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A B S T R A C T

In steel plate girders (SPGs), a patch loading usually causes a local failure in the vicinity of the loading
area of the girder web. However, estimating the patch loading resistance (PLR) of SPGs is challenging due
to the complexity of the problem. This paper aims to develop a novel hybrid WOA-GBM model based on
a whale optimization algorithm (WOA) and a gradient boosting machine (GBM) for predicting the PLR of
longitudinally SPGs. Firstly, 137 tests of longitudinally stiffened SPGs subjected to patch loading are carefully
collected and divided into training and test sets. Then, the most critical parameters of the GBM model are
determined using 10-fold cross-validation integrated with the WOA. The results obtained from the WOA-GBM
model are compared with those from adaptive boosting (AdaBoost) and extreme gradient boosting (XGBoost)
models. The results show that the WOA-GBM model outperforms other models. Additionally, SHapley Additive
exPlanation (SHAP) method is used to explain the prediction of the proposed WOA-GBM model globally and
locally. Finally, an efficient graphical user interface (GUI) tool and a web application (WA) are developed to
apply the proposed WOA-GBM model for practical use.
1. Introduction

Patch loading is a concentrated transverse force acting perpendic-
ular to the web of the beams or girders. This loading type needs
to be considered in designing the SPGs because it usually causes a
local failure in the vicinity of the loading area of the girder web [1].
Therefore, the SPGs are often designed with transverse or longitudinal
stiffeners to increase the PLR. In the location where the patch loading
is fixed, the transverse stiffeners on the web can improve the resistance
of SPGs. However, in the case of moving loads, the exact position of the
patch loading is not known in advance. Still, it is not possible to provide
stiffeners at all critical locations. Hence, the longitudinal stiffeners are
necessary to enhance the loading capacity and increase the resistance
to shear and bending of the girders subjected to patch loading.

In the last decades, researchers have carried out several tests to
investigate the longitudinal stiffeners’ behaviors on the PLR of the
SPGs. The experimental results [1–7] showed that the PLR of SPGs
significantly increased by using the longitudinal stiffeners. Based on the
experimental results, the PLR formulas have been empirically derived
for practical design by design codes [8,9] and some researchers [3,10–
12]. In this regard, the PLR of the unstiffened girder is multiple with
a correction factor for the girder with a longitudinal stiffener using
the traditional regression methods. However, most of these empirical
formulas are developed based on a limited number of experimental
results. Therefore, they lead to insufficient prediction capability for PLR
of longitudinally stiffened SPGs.

∗ Corresponding author.
E-mail addresses: vietlinh.dhv@gmail.com (V.-L. Tran), duan468@gmail.com (D.-D. Nguyen).

Over the last decade, machine learning (ML) has been consid-
ered a powerful method for predicting and assessing structural per-
formances [14]. The ML method can be used for several objectives,
e.g., regression [15–24], classification [25–27], optimization [28,29],
etc. Regarding the SPGs under patch loading, Fonseca et al. [30,31]
presented a parametric study in which they used a neural network
system to forecast the PLR of the unstiffened SPGs. In addition, Fonseca
et al. [32] used a neuro-fuzzy system to predict and classify the behav-
ior of the unstiffened SPGs subjected to patch loading. Cevik [12] and
Cevik et al. [33] developed new formulas using genetic programming
and stepwise regression methods to predict the PLR of longitudinally
stiffened SPGs. Recently, Kurtoglu [34] developed a support vector
machines (SVM) model for predicting the PLR of longitudinally stiff-
ened SPGs. Truong et al. [35] developed an extreme gradient boosting
algorithm (XGBoost) model for PLR of longitudinally stiffened SPGs.
The results obtained from these studies showed that the ML models
were better than existing design codes and empirical formulas.

