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Abstract. This paper develops an artificial neural network (ANN) model for predicting the speed limit of cars

moving on corroded steel girder bridges. A total of 311 datasets, which are created from the proposed analytical

model, are used to construct the ANN model. The input parameters of the proposed ANN model include the

car’s weight, diameter of tires, and the dimensions of girder bridges, which are the top flange width, top flange

thickness, bottom flange width, bottom flange thickness, girder height, web thickness, and the span of girder.

Meanwhile, the speed limit of cars is the output variable of the ANN model. The results show that the speed

limitation of cars on the corrosive steel girder bridge is reduced pronounced after 100 years. Sensitivity analyses

reveal that the influential parameters with respect to the maximum speed are the girder height and tire diameter,

whereas the girder weigh and girder span have negative effects on the speed limit of cars. Moreover, a

mathematical formula and a graphical user interface program are developed to calculate the speed limits of cars

on the corrosive steel girder bridge. These practical tools are very helpful for practitioners in determining the

speed limit of cars moving on steel girder bridges subjected to corrosion.

Keywords. Artificial neural network; corroded steel girder bridges; speed limits; predictive formula; graphical

user interface.

1. Introduction

Speed limit is the one of crucial parameters for improving

the traffic safety. Especially, the service life of traffic works

is degraded by time due to environmental factors. The steel

girder bridges are widely used in traffic structures since its

simple construction. However, this structure is corroded by

time, and therefore the speed limit of cars should be care-

fully considered.

Corrosion is a complicated phenomenon, which is nor-

mally expressed in terms of mathematical formulations.

Komp [1] proposed a typical corrosion model considering

different types of environments such as marine, urban and

rural areas. Landolfo et al [2] conducted a systematic lit-

erature review on the damaged modeling of metal struc-

tures subjected to corrosions. In the study of Seccer et al
[3], they employed Komp model to figure out the corroded

failure of steel frames accounting for lateral bending.

Nguyen and Nguyen [4] assessed the reliability of steel-

concrete composite beams after 100 years considering

Komp model and sensitivity analyses. In addition, relia-

bility analyses of steel structures accounting for the effects

of corrosion were studied numerously [5–7]. However, a

study on the speed limit of cars on the steel girder bridge

considering corrosion effects is not systematically investi-

gated so far.

Over the last few decades, the artificial intelligence (AI)

techniques have been widely applied for various engi-

neering problems, in which the artificial neural network

(ANN) model is one of the most popular methods [8–11].

Regarding traffic engineering, ANN was employed for

predicting the driver behavior, vehicle detection [12],

damage detection [13], traffic pattern analysis [14], traffic

flows measurement [15, 16], pavement maintenance [17],

classification of vehicle detection [18], and traffic control

[19]. Additionally, ANN technique was also applied for

cargo activity, prediction accident scenario, economics and

transport policy, air transport, and sea transportation [14].

Nevertheless, to the best of the authors’ knowledge, there is

no study applying any AI models such as ANN to predict

the maximum speed of cars passing across the corroded

steel girder bridge.

Therefore, this study develops a procedure for predicting

the speed limit of cars passing on the steel girder bridge

considering metal corrosion based on ANN combined with

a corrosion model suggested in previous works [1, 20]. For

training ANN models, a total of 311 data samples is gen-

erated based on the analytical model. Input parameters of

the proposed ANN model are the car’s weight (M), diam-

eter of tires (DC), and dimensions of steel girder bridges,*For correspondence
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which are the top-flange width (TF), top-flange thickness

(t � TF), bottom-flange width (BF), bottom-flange thick-

ness (t � BF), girder height (D), web thickness (t � w), and
the girder span (L). Meanwhile, the speed limit of cars

(Vth minð Þ) is the output variable of the ANN model. The

influence of input variables on the Vth minð Þ value is evalu-

ated. Finally, practical tools including a mathematical

equation and a graphical user interface are developed based

on MATLAB [21] for convenient design practices.

