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Abstract: Failure mode identification and shear strength prediction are critical issues in designing 

reinforced concrete (RC) structures. Nevertheless, specific guidelines for identifying the failure 

modes and for accurate predictions of the shear strength of rectangular hollow RC columns are not 

provided in design codes. This study develops hybrid machine learning (ML) models to accurately 

identify the failure modes and precisely predict the shear strength of rectangular hollow RC 

columns. For this purpose, 121 experimental results of such columns are collected from the 

literature. Eight widely used ML models are employed to identify the failure modes and predict the 

shear strength of the column. The moth-flame optimization (MFO) algorithm and five-fold cross-

validation are utilized to fine-tune the hyperparameters of the ML models. Additionally, seven 

empirical formulas are adopted to evaluate the performance of regression ML models in predicting 

the shear strength. The results reveal that the hybrid MFO-extreme gradient boosting (XGB) model 

outperforms others in both classifying the failure modes (accuracy of 93%) and predicting the shear 

strength (R� = 0.996) of hollow RC columns. Additionally, the results indicate that the MFO-XGB 

model is more accurate than the empirical models for shear strength prediction. Moreover, the effect 

of input parameters on the failure modes and shear strength is investigated using the Shapley 

Additive exPlanations method. Finally, an efficient web application is developed for users who want 

to use the results of this study or update a new dataset. 

Keywords: extreme gradient boosting; failure mode; machine learning; moth-flame optimization; 

rectangular hollow reinforced concrete columns; shear strength; web application 

 

1. Introduction 

Columns are considered one of the most critical components of a structure as column 

failure may lead to the collapse of an entire structure. Among many structural 

characteristics of reinforced concrete (RC) columns, failure modes and the shear strength 

are often more difficult to identify than others. Therefore, failure mode identification and 

shear strength prediction play an essential role in adequately designing new RC 

structures and retrofiKing existing ones. 

Rectangular hollow RC (RHRC) columns have been popularly employed in bridges 

since they satisfy the efficient lateral load-resisting capacity and beneficial construction 

costs [1–4]. Several conventional approaches have been employed to identify the failure 
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modes (FMs) of RC columns with solid cross-sections. The FMs of rectangular RC columns 

can be identified using the shear span-to-effective depth ratio or simply the aspect ratio 

(a/d). If a/d ≥ 4, the flexural failure (FF) governs; if 2 < a/d < 4, the column suffers from 

flexure-shear failure (FSF); if a/d ≤ 2, the shear failure (SF) governs [5]. However, this 

method did not reflect the effects of the characteristics of materials [6]. Another parameter, 

the ratio of shear demand to shear capacity (V
), can be alternatively used to identify the 

failure modes of rectangular RC columns [5]. SF governs if V
 > 1; FF governs if V
 ≤ 0.6; 

otherwise, FSF governs. However, some studies critisize the accuracy of this method 

[5,7,8]. Ghee et al. [9] used the displacement ductility factor (displacement at the 

maximum shear strength to the yield displacement ratio) (μ) for identifying the FMs of 

circular RC columns. They proposed thresholds of μ  for classifying FF, SF, and FSF. 

However, since this method is based on a small set of experiments, the application of this 

method should be limited. Qi et al. [5] predicted FMs of solid RC columns based on the 

Fisher discriminant technique. A total of 111 experiments were used in this research. 

However, a low accuracy was achieved for the FSF. A probabilistic approach was also 

presented in Ning and Feng [10], however this method was not in line with the data of 

Berry et al. [11]. 

In general, an RHRC column under lateral and vertical loadings can suffer from one 

of the three typical failure modes, which are FF, SF, and FS [3,12,13], as illustrated in 

Figure 1. As presented in Yeh et al. [13], FF has high ductility, in which the column 

experiences lateral cracks, yielding of longitudinal reinforcing bars, spalling of cover 

concrete, crushing of compressive concrete, or bulking/rupturing of longitudinal 

reinforcements (Figure 1a), whereas SF is a briKle failure due to significant diagonal cracks 

without yielding the longitudinal reinforcement, as depicted in Figure 1b. SF reduces the 

ductility and load capacity of the column dramatically. FSF combines FF and SF, in which 

the yielding of the longitudinal reinforcing bar can be formed at the boKom. Even though 

a certain ductility can be achieved, the column is mostly failed by shear (Figure 1c). Since 

the column suffers briKle and sudden damage during the shear-controlled failure, the 

identification and prevention of this failure mechanism are crucial issues in the seismic 

design process. When an RHRC column has sufficient transverse reinforcement, FF may 

govern; otherwise, SF or FSF may govern [13]. However, the failure mechanism of the 

column also strongly depends on the aspect ratio and material properties [6,7]. Moreover, 

since there are numerous existing uncertainties along with the complexity of the damage 

mechanisms, it is difficult to estimate the failure modes of RHRC columns. 

   

(a) FF (b) SF (c) FSF 

Figure 1. Illustration of failure modes of RHRC columns. 
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[20], and damage models [21]. They mainly focus on calculating the shear strength of solid 

RC members [22–28]. However, these models heavily depend on additional assumptions 

and their simplified nature [6]. Additionally, since shear transfer mechanisms are usually 

complex, derived models based on these mechanisms will also be difficult, despite some 

simplifications [29,30]. As a result, a large scaKer exists compared to experimental tests 

and predictive equations [29]. 

Machine learning (ML) techniques have been extensively applied in various 

engineering problems since it owns great advantages such as computational efficiency 

and sufficient consideration of uncertainties [31]. Numerous studies used ML techniques 

to estimate the structural response of civil engineering structures [32,33]. The ML-based 

failure mode identification was well performed for buildings [34–36] and bridges [37]. 

Moreover, some researchers employed ML models for determining the failure modes of 

structural elements such as beam–column joins [38], shear walls [39], and RC panels [40]. 