Although the studies mentioned above used ML models for PLR of
the unstiffened and longitudinally stiffened SPGs, no study has explored
the impact of features or input variables on the results predicted by
ML models. From the point of application perspective, it is critical to
have models that elucidate the input–output relationships to inform
decision strategies and properly deploy a model [36]. The feature
importance approach can be used for explaining ML models’ outputs.
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Fig. 1. Typical longitudinally stiffened SPGs under patch loading.
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owever, it does not describe each prediction score locally and how a
eature relates to the final prediction. In other words, it cannot show
he positive or negative impact on the output. Additionally, several
tudies showed that hyperparameters could significantly affect the final
erformance of ML models [37–42]. A major disadvantage of using
he default parameters of ML models is that they introduce a bias
nd variance in the model that causes overfitting or underfitting. It
ventually leads to poor generalizability and inaccurate predictions on
ew data samples.

This paper develops a novel hybrid WOA-GBM model using the
hale optimization algorithm (WOA) and the gradient boosting ma-

hine (GBM) for predicting the PLR of longitudinally stiffened SPGs.
he results obtained from the WOA-GBM model are compared with
hose of the adaptive boosting (AdaBoost) and extreme gradient boost-
ng (XGBoost) models. Accuracy criteria, including the determination
oefficient (𝑅2), the root-mean-square error (𝑅𝑀𝑆𝐸), and the mean
bsolute error (𝑀𝐴𝐸), are used for the assessment of the models.
oreover, the importance and contribution of the factors that influence

he PLR of longitudinally stiffened SPGs are investigated using the
Hapley Additive exPlanation (SHAP) method. Finally, a graphical user
nterface (GUI) and a web application (WA) are developed based on the
est model to provide a convenient tool for the preliminary estimation
f the PLR of longitudinally stiffened SPGs.

. Data collection

In this study, the authors compile a database of 137 experimental
esults of simply supported SPGs from many sources [1–3,5,7,32,43–
8] to develop the ML models. In this database, several tests have been
onducted recently by Markovic and Kovacevic [1], Rogač et al. [44],
nd Kovacevic and Markovic [7]. It is noted that samples with the
ame input values but different outputs are considered to keep one.
he configuration of longitudinally stiffened SPGs subjected to patch

oading is shown in Fig. 1.
In this figure, 𝑎 is the web panel length, ℎ𝑤 is the web height, 𝑡𝑤 is

he web thickness, 𝑏𝑓 is the flange width, 𝑡𝑓 is the flange thickness, 𝑐
s the applied load length, 𝑏1 is the distance between loaded flange and
ongitudinal stiffener, 𝑏𝑠𝑡 is the width of the stiffener, 𝑡𝑠𝑡 is the thickness

of stiffener, and 𝑃 is patch loading. In addition, the web yield strength
(𝑓𝑦𝑤) and the flange yield strength (𝑓𝑦𝑓 ) are composed in this database.

All of the specimens in the database include only one longitudinal
stiffener in the SPGs. The statistical properties of the final database
are provided in Table 1. Fig. 2 shows the density distribution of the
input and output parameters of the database. In addition, the Pearson
correlation coefficient between any two variables was calculated, as
shown in Fig. 3.
2

. Overview of machine learning methods and optimization algo-
ithm

.1. Adaptive boosting (AdaBoost)

AdaBoost was firstly introduced by Freund and Schapire [49]. It is
n ensemble ML model, where a base learner is trained using the train-
ng sets to update the weights according to the performance of the pre-
ious iterations. The variants of the AdaBoost method are determined
y how these weights are updated and which instances are affected. A
rief description of the AdaBoost algorithm is as follows [50]:

a

where 𝐷 = 𝑥𝑖, 𝑦𝑖𝑁𝑖=1 is a training set, 𝑥𝑖 are the input variables and 𝑦𝑖
the target variable or outputs, to predict future values 𝑦 by providing
the inputs 𝑥. 𝑁 stands for the number of instances of the dataset. 𝑇 is
he set of base learners of the ensemble. 𝑡 marks each of the iterations.
𝑡 means the estimator of iteration 𝑡. 𝜀 denotes the error made by

previous estimators. 𝑤 are the weights given to training instances by
boosting methods.