2. Calculation model for speed limit of cars
moving on steel girder bridges

Considering a car passing on the steel girder bridge, as

shown in figure 1, following parameters are included:

• Car’s weight (M)

• Diameter of tires (DC)
• Top-flange width (TF)
• Top-flange thickness (t � TF)
• Bottom-flange width (BF)
• Bottom-flange thickness (t � BF)
• Heigh of girder (D)
• Web thickness (t � w)
• The girder span (L)

The calculated model for the speed limit of cars moving

on the simply supported beam can be modeled by the

illustration in figure 2. The moving load on the bridge has

the following form, as shown in Eq. (1)

P tð Þ ¼ Pþ G sin rt ð1Þ

The differential equation of the deflection at the center

point of the bridge is expressed by Eq. (2)

y00 tð Þ þ x2y tð Þ ¼ x2d11 Pþ G sin rtð Þsin ht ð2Þ

The solution of the left side of Eq. (2) has the form:

y tð Þ ¼ A sin xt þ B cos xt þ Pd11sin ht

1� h2

x2

ð3Þ

else

y tð Þ ¼ A sin xt þ B cos xt þ 2P

mL

sin ht

x2 � h2
ð4Þ

where x2 ¼ 1
Md11

is the natural frequency of the girder; m is

the girder mass; d11 ¼ L3

48EI is the static displacement of the

mass due to unit P; G is the amplitude of inertia forces of a

moving car.

Transforming the right side of Eq. (2), we have

x2d11G sin rt sin ht ¼ 2G

mL
sin rt sin ht

¼ G

ml
sin u1t þ sin u2tð Þ ð5Þ

Here, u1 ¼ r � h;u2 ¼ r þ h; h ¼ pv
L

Rewriting Eq. (2), obtained as follows

y00 tð Þ þ x2y tð Þ ¼ G

mL
sin u1t þ sin u2tð Þ ð6Þ

The solution of the differential equation in Eq. (6) is

y tð Þ ¼ G

mL

cosu1t

x2 � u2
1

þ cosu2t

x2 � u2
1

� �
ð7Þ

Combining Eq. (4) and Eq. (7), the static deflection of the

beam at a setting point is obtained as

y tð Þ ¼ A sin xt þ B cos xt þ 2P

mL

sin ht

x2 � h2

þ G

mL

cosu1t

x2 � u2
1

þ cosu2t

x2 � u2
1

� �
ð8Þ

where A and B are integral constants, which are defined at

t ¼ 0, then y 0ð Þ ¼ 0; y0 0ð Þ ¼ 0, respectively. Then, Eq. (8)

can be rewritten as

y tð Þ ¼ 2P

mL x2 � h2
� � sin ht � h

x
sin xt

� �

þ G cosu2t � cos xtð Þ
mL x2 � u2

1

� � þ G cosu2t � cos xtð Þ
mL x2 � u2

2

� � ð9Þ

Based on Eq. (9), a resonance occurs in the following

cases:

• Case 1: x ¼ h

Figure 1. A car moving on the simply supported steel girder bridges.
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• Case 2: x ¼ ui i ¼ 1; 2ð Þ

We have x ¼ 2vth
DC � pvth

L

The speed limits for the case of moving loads consider-

ing the eccentric mass of the car moving on the bridge are

vth ¼
x

2
DC � p

L

where x ¼ p2

L2

ffiffiffiffiffi
EI

m

r
ð10Þ

The speed limit is determined by

Vth minð Þ ¼
x

2
DC þ p

L

ð11Þ

where DC is the diameter of the tires.

The calculated model for determining the speed limit is

constructed using input parameters consisting of the car’s

weight, diameter of tires, and the steel girder bridge con-

figurations based on MATLAB.

3. Dataset generation

To generate data samples, various scenarios of cars moving

on the steel girder bridges are considered. A wide range of

input parameters comprising of car’s weight (M), tire

diameter (DC), and the steel girder bridge dimensions,

which are the top-flange width (TF), top-flange thickness

(t � TF), bottom-flange width (BF), bottom-flange thick-

ness (t � BF), girder height (D), web thickness (t � w), and
girder span (L), are varied to obtain the speed limit of car.

Meanwhile, the speed limit value is determined based on

Eq. (11). Finally, a set of 311 datasets is created for training

ANN models. The statistical description of the input and

output parameters is shown in table 1. The probability

distribution of input and output parameters is shown in

figure 3.

