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A B S T R A C T   

The squat flanged reinforced concrete (RC) walls have been widely utilized in nuclear power plant and building 
structures. Nevertheless, the empirical equations in current design codes and published studies show a significant 
discrepancy in calculating the shear strength of the walls. The purpose of this study is to develop an effective 
machine learning model, namely artificial neural network (ANN), for predicting the shear strength of squat 
flanged RC walls. A total of 369 test results of squat flanged RC walls were collected from the literature and used 
to develop the ANN model. The results of the proposed model were compared with those of existing design codes 
and published studies. The comparisons emphasized that the developed ANN model in this paper can predict the 
shear capacity of squat flanged RC walls more accurately than the existing equations. Moreover, the effect of 
input parameters on the predicted shear capacity of the walls was sufficiently investigated. A predictive formula 
based on the ANN model, which can cover thirteen input parameters, was then proposed to compute the shear 
strength of the squat flanged walls. Additionally, an efficient graphical user interface (GUI) platform has been 
established for facilitating the practical design process of the squat flanged RC walls.   

1. Introduction 

Squat or low aspect ratio RC walls have been commonly used in 
buildings and nuclear power plants since it contributes a significant 
resistance to the lateral loading capacity of the structures [1]. There are 
two typical types of cross-sectional shapes of squat RC walls, which are 
rectangular and flanged sections. For the last few decades, numerous 
studies have proposed empirical formulas to estimate the shear strength 
of rectangular RC walls [2–7]. Design codes have already provided 
calculation guidelines for the rectangular walls [8–10]. However, a 
practical procedure for computing the shear strength of flanged walls is 
very limited in existing building codes [11,12]. Additionally, a sub-
stantial scattering and biased estimation were produced when the 
equations in design codes are used to compute the shear capacity of 
flanged RC walls [1,13–15]. This deviation is obviously due to the 
presence of flanged boundary elements. Thus, it is necessary to develop a 
specific formula for estimating the shear strength of such RC walls. 

To deal with this problem, some researchers, Gulec and Whittaker 
[5], Kassem [6], Adorno-Bonilla [7], and Ma et al. [15], have recently 
proposed empirical formulas to compute the shear strength of squat 
flanged RC walls. The accuracy of predictive shear strengths based on 

these models was improved from the design codes. Nevertheless, the 
equation of Gulec and Whittaker [5] was only limited to squat flanged 
walls with aspect ratios equal to or less than one. The closed-form for-
mula of Kassem [6], based on the strut-and-tie model, excluded the in-
fluence of flange elements, and a large scatter still existed in this model. 
Even though the predictive strength equations in the studies of Adorno- 
Bonilla [7] and Ma et al. [15] found to be enhanced, however, the 
number of databases used was relatively small with 137 and 119 test 
results, respectively, and the aspect ratios of used test data were mostly 
less than 1.20. These deficiencies may lead to an inaccurate estimation 
of the shear strength of squat flanged RC walls. In addition, since these 
investigations mostly focused on few significant parameters, their pre-
dictions were not optimal. 

Due to various uncertainties in material properties and configura-
tions, it is challenging to propose a precise empirical model for esti-
mating the shear strength of RC walls. Parameters defining the design 
equations are generally obtained by performing several tests, but such 
tests are costly as well as time-consuming. As a surrogate solution, 
machine learning (ML) paradigms can be used to predict experimental 
results. The most significant advantage of ML paradigms is certainly 
dealing with nonlinear problems, which are not easily expressed in 
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mathematical models considering the involving variables [16]. The 
artificial neural networks (ANNs)-based data-driven model, one of the 
powerful methods in ML, has been widely applied for various engi-
neering problems. This soft computing technique was initially proposed 
by Ghaboussi et al. [17] and has demonstrated to be capable of modeling 
the behavior of structures [18–29]. 

