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The symmetric double tapered steel (SDTS) columns with tubular cross-section (TC) are common struc-
tures in the civil and industrial engineering because of its bearing capacity and aesthetics advantages.
However, determining the critical buckling load (CBL) of the SDTS column with TC is not specified in
the design standards. Meanwhile, the quality inspection and testing of the bearing capacity of this struc-
ture are necessary problems. On the other hand, the CBL of the SDTS column with TC depends on the geo-
metrical and material parameters, which are random variables in practices. This paper aims to perform
the reliability assessment of CBL of the SDTS column with TC considering geometrical and material ran-
dom parameters. To achieve the goal, the deterministic model is built based on the CBL of the SDTS col-
umn with TC using the Bubnov-Galerkin method. Meanwhile, the stochastic model is established based
on the deterministic model, in which the geometrical and material are random parameters. Finally, the
reliability assessment is conducted using the Monte Carlo simulation method. The sensitivity effect of
the input parameters on the reliability value is also investigated in this study.
Copyright � 2022 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ence on Materials, Processing & Characterization.
1. Introduction

The tapered steel columns have been popularly used in civil
engineering structures. Critical buckling load (CBL) is the most
important parameter in designing this steel column. In 1961,
Timoshenko and Gere proposed a solution for calculating the elas-
tic buckling load of steel columns, in which this solution is similar
to the Euler approach using a modified factor related to the maxi-
mum and minimum inertia moments of the cross-sections [1]. Lee
et al. [2] developed a formula to calculate the critical load of
tapered columns using the minimum cross-section with an equiv-
alent factor. A similar approach was studied by Hirt and Crisinel [3]
using an equivalent cross-section. Marques et al. [4] proposed a
method for determining the critical buckling load of tapered steel
columns. A study on the critical load of tapered steel columns using
the differential equation approach combined with Newton-
Raphson iteration was conducted by Dang and Nguyen [5].
Recently, Nguyen and Nguyen [6] used artificial neural networks
to predict the critical loading capacity of tapered I-section steel
columns. The aforementioned studies focused on the critical load
of tapered steel columns; however, the axial loading capacity of
the double tapered steel column is different because of the shape.
Moreover, the current design codes such as ASCE, Eurocode 3, BS
and TCVN 5575 suggest considering the minimum cross-section
with a multiplying coefficient when designing the tapered steel
columns. However, this suggestion has caused a discrepancy in
design practices [7].

Reliability-based design can reduce the uncertainty of input
parameters. Specifically, steel structures contain a high slender-
ness and depend on random variables. There are many studies
related to the reliability analysis of steel structures [5,8–13]. These
works mostly used first-order and second-order reliability meth-
ods, Cornell index, and Monte Carlo simulation method to assess
the structural reliability with random input variables. Moreover,
the reliability of steel columns with varying cross-section was also
studied by many researchers. Jin et al. [14] proposed an integrated
method for designing steel columns with varying cross-sections
based on nonlinear procedure. Tancova [15] developed a formulas
for designing the reliability-based stability of steel columns, beams
and beam-column connections. Reliability analyses of tapered steel
tubular
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Fig. 1. Both ends pinned column and cross-section.
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columns subjected to earthquakes based on joint analysis of hazard
and fragility were performed by Malekizadeh et al. [16].

So far, the determination of the CBL of the symmetric double
tapered steel (SDTS) column with tubular cross-section (TC) was
used approximate methods or the conversion method. Moreover,
in fact, input geometrical and material properties parameters were
random. Therefore, there will be errors in determining the bearing
capacity of the column. This paper aims to apply Bubnov-Galerkin
method for predicting the CBL of the SDTS column with the tubular
cross-section. From the deterministic model, a stochastic model
was built based on the deterministic model with the geometrical
and material parameters are random variables. Reliability assess-
ment based on the Monte Carlo simulation method (MCs). Finally,
the investigation on the sensitivity of the input parameters to the
reliability value was also performed.

2. Theoretical background

2.1. Euler’s critical load

The Euler’s critical load was proposed by Euler in 1757 [19], in
which the relationship between bending moment and the equation
of elasticity v xð Þ was expressed the form differential equation as
follows.

�Pv xð Þ ¼ M xð Þ ¼ EI
d2v xð Þ
dx2

ð1Þ

or.

d2v
dx2

þ P
EI
v xð Þ ð2Þ

where E is the elastic modulus; I is the moment of inertia of the
cross section; M xð Þ is the variation of the bending moment along
the column axis; x is the coordinate of the column axis.