3.2. Gradient boosting machine (GBM)

GBM is another prevalent ensemble method proposed by Fried-
man [51] that combines multiple decision trees to create a more robust
model. In contrast to AdaBoost, the weights of the training sets are not
adjusted, but each predictor is trained using the residual errors of its
predecessor as labels. In regression, the GBM starts by initializing the
model by a first guess. Then, at each step, a new decision tree is fitted



V.-L. Tran and D.-D. Nguyen Thin-Walled Structures 177 (2022) 109424

(
t
s
i

a
r

w
t

𝑜

Fig. 2. Density distribution of the input and output parameters.

to the current residual and added to the previous model to update the
residual. This process is so-called stage-wise, meaning that at each new
step, the decision trees added to the model in previous steps are not
modified. The basic advantage of GBM is that it prevents overfitting and
3

uses lesser computational resources through objective function [52].
A simplified illustration of the GBM algorithm is provided by the
following pseudo-code [53]:

3.3. Extreme gradient boosting (XGBoost)

XGBoost [54] is one of the most reputed methods of the past few
years. XGBoost is designed as a highly scalable and accurate tree
boosting system. The XGBoost model is an improvement of the GBM
method. It uses many additive functions to predict the result as

𝑦𝑖 = 𝑦0𝑖 + 𝜂
𝑀
∑

𝑘=1
𝑓𝑘(𝑋𝑖) (1)

where 𝑦𝑖 is the predicted result for the 𝑖th sample of which the vector of
the features is 𝑋𝑖; 𝑀 is the number of estimators and each estimator 𝑓𝑘
with 𝑘 from 1 to 𝑀) corresponds to an independent tree structure; 𝑦0𝑖 is
he initial guess that is the mean of the measured values in the training
et; 𝜂 is the learning rate (shrinkage parameter) that helps to smoothly
mprove the model while adding a new tree and avoid over-fitting.

The training process is realized in an additive manner. In Eq. (1),
t 𝑘th step, a 𝑘th estimator is added to the model and the 𝑘th predicted
esult 𝑦𝑘𝑖 is calculated from the predicted value at the previous step
𝑦(𝑘−1)𝑖 and the estimation 𝑓𝑘 of the additional 𝑘th estimator as

𝑦𝑘𝑖 = 𝑦(𝑘−1)𝑖 + 𝜂𝑓𝑘 (2)

here 𝑓𝑘 is defined by the leaves weights that are found by minimizing
he objective function of the 𝑘th tree that is defined by

𝑏𝑗 = 𝛾𝑇 +
𝑇
∑

𝑗=1

[

𝐺𝑗𝜔𝑗 +
1
2
(

𝐻𝑗 + 𝜆
)

𝜔2
𝑗

]

(3)

where 𝑇 is the number of 𝑘th tree leaves and 𝜔𝑗 with 𝑗 from 1 to
𝑇 are the leaves weights; 𝜆 and 𝛾 are the regularization parameters
that control the simplicity of the tree structure to avoid overfitting.
The parameters 𝐺𝑗 and 𝐻𝑗 are the sums of overall samples associated
with the 𝑗th leaf of the first and second gradients of the loss function,
respectively.

The 𝑘th tree is constructed by splitting the leaves starting from a sin-
gle leaf. Such procedure is realized by maximizing the gain parameter
that is defined by

𝑔𝑎𝑖𝑛 = 1
2

[

𝐺2
𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
−

(

𝐺𝐿 + 𝐺𝑅
)2

𝐻𝐿 +𝐻𝑅 + 𝜆

]

− 𝛾 (4)

where 𝐺𝐿 and 𝐻𝐿 are associated with the left leaf and 𝐺𝑅 and 𝐻𝑅 are
associated with the right leaf after the splitting.
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Fig. 3. Pearson correlation coefficient between any two variables.
Fig. 4. Bubble-net feeding behavior of humpback whales [13].

.4. Whale optimization algorithm (WOA)

WOA is a novel nature-inspired meta-heuristic optimization algo-
ithm, which was proposed by Mirjalili and Lewis [13]. In the WOA, the
ptimal solution is found out using the hunting strategy of the hump-
ack whales. The hunting process of the humpback whales involves two
tages: surrounding the target, subsequently producing a net of bubbles
o confine the target, as shown in Fig. 4. The mathematical model of
he bubble net system in humpback whales can be explained as the
ollowing.

tep 1: Bubble net attacking method (exploitation phase).