Recently, several studies have employed ML algorithms to predict 
the shear capacity [30,31] as well as failure mode [32] of RC walls. Chen 
et al. [30] used the hybrid model, ANN-PSO, to predict the shear 
strength of squat rectangular RC walls based on a collection of 139 test 
results. They concluded that the proposed model predicted the strength 
of shear walls more accurately than other models. However, an appli-
cation of such hybrid model to engineering designs is unfeasible since a 
mathematically practical formula was not provided. Also, a predictive 
model for the flanged RC wall type was not established in their work. 
Moradi and Hariri-Ardebili [31] constructed a library of shear-wall 
database and then developed an ANN model for estimating shear 
strength of generic RC walls. In this database, they included both slender 
and squat walls as well as rectangular and flanged cross-section types. 
While their results demonstrated the accuracy of the ANN model, the 
scattering of the testing and validation was still large, and unfortunately, 
a practical equation or a GUI tool for the design process was not 
provided. 

The purpose of this study is to develop an efficient ANN-based data- 
driven model to predict the shear strength of squat flanged RC walls, 
which are critical structural members, particularly, in nuclear power 
plants. A set of 369 experimental tests of squat flanged RC walls were 
carefully collected to develop the machine learning model. The results of 

the proposed model were compared with those of existing design codes 
and published studies. Moreover, the effects of input parameters on the 
predicted shear capacity of the walls were investigated thoroughly. A 
predictive formula based on the ANN model considering thirteen input 
parameters was then proposed to compute the shear strength of flanged 
walls. Finally, a beneficial GUI tool was also developed for facilitating 
the practical design process of the squat flanged RC walls. 

2. Existing formulas for calculating the strength of RC shear 
walls 

In this study, eight typical formulas to calculate the shear strength of 
the squat flanged RC walls were reviewed. Those equations were either 
specified in design codes [8,9] or proposed by various studies 
[2,3,5,7,15]. Table 1 summarizes the selected equations for obtaining 
the shear strength of squat flanged RC walls. In this table, the first four 
equations are used for general shear walls, including slender and squat 
rectangular RC walls, while the later four equations are specifically 
applied for squat and flanged RC walls. 

The parameters for calculating the shear strength (Vn) of shear walls 
in Table 1 can be classified into four groups: (1) geometric parameters, 
(2) material properties, (3) external applied loads and forces attributed 
by reinforcements, and (4) coefficients. Geometric parameters includes 
the wall height (hw), the web length (lw), the web thickness (tw), the 
flange length (lf), and the flange thickness (tf), the gross area of concrete 
section bounded by web thickness and length of the section in the di-
rection of shear force (Acv), the area of wall without flanges (At), the 
effective area for flanged walls (Aeff), and the area of vertical 

Table 1 
Formulas for calculating the shear strength of squat flanged RC walls.  

No. Reference Equation 
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reinforcements in one boundary element (Asbe). Material properties 
consist of the compressive strength of concrete (f ’

c), the yield strength of 
the horizontal (fyh) and vertical (fyv) reinforcements, the reinforcement 
ratios of the walls in the horizontal (ρh) and vertical (ρv) directions, the 
longitudinal reinforcement ratios of the flanged element (ρf). External 
loads are the lateral (V) and axial force (P), while the forces attributed 
by reinforcements in vertical web, horizontal web, and vertical bound-
ary elements (i.e. flanges) are Fvw, Fhw, and Fvbe, respectively. The co-
efficients are the one defining the relative contribution of concrete 
strength to nominal wall shear strength (αc) and the modification factor 
(in ACI 318–14) reflecting the reduced mechanical properties of light-
weight concrete relative to normal weight concrete of the same 
compressive strength (λ). 

3. Experimental database 

To develop the ANN model, a total of 369 experimental data of squat 
flanged RC walls were collected from the literature [2,11,33–62]. 
Thirteen important input parameters are required to estimate the shear 
strength of the walls including the geometric and material properties. 
Geometric parameters of the wall are the height (hw), the web length 
(lw), the web thickness (tw), while the dimensions of flange elements are 
the length (lf) and thickness (tf), as shown in Fig. 1. It was shown that the 
aspect ratio (hw/lw) of the tested walls was equal to or less than 2.0, 
which obviously confirmed to the squat wall classification. In the 
database, the compressive strength of concrete (f ’

c) ranged from 12 to 93 
MPa, while the yield strength of the horizontal (fyh) and vertical (fyv) 

reinforcing bars of RC walls varied from 224 to 792 MPa. The rein-
forcement ratios of the walls in the horizontal (ρh) and vertical (ρv) di-
rections ranged from 0.1% to 2.9%, while the longitudinal 
reinforcement ratios of the flanged element (ρf) ranged from 0.1% to 
6.4%. A variation of the axial load (P) from 0 to 2,364 kN was considered 
in the database. The statistical properties of the test results are presented 
in Table 2. It should be noted that SD and COV were the abbreviations of 
the standard deviation and the coefficient of variation, respectively. 
Fig. 2 shows the histograms of thirteen input parameters based on the 
369 selected experimental data. 