The mentioned studies highlighted the capability of using ML techniques in estimating 

responses and failure modes of structures, and some methods were superior to others. 

Recently, several studies have applied ML techniques to recognize the FMs and 

predict the capacity of RC columns with solid sections, of which typical works include 

Mangalathu and Jeon [41], Feng et al. [6], Mangalathu et al. [39], and Phan et al. [42]. 

Although previous ML models showed good promise, they are still unclear on optimizing 

hyperparameters effectively. Therefore, the ML models can overfit or underfit and have 

low generalization performance with small datasets. Moreover, there are no ML studies 

on identifying the failure modes and predicting the shear strength of RHRC columns so far. 

This study aims to develop ML models to identify the failure modes and improve the 

shear strength prediction of RHRC columns. Firstly, 121 experimental results of RHRC 

columns are collected from the literature. Then, eight ML algorithms, namely, support 

vector machine (SVM), multi-layer perceptron (MLP), K-nearest neighbors (KNN), 

decision tree (DT), RF, gradient boosting (GB), AGB, and extreme gradient boosting 

(XGB), are employed to identify the failure modes and predict the shear strength of RHRC 

columns. For the classification of the failure modes, the synthetic minority over-sampling 

technique (SMOTE) is employed to handle the imbalanced class problems of the database. 

The moth-flame optimization (MFO) algorithm and five-fold cross-validation are utilized 

to fine-tune the hyperparameters of the ML models. Additionally, seven code formulas 

are adopted to evaluate the performance of the regression ML models in predicting the 

shear strength of RHRC columns. Based on the best classification and regression ML 

models, a web application is developed and readily used in identifying the FMs and shear 

strength of RHRC columns. 

2. Description of Data Collected 

This study collects experimental test results of RHRC columns from the literature 

[1,2,5,12,13,29,30,43–49] to develop ML models. It should be noted that all experimental 

samples were published in scientific journals and conference proceedings from 1983 to 

2022. The maximum strength values of experimental RC columns are selected as the out-

put values of the database. Moreover, failure modes were emphasized in those experi-

ments. Meanwhile, all eleven design parameters of hollow columns are used for input 

parameters of the database. Based on the previous studies [6,39,41,50,51], the factors 

affecting the failure modes and shear strength of RC members can be grouped as 

geometric dimensions, reinforcing bar details, and material properties. The structural 

configuration includes the column height (L� ), the cross-section width (B ), the cross-

section length (H), and the wall thickness (t�). In the case of the reinforcing bar details, 

the longitudinal reinforcing bar ratio (ρ�), the transversal reinforcement ratio (ρ�), and the 

spacing of transversal reinforcements (s ) are included. And for the level of material 

properties, the yield strength of the longitudinal (f��), the yield strength of the transversal 

(f��), and the compressive strength of concrete (f� ) are crucial. Moreover, the axial load 
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(P ) also affects the failure modes and shear strength of RC columns. Therefore, these 

parameters are collected and considered input variables in this study. 

Before constructing the ML models, it is essential to perform comprehensive data 

analysis. Exploratory data analysis uses statistics and graphs to help recognize trends and 

examine the consistency and irregularity of the data. In our study, the exploratory data 

analysis has been completed before moving on to developing ML models. Therefore, the 

unwanted and incomplete information data points are removed from the database. 

It is noted that outlier data points are unusually close together or significantly 

different from the rest of the dataset. Outliers can reduce the performance of the ML 

models. However, there is a point of diminishing returns where adding more data may 

not improve the model performance significantly. In addition, removing outliers can 

result in losing many data points and information and reducing the data size. As a result, 

the model’s generalizability is lessened. Notably, some advanced ML models (i.e., XGB) 

are not affected by outliers. Therefore, only the extreme outliers have been removed from 

the database. Accordingly, 121 experimental results are retained and used to develop the 

ML in this study. 

Figure 2 schematically shows the configurations and reinforcement properties of 

RHRC columns. The frequency histograms and statistical properties of input parameters, 

shear strength, and failure modes of the database are shown in Figures 3 and 4. It should 

be noted that there are 61, 42, and 18 column samples failed with FF, FSF, and SF, 

respectively. 

 

Figure 2. Dimensions and details of RHRC columns. 

H

B
t
w

L
v

V
P

ρ
w

ρ
l

t
w



Buildings 2023, 13, 2914 5 of 31 
 

   

   

   

  

 

Figure 3. Histograms of input parameters: (a) L�, (b) B, (c) H, (d) t�, (e) ρ�, (f) ρ�, (g) s, (h) f� , (i) f��, (j) f��, and (k) P. 
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Figure 4. Histograms of output parameters: (a) shear strength, (b) failure modes. 

3. Overview of ML and Optimization Algorithms 

This study uses eight efficient ML algorithms, including SVM, MLP, KNN, DT, RF, 

GB, AGB, and XGB, for classifying the FMs and predicting the shear strength of RHRC 

columns. The ML algorithms used in this study can be used for classification and 

regression problems. They were implemented in the Scikit-learn package [52]. Commonly, 

the outputs of classification problems are discrete labels, while those of regression 

problems are continuous values. The following section will briefly introduce eight ML 

algorithms, while the details of these algorithms have been presented in the previous studies. 

3.1. Support Vector Machine 

SVM uses statistical learning theory to minimize both the empirical risk and the 

confidence interval and achieve a good generalization capability. SVM is a highly efficient 

and robust algorithm for regression and classification problems [53]. The basic idea 

behind the SVM algorithm is to map the original datasets from the input space to a high- 

or infinite-dimensional feature space to simplify the problems. To minimize the model 

complexity and prediction error, SVM uses kernel tricks to build expert knowledge about 

a problem [54]. 

