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1 Introduction

Peak ground acceleration (P G A) and spectral acceleration (S, ) have been commonly
used as earthquake intensity measures (IMs). Nevertheless, numerous studies pointed
out that those IMs were not the most efficient parameters for seismic performance
evaluations of structures [1-5]. Correlation analyses between earthquake IMs and
damage of reinforced concrete (RC) buildings were extensively investigated [5, 6].
Additionally, various studies evaluated the correlation between seismic IMs and
responses of underground structures [2, 7], storage tanks [8], and bridges [9—13].

Previously, the correlation analysis between ground motion IMs and struc-
tural performances of civil engineering structures was systematically investigated.
However, for nuclear power plant (NPP) structures, it is still limited. Nguyen et al.
[14] studied the interrelationship between seismic performance of APR-1400 NPP
structures and earthquake IMs considering low- and high-frequency ground motions.
Recently, Nguyen et al. [15] identified the optimal earthquake IMs for fragility anal-
ysis of the reactor containment building in APR-1400 NPPs. It was emphasized that
Sa, Sy, and S, at the fundamental period were the efficient IMs. A similar trend was
observed in the study of Nguyen et al. [16], in which the base isolated APR-1400
NPP structures were used for numerical model and 90 ground motions were used for
time-history analyses. However, a correlation analysis between seismic responses of
the primary auxiliary building (AB) in Korean Standard NPPs and earthquake IMs
has not been conducted yet.

This study analyzes the correlation between seismic performances of the AB struc-
ture and 21 ground motion IMs. 90 nonlinear time-history analyses are performed.
As aresult, the relationship between engineering parameters (EDPs) of the structure
and earthquake IMs is developed. Finally, the strongly correlated IMs are identified.
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2 Earthquake Intensity Measures and Ground Motion
Records

Selection of optimal earthquake IMs is very important for evaluating seismic
responses of structures. There are numerous studies that have proposed IMs previ-
ously. However, each type of structure contains specific characteristics that affect
its responses under earthquakes. This study considers 21 typical earthquake IMs
for evaluating performances of the AB structure. The selected earthquake IMs are
summarized in Table 1.

In this study, we employed 90 seismic records from historic earthquakes that are
available in the PEER center database. The magnitude of the earthquakes ranged
from 5.0 to 7.8 Mw. Figure 1 describes all 90 response spectra of the used records.

Table 1 Selected earthquake IMs

No. | Seismic IMs Definition Unit | References
1 Peak ground acceleration PGA = max |a(1)] g -

2 Peak ground velocity PGV = max |v(?)| m/s |-

3 Peak ground displacement PGD = max |d(1)] m -

4 Ratio of PGV/PGA PGV/PGA S [17]
5 Root-mean-square of acceleration Apps = % Otmt a(r)2dt g [18]
6 Root-mean-square of velocity Vims = $ étot v(1)2ds m/s | [17]
7 Root-mean-square of displacement Dyns = ﬁ étot d()2de m [17]
8 Arias intensity 1, = g—g Ot“” a(r)?de m/s | [19]
9 Characteristic intensity I = (Apms)? Vot - [20]
10 | Specific energy density SED = f(;m‘ v(r)2dr m?/s |-
11 | Cumulative absolute velocity CAV = fé"” la(?)|de m/s | [21]
12 | Acceleration spectrum intensity ASI = (2 ‘15 Sq4(§ =0.05,T)dT |g*s |[22]
13 | Velocity spectrum intensity VSI = 02.'15 Sy (€ =0.05,T)dT |m [23]
14 | Housner spectrum intensity HI = & '15 PS,(& =0.05,T)dT |m [24]
15 | Sustained maximum acceleration | SMA =the 3rd of PGA g [25]
16 | Sustained maximum velocity SMYV =the 3rd of PGV m/s | [25]
17 | Effective peak acceleration EPA = mean(sgl_; ; €=0.05) g [22]
18 | Spectral acceleration at 7' Sa (T) g [26]
19 | Spectral velocity at T'; S, (TH) m/s |-
20 | Spectral displacement at 7' Sq (T1) m -

21 | A95 parameter Ags = 0.764 10438 g [27]
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3 Numerical Modeling of AB Structure

The primary AB is a six-storey RC building with a unique shape, as shown in Fig. 2.
It should be noted that AB surrounds the reactor containment building, which has a
circular plan with a radius of 24.4 m. A structural system combines RC columns and
shear walls, in which shear walls are located along the perimeter and at the center,
meanwhile, the columns are inner. Moreover, this building is 37.5 m height and 73.15
x 66.4 m width and length. Additional detailed dimensions can be found in Fig. 2.