4. ANN model for shear strength of flanged RC walls 

4.1. ANN architecture 

Recently, the ANNs model has emerged as a powerful and versatile 
computational tool for organizing and correlating knowledge [63]. The 
multi-layer feed forward perceptron (MLP), depending on the error 
back-propagation, is the most popular of the feed-forward neural 
network, was employed to train the data in this study [64]. An MLP 
algorithm comprises of neurons, which are classified into three com-
ponents: (1) input layer, which allows to enter input parameters, (2) one 
or more hidden layers, and (3) an output layer, which contains the 
predicted result. These neurons are connected in some way, in which the 
connection holds a weight, and each neuron contains a bias and an 
activation. Assuming that the input vector of the neuron is x = [x1, x2,⋯ 
, xm] and the weighted sum of the input signals is expressed by z ∈ R :

z =
∑d

i=1
wixi = wT x+ b (1)  

where w = [w1,w2,⋯,wd] ∈ Rd is the weight vector of d dimensions and 
b ∈ R is the bias. It is required to perform nonlinear processing on z to 
represent the nonlinear relation between input and output layers, 
expressed by 

y = f (z) (2)  

where f denotes the activation function, while y represents the activa-
tion value of the neuron. 

Obviously, the activation function is the crucial element for 
providing a smooth and differentiable transition during training of the 
network. For this study, the tansig and purelin functions were used ac-
cording to the recommendation of Nikbin et al. [65], expressed as 
follows. 

y = tansig(x) =
2

1 + e− 2x − 1 (3)  

y = purelin(x) = x (4) 

It should be noted that the tansig function just scales the output to be 
between − 1 and 1, meanwhile, the purelin function generates the output 
from − ∞ to +∞, as shown in Fig. 3. 

The feed-forward back-propagation algorithm includes two pro-
cesses: (1) feed-forward or forward pass and (2) back-propagation or 
backward pass. For the forward pass, the input data are provided to the 

Fig. 1. Illustration of squat flanged RC walls.  

Table 2 
Statistical characteristics of input parameters of collected experiments.  

Input parameter hw(mm)  lw(mm)  tw(mm)  tf (mm)  lf(mm)  ρf(%)  ρv(%)  ρh(%)  f ’
c(MPa)  fyf(MPa)  fyv(MPa)  fyh(MPa)  P(kN)  Vn(kN)  

(Variable) (X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) (X9) (X10) (X11) (X12) (X13) (Output) 
Min 400 507 10 60 60 0.07 0.07 0.00 12.3 208.9 224.1 224.1 0.0 34.32 
Mean 1051 1542 82 176 238 1.5 0.8 0.8 31.1 385.1 397.6 396.3 325.4 678.53 
Max 2200 3960 160 600 1500 6.4 2.9 2.8 93 1009 792 792 2364 2511.0 
SD  465 664 37 98 264 1.3 0.6 0.6 13.3 87.4 82.7 81.5 485.2 602.02 
COV  0.44 0.43 0.45 0.56 1.11 0.87 0.75 0.73 0.43 0.23 0.21 0.21 1.59 0.887  
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input layer, which transfers the information forward, through the 
different connections, from one neuron to another in the network. Since 
the output from forward pass is obtained, the next step is to assess this 
output by comparing it with the target using the mean squared error 
(MSE). To find the optimal weights and biases that can minimize the 
MSE, i.e. the backward pass process, it is needed to quantify the error 
produced by each of weights and biases, and iteratively update them 
until the MSE is converged. The MSE is expressed as 

MSE =
1
N

∑N

i=1
(pi − ti)

2 (5)  

where N is the number of samples; ti and pi are the target and predicted 

values of the ith sample, respectively. 
The over-fitting problem, a deficiency in machine learning, refers to 

a model that training too well, and it therefore hinders the accuracy and 
performance of the model on new data. To prevent over-fitting, some 
typical solutions can be used such as cross-validation, training with 
more data, removing features, and regularization. In this study, the 
regularization technique was applied for modifying the error function as 
a summation of MSE and the mean squared network weights and biases, 
expressed as follows. 