3.2. Multi-Layer Perceptron 

MLP is a particular class of deep neural network algorithms [55]. The MLP structure 

consists of an input layer, hidden layer(s), and an output layer. The nodes in the layers are 

interconnected and have associated thresholds and weights. The training process involves 

assigning values to these weights. The nodes’ weights are constantly updated to reduce 

the difference between the predicted and target values. 

3.3. K-Nearest Neighbors 

KNN locates the "-nearest data points in the training set to the point where a target 

value is missing and applies the approximate value of the identified datasets to it [56]. It 

has no assumptions about the data distribution. Thus, it is efficient for extensive amounts 

of training data. 

3.4. Decision Tree 

The DT model is a simple yet powerful ML algorithm that is commonly used for both 

classification and regression tasks. It is a tree-like structure, where each internal node 

represents a feature or aKribute, each branch represents a decision based on that feature, 

and each leaf node represents the outcome or prediction [57]. When training a DT model, 

the algorithm learns to create the tree by spliKing the data based on the features that best 

68
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separate the classes or explain the target variable. The objective is to minimize the 

impurity or maximize the information gain at each split, so that the resulting tree can 

effectively classify or predict the target variable. Once the DT is trained, making 

predictions is straightforward. The training process starts at the root node by evaluating 

the feature values and following the corresponding branches until reaching a leaf node. 

The prediction at that leaf node becomes the final output. 

3.5. Random Forest 

RF is a popular ML algorithm used for both classification and regression tasks. It is a 

versatile and powerful model that combines multiple decision trees to make predictions 

[58]. Random forest would create an ensemble of DTs, in which each tree is trained on 

different subsets of the data and different subsets of the features. This randomness adds 

diversity to the individual trees. During prediction, each tree in the forest independently 

makes its own prediction, and then the final prediction is determined by voting or 

averaging the predictions of all the trees. This ensemble approach helps to reduce 

overfiKing and improve the accuracy and generalization of the model. 

3.6. Boosting Algorithm 

The boosting method is an ensemble algorithm that establishes the same structure 

for all learners trained sequentially [59]. Herein, AGB, GB, and XGB are the boosting 

algorithms that develop a strong learner based on a set of weak learners. The XGB 

algorithm enhances the GB algorithm with the objective function that adds a 

regularization parameter to deal with the overfiKing or underfiKing problems and reduce 

model complexity. 

3.7. Moth-Flame Optimization Algorithm 

The moth-flame optimization (MFO) algorithm is a nature-inspired optimization 

algorithm that is inspired by the behavior of moths aKracted to a flame [60]. The MFO 

algorithm is based on the concept that moths are aKracted to light sources, such as flames, 

and tend to move closer to them. However, as they get closer, they also tend to lose energy 

due to the heat. MFO mimics the behavior of moths in a three-stage process: initialization, 

aKraction, and updating. 

• During the initialization stage, a population of moths is randomly placed in the 

search space. Each moth is represented by a potential solution to the optimization 

problem. 

• In the aKraction stage, moths are aKracted to a flame, representing the global best 

solution found so far. The intensity of the flame is determined by the fitness value of 

the current best solution. Moths are then aKracted to the flame based on their 

proximity to it, with closer moths having a stronger aKraction. 

• In the updating stage, moths update their positions based on their current position, 

the position of the flame, and a randomization factor. This movement promotes 

exploration of the search space, allowing the moths to potentially find beKer 

solutions. 

The MFO algorithm continues to iterate through the aKraction and updating stages 

until a stopping criterion is met, such as reaching a maximum number of iterations or 

finding a satisfactory solution. Below is a brief introduction to MFO’s mathematical 

formulation. 

As a first step, the algorithm creates a matrix to represent the set of moths: 

M = %m',' m',� … m',*: : … :: : … :m,,' m,,� . . m,,*
- (1)

In the second step, the algorithm expresses the flames in a matrix as follows: 



Buildings 2023, 13, 2914 8 of 31 
 

F = %F',' F',� … F',*: : … :: : … :F,,' F,,� . . F,,*
- (2)

where d and n are the numbers of variables and moths, respectively. 

The fitness values are as follows: 

OM $ %OM'::OM,
- and OF $ %OF'::OF,

- (3)

In the MFO algorithm, each moth seeks around a flame to update its position using 

the equation below: M1 $ S3M1, F45 $ D1. e89. cos<2πt> ? F4 (4)t $ <a @ 1> A rand<> ? 1 (5)a $ @1 ? Iter A <<@1>/MaxIter> (6)

where M1 is the i Fℎ moth, F4 is the jth flame, S is the spiral function, b is a constant, 

and D1 is the distance of the i Fℎ moth from the jth flame. D1 is calculated as below: D1 $ |F4 @ M1| (7)

The flames’ number is calculated as follows: Llame_no $ round PN @ Iter ∗ <N @ 1>MaxIterS (8)

where N, Iter, and MaxIter are the maximum numbers of flames, the current number of 

iterations, and the maximum iterations, respectively. Figure 5 demonstrates the flowchart 

of the MFO algorithm. The detail of the MFO algorithm can be found in Mirjalili [60]. 

 

Figure 5. Flowchart of the MFO. 
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3.8. Synthetic Minority Over-Sampling Technique 

Figure 4 shows that the failure modes are highly imbalanced for the classification 

task. The database contains 61, 42, and 18 samples for FF, FSF, and SF modes, respectively. 

Therefore, this issue can adversely affect the accuracy of ML algorithms. In this study, the 

SMOTE [61] is used to overcome this drawback. Accordingly, the SMOTE increases the 

number of small classes to the largest one. However, the SMOTE algorithm remains the 

same for each class’s statistics and region. The SMOTE has proven successful for the class 

imbalance problem. After adopting the SMOTE technique, the database comprises 61, 61, 

and 61 samples for FF, FSF, and SF modes, respectively. This synthetic database can be 

found in Supplementary Materials. Following typical steps are required to perform the 

SMOTE. 