Figure 4 shows the correlation between input variables

and output parameter. It can be seen that the largest cor-

relation between the car’s weight and the bottom flange

width is 0.122, while the maximum correlation between the

bottom flange width and the output variable is only 0.312.

This confirms predicting the speed limit of cars moving on

the steel girder bridges with these input and output

parameters even more meaningful.

4. The proposed ANN model

4.1 ANN model

So far, ANN has been widely used in various aspects of

engineering [22–27]. ANN is a simulation algorithm that

Figure 2. Calculated model of a moving load on the simply supported beam.

Table 1. The statistical description of the input and output parameters.

Parameter Units Minimum Mean Maximum Standard deviation (SD) Coefficient of variation (CoV)

TF cm 15.00 42.8810 70.00 14.1470 0.3300

t-TF cm 2.00 5.0958 8.00 1.9409 0.3809

BF cm 15.00 39.1061 75.00 17.8396 0.4562

t-BF cm 2.00 4.0500 6.00 1.3117 0.3239

D cm 25.00 69.3087 100.00 20.6293 0.2976

t-W cm 3.00 4.7082 6.00 1.0205 0.2167

M kG 1000.00 5160.7717 8500.00 1682.4151 0.3260

DC cm 35.00 78.9068 110.00 16.3064 0.2067

L cm 1000.00 1961.4148 2500.00 363.9256 0.1855

Vth(min) km/hr 12.11 99.3746 577.49 86.0388 0.8658
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Figure 3. The probability distribution of input and output parameters.
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mimics the thinking and reasoning of the human brain. This

study adopts the back propagation neural network and the

Levenberg-Marquardt algorithm with a structure of three

layers (i.e., input layer, hidden layer, and output layer). The

input layer, hidden layer, and output layer are connected

through weights and biases. Its mathematical expression

has the form as.

f : X 2 RD ! Y 2 R1f Xð Þ ¼ f0 b2 þW2 fh b1 þW1Xð Þð Þð Þ
ð12Þ

where b1;W1, and fh are the biases vector, the weight matric

and the activation function of the hidden layer, respec-

tively. Meanwhile, b2;W2, and f0 are the biases vector, the

weight matric and the activation function of the hidden

layer output layer, respectively.

The hidden layer activation function used in this study is

a nonlinear function (tansig function). And linear function

(purelin function) has been used for the output layer [28].

The equation represents the activation function tansig in

Eq. (13) and purelin in Eq. (14) and shown in figure 5.

Figure 5. Activation functions: tansig (left) and purelin (right).

Figure 4. Correlation between input variables and output parameters.
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tansig xð Þ ¼ 2

1þ epx �2xð Þð Þ � 1 ð13Þ

purelin xð Þ ¼ x ð14Þ

According to Golafshani & Ashour [29], during the training

of the network, the input and output data must be normal-

ized in the interval [-1, 1]. The normalization is shown in

Eq. (15).

Xn ¼ 2� X � Xminð Þ
Xmax � Xminð Þ � 1 ð15Þ

where Xn is the normalized sample, Xmax, Xmin and X are the

maximum, minimum and value of the sample under con-

sideration, respectively. The normalized value has into the

proposed ANN model and developed by the MATLAB

tool.

Figure 6. Ranking matrix of 120 proposed ANN structures.

Figure 7. The proposed ANN model structure.
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The process of training the network of continuous feed-

back loops is performed. To stop the training, the mean

square error (MSE) was used. The MSE is expressed by the

following equation.

MSE ¼ min
b1;b2;W1;W2

1

N

XN
i¼1

e2i ð16Þ

where ei is the deviation of the output layer data and the

experimental data; N is number of samples were included

in the ANN model.

4.2 Optimization of the proposed ANN model

An ANN model achieves the best performance at the split

ratio (training, testing, and validation) combined with the

number of hidden layers. To evaluate the best model, three

indices, which are coefficient of determination (R2), root

mean squared error (RMSE), and a20-index were included

in the evaluation as suggested by Zorlu et al [24]. The

equations for determining R2, RMSE, and a20-index,
respectively, are as follows.