1. Encircling prey. Initially, the WOA presupposes the current
leading candidate as the current best solution. Next, other
4

Fig. 5. Flowchart of the WOA.
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Fig. 6. 10-fold cross-validation.
Table 1
Statistical properties of experimental data.

𝑎 ℎ𝑤 𝑡𝑤 𝑏𝑓 𝑡𝑓 𝑐 𝑏1 𝑏𝑠𝑡 𝑡𝑠𝑡 𝑓𝑦𝑤 𝑓𝑦𝑓 𝑃𝑢
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (MPa) (MPa) (kN)

Min. 500.00 500.00 2.00 50.00 5.00 0.00 50.00 12.00 2.00 204.00 239.00 34.00
Mean 903.75 614.52 3.69 139.59 11.97 83.10 116.39 42.91 6.34 314.26 306.09 230.85
Max. 3000.00 1000.00 6.00 300.50 30.60 300.00 300.00 90.00 11.00 483.00 485.00 777.90
StD 627.53 172.87 1.2 63.81 6.31 68 53.49 21.4 2.33 67.79 64.81 172.6
CoV 0.6944 0.2813 0.3 0.457 0.53 0.818 0.46 0.5 0.37 0.216 0.212 0.748
S
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searching agents are utilized to alter their positions to arrive at
the current best agent’s location. The mathematical model of this
strategy is manifested in Eqs. (5) and (6).

�⃗� (𝑡 + 1) = ⃖⃖⃖⃖⃗𝑋∗ (𝑡) − 𝐴.⃖⃖⃗𝐷 (5)
⃖⃖⃗𝐷 = |

|

|

𝐶.⃖⃖⃖⃖⃗𝑋∗ (𝑡) − �⃗�(𝑡)||
|

(6)

In the equations, ⃖⃖⃖⃖⃗𝑋∗ (𝑡) is the whale’s previous best location at
step 𝑡. �⃗� (𝑡 + 1) denotes the current position of a whale, ⃖⃖⃗𝐷 is the
distance from the whale point to the target, and the ∥ indicates
the absolute value. 𝐴 and 𝐶 serve as coefficient vectors, and their
computations are given below:

𝐴 = 2.𝑎.𝑟 − 𝑎 (7)

𝐶 = 2.𝑟 (8)

where 𝑟 is a random vector produced with steady diffusion in
the interval of [0, 1] and 𝑎 declines from two to zero by order
of iterations.

2. Spiral updating position. The distance between the whale lo-
cated at (𝑋, 𝑌 ) and the prey located at (𝑋∗, 𝑌 ∗) is represented,
then a helix-shaped movement is implemented by using the
spiral equation as shown in Eq. (9).

�⃗� (𝑡 + 1) = 𝑒𝑏𝑙 . cos (2𝜋𝑙) . ⃖⃖⃖⃖⃗𝐷∗ + ⃖⃖⃖⃖⃗𝑋∗ (𝑡) (9)

where ⃖⃖⃖⃖⃗𝐷∗ = |

|

|

⃖⃖⃖⃖⃗𝑋∗ (𝑡) − �⃗�(𝑡)||
|

, 𝑏 denotes the constant used to
determine a logarithmic spiral shape and 𝑙 denotes a random
number in the range [−1, 1].
When updating whale’s positions, WOA assumes a likelihood of
50% to choose among shrinking encircling mechanism and the
5

spiral model as follows:

�⃗� (𝑡 + 1) =

{

⃖⃖⃖⃖⃗𝑋∗ − 𝐴.⃖⃖⃗𝐷 𝑖𝑓𝑝 < 0.5
𝑒𝑏𝑙 . cos (2𝜋𝑙) . ⃖⃖⃖⃖⃗𝐷∗ + ⃖⃖⃖⃖⃗𝑋∗ (𝑡) 𝑖𝑓𝑝 ≥ 0.5

(10)

where 𝑝 represents a random quantity within (0, 1).

tep 2: Search for prey (exploration).
In this stage, the WOA utilizes a random search to explore the target.

he 𝐴 vector is supported with a random value not equal to 1. The
gents’ position is rearranged based on randomly choosing the search
gent instead of looking for the best agent. The exploration strategy
s beneficial for WOA to address the issue of local optimization. The
xploration position update is expressed in Eqs. (11) and (12).