(1) Identify the imbalanced dataset: Determine which class in your dataset is the 

minority class that needs to be oversampled. 

(2) Import necessary libraries: Depending on the programming language used, the 

required libraries or packages for SMOTE implementation are imported. In this 

study, we adopt the scikit-learn library for Python. 

(3) Split the dataset: Divide the dataset into features (X) and the corresponding class 

labels (Y). 

(4) Apply SMOTE: the SMOTE algorithm is employed to generate synthetic samples for 

the minority class. This involves the following sub-steps: 

• Identify the minority class samples: Separate the minority class samples from 

the majority class samples. 

• Determine the number of synthetic samples to generate: Decide on the desired 

ratio of minority to majority class samples after oversampling. This ratio can be 

adjusted based on the specific problem and dataset. 

• Compute the k-nearest neighbors: For each minority class sample, identify its k-

nearest neighbors from the minority class samples. 

• Generate synthetic samples: Randomly select one of the k-nearest neighbors and 

create a new synthetic sample along the line connecting the two points. Repeat 

this process for the desired number of synthetic samples. 

(5) Combine the original and synthetic samples: Combine the original minority class 

samples with the newly generated synthetic samples to create a balanced dataset. 

4. Performance Metrics 

Performance metrics are essential in evaluating ML models since they provide values 

to objectively measure and analyze the performance of the predictive model. This helps 

users understand the strengths and weaknesses of the model and identify areas for im-

provement. Performance metrics are also indicators for comparing different models and 

determining which one is the most effective for a specific task. 

Furthermore, performance metrics work by analyzing the output of an ML model 

against a known set of data (i.e., experimental data). This is required to measure the accu-

racy, precision, and recall of the model, among other metrics. The results are then com-

pared to a desired level of performance, and any discrepancies can be addressed through 

further training or adjusting the model’s parameters. 

4.1. Classification Metrics 

To evaluate the classification ML models’ efficiency, several metrics, such as 

accuracy, recall, precision, f1-score, and area under the curve (AUC) of the receiver-

operating characteristic (ROC) curve, are used in this study. These metrics are calculated 

based on the confusion matrix, as shown in Figure 6. 
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Figure 6. Confusion matrix. 

In the confusion matrix, the diagonal values correspond to the correct prediction 

failure modes; the off-diagonal values correspond to the failure modes not correctly 

predicted. Each row denotes an actual class, while each column indicates a predicted class. 

The accuracy, recall, precision, and f1-score are expressed as: Accuacy $ TP ? TNTP ? TN ? FP ? FN (9)

Precision $ TPTP ? FP (10)

Recall $ TPTP ? FN (11)

f1 @ score $ 2 A Precision A RecallPrecision ? Recall (12)

It is noted that the higher the accuracy, recall, precision, and f1-score, the more 

efficient performance of ML models. 

4.2. Regression Metrics 

This study uses three prevalent metrics, including goodness of fit (R�), root mean 

squared error (RMSE), and mean absolute error (MAE), to evaluate the performance of 

the regression ML models. 

R� = 1 @ ∑ <y1 @ yX1>�,1Y'∑ <y1 @ yZ>�,1Y'  (13)

A10 $ n10n  (14)

RMSE $ \1n ]<y1 @ yX1>�,
1Y'  (15)

MAE $ 1n ] |^_ @ X̂_|`
_Y'  (16)

where y1 is the target shear strength, X̂_  is the predicted shear strength, Ẑ is the average 

value of target shear strength, n10 is the number of samples with the value of the ratio of 

experimental value to a predicted value falling between 0.90 and 1.10, and n  is the 

number of data points. 
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4.3. K-Fold Cross-Validation 

In this study, K-fold CV is used to avoid overfiKing and get the ML models’ 

generalization performance on the unseen data. The process of this technique is presented 

in Figure 7. The K-fold CV divides the training set into K  subsets of the same size. 

Accordingly, training folds consist of K @ 1  subsets, while testing folds consist of the 

remaining subset. Thus, the ML model is trained K times. Performance of the model is 

measured using average K folds. Herein, the stratified five-fold CV is used for classification 

ML models, while the standard five-fold CV is used for regression ML models. 

 

Figure 7. K-fold cross-validation. 

5. Development of ML Models 

Figure 8 shows the flowchart for developing the classification and regression ML 

models used in this study. The following section introduces the detailed descriptions of 

the procedure. 

 

Figure 8. Flowchart for developing ML models. 
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5.1. Input and Output Variables 

In this study, L�, B, H, t�, ρ�, ρ�, s, f� , f��, f��, and P are used as input variables 

to classify the failure modes (i.e., FF, SF, and FSF), and predict the shear strength of RHRC 

columns. 

This study uses z-normalization for input variables to develop the ML models since 

raw data extracted from various sources have different units and ranges. This method 

converts the mean of each input variable to around zero and the standard deviation to 

about one and retains the distribution of values. The z-normalization is expressed as: 

zc,4 = d @ xZ4σ4  (17)

where x1,4 Is the jth input variable of ith data sample, z1,4 is the standardized value of x1,4, xZ4 is the mean of jth input variables, and σ4 is the standard deviation of jth input 

variables. 

5.2. Hyperparameter Tuning 

Parameters and hyperparameters are fundamental to ML algorithms. Parameters are 

internal configuration variables whose values can be inferred from the dataset. 

Meanwhile, hyperparameters are used to regulate how the model learns [62,63]. The 

hyperparameter value can be set by default in the ML package or adjusted by the user. 

However, ML models with default parameters have the major disadvantage of overfiKing 

or underfiKing because they introduce bias and variance [64–66]. Therefore, 

hyperparameter selection becomes an important criterion in every ML model. Model 

prediction can be significantly enhanced by selecting precise hyperparameters [65,67,68]. 