MSEREG = γMSE +(1 − γ)MSWB (6)  

where γ is the performance ratio and MSWB is the mean squared 
network weights and biases, which is calculated by 

Fig. 2. Histograms of input parameters based on 369 experimental data.  
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MSWB =
1
N

∑N

j=1
ϖ2

j (7) 

Furthermore, to enhance the accuracy of the ANN models and to 
avoid unexpected errors during the training and testing process, the 
database is normalized within the range of − 1 and 1 using the following 

expression 

Xn = 2 ×
X − Xmin

Xmax − Xmin
− 1, (8)  

where X is the data sample, Xn is the normalized data sample, Xmin and 
Xmax are the minimum and maximum values of considered parameters, 

Fig. 3. Activation functions of ANN model: (a) tansig and (b) purelin function.  

Fig. 4. Performance of different ANN models.  
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respectively. 
To optimize the performance of an ANN model, a good architecture 

of the ANN model should be determined. In this study, the trial and error 
method was used to obtain the number of hidden layers as well as the 
number of neurons in each hidden layer. We tried with various archi-
tectures, in which the training ratio changed from 0.6 to 0.85 and the 
number of hidden layers varied from 1 to 20. The Levenberg-Marquardt 
algorithm, one of the fastest back-propagation algorithms in training, 
was used to tune the weights and biases of ANN models [66]. This al-
gorithm was consistent with studies elsewhere [25,28]. Two statistical 
indicators, the coefficient of determination (R2) and root mean square 
error (RMSE), were obtained to demonstrate the performance of the 
ANN models. Fig. 4 shows a series of the recorded values of R2 and RMSE 
based on the trial and error process. Finally, the best ANN architecture 
with the highest value of R2 and the lowest value of RMSE in training, 
testing, and validating phase was chosen. This ANN model comprises the 
training ratio of 0.75, the testing and validating ratios of 0.125, and 8 
neurons in the hidden layer. 

Fig. 5 depicts the developed ANN model, in which the number of 

neurons is decided by the input and output parameters considered. 
Herein, 13 neurons in the input layer represent the 13 input parameters 
as listed in Table 2, and one neuron in the output layer was for the peak 
shear strength of the walls (Vn). Eight neurons in the hidden layer were 
determined using the sensitivity analysis, which provided the best per-
formance of the model. It should be noted that the developed ANN 
model was implemented using MATLAB [67]. 

4.2. Performance of the proposed ANN model 

Fig. 6 shows the performance of the developed ANN model, in which 
MSEs for the training, validation, and testing decrease as the epoch in-
creases. The best validation performance is determined as the MSE of 
6.1545 × 10− 3 at the 8th epoch, which implies that the ANN model was 
trained well. 

Fig. 7 shows the comparison between the predicted results of the 
ANN model and experimental data. It can be found that the results ob-
tained from the ANN model were well matched with experiments for 
both training, testing, and validation. In other words, the developed 

Fig. 5. Depiction of the proposed ANN model.  
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ANN model demonstrated good performance and it was highly reliable 
in estimating the shear strength of the squat flanged RC walls. 

5. Comparison between the proposed ANN model and existing 
results 

5.1. Validation criteria 

In this study, three indicators, which are coefficient of determination 
(R2), root mean square error (RMSE), and a20 − index, were employed to 
assess the performance of different predictive models. Those indicators 
are expressed in following equations. 

R2 = 1 −
∑n

i=1(ti − oi)
2

∑n
i=1o2

i
, (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ti − oi)

2

√

, (10)  

a20 − index =
m20
M

, (11)  

where ti and oi are the target and output of ith sample, respectively; n is 
the number of samples, M is the number of the data sample and m20 is 
the number of samples with the value of the ratio of experimental value 
to a predicted value falling between 0.80 and 1.20. 