R2 ¼ 1�
Pn

i¼1 ti � oið Þ2Pn
i¼1 o

2
i

 !
; ð17Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �Xn
i¼1

ti � oið Þ2
s

; ð18Þ

a20� index ¼ m20

n
ð19Þ

where ti is the i
th value of the experimental data; oi is the i

th

value of the predicted value of ANN model; n is the number

of samples; m20 is the number of samples with the ratio of

the experimental value to the predicted value between

0.8–1.0.

In this study, 120 ANN structures are performed with 06

training ratios including 0.6, 0.65, 0.70, 0.75, 0.8, and 0.85,

the test and validation ratios are equal, respectively.

Meanwhile, the number of neurons in the hidden layer has

been changed from 1 to 20. The best performing model is

the model with the highest ranking of R2, RMSE, and a20-
index. The ranking results of all the models are shown in

figure 6. It can be seen that the training, testing, and vali-

dation ratios of the best model are 0.6, 0.2, and 0.2,

respectively. Moreover, the optimal model contains 14

neurons in the hidden layer, as shown in figure 7.

4.3 Performance of ANN model

The training results of the ANN model are shown in fig-

ure 8 and table 2. It can be seen that the training converges

at the 13th epoch with MSE of 0.045642. This confirms that

the proposed ANN model has been trained very well with

the input data.

Figure 9 shows the regression ratio the predicted of the

ANN model and the input dataset. The R2 values of train-

ing, testing, and validation data are 0.98076, 0.97071, and

0.98096, respectively. It is close to 1.0. This result implies

that the proposed ANN model structure is reliable for

predicting the speed limit of cars moving on the steel girder

bridge.

Table 2 shows the results of R2, RMSE, and a20-index,
and statistical properties (i.e., minimum, maximum, mean,

Table 2. Performance of ANN model.

R2 RMSE (km/hr) a20-index

Vth minð Þ=V
prediction
th minð Þ

Min Mean Max SD CoV

Training 0.9807 25.497 0.8877 0.510 1.041 1.399 0.126 0.121

Testing 0.9707 30.243 0.8419 0.619 0.924 1.429 0.150 0.162

Validation 0.9809 27.983 0.8710 0.602 0.905 1.485 0.147 0.163

All data 0.9708 60.542 0.8553 0.510 1.010 1.485 0.146 0.145

Figure 8. Performance of proposed ANN model.
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SD, and CoV) of the predicted/dataset ratio. It can be seen

that the mean value is very close to 1.0. Once again, it

emphasizes that the proposed ANN model is reliable for

predicting the speed limit of cars moving on the steel girder

bridge.

Figure 9. Regression the predicted of the ANN model and the input dataset.

Table 3. Coefficient DA and DB for different environment [1].

Environment Carbon steel

DA DB

Rural 34.0 0.65

Urban 80.2 0.59

Marine 70.6 0.79

Figure 10. The corrosion rate in different environment.
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Figure 11. Corrosion form of steel girder bridges (adapted from [20]).

Figure 12. Flowchart of speed limit prediction of cars moving on the corroded steel girder bridge.
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Table 4. Coefficients for Eq. (22).

i hi cio ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8 ci9

0 0.3015

1 - 1.3931 - 0.0238 0.3751 - 0.4157 1.5561 - 1.2072 - 0.6955 - 0.0704 - 0.2391 0.7842 0.0448

2 - 1.6602 - 0.0804 0.3442 0.1300 - 0.2450 0.2587 - 1.2519 0.0138 - 0.5943 1.2137 - 0.8036

3 2.0011 - 0.3371 - 0.1377 0.0110 - 0.1585 - 0.1018 - 0.3513 0.0193 1.8480 - 0.3526 0.3807

4 - 0.7266 - 0.0656 0.0628 - 0.7579 - 0.3386 0.0274 - 1.1104 - 0.3998 0.3136 - 0.0816 0.7174

5 0.0940 0.0090 - 0.7916 - 1.5721 - 0.3363 - 0.6219 - 0.7973 - 0.8906 - 0.3452 - 0.7936 - 0.2042

6 - 0.2552 - 0.0347 - 0.5393 1.1660 - 0.0222 0.0859 - 0.7037 - 0.3884 - 0.4575 0.1682 0.3502