However, manually choosing all possible hyperparameter values for each ML model is 

time-consuming and impractical. Therefore, this study utilizes the MFO algorithm for 

tuning the hyperparameters of the ML models. 

The step-by-step procedure for constructing the hybrid ML models is shown in 

Figure 8. Firstly, the data samples are arbitrary split into training and test sets. Models are 

established from the training set to choose the best values of hyperparameters; 

meanwhile, the test set is used to see how the models perform. In this study, eight training 

ratios (i.e., 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and 0.90) and corresponding test ratios (i.e., 

0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, and 0.10), respectively, are used to investigate the 

effect of training and test data partitions. Additionally, six population sizes (50, 100,150, 

200, 250, and 300) in the MFO algorithm are considered. This study utilizes a five-fold CV 

for the training dataset. The process is repeated five times via the MFO algorithm, and the 

test folds are averaged to establish a prediction model. The fitness functions are the 

average f1-score of five testing folds in the classification models and the average MAE of 

five testing folds in the regression ones. The primary hyperparameters and their ranges 

for the classification and regression ML models are presented in Tables 1 and 2. Detailed 

descriptions of the hyperparameters were presented in the Scikit-learn package [52]. 

Table 1. Hyperparameters of classification ML algorithms. 

Model No. Hyperparameters Range Optimal Value 

SVM 1 C (0.01, 1.0) 0.968473 

 2 degree (1, 5) 2 

 3 tol (0.01, 1.0) 0.056104 

MLP 1 alpha (0.01, 1.0) 0.711483 

 2 batch_size (1, 100) 26 

 3 hidden_layer_sizes (1, 100) 10 

 4 momentum (0.01, 1.0) 0.155035 

KNN 1 leaf_size (1, 100) 64 
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 2 n_neighbors (1, 50) 1 

 3 p (1, 2) 1 

DT 1 max_depth (1, 100) 79 

 2 min_samples_leaf (1, 10) 5 

 3 min_samples_split (1, 10) 8 

 4 min_weight_fraction_leaf (0.1, 1.0) 0.036477 

RF 1 max_depth (1, 100) 17 

 2 min_samples_leaf (1, 10) 5 

 3 min_samples_split (1, 10) 3 

 4 n_estimators (5, 1000) 23 

AGB 1 learning_rate (0.01, 1.0) 0.629896 

 2 n_estimators (5, 1000) 165 

GB 1 learning_rate (0.01, 1.0) 0.681775 

 5 n_estimators (5, 1000) 689 

 3 min_samples_split (1, 10) 3 

 2 min_samples_leaf (1, 10) 9 

 1 max_depth (1, 100) 16 

XGB 1 learning_rate (0.01, 1.0) 0.557980 

 2 max_depth (1, 100) 8 

 3 n_estimators (5, 1000) 921 

Table 2. Hyperparameters of regression ML algorithms. 

Model No. Hyperparameters Range Optimal Value 

SVM 1 C (0.01, 1.0) 0.999992 

 2 gama (0.01, 1.0) 0.086386 

 3 degree (1, 5) 2 

 4 epsilon (0.01, 1.0) 0.602402 

MLP 1 alpha (0.01, 1.0) 0.541640 

 2 batch_size (1, 100) 4 

 3 hidden_layer_sizes (1, 100) 66 

 4 momentum (0.01, 1.0) 0.752071 

KNN 1 leaf_size (1, 100) 27 

 2 n_neighbors (1, 50) 1 

 3 p (1, 2) 2 

DT 1 max_depth (1, 100) 53 

 2 min_samples_leaf (1, 10) 1 

 3 min_samples_split (1, 10) 4 

 4 min_weight_fraction_leaf (0.1, 1.0) 0.1 

RF 1 max_depth (1, 100) 100 

 2 min_samples_leaf (1, 10) 1 

 3 min_samples_split (1, 10) 2 

 4 n_estimators (5, 1000) 649 

AGB 1 learning_rate (0.01, 1.0) 0.543211 

 2 n_estimators (5, 1000) 452 
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GB 1 learning_rate (0.01, 1.0) 0.343455 

 2 n_estimators (5, 1000) 204 

 3 subsample (0.1, 1.0) 0.916063 

 4 max_depth (1, 100) 4 

 5 alpha (0.1, 1.0) 0.468587 

XGB 1 learning_rate (0.01, 1.0) 0.745099 

 2 max_depth (1, 100) 55 

 3 n_estimators (5, 1000) 5 

6. Results and Discussions 

6.1. Choosing the Best Regression and Classification Models 

Data spliKing plays a crucial role in ML models’ performance assessment [68]. For 

this purpose, eight ratios (i.e., 0.55–0.45, 0.60–0.40, 0.65–0.35, 0.70–0.30, 0.75–0.25, 0.80–

0.20, 0.85–0.15, and 0.90–0.10 for training and test set, respectively) and six population 

sizes (i.e., 50, 100, 150, 200, 250, and 300) are investigated in this section. Statistical metrics 

are employed for evaluating the performance of ML models. The classification ML models 

perform beKer when the measuring paramenters (i.e., accuracy, precision, recall, and f1-

score) are high. Moreover, the regression ML models perform beKer when the R2 and A10 

are high. In contrast, the regression ML models perform beKer when RMSE and MAE are 

low. It is observed that the ML models’ performance changes according to the variation 

of training–test ratios and population sizes. 

6.2. Performance of ML Models for Failure Modes 

The best training–test ratio and population size for the classification MFO-SVM, 

MFO-MLP, MFO-KNN, MFO-DT, MFO-RF, MFO-AB, MFO-GB, and MFO-XGB models 

are (75–25, 50), (55–45, 50), (80–20, 150), (70–30, 250), (85–15, 150), (85–15, 150), (85–15, 50), 

and (85–15, 50), respectively. Optimal hyperparameter values of the classification and 

regression ML models are listed in Tables 1 and 2. 