⃗ (𝑡 + 1) = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋𝑟𝑎𝑛𝑑 − 𝐴.⃖⃖⃗𝐷 (11)
⃖⃖⃗𝐷 = |

|

|

𝐶.⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋𝑟𝑎𝑛𝑑 − �⃗�|

|

|

(12)

here ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑋𝑟𝑎𝑛𝑑 represents a random location based on the current popu-
ation. The flowchart of the WOA is shown in Fig. 5.

. Evaluation metrics

To evaluate the ML models, three performance metrics including the
orrelation coefficient (𝑅2), the root mean square error (𝑅𝑀𝑆𝐸), and
he mean absolute error (𝑀𝐴𝐸) are used. They are defined as follows:

𝑅2 = 1 −
∑𝑁

i=1(𝑡𝑖 − o𝑖)2
∑𝑁

i=1(𝑡𝑖 − 𝑡)2
(13)

𝑀𝑆𝐸 =

√

√

√

√
1

𝑁
∑

(𝑡𝑖 − o𝑖)2 (14)

𝑁 i=1



V.-L. Tran and D.-D. Nguyen Thin-Walled Structures 177 (2022) 109424

t

Fig. 7. Convergence curve of WOA-GBM model with different population sizes.
𝑀𝐴𝐸 =
∑𝑁

i=1
|

|

𝑡𝑖 − o𝑖||
𝑁

(15)

where 𝑁 is the number of samples,
[

𝑡1,… , 𝑡𝑁
]𝑇 and

[

o1,… , o𝑁
]𝑇 are

he actual and the predicted vector values, respectively. 𝑡 is the average
of actual values.
6

5. Development of the WOA-GBM model

In this study, the web panel length (𝑎), the web height (ℎ𝑤), the
web thickness (𝑡𝑤), the flange width (𝑏𝑓 ), the flange thickness (𝑡𝑓 ),
the applied load length (𝑐), the distance between loaded flange and
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Fig. 8. Comparison of different ML models.
ongitudinal stiffener (𝑏1), the width of the stiffener (𝑏𝑠𝑡), the thickness
f stiffener (𝑡𝑠𝑡), the web yield strength (𝑓𝑦𝑤), and the flange yield
trength (𝑓𝑦𝑓 ) are chosen to establish the ML models for estimating the
LR of longitudinally stiffened SPGs (𝑃𝑢).

Overfitting is one of the biggest concerns in any ML method because
t is usually the downside of an unnecessarily over-complex model.
ommonly, the dataset was split into training and testing sets. How-
ver, it is not often possible to hold out enough data points to accurately
stimate the predictive performance of the models without affecting
he estimation quality. Cross-validation (CV) is the most traditional
ethod to overcome a scarcity of data. The dataset is randomly divided

nto 𝑘 subsamples, called folds, of roughly equal size in this method.
herefore, the first model is estimated using 𝑘 − 1 folds as a training

dataset, and the remaining fold is used to calculate the prediction
accuracy metric. This procedure is reiterated k times, and at each time,
a different fold is used as a test set. The accuracy is then expressed as
an average accuracy acquired by the 𝑘 models in 𝑘 validation rounds.
Although there is no formal rule for choosing the value of 𝑘, in practice,
𝑘 = 5 or 𝑘 = 10 is widely used by many researchers. In this study, 10-
fold is used to fine-tune the optimal parameters for the ML models, as
shown in Fig. 6.

To consider the effect of training and test partitions, five cases in
which the database is divided by 0.9-0.1, 0.85-0.15, 0.8-0.2, 0.75-0.25,
and 0.7-0.3 as training and test data, are investigated. The training set
is used to find the optimal parameters using a 10-fold CV integrated
with the WOA, while the performance of the models is then evaluated
using the test set. The WOA is applied to train all models by a hyper-
parameter subset manually specified and it must be guided by some
performance metric. For all the hyper-parameter combinations, the
training process was repeated 10 times, and the average 𝑅𝑀𝑆𝐸 is
used as the objective function for the optimization process. The crucial
7

Table 2
Crucial parameters and their ranges of the GBM model.