7 - 0.3992 0.3693 0.1091 0.0015 0.1668 0.1569 0.1275 - 0.1631 - 0.3106 0.4970 - 0.5397

8 0.1210 - 0.0146 1.0016 - 0.2810 - 0.2757 0.8424 - 1.0311 - 0.6383 - 0.9408 0.0775 - 0.9622

9 - 0.8662 - 0.0222 - 0.2811 - 0.6772 0.4550 0.3323 0.2342 - 1.1052 - 1.3984 1.2266 - 1.3933

10 1.0855 - 0.1144 - 0.1745 - 0.4968 - 0.1150 0.0968 - 1.4150 - 0.5065 0.3616 - 0.1241 0.8108

11 - 1.8390 0.7831 0.1090 0.0616 0.2486 0.0362 0.5229 0.0514 - 0.3780 0.3722 - 1.6826

12 - 1.8134 - 0.0181 - 1.0853 - 0.6385 1.4064 1.2171 - 0.3039 0.0167 0.1736 0.1079 - 0.1168

13 - 1.2231 - 0.1257 - 0.2523 0.1292 0.5602 0.1014 - 0.8487 - 0.1491 - 0.6677 - 0.1366 - 1.0596

14 - 1.6357 - 0.0939 0.0663 0.0927 0.0565 - 0.1872 0.7709 0.2849 - 0.0917 - 1.4941 - 0.3859

Figure 13. Graphical user interface program.

Table 5. Input parameters of the example.

TF t-TF BF t-BF D t-w M DC L

(cm) (cm) (cm) (cm) (cm) (cm) (kG) (cm) (cm)

43.0 5.0 39.0 4.0 69.0 5.0 5161.0 79.0 1961.0
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5. Speed limit prediction of cars moving
on corrosive steel girder bridges

5.1 Corrosion model

Corrosion properties (e.g., section deterioration, corrosion

form, and fatigue strength) are adopted from the suggestion

of Nowak and Szerszen [20]. Meanwhile, the atmospheric

corrosion rate of carbon steel is expressed by an exponen-

tial law suggested by Komp [1], as shown in Eq. (20).

R tð Þ ¼ DAt
DB ð20Þ

where R tð Þ is the mean corrosion rate (lm); t is the cor-

rosion time (years). DA and DB are coefficients determined

by local experimental data [1]. Three environmental con-

ditions are considered in the model, in which marine, urban,

rural areas are corresponding to the high, medium, and low

corrosion rates, respectively (see table 3).

The effectiveness of protective coating is assumed until the

20th year (i.e., zero corrosion up to 20 years). The corrosion

rate curves for three environmental conditions are plotted in

figure 10. The corrosion form of the steel girder bridge is

adopted from the previous study [20], as shown in figure 11.

5.2 Speed limit prediction of cars moving
on corroded steel girder bridges

Prediction of speed limits of cars moving on corroded steel

girder bridges in this study is a combination of the corro-

sion rate in Eq. (20), the corrosion form shown in figure 11,

and the training result of the ANN model. The flowchart of

the prediction procedure is illustrated in figure 12.

Following steps are considered in predicting the speed

limit of cars moving on the corroded steel girder bridge.

• Step 1. Determine the prediction data and corroded

time.

• Step 2. Calculate of the area and stiffness sections loss

considering corroded steel girder bridge.

• Step 3. Normalize the datasets.

• Step 4. Determine the speed limit of cars moving on

the corroded steel girder bridge by combining the

training results of the ANN model and the normaliza-

tion data considering the corrosion.

5.3 Predictive formula for the speed limit of cars
moving on the steel girder bridge

It is needed to transform the proposed ANN model to a

practical formula for engineering practices. This study has

proposed a formula to determine the speed limit of cars

moving on a steel girder bridge based on the ANN model,

expressed by.

Vth minð Þ ¼ 282:68� VN
th minð Þ þ 1

� �
þ 12:10 ð21Þ

where the coefficients 282.68 and 12.10 are half of the

maximum and minimum speed limits difference, and the

minimum speed limits value of the input datasets, respec-

tively. VN
th minð Þ is the normalized speed limits, which is

determined by the following expression,

VN
th minð Þ ¼ h0 þ

X14
i¼1

hiHi

Hi ¼ tan h ci0 þ ci1X1 þ ci2X2 þ . . .þ ci9X9ð Þ
ð22Þ

where h0; hi and ci0; :::; ci9 are coefficients obtained from

the ANN model and summarized in table 4.