Figure 9 presents the classifying performance of eight data-driven models using 

confusion matrices in the normalized form (the non-normalized form can be found in 

Supplementary Materials). The accuracy, recall, precision, and f1-score metrics of the 

training and test sets are calculated from the confusion matrix and used to evaluate the 

performance of the classification ML models, as shown in Table 3. 

Table 3. Performance of classification ML models. 

Model 
Training Set Test Set 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

MFO-SVM 0.825 0.827 0.825 0.824 0.870 0.879 0.870 0.871 

MFO-MLP 0.780 0.789 0.780 0.780 0.807 0.807 0.807 0.806 

MFO-KNN 1.0 1.0 1.0 1.0 0.784 0.788 0.784 0.779 

MFO-DT 0.812 0.816 0.812 0.813 0.836 0.852 0.836 0.836 

MFO-RF 0.819 0.821 0.819 0.819 0.893 0.899 0.893 0.894 

MFO-AGB 0.839 0.843 0.839 0.840 0.893 0.908 0.893 0.888 

MFO-GB 1.0 1.0 1.0 1.0 0.925 0.925 0.925 0.925 

MFO-XGB 1.0 1.0 1.0 1.0 0.929 0.929 0.929 0.929 
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Figure 9. Performance of classification ML models. 

The confusion matrix has three rows and three columns according to three FMs. In 

the confusion matrix, labels 1, 2, and 3 represent FF, SF, and FSF, respectively. The 

diagonal cells indicate the correct samples’ prediction, and the off-diagonal numbers are 

the misclassified samples. Overall, all the ML models perform well with the training set. 

Since the testing set represents the generalization capability, it is used to evaluate the 

performance of the ML models. The results show that the MFO-GB and MFO-XGB models 

are superior to other models. In addition, the MFO-AGB, MFO-RF, MFO-DT, MFO-MLP, 
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and MFO-SVM models also have good accuracy for the test set. Meanwhile, the MFO-

KNN model performs worst among the models. In summary, the MFO-XGB model yields 

the best accuracy in the FM identification of the RHRC columns. 

For a beKer understanding of the model performance, the ROC curve is also used to 

compare the classification ML models, as shown in Figure 10. In these plots, the x-axis 

represents the FP rate while the y-axis represents the TP rate. The diagonal red dashed 

lines indicate random-guess models. The model with higher TP and AUC and lower FP 

rates is more accurate. 
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Figure 10. ROC curves of the classification ML models. 

According to these figures, the AUC values of the MFO-SVM, MFO-MLP, MFO-

KNN, MFO-DT, MFO-RF, MFO-AGB, MFO-GB, and MFO-XGB models are (0.87, 0.90), 

(0.84, 0.85), (1.0, 0.83), (0.86, 0.89), (0.86, 0.92), (0.88, 0.92), (1.0, 0.95), and (1.0, 0.95), for the 

training and test sets, respectively. One can observe that the MFO-GB and MFO-XGB 

models are beKer than the other models, since they reach more quickly towards the top 

left. Overall, these results show that the MFO-XGB model is the most reliable and accurate 

in classifying the failure modes of the RHRC columns. 

6.3. Performance of ML Models for Shear Strength 

The best training–test ratio and population size for the regression MFO-SVM, MFO-

MLP, MFO-KNN, MFO-DT, MFO-RF, MFO-AB, MFO-GB, and MFO-XGB models are (55–

45, 150), (80–20, 100), (80–20, 50), (80–20, 50), (80–20, 250), (80–20, 50), (80–20, 50), and (90–

10, 250), respectively. Optimal hyperparameter values of the classification and regression 

ML models are listed in Tables 1 and 2. 

Figure 11 and Table 4 show the training and test performances of the regression ML 

models. This figure shows that the MFO-XGB model has the highest potential for 

estimating the shear strength of RHRC columns when most prediction values are in good 

agreement with the actual values. The R�, A10, RMSE, and MAE values of the MFO-XGB 

model for training and test sets are (0.997, 0.996), (0.944, 0.615), (35.186, 62.427) kN, and 

(10.514, 46.027) kN, respectively. The second-best models are MFO-KNN, MFO-GB, MFO-

RF, MFO-DT, and MFO-AGB models. Moreover, the MFO-SVM model presents the worst 

performance, with the R�  value being lower than 0.2 for the training and test sets. In 

addition, the RMSE and MAE values of the MFO-SVM model are higher than that of the 

other models. 
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Figure 11. Shear strength prediction results of regression ML models. 

Figure 12 show the box-plot of all the metrics of the ML models in the test phases 

after ten runs. It can be seen again that the MFO-XGB is the best one among ML models. 

Among the considered ML models, the MFO-XGB model has the highest R� and A10 val-

ues (0.997 and 0.615, respectively) and the smallest RMSE and MAE (62.4 kN and 46 kN, 

respectively). The second-best model is MFO-KNN with R� , A10, RMSE, and MAE of 

0.975, 0.4, 116 kN and 71 kN, respectively. The excellent performance of MFO-XGB ob-

tained may be due to the combination of the powerful XGB and the strong optimization 

algorithm like MFO [62]. This implies that MFO-XGB is the optimal model in predicting 

the shear strength of RHRC columns. 
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Figure 12. Statistic results of regression metrics for the test set after ten runs: (a) R2, (b) A10, (c) 

RMSE, and (d) MAE. 

Table 4. Performance of regression ML models. 