The value of R2 was used to measure the variation between predicted 
and experimental data. Meanwhile, the RMSE value represents the mean 
of errors. Moreover, the a20 − index is an useful statistical property, 

Fig. 6. Performance of the ANN model.  

Fig. 7. Comparison with experimental results.  
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which represents the number of predicted data falling in a deviation of 
± 20% compared with experimental data [68,69]. Generally, the higher 
value of R2 and the lower value of RMSE indicate a good performance of 
the model. For a perfect predictive model, the value of a20 − index is 
expected to be 1.0. 

5.2. Results and discussions 

Fig. 8(a-h) shows the comparisons of predicted peak shear strengths 
of existing models and experimental results. The dashed line (i.e. the 1:1 
line) indicates target values, while the solid line represents the linear 
regression of the scatters. The closer scattering to the 1:1 line, the higher 
accuracy of the predicted result. It can be observed that the shear 
strengths calculated from ACI 318–14 [8], ASCE 43–05 [9], and Wood 
[3] were mostly lower than the test results. This underestimation can be 
attributed to those equations that were sorely proposed for rectangular 
RC walls and the influence of flanges was neglected. On the other hand, 
the mean calculated results from equations of Barda et al. [2], Gulec and 
Whittaker [5], Adorno-Bonilla [7], and Ma et al. [15] were close to the 
experiments. Considering the flange elements in the predictive equa-
tions, these models have improved the accuracy of estimation. Among 
that, the equations of Gulec and Whittaker [5] and Ma et al. [15] 
demonstrated a good prediction with a higher R2 value, and the linear 
regression was relatively matched with the 1:1 line. 

The predicted results obtained from the ANN model are also 
compared with the experimental data, as shown in Fig. 8(i). It was found 

that the scattering of the proposed ANN model in this study was 
significantly smaller compared with those of previous models. More-
over, the linear regression line of the plotting data was mostly identical 
to the diagonal line with a high R2 value of 0.973. Fig. 9 shows the 
histograms of the proposed ANN model, indicating a good distribution 
with the mean value of unity. 

Fig. 10 shows the box plot of predicted-to-tested strength ratios with 
different predictive models and Table 3 presents the statistical proper-
ties of predicted-to-tested strength ratios in various models. It 

Fig. 8. Comparisons of shear strength between test results and different calculated methods.  

Fig. 9. Histograms of proposed ANN model.  
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highlighted that the ANN model is capable of estimating shear strength 
of squat flanged RC walls with the highest accuracy in terms of the 
lowest COV and SD as well as the mean value close to unity. It is again to 
show that the R2 value of the proposed ANN model was the largest 
among considered models. Similar to the R2 value, the a20 − index of the 
ANN model (i.e. 0.73) showed to be superior to that of other models. 
Also, the RMSE, which represents the error between prediction and 
target (i.e. experiment) values, was smallest for the ANN model, fol-
lowed by Gulec and Whittaker [5] and Barda et al. [2]. Furthermore, the 
SD and COV of the ANN model, 0.22 and 0.21 respectively, are 
considerably smaller than those of other models, and the mean value of 
1.04 is very close to 1.0. These implies that the proposed ANN model is 
highly reliable in estimating the shear strength of the squat flanged RC 
walls. 

6. Parametric study 

In this section, a parametric study was performed to identify the 
effects of input variables on the shear strength of the walls. For that, 
each input parameter was varied from the minimum to maximum value, 
which is based on the database in Table 2, while other parameters were 
set to the mean values. The variation of the output due to the variation of 
the single input parameter are monitored. However, the effects of 
multiple variations of different input parameters on the shear strength of 
RC walls were not investigated in the current study. 

6.1. Effect of wall height 

Fig. 11 shows the influence of the wall height (i.e. X1) on the strength 
of squat flanged RC shear walls. The dashed curve with triangular 
markers represented the variation of the parameter from the lower to the 
upper bound, while the continuous finger-print curves showed the 

contour of the variation. It was observed that the increment of the height 
of walls caused a decrement of calculated shear strength. The strength 
was gradually reduced more than triple times as the wall height varied 
from the minimum to maximum. This can be attributed to the fact that 
the lateral stiffness of the wall was decreased as the aspect ratio 
increased. 