2.2. Bubnov-Galerkin method

Bubnov-Galerkin method can be considered as applying an
orthogonal projection to the operator [17]. Assuming that the
structural system is in the deflected state, the balanced differential
equation of the system has the form as:

L x;v ;v 0;v 0 0; :::ð Þ ¼ 0 ð3Þ
Assuming that the solution of the differential equation (3) has

the form of a numeric string that includes p terms where p is an
integer.

v ¼ a1g1 xð Þ þ a2g2 xð Þ þ :::þ apgp xð Þ ¼
Xp

i¼1
aigi xð Þ ð4Þ

where ai are unknown coefficients; gi xð Þ are the independent
functions, which must satisfy the boundary condition.

If the differential equation is the differential equation of 4th
order (v IV ¼ �q=EI) and satisfies the geometric constraints. Substi-
tuting equation (4) into equation (3) we obtain:

L x;
Xp

i¼1
aigi xð Þ;

Xp

i¼1
aig0

i xð Þ;
Xp

i¼1
aig0 0

i xð Þ; :::
n o

� 0 ð5Þ

This equality has not to change if those are multiplied with
independent functiongk xð Þ, and it has the following form,

L x;
Xp

i¼1
aigi xð Þ;

Xp

i¼1
aig0

i xð Þ;
Xp

i¼1
aig0 0

i xð Þ; :::
n o

:gk xð Þ � 0 ð6Þ

Continue to integrate with k ¼ 1;2; :::p we get:Z
L x;

Xp

i¼1
aigi xð Þ;

Xp

i¼1
aig0

i xð Þ;
Xp

i¼1
aig0 0

i xð Þ; :::
n o

:gk xð Þdx

¼ 0 ð7Þ
2

Based on equation (7) we get a homogeneous system of alge-
braic equations of pth order with a1; a2; :::ap are variables. The CBL
of the SDTS column with the tubular cross-section will be deter-
mined by solving the determining coefficients of the homogeneous
system of the algebraic equations.

2.3. Monte Carlo simulation

Monte Carlo (MC) simulation is the method, which uses virtual
values to simulate the randomness of variables and then estimates
the reliability based on the law of great numbers [18]. Application
of MC simulations for assessing the structural reliability of steel
structures were conducted in previous studies [13,19]. In these
works, algorithms and programs using MATLAB were developed
and verified for evaluating the reliability of steel structures.

2.4. Global sensitivity method

Global sensitivity is method used for assessing the influence of
input variables on the reliability of structures. In this study, we use
Sobol’s approach. Sensitivity analysis is performed based on Monte
Carlo simulations. The effects of input parameters are evaluated
using Sobol’s indies in space Rm [20–22].

3. Application of Bubnov-Galerkin method for predicting CBL of
SDTS columns with TC

This study considers SDTS columns with the tubular cross-
section, as shown in Fig. 1. The area moment of inertia of the vari-

able sections I ¼ I0
4x l�xð Þ

l2
, where I0 is the area moment of inertia of

the maximum cross-section of variable sections,
I0 ¼ 0:05D4 1� g4

� �
and g ¼ D=d. It should be noted that D and d

are the outer and inner diameters of the column; l is the column
length. The solution of the numeric string is v ¼ ax l� xð Þ with
the solution conditions of existence a–0. Application the
Bubnov-Galerkin method for predict to the CBL of the SDTSC with
the tubular cross-section.

The balanced differential equation of the system has the form.
L ¼ v 0 0 þ a2v ¼ 0 with a2 ¼ P=EI (8).
The selection solution of the numeric string is v ¼ ax l� xð Þ.

From solution of the numeric string, we get:

g1 xð Þ ¼ x l� xð Þ; g1
0 xð Þ ¼ l� 2x; g1} xð Þ ¼ 2;

Substituting the above calculated values into equation (7), we
have.
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0
2aþ P

EI0
4x l�xð Þ

l2

ax l� xð Þ
" #

x l� xð Þdx ¼ 0 ð9Þ

From equation (9), we apply Bubnov-Galerkin method for calcu-
lating the CBL of the SDTS column with the tubular cross-section.
For verifying the Bubnov-Galerkin algorithm proposed, we used
Table 1
Comparison of calculated critical buckling load between different solutions.

Program computer Ref. [19] error
(%)

The solution of the numeric string Pcr

v ¼ ax l� xð Þ 8:015EI0
l2

8EI0
l2

0.150

(a) 

(c) 

(e) 

Fig. 2. Safe probability with different safety

3

the Rayleigh-Ritz method, which is presented in [19] for solving
the the critical buckling load of the symmetrically double tapered
steel column, as shown in Fig. 1. The calculated results of Bubnov-
Galerkin and Rayleigh-Ritz methods are shown in Table 1. It can be
found that the difference between two methods is very trivial error
of 0.15%, implying the reliability of Bubnov-Galerkin method.
4. Reliability analysis

4.1. Safety condition

The safety condition of the tapered steel column is satisfied if
the external load (P) is smaller than the critical load of the column
(b) 

(d) 

(f) 

coefficients in Monte Carlo simulations.