Model Training Set Test Set 

 R2 A10 RMSE (kN) MAE (kN) R2 A10 RMSE (kN) MAE (kN) 

MFO-SVM 0.136 0.106 667.668 337.376 0.139 0.145 731.866 367.893 

MFO-MLP 0.695 0.188 349.179 192.981 0.675 0.320 416.404 203.310 

MFO-KNN 1.0 1.0 0.0 0.0 0.975 0.400 116.123 71.106 

MFO-DT 0.992 0.854 55.347 22.437 0.922 0.360 203.606 97.192 

MFO-RF 0.962 0.677 123.997 50.529 0.952 0.400 160.101 88.156 

MFO-AGB 0.977 0.365 96.286 75.644 0.916 0.360 212.269 120.163 

MFO-GB 1.0 1.0 0.008 0.006 0.963 0.488 140.724 79.073 

MFO-XGB 0.997 0.944 35.186 10.514 0.996 0.615 62.427 46.027 

6.4. Comparison of Shear Strength between Different Predictive Models 

Previous studies mainly developed formulas for estimating the shear strength of 

solid RC columns [4,22–26]. Those equations also have been applied to RHRC columns. 

However, hollow columns may behave differently from the solid ones when subjected to 

lateral loads. So far, only one specific equation for predicting the shear strength of RHRC 
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columns was developed by Shin et al. [29]. This study employs seven typical equations for 

estimating the shear strength of the RHRC columns, as expressed in Table 5. 

Table 5. Equations for calculating shear strength of RHRC columns. 

No. Reference Equation  

1 
Ascheim and Moehle 

[22] 

Vf' = V� + V� V� = 0.3 hk + P13.8Akl 0.8Akmf�  k = noµq , µ is the displacement ductility V� = rstuvt*w 9x,<qyz>; d = 0.8H 

(18) 

2 Priestley et al. [23] 

Vf� = V� + V� + V{ V� $ 0.8Akkmf�  k $ 0.29 for µ < 2 k = 0.29 − 0.12(µ − 2) for 2 < µ < 4 k = 0.10 for µ > 4 V� = Aw�f��D′s cot(30y) 
V{ = Ptan(α) = D − c2a P 

(19) 

3 
Kowalsky and Priest-

ley [24] 

Vfq = V� + V� V� = αβk0.8Akmf�  1 ≤ α = 3 − ��� ≤ 1.5;  β = 0.5 + 20�� ≤ 1 k = 0.29 for µ < 2.0 k = 0.05 for µ > 8.0 V� = Aw�f��(D − c)s cot(30y) 

(20) 

4 Sezen and Moehle [25] 

Vfn = V� + Vw 
V� = k �y.��u��x/* �1 + �y.�r��u�� � 0.8Ak; d = D − cover 
Vw = k Aw�f��ds  k = 1 for µ < 2.0 k = 0.7 for µ > 6.0 a is the shear span. 

(21) 

5 Biskinis et al. [26] 

Vf� = V{ + k(V� + V�) V� = 0.16max30.5; 100��5 h1 − 0.16min �5; ad �l A�mf�  
V� = Aw�s (d − d′)f�� V{ = �o��x min (P; 0.55A�f� ) x is the neutral axis depth, d′ is the depth of the compression reinforcement layer. k = 1~0.75 for µ < 1~6 A� = b�d, (d = 0.8H is the effective depth). 

(22) 

6 Shin et al. [29] 

Vf� = (αβk)5mf� �1 + �y.�r��u�� (A�) + r�u�v*w ; d = 0.8H; 
α = 1.35 − 0.3 ��� (1.5 ≤ ��� ≤ 3); β = 0.5 + 20��  ≤ 1; 
γ = �oµ� (2 ≤ µ ≤ 5); 

(23) 
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7 Cassese et al. [4] 

Vf� $ αβkmf�
 <2t�d>; d $ 0.8H;  

1 � α $ 3 @ ��

�
� 1.5; 

β $ 0.5 ? 20�′ � 1; � $ r

�� 
 

(24) 

Figure 13 and Table 6 compare the experimental and predicted shear strength values 

using empirical formulas and the MFO-XGB model. It is observed that the MFO-XGB 

model show the best prediction accuracy, while the existing empirical models show a 

wider deviation from the 1:1 line. The R�, RMSE, MAE, mean, SD, and COV values of the 

MFO-XGB model are 0.996, 39.035, 14.329, 1.015, 0.089, and 0.088, respectively. The model 

given by Priestley et al. [23] outperforms the other empirical formulas, even though some 

discrepancies exist between the calculated and experimental results. The R�, RMSE, MAE, 

mean, SD, and COV values of the model given by Priestley et al. [23] are 0.635, 458.767 

kN, 219.070 kN, 1.687, 2.367, and 1.408, respectively. However, the performance of the 

model given by Priestley et al. [23] is not beKer than that of the MFO-XGB model. 

Therefore, the MFO-XGB model is optimal for predicting the shear strength of RHRC 

columns in this study. 
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Figure 13. Shear strength predictions of the MFO-XGB and empirical models for all data [4,22–26,29]. 

Table 6. Comparison between MFO-XGB and empirical equations. 

Model R2 RMSE (kN) MAE (kN) Mean SD COV 

MFO-XGB 0.996 39.035 14.329 1.015 0.089 0.088 

Ascheim and Moehle [22] 0.219 615.668 310.073 2.351 4.949 2.105 

Priestley et al. [23] 0.635 458.767 219.070 1.687 2.367 1.408 

Kowalsky and Priestley [24] 0.216 606.427 300.966 1.838 3.135 1.705 

Sezen and Moehle [25] 0.617 443.584 188.419 1.617 3.990 2.468 

Biskinis et al. [26] 0.600 513.379 241.413 1.890 3.314 1.753 

Shin et al. [29] 0.533 518.671 282.644 2.021 2.166 1.072 

Cassese et al. [4] 0.178 637.842 306.089 2.116 3.555 1.680 

It should be noted that the empirical formulas were proposed for solid rectangular 

cross-section columns. They do not reasonably apply to hollow sections, resulting in low 

prediction accuracy. Meanwhile, the high prediction accuracy of MFO-XGB can be 

aKributed to several reasons. Firstly, XGB is an ensemble learning algorithm that 

combines the predictions of multiple decision trees, resulting in a more accurate and 

robust model. Secondly, XGB has a regularization term that helps to prevent overfiKing 

by penalizing complex models and encouraging simple models. Thirdly, the loss function 

in XGB contains a more accurate second-order Taylor expansion on the error component. 