6.2. Effect of web dimensions 

The dimensions of the web, including the length (i.e. X2) and 
thickness (i.e. X3) contribute significantly to the shear capacity of RC 
walls. As shown in Fig. 12, the strength of RC walls is increased with an 
increment of the web’s dimensions. The shear strength was approxi-
mately five times increased as the web dimensions ranged from the 
minimum to the maximum. It was because of the increment of the shear 
area as the length and thickness enlarged. 

6.3. Effect of dimensions of flanges 

Fig. 13 shows the effects of the thickness (i.e. X4) and the length (i.e. 
X5) of flanges on the strength of the wall. The flange dimensions are 
shown to be the most influential parameters on improving the shear 
capacity of the squat flanged RC wall. It can be observed that the 
strength is slightly increased as those parameters varied from the min-
imum to the mean value. However, it is magnified from the mean to the 
maximum level of the dimensions of flanges. The strength is increased 
approximately four times between the range of flange thickness, while it 

Fig. 10. Box plot of predicted-to-tested strength ratios of squat flanged 
RC walls. 

Table 3 
Performance of different models.  

No. Predicted model R2 RMSE 
(kN) 

a20-index Statistical properties of V Prediction/V Test 

Min Max SD Mean COV 

1 ACI 318–14. C11 [8]  0.724 339  0.39  0.28  4.11  0.48  0.92  0.53 
2 ACI 318–14. C18 [8]  0.720 347  0.33  0.24  3.29  0.45  0.89  0.50 
3 ASCE 43–05 [9]  0.864 258  0.50  0.41  2.91  0.33  0.93  0.35 
4 Wood [3]  0.839 276  0.49  0.45  2.96  0.37  1.01  0.36 
5 Barda et al. [2]  0.836 245  0.52  0.46  3.87  0.44  1.11  0.40 
6 Gulec and Whittaker [5]  0.914 183  0.50  0.32  2.25  0.31  0.91  0.34 
7 Adorno-Bonilla [7]  0.840 251  0.48  0.07  2.62  0.36  0.91  0.40 
8 Ma et al. [15]  0.874 265  0.33  0.07  2.48  0.38  0.77  0.49 
9 ANN model  0.973 107  0.73  0.39  1.75  0.22  1.04  0.21  

Fig. 11. Effects of the wall height.  
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Fig. 12. Effects of web dimensions.  

Fig. 13. Effects of flange dimensions.  

Fig. 14. Effects of reinforcement ratios.  

Fig. 15. Effects of the yield strength of reinforcement bars.  
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is increased roughly eight times with a variation of the flange length. 
This observation highlights that the capacity of RC walls can be signif-
icantly enhanced by adding the flange elements, which enlarged the 
shear area of the walls. 

6.4. Effect of reinforcement ratio 

The influences of reinforcement ratios on the strength of RC walls are 
shown in Fig. 14. The variations of the vertical (i.e. X7) and horizontal (i. 
e. X8) reinforcement ratios of the web affected the capacity of the 
flanged RC walls insignificantly. Meanwhile, the reinforcement ratio of 
the flange element (i.e. X6) had a moderate effect with a double incre-
ment of the shear strength between the lower and the upper limit. 

6.5. Effect of yield strength of reinforcing bar 

Fig. 15 shows the effects of yield strengths of reinforcing bars on the 
shear strength of flanged RC walls. The yield strengths of reinforcements 
of the web and flanges were inefficient at changing the shear strength of 
the squat flange RC walls. This observation was consistent with the 
finding of Baek et al. [70]. 

6.6. Effect of compressive strength of concrete and axial load 

Fig. 16 shows the effects of the compressive strength of concrete (i.e. 

X9) and axial load (i.e. X13) on the shear strength of squat flanged shear 
walls. These parameters have a moderate influence on the capacity of 
the walls. It is shown that the strength was slightly increased as X9 and 
X13 varied from the minimum to the mean level. Once the parameters 
reached the upper limit, the strength is approximately doubled. 