A numerical model of the structure is developed in SAP2000, a finite element
analysis software. A series of shell elements is used for modeling shear walls, whereas
line elements are employed to model the beams and columns. Figure 3 represents
the 3D finite element model of the AB structure and a scheme of multi-layer shell
element. Additionally, nonlinear material models of concrete and reinforcing bars
are considered, as presented in Fig. 4. It should be noted that the building is placed
on a base-mat, and therefore, the boundary condition is assumed to be fixed at the
base of the structure. The eigenvalue analysis results are shown in Fig. 5.

4 Correlation Between Seismic Responses and Earthquake
IMs

To evaluate the interrelationship between structural responses of AB and ground
motion IMs, 90 nonlinear time-history analyses were conducted. All ground motion
records were applied on the horizontal directions and the structural responses of the
building were monitored for each record. It should be noted that 8 vibration modes
were considered in dynamic analyses to make sure over 90% mass participation. For
primary structures of NPPs, the floor acceleration is one of the important engineering
demand parameters (EDPs) since it affects the secondary systems’ responses under
earthquakes. Moreover, lateral displacement is also the considered demand parameter
in this study. Figure 6 depicts seismic responses of the building subjected to the
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Fig. 2 Configurations of the AB structure
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Fig. 3 Numerical modeling of AB using multi-layer shell elements
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Fig. 4 Nonlinear concrete (left) and reinforcement (right) material models

1940 El Centro earthquake, in which the floor accelerations and displacements are
obtained. The structural responses of AB are monitored for all 90 earthquake records.
As a result, we developed the relationship between EDPs and 21 earthquake IMs
for evaluating the correlation level. This relationship is also called the probabilistic
seismic demand model (PSDM).

Figure 7 shows the PSDM of AB for 21 earthquake IMs using peak floor accel-
eration. It can be found that PSDMs using S, (71), S,(T1), S;(T1) had the highest
R? values, followed by ASI, SMA, EPA, and PGA. Additionally, the scatter of
PSDMs with these IMs was significantly lesser than that of other IMs. Thus, these
IMs were strongly correlated to the seismic response of AB. This tendency was also
observed for lateral displacements. Meanwhile, PGA/PGV, PGV, PGD, Vgys,
and Dgys are shown to be weak correlation with EDPs. Overall, the strong IMs
were directly correlated with acceleration. This can be attributed that the seismic
response of a rigid structure like AB is sensitive to acceleration rather than velocity
or displacement [12]. Moreover, S,(T}), S,(T1), and S;(T;) were the efficient IMs
because those IMs are combined the ground motion and structural characteristics.
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Fig. 6 Example of seismic responses of AB under the 1940 El Centro earthquake

In this study, three statistical indicators are employed to evaluate the correlation
between EDPs and earthquake IMs, in which goodness of fit (R?), standard deviation
(opjm), and practicality are considered. Figure 8 shows the calculated values of the
indicators. Again, it can be found that S, (71), S, (71), and S;(7}) had alower standard
deviation and higher practicality compared to other IMs. In other words, these IMs
are strongly correlated to EDPs of the AB structure.
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Fig. 7 Correlation between the floor accelerations and 21 earthquake IMs
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Fig. 8 Statistical values of 21 PSDMs

5 Conclusions

A set of 90 time-history analyses were conducted to analyze the correlation between
earthquake intensity measures (IMs) and responses of the primary auxiliary building
(AB) in nuclear power plants (NPPs. A total of 21 earthquake IMs were employed.
The relationship between engineering demand parameters (EDPs) (floor accelera-
tions and displacements) and 21 IMs was developed. The following conclusions are
obtained.

o S.(Ty), Sy(Ty), S4(Ty) are strongly correlated with EDPs of AB, followed by
ASI,SMA, EPA, and PGA.

e PGA/PGV,PGV,PGD, Vgys,and Dgys exhibit to be weak correlation with
EDPs.

® PGA has a medium correlation with seismic performance of AB structure.
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