Finally, the MFO has proven to be highly appropriate in assisting the learning phase of 

the ML models. This metaheuristic shows good convergence properties and helps locate 

a good solution for the hyperparameters of the ML models. 

6.5. Explanation of the ML Models Using the SHAP Method 

This section uses the SHAP method [69] to explore the feature importance and 

interpret the MFO-XGB model’s predictions. The SHAP method uses game theory to 

determine how parameters affect the response. The SHAP method assigns the input 

features an average importance value for a given prediction. It is advantageous to use the 

SHAP value because it reflects how the feature influences each sample positively and 

negatively. The influence of the Shapley value on the prediction value is depicted in Figure 14. 
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Figure 14. Effect of Shapley value. 

Figure 15 shows the feature relative importance plot, which ranks the features’ 

importance in identifying the failure modes. The features’ importance values are the mean 

absolute SHAP values of each variable in the data. Different colors represent the failure 

modes. The color in each input variable indicates its effect on the failure modes. This figure 

shows that L� and s are the most critical and least important features, respectively, for 

classifying the FMs of RHRC columns. 

 

Figure 15. Feature relative importance plot. 

A class with a wider range indicates that features are more important. For example, L�  has the most critical effect on the FF mode (class 1). Meanwhile, f��  has the most 

significant impact on the SF mode (class 2) and FSF mode (class 3). Additionally, f�� has 

a significant effect on the SF mode (class 2). The effect of input variables on each failure 

mode is depicted in Figure 16. 
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Figure 16. SHAP value for each failure mode. 

The relative importance of input variables are depicted in Figure 17 for each failure 

mode. The most important feature to each class is located at the top of the figure. In Figure 

17, the red and blue dots indicate high and low feature values. The high SHAP value of 

the feature increases the likelihood of the failure mode with a slight increase in the 

corresponding value. Figure 17a shows that when L�  increases, the SHAP value 

increases, and the model tends to show FF. Figure 17b depicts that the higher value of t� 

corresponds to a lower SHAP value, and the model tends to show SF. However, when B 

increases, the model tends to show FSF, as shown in Figure 17c. The variations of other 

parameters on the failure modes can be explained similarly. 
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Figure 17. Summary plot for each class. 

The effects of the input parameters on predicting the shear strength of RHRC 

columns are presented in Figure 18. A SHAP summary plot of the regression MFO-XGB 

model is presented in Figure 19, where each dot is an individual data point in the dataset. 

These figures show that the most influential feature to shear strength is B, followed by L� , f�
  , H , ρ� , P , t� , s , ρ� , f�� , and f�� . Moreover, Figure 19 shows that shear strength 

increases when B, L�, and H increase, while an increase in f�
  will lead to a decrease in 

shear strength. 

 

Figure 18. Relative importance of each feature. 
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Figure 19. SHAP summary plot. 

This study also develops a web application (WA) based on the proposed classification 

and regression XGB models to help potential users and designers assess the failure modes 

and shear strength of RHRC columns. To use this WA, the eleven numeric values of L�, B, H, t�, ρ�, ρ�, s, f�
 , f��, f��, and P are required to predict the failure modes and the 

shear strength of RHRC columns. The WA allows users with limited coding experience to 

adopt and apply in structural engineering, safety and design applications. It helps to 

immediately obtain the results. The WA is provided freely in the link: hKps://sakat92-rhrc-

rhrc-yqci89.streamlit.app (accessed on 6 June 2023). 

7. Conclusions 

The failure mode classification and shear strength prediction of RHRC columns are 

complex engineering tasks. This study investigates the performance of eight ML models, 

including SVM, MLP, KNN, DT, RF, AGB, GB, and XGB, for classifying the failure modes and 

predicting the shear strength of RHRC columns. The key findings of this study are as follows: 

• Since failure modes are highly unbalanced, the SMOTE technique deals with the class 

imbalance of the database for the failure mode problems. 

• MFO has proven to be highly appropriate for fine-tuning the hyperparameters of the 

ML models. 

• Among the ML models, the MFO-XGB model outperforms others in both classifying 

the failure modes (accuracy of 92.9% for test set) and predicting the shear strength 

(R� = 0.996 for test set) of RHRC columns. In addition, the results indicate that the 

MFO-XGB model is more accurate than the empirical models for shear strength 

prediction. 

• According to the SHAP method, L� is the most influential feature to the FF mode 

and f��  for the SF and FSF modes. B  is the most influential feature to the shear 

strength prediction of RHRC columns. 

• This study develops a web application, an engineer-friendly tool, that civil engineers 

can conveniently use in practice with less computational cost and effort. The web link 

of the WA can be found at https://sakat92-rhrc-rhrc-yqci89.streamlit.app (accessed on 6 

June 2023). 

It is noted that the developed ML models in this study only confidently apply to the 

database with the range of parameters indicated in Figure 4. Therefore, the ML models 

should be retrained when the database is updated. The current study dealt with predict-

ing the shear strength and identifying the failure modes of hollow RC columns. However, 

other important issues such as prediction of plastic hinge length and ductility ratio of this 

column should be studied in future works. 

Supplementary Materials: The following supporting information can be downloaded at: 

hKps://github.com/VietLinhTran/RHRC-columns (accessed on 10 May 2023). 
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