Fig. 17 summarizes the sensitivity of all input parameters in pre-
dicting the strength of the squat flanged RC walls. It should be noted that 
the output in this figure was obtained at the maximum of each input 
parameter. It is observed that the dimensions of the flange (i.e. X5 and 
X4) were the most influential parameters on improving the shear ca-
pacity of the flanged RC walls, followed by the dimensions of the web. In 
contrast, the height of the wall (X1) negatively affected the shear 
strength of the walls. Moreover, the yield strengths of reinforcements of 
the flange and web (i.e. X10, X11, and X12) and the horizontal rein-
forcement ratio of the web (X8) have a trivial influence on the strength 
of the walls. 

7. Practical tools for calculating shear strength squat flanged RC 
walls 

7.1. ANN formula 

To apply the ANN model for design problems, it is necessary to 
transform the ANN into an explicit mathematical formula. Based on the 
proposed ANN model, the formula to estimate the shear strength of 
squat flanged RC walls was expressed as a nonlinear form in Eq. (12). Vn 
is the real value of the shear strength. The form of this equation comes 
from the denormalization procedure of Eq. (8). As a result, the value of 
34.3230 is the minimum value of the shear strength of the database. The 
value of 1238.3 is a half of the difference of maximum and minimum 
shear strength values of database, as shown in Table 2. 

Vn = 1238.3 × (VnN + 1)+ 34.3230, (12)  

where VnN is a normalized shear strength of squat flanged RC walls, 
expressed by 

VnN = − 1.7394 × A1 − 1.1671 × A2 − 0.4155 × A3 + 1.2467 × A4 + 1.5423

× A5 − 0.5019 × A6 − 1.2129A7 + 1.2618 × A8,

(13)  

where A1 to A8 are eight coefficients that represent the hidden neurons’ 
outputs. A tansig function was also applied for calculating the A1 to A8 
coefficients, resulted as   

Fig. 16. Effects of the compressive strength of concrete and axial load.  

Fig. 17. Sensitivity of input parameters to the shear strength of squat flanged 
RC walls. 
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It is noted that ANN cannot deal with an extrapolation, therefore the 
input parameters should be limited within the lower (i.e. minimum) and 
upper value (i.e. maximum) of the training data. A wide range of 
collected datasets should be used to enlarge the margin of the ANN 
model and to enhance the performance as well as reliability of the 
model. 

7.2. GUI tool 

If the mathematical formula is still challenging for engineers, a user- 
friendly software tool can be a favorably alternative option. A practical 
GUI tool was developed using MATLAB [67] to facilitate the design 
process for calculating the shear strength of squat flanged RC walls, as 
shown in Fig. 18. In this tool, 13 input parameters, from X1 to X13, are 
provided. Also, eight neurons (nodes) in the hidden layer are shown. 
This tool is free-of-charge and convenient to use, in which it can readily 
obtain the shear strength by just going to the ‘Start Predict’ button after 
entering the input parameters. It takes less than one second to achieve 
the output result. Note that users can find the GUI tool in the supple-
mental materials, which are accompanied with this article link. Since the 
GUI tool is developed using the proposed ANN model, the accuracy of 
prediction was verified and thoroughly emphasized in the previous 

section. 

8. Conclusions 

An efficient machine learning formulation, namely the ANN model, 
to predict the shear strength of squat flanged RC walls was developed 
based on a set of 369 experimental results. The results of the proposed 
model were compared with those of eight existing formulas in design 
codes and published studies. The following conclusions are drawn.  

▪ The developed ANN model in this study predicts the shear 
strength of squat flanged RC walls more accurately than the 
existing equations. The accuracy of the model is verified by the 
statistical properties of the predicted-to-measured strength 
ratio including the SD, mean value, COV, R2 value, RMSE, and 
a20 − index.  

▪ The most influential parameters on improving the shear 
strength of flanged RC walls are the length of the web, di-
mensions of the flanges, and the thickness of the web. Mean-
while, the height of the wall has a contrary effect to the strength 
capacity of the walls, in other words, the higher wall the lower 
shear strength obtained. The yield strength of reinforcements 
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and the horizontal reinforcement ratio of the web have a trivial 
influence on the strength of the walls.  

▪ A practical formula, based on the ANN model, considering 
thirteen input parameters was proposed to calculate shear 
strength of squat flanged RC walls.  

▪ A beneficial GUI tool was developed and readily applied for 
facilitating the design process of squat flanged RC walls. 
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