Model Parameter and range

GBM learning_rate n_estimators Subsample max_depth Alpha
(0.01–1.0) (5–100) (0.1–1.0) (1–10) (0.1–0.9)

Table 3
Performance of the WOA-GBM model with different training–test data ratios.

Ratio Pop size Training data Test data

𝑅2 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅2 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸

0.9-0.1 125 0.988 0.086 0.062 0.982 28.624 19.340
0.85-0.15 200 0.985 0.094 0.086 0.969 31.985 25.812
0.8-0.2 150 0.987 0.090 0.072 0.978 29.915 21.825
0.75-0.25 75 0.982 0.140 0.096 0.956 33.517 28.280
0.7-0.3 100 1.000 0.049 0.039 0.984 25.467 18.583

Unit of RMSE and MAE: kN.

parameters and their ranges of the GBM model used to optimize are
listed in Table 2.

After many tests, it is found that after 100 iterations, the fitness
value seems to be stable. Increasing the number of iterations, the
calculation time will increase and the result is not improved. Therefore,
the number of iterations is set as equal to 100 in this study. Moreover,
several population sizes of 25, 50, 75, 100, 125, 150, 175, and 200
are selected for the optimization process to choose the best one. Each
population size is run 10 times, and the best result is chosen. Table 3
shows the best model performance of five training–test ratios.

The results show that five cases perform well in training and test
data. However, the 0.7-0.3 case results provide the best prediction with
the highest value of 𝑅2 and lowest values of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 for
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Fig. 9. Performance of different ML models.
both training and test data. The 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 values for
the training data are 1.0, 0.049 kN, and 0.039 kN, respectively. For
the test data, the 𝑅2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 values are 0.984, 25.467
N, and 18.583 kN, respectively. Therefore, the database is randomly
ivided into a training set (70%) and a test set (30%). Fig. 7 shows
he convergence curves of the WOA-GBM models for each population
ize. Based on these results, a population size of 100 is chosen for the
OA-GBM model. The optimal parameters of the WOA-GBM model are

resented in Table 4.
8

Table 4
Optimal parameters of the WOA-GBM model.

Model Optimal parameters

WOA-GBM learning_rate n_estimators Subsample max_depth Alpha
0.79753 92 0.83729 3 0.32957
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Fig. 9. (continued).
Fig. 10. Global importance factors based on the SHAP.
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. Results and discussions

.1. The performance of ML models

To evaluate the performance of the WOA-GBM model, the results
btained from the default GBM, WOA-AdaBoost, and WOA-XGBoost
odels are also used for comparison. Figs. 8–9 show the performance of

hese ML models. It can be seen that four models show good agreement
ith the experimental results as 𝑅2 values were larger than 0.90

or both training and test sets. In the training phase, the prediction
erformance in terms of 𝑅2 can be ranked as WOA-GBM (1.0) = WOA-
GBoost (1.0) > GBM (0.997) > WOA-AdaBoost (0.952). Similarly, the
anking for 𝑅𝑀𝑆𝐸 is WOA-GBM (0.049 kN) > WOA-XGBoost (0.744
N) > GBM (8.04 kN) > WOA-AdaBoost (34.938 kN) and for 𝑀𝐴𝐸
9

s WOA-GBM (0.038 kN) > WOA-XGBoost (0.59 kN) > GBM (5.949
N) > WOA-AdaBoost (30.246 kN). In the test phase, the prediction
erformance in terms of 𝑅2 is WOA-GBM (0.984) > GBM (0.964)

> WOA-XGBoost (0.956) > WOA-AdaBoost (0.935). The ranking for
𝑅𝑀𝑆𝐸 is WOA-GBM (25.467 kN) > GBM (37.683 kN) > WOA-XGBoost
41.937 kN) > WOA-AdaBoost (50.985 kN) and for 𝑀𝐴𝐸 is WOA-GBM

(18.583 kN) > GBM (26.188 kN) > WOA-XGBoost (28.036 kN) > WOA-
AdaBoost (38.195 kN). Obviously, the WOA-GBM model shows the best
performance with the highest value of 𝑅2, lowest value of 𝑅𝑀𝑆𝐸 and
𝑀𝐴𝐸.