5.4 Graphical user interface

In addition to the proposed equation, a graphical user

interface programs (GUI) tool is developed based on

Figure 14. Time-dependent speed limit of corroded steel girder

bridges.

Table 6. The databases of the input parameters.

Parameter L LM M MH H

TF 15.00 28.94 42.88 56.44 70.00

t-TF 2.00 3.55 5.10 6.55 8.00

BF 15.00 27.05 39.11 57.05 75.00

t-BF 2.00 3.03 4.05 5.03 6.00

D 25.00 47.15 69.31 84.65 100.00

t-W 3.00 3.85 4.71 5.35 6.00

M 1000.00 3080.39 5160.77 6830.39 8500.00

DC 35.00 56.95 78.91 94.45 110.00

L 1000.00 1480.71 1961.41 2230.71 2500.00

Note: (L) – Low; LM – Middle low; M – Medium; MH – Middle high; H –

High.
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MATLAB [21], as shown in figure 13. It is easy to calculate

the speed limits for designers and managers. Nine input

variables include the car’s weight, tire diameter, and the

steel girder bridge configurations, which are top flange

width, top flange thickness, bottom flange width, bottom

flange thickness, girder height, web thickness, the span of

girder, and corrosion time. This tool is freely accessible and

easy to use. The user needs to enter all the input variables

and press the ‘‘Start Predict’’ button to be able to determine

the result. This GUI tool is developed based on the pro-

posed ANN model, therefore the accuracy of the prediction

is verified and demonstrated in the previous section.

6. Number practice

Considering the single-span steel girder bridge with the

load limits according to design parameters, the input

parameters of the steel girder bridge are given in table 5.

The service life of the steel girder bridges is considered util

the 100th year, meanwhile the metal corrosion of the steel

girder starts at the 20th year. The speed limit is decreased by

time, as shown in figure 14. It can be observed in figure 14

that the speed limit considering corrosion is reduced

approximately 11% after 100 years, which implies a pro-

nounced deterioration. This finding should be considered in

the current design standards.

7. Effects of input parameters on the speed limits
(SL)

Effects of input parameters on the speed limit of cars

moving on the steel girder bridge is helpful to designers or

managers in evaluating the traffic safety and traffic service

life. The input parameters are changed from minimum

(L) to maximum (H) bounds. At the time to assess Xi

parameter, the remaining parameters are set to the medium

values. All databases are shown in table 6.

Figure 15 shows the influences of the input variables on

the speed limit of cars moving on the steel girder bridges. It

can be seen that the Vth minð Þ value tends to increase but not

Figure 15. Effects of input parameters on the speed limits.
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much with the increment of the top flange width, top flange

thickness, bottom flange width, bottom flange thickness,

and web thickness. Meanwhile, the Vth minð Þ value is sig-

nificantly increased with the increment of the girder height

and tire diameter. By contrast, the speed limit Vth minð Þ is

reduced as the car’s weight and girder span increased.

8. Conclusions

This study develops an ANN model to predict the speed

limit of cars moving on the steel girder bridges considering

metal corrosion based on 311 datasets. A procedure to

determine the speed limit considering metal corrosion is

proposed based on the training results of the ANN model

combined with the corrosion form. The following conclu-

sions are obtained.

• The proposed ANN model based on 311 datasets

predict the speed limit of cars moving on the corroded

steel girder bridges accurately with R2 larger than 0.97

and a20-index larger than 0.85.

• A practical equation for predicting the speed limit of

cars moving on the corroded steel girder bridge is

proposed.

• The graphical user interface program is also developed

based on MATLAB, which has been freely available

for designers and practitioners.

• The effects of input parameters on the speed limits of

cars moving on the corrosive steel girder bridges are

evaluated. The girder height and tire diameter are

influential parameters, meanwhile, the car’s weight and

girder span have negative effects on the speed limit.
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