Table 2
Properties of random model.

Properties Units Symbol Nominal Mean/
nominal

COV Distribution Ref.

Outer diameter mm X1 (D) 330 1.00 0.05 Normal [23]
Inner diameter mm X2 (d) 300 1.00 0.05 Normal [23]
Column length mm X3 (l) 3000 – – Deterministic [23]
Elastic modulus mm X4 (E) 210 1.10 0.06 Lognormal [24]
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(Pcr). Since the input variables of the critical load are random there-
fore, the calculated value of Pcr is multiplied with a safety factor, n.
The expression can be shown in Eq. (10).

P � n:Pcr ð10Þ
4.2. Deterministic model

Deterministic model of the critical load is constructed using
input parameters including D, d, l, E, and the critical load, Pcr is cal-
culated based on Bubnov-Galerkin method. The expression can be
written as.

P � Pcr D;d; l; Eð Þ � n ð11Þ
4.3. Stochastic model

Stochastic model is developed base don the deterministic model
considering input parameters D, d, l, and E are random variable x.
The expression can be written as.
Table 3
Input parameters for global sensitivity analysis.

Properties Units Symbol Distribution Range

Structures mm X1 (D) Uniform 313.5–346.5
mm X2 (d) Uniform 285–315
mm X3 (L) Uniform 2850–3150

Material GPa X4 (E) Uniform 199.5–220.5

Table 4
Mean estimation of first and total sensitivity Sobol’s indices with 200,000 Monte-
Carlo simulation.

Variable 1st sensitivity Sobol’ indices Total sensitivity Sobol’ indices

X1 (D) 0.66913 0.68535
X2 (d) 0.28910 0.29884
X3 (L) 0.00488 0.00755
X4 (E) 0.01792 0.03006

Fig. 3. Sensitivity of input para
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P � Pcr D xð Þ;d xð Þ; L; E xð Þð Þ � n ð12Þ
We combine random model and Monte Carlo simulation for

assessing the reliability of the double tapered steel column.

4.4. Analysis results

The reliability assessment of the critical load is performed with
the randominputparameters showing inTable2. For the safety coef-
ficient n = 1.0, the failure probability Pf = 0.2545, after performing
4260 MC simulations with convergence criteria of 1.0%, as shown
in Fig. 2(a). This result implies that considering the randomness of
input parameters is important and necessary in design practices.

For estimating a safe probability of 100%, this study covers a
wide range of safety coefficients from 1.1 to 1.5. Fig. 2(b-f) show
the safe probability of the SDTS column with different safety coef-
ficients. It can be observed that the probability of failure (Pf) of the
column is decreased from 0.1640 to 0.1071, 0.0297, 0.0061, and 0.0
with a variation of safety coefficients (n) from 1.1 to 1.2, 1.3, 1.4,
and 1.5, respectively. Also, the corresponding MC simulations
require from 4080 to 6040, 9800, 18860, and 2.71e4. In other word,
the probability of safety of the column is increased with the incre-
ment of safety coefficients. The safe probability of 100% achieves at
n = 1.5. This is a crucial suggestion for designers.

5. Effects of input variables

The influence of input parameters on the reliability of the steel
column is also investigated in this study. We use global Sobol’s
indices to evaluate the sensitivity. The first order and total sensitiv-
ity indices are employed. It should be noted that the input vari-
ables include D, d, l, and E. The nominal values and distributions
of those parameters are shown in Table 3.

The calculated results are shown in Table 4 and Fig. 3. It can be
seen that the first order and total sensitivity have a small variation,
implying that the input variables are independent. Moreover, the
outer diameter has a largest influence (67%) on the critical load,
followed by the inner diameter with 29%. The elastic modulus of
meters on the critical load.
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steel material and the column length have a trivial effect, with 3%
and 1%, respectively.
6. Conclusions

This study presents the assessment of reliability of symmetric
double tapered steel (SDTS) columns considering the randomness
of input parameters. The reliability method is based on the
stochastic model, which is constructed using deterministic model.
Additionally, Bubnov-Galerkin method is used to calculate the crit-
ical load in the deterministic model, while Monte Carlo (MC) sim-
ulation is employed for the stochastic model. Moreover, the
influence of input parameters on the critical load of the steel col-
umn is investigated in this study. Following conclusions are
achieved.

� A procedure based on Bubnov-Galerkin method, deterministic
model, stochastic model, and MC simulations is proposed to cal-
culate the critical load of the SDTS column. A verification is per-
formed to check the accuracy of the method.

� A variation of safety coefficients, from 1.1 to 1.5, is investigated
to find the maximum probability of safety. The safety coefficient
of 1.5 provides the highest reliability. This finding is useful for
structural designs.

� The diameters of the cross-section of the column show to be the
most influential parameters on the calculated critical load of the
SDTS columns.
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