Moreover, Table 5 shows the statistical results of the predictions
to targets ratio based on the four ML models for the entire data. It is
noted that among four ML models, the WOA-GBM model has superior
performance compared to the other models in terms of the lowest
standard deviation (𝑠𝑡𝑑 = 0.090) and covariance (𝑐𝑜𝑣 = 0.089), and
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Fig. 11. Explanation of the patch loading prediction of a specimen. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 12. Summary plots for the PLR. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
w
𝑀

Table 5
Statistical results of the predictions to targets ratio based on the six ML models.

Model WOA-AdaBoost GBM WOA-GBM WOA-XGBoost

Mean 1.205 1.010 1.006 1.008
Std 0.407 0.111 0.090 0.092
Cov 0.338 0.110 0.089 0.091

the mean value is close to 1. It means that the proposed WOA-GBM
model provides the most stable, safe, and accurate predictions. Thus,
only the WOA-GBM model is investigated in subsequent parts of this
study.

6.2. Model explanation-based SHapley Additive exPlanation (SHAP)

In this study, the Shapley Additive Explanations (SHAP) method
proposed by Lundeber and Lee [55] is utilized to assess the importance
 a

10
and contributions of each input variable for predicting the PLR of
longitudinal stiffened steel girders and for interpreting the WOA-GBM
model globally and locally.

The idea behind Shapley values comes from the game theory [36].
The SHAP method [55] assigns each input feature an important value
for a particular prediction. It is an additive feature attribution method
that defines the output of a model as the sum of the real values
attributed to each input feature. Additive feature attribution methods
have an explanation model defined as a linear function of binary
features as in the following equation:

𝑔(𝑧′) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑧

′
𝑖 (16)

here 𝑔 is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the coalition vector,
is the number of input features, 𝜙0 represents a constant value when
ll inputs are missing, and 𝜙𝑖 ∈ R is the feature attribution values.
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The Shapley value of the feature 𝑖 is computed as

𝜙𝑖 =
∑

𝑆⊆𝐹∖𝑖

|𝑆|! (|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[

𝑓𝑆∪𝑖
(

𝑥𝑆∪𝑖
)

− 𝑓𝑆
(

𝑥𝑆
)]

(17)

here 𝐹 is the set of all features, 𝑥𝑆 represents the values of the input
eatures in the set 𝑆.

In this section, the Shapley values are directly used to explain the
LR of the WOA-GBM model.

Fig. 10 shows the feature importance of the input variables on the
LR prediction using the SHAP method. These important factors are the
verages of the absolute Shapley values per feature across the data. It
an be seen that, in general, the web yield strength (𝑓 ) and the web
𝑦𝑤

11
hickness (𝑡𝑤) have a significant influence on the PLR of longitudinally
stiffened SPGs. The flange thickness (𝑡𝑓 ), the applied load length (𝑐),
nd the flange yield strength (𝑓𝑦𝑓 ) also affect the PLR of longitudinally
tiffened SPGs, but the importance is much less than the 𝑓𝑦𝑤 and
𝑡𝑤 and slightly higher than the distance between loaded flange and
longitudinal stiffener (𝑏1), the web panel length (𝑎), and the width
of the stiffener (𝑏𝑠𝑡). While the remaining variables (𝑏𝑓 , 𝑡𝑠𝑡, ℎ𝑤) have
relatively low impacts on the results.

Fig. 11 shows a typical prediction plot obtained with the WOA-GBM
model for a specimen with 𝑎 = 1000 mm, ℎ𝑤 = 700 mm, 𝑡𝑤 = 5 mm,
𝑏𝑓 = 225 mm, 𝑡𝑓 = 20 mm, 𝑐 = 200 mm, 𝑏1 = 75 mm, 𝑏𝑠𝑡 = 60 mm,
𝑡 = 5 mm, 𝑓 = 392 MPa, and 𝑓 = 355 MPa. In this figure,
𝑠𝑡 𝑦𝑤 𝑦𝑓
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Fig. 13. (continued).
the base value (230.85 kN) is the average of the experimental results.
As can be seen that the PLR of the specimen is higher than the base
value. Input variables pushing the prediction higher are shown in red,
those pushing the prediction lower are in blue. The width of the bar
denotes the extent of the corresponding increases and decreases. The
most important variables that contribute to this prediction are 𝑓𝑦𝑤, 𝑡𝑓 ,
𝑐, 𝑏1, 𝑡𝑤, and 𝑏𝑠𝑡.

