples that has a ratio of ACC of collected data 
and ACC of the ML models range 0.8 − 1.2.

Performance of GBRT model

Figure 7 and Table 2 show the training, testing, and all 
datasets performance of GBRT model. It can be seen that 

(11)MAPE =
1

n

∑n

1

(
|
|||

oi − ti

oi

|
|||
× 100

)

,

(12)RMSE =

√(
1

n

)∑n

i=1

(
ti − oi

)2
,

(13)a20 − index =
n20

n
.

the ACC of the cold-formed steel EHS column predicted 
values of the GBRT model are close to actual values. The 
R2,RMSE,MAPE, and i20 − index values of the GBRT 
model for training, testing, and all datasets are (0.9989, 
0.9980, 0.9988), (65.5810, 85.5038, 69.86) kN , (6.9435, 
8.8835, 7.3322)% , and (0.9064, 0.9464, 0.9141), respec-
tively. Moreover, the statistics values (minimum, mean, 
maximum, standard deviation, and coefficient of variation) 
of the ratio between predicted and actual values for train-
ing, testing, and all datasets are (0.5772, 0.8905, 0.5772), 
(1.0118, 1.0430, 1.0177), (1.8158, 2.1040, 2.1040), (0.1247, 
0.1788, 0.1445), and (0.1331, 0.1715, 0.1419), respectively.

Performance of ANN model

To develop the ANN model, the larger outer diameter (B), 
smaller outer diameter (D) , thickness (t) , column length 
(L) , Young’s modulus (E) , static ultimate tensile strength 
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( �u ), tensile strain fracture ( �u ), and static 0.2% proof stress 
( �0.2 ) are considered as the input variables, while the ACC 
of cold-formed steel EHS columns (P) is the output variable.

To obtain the best ANN structure, this study conducts 
testing of a total of 120 ANN structures with 20 neurons in 
the hidden layer varied from 1 to 20 and 6 common train-
ing rates (0.6, 0.65, 0.70, 0.75, 0.8, 0.85). ANN structures 
have best-performing as the structures with the highest 
ranking (i.e., largest R2 and i20 − index , smallest RMSE 
and MAPE ). The total ranking matrix of 120 ANN struc-
tures is shown in Fig. 8. The best-performing ANN struc-
tures have the training, validation, and testing ratios (0.7, 
0.15, 0.15), respectively, with 12 hidden layer neurons. 
Thus, this study uses the ANN structures for predicting 
the ACC of the cold-formed steel EHS column as shown 
in Fig. 9:

The training, testing, and all datasets performance 
of ANN model are shown in Fig. 10 and Table 2. The 
R2,RMSE,MAPE, and i20 − index values of ANN model 
for training, testing, and all datasets are (0.9845, 0.9358, 
0.9846), (41.2368, 31.4530, 41.4337) kN , (31.5565, 
30.6033, 28.4896)% , and (0.5784, 0.5238, 0.6048), respec-
tively. Moreover, the statistic values (minimum, mean, 
maximum, standard deviation, and coefficient of variation) 
of the ratio between predicted and actual values for train-
ing, testing, and all datasets are (0.2815, 0.3825, 0.2815), 
(1.1300, 0.9862, 1.0759), (7.5511, 2.7003, 7.5511) kN , 
(0.6856, 0.4353, 0.6093) % , and (0.6067, 0.4414, 0.5664), 
respectively.

Performance of ANN‑PSO model

To develop the ANN-PSO model, the ANN structures with 12 
neurons in the hidden layer are used. In this ANN-PSO model, 
the weights and biases are optimized by the PSO algorithm. 
The combination technique between the ANN and the PSO 
algorithm is also shown in Fig. 5.

Figure 11 shows the convergence of the ANN-PSO model 
after 535 iterations. The MSE optimization value is close to 
zero. Figure 12 and Table 2 show the training testing, and all 
datasets performance of ANN-PSO model. The ACC values 
of the cold-formed steel EHS columns obtained by ANN-
PSO are close to actual values (i.e., experimental results). 
The R2,RMSE,MAPE, and i20 − index values of ANN-PSO 
for training, testing, and all datasets are (1.000, 1.000, 1.000), 
(41.1693, 31.1362, 41.3631) kN , (1.4281, 1.1583, 1.1583)% , 
and (0.9951, 1.0000, 0.9966), respectively. Moreover, the sta-
tistics values (minimum, mean, maximum, standard deviation, 
and coefficient of variation) of the ratio between predicted and 
actual values for training, testing, and all datasets are (0.9808, 
0.9858, 0.9808), (0.9896, 0.9884, 0.9890), (1.3882, 0.9977, 

1.3882), (0.0281, 0.0026, 0.0236), and (0.0284, 0.0026, 
0.0239), respectively.

Comparison of GBRT, ANN, and ANN‑PSO 
models

Figure 13 shows the bar plots of the R2,RMSE,MAPE, and 
i20 − index of the training, testing, and all datasets from 
predicted results obtained by GBTR, ANN, and ANN-
PSO. This result shows that the ANN-PSO model outper-
forms GBRT and ANN models in predicting the ACC of 
the cold-formed steel EHS columns. Specifically, the R2 
and i20 − index are close to 1.0, and RMSE and MAPE are 
smallest for the ANN-PSO model.

Table 2 shows the statistical values of the ratio between 
predicted and actual values for all datasets. The mean value 
of ANN-PSO is close to 1.0, implying that the ANN-PSO 
model is better than the GBRT and ANN models for predict-
ing ACC of the EHS column.

Obviously, ANN-PSO is the optimal model compared to 
GBRT and ANN for estimating ACC of the steel EHS col-
umn. Thus, for the convenience of engineers’ practice, a new 
graphical user interface (GUI) tool based on the ANN-PSO 
was built, which is shown in Fig. 14. This tool is provided 
freely at https:// github. com/ duydu an1304/ GUI_ EHS. When 
using the GUI tool, it should be noted that the ANN-PSO 
model only predicts results within the range of input data 
(i.e., from the minimum to the maximum).

Conclusions

This study successfully develops GBRT, ANN, and ANN-
PSO models for predicting ACC of the cold-formed steel 
EHS column based on the 291 datasets. The predictive per-
formance of GBRT, ANN, and ANN-PSO models is evalu-
ated using R2,RMSE,MAPE, and i20 − index indicators. 
The following conclusions are obtained.

• Three developed ML models (GBRT, ANN, and ANN-
PSO) predict the ACC of cold-formed steel EHS columns 
accurately.

• ANN-PSO has the most efficient performance with 
R2

= 1.00,RMSE = 41.3631,MAPE = 1.3689,  a n d 
i20 − index = 0.9966 compared to GBRT and ANN mod-
els.

• A GUI tool based on the ANN-PSO model is built for the 
convenience of design practices.

https://github.com/duyduan1304/GUI_EHS
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