Fig. 12 shows the SHAP summary plot that illustrates the effect of
each parameter (positively or negatively) on prediction for all exper-
imental data. In the figure, the 𝑥-axis represents the specific Shapley
value and the 𝑦-axis the input variables, ordered by importance. Each
12
point represents a Shapley value of an input variable for each specimen,
and the 𝑦-axis (from top to bottom) indicates the input variables in the
order of importance. Red and blue colors represent the high and low
variable values, respectively. The red point on the right-hand side of
the plot indicates a positive correlation with the PLR, whilst the red
point on the left-hand side of the plot indicates a negative correlation.
Generally, it can be seen that with the increase in the web yield strength
(𝑓𝑦𝑤), the web thickness (𝑡𝑤), the flange thickness (𝑡𝑓 ), the applied load
length (𝑐), and the web panel length (𝑎), the PLR will increase. By
contrast, the PLR tends to decrease with increasing values for features
like the flange yield strength (𝑓 ) and the width of the stiffener (𝑏 ).
𝑦𝑓 𝑠𝑡
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Fig. 14. The practical GUI tool for PLR prediction.
To obtain further insight, Fig. 13 shows the Shapley values of each
input variable.

6.3. Graphical user interface (GUI) tool and web application (WA)

The previous section shows that the proposed WOA-GBM model
can achieve superior accuracy in predicting the PLR of longitudinally
stiffened SPGs. Therefore, developing a robust and efficient tool has
become imperative for practical use. In this study, such a Graphical
User Interface (GUI) tool is developed based on the proposed WOA-
GBM model. The GUI tool has been implemented using the Python
programming language and allows users to perform tasks interactively.
The interface of this GUI tool is shown in Fig. 14. Using this GUI
tool, users can enter the numeric values for the web panel length, the
web height, the web thickness, the flange width, the flange thickness,
the applied load length, the web yield strength, and the flange yield
strength. Lastly, the PLR of longitudinally stiffened SPGs is displayed
directly by clicking the Predict button. Besides, a WA is developed to
use the developed WOA-GBM model effectively. The WA is available at
https://plr-webapp-tvlinh.herokuapp.com/. For these reasons, the GUI
tool and WA are expected to be convenient methods for PLR prediction
of longitudinally stiffened SPGs with less effort.
13
7. Conclusions

This paper investigates the feasibility of hybridizing the gradient
boosting machine (GBM) method with the whale optimization algo-
rithm (WOA) for predicting the PLR of longitudinally stiffened SPGs.
A total of 137 experimental datasets are carefully collected and used to
develop the ML models. Additionally, rank input variables and explain
the contributing factors to the PLR estimation are presented using the
SHapley Additive exPlanations (SHAP) method. Finally, an efficient
GUI tool and a WA are developed to apply for practical use in predicting
the PLR of longitudinally stiffened SPGs. The following conclusions can
be drawn from this study:
(1) The WOA can improve the performance of the GBM model.
(2) The results demonstrate the superior accuracy of the WOA-GBM
model, which has the highest 𝑅2 (0.993), lowest 𝑅𝑀𝑆𝐸 (14.101 kN),
and 𝑀𝐴𝐸 (5.723 kN), outperforms the WOA-AdaBoost and WOA-
XGBoost models. The corresponding mean predicted/actual value is
1.006, with a standard deviation of 0.090 and covariance of 0.089.
(3) Using the SHAP method, the web yield strength and web thickness
significantly influence the PLR of longitudinally stiffened SPGs more
than others.

https://plr-webapp-tvlinh.herokuapp.com/
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(4) The developed GUI tool and a WA are convenient and flexible to
estimate the PLR of longitudinally stiffened SPGs quickly.
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