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Abstract
Slender reinforced concrete (RC) walls are popularly employed to improve the lateral loading capacity of high-rise build-
ings. Shear strength is an important target in designing RC walls subjected to horizontal loads such as earthquakes. This 
study aims to develop machine learning (ML) models for estimating the shear capacity of RC slender walls. A total of 154 
test results, which were published in the literature, are gathered for training ML models. Two neural network-based models, 
i.e., Artificial neural network- Levenberg Marquardt (ANN-LM) and Artificial neural network-Bayesian regularization 
(ANN-BR), and two tree-based ML models including Random Forest (RF) and Gradient boosting regression tree (GBRT), 
are developed to predict the shear strength of RC walls. The predicted results obtained from ML models are then compared 
with those from empirical formulas in design codes. It shows that ML models are superior in predicting the shear capacity 
of RC slender walls compared to other code-based models, especially, RF and GBRT highly efficient models. Moreover, a 
practical graphical user interface tool is proposed to simplify the practical design of RC slender walls.

Keywords  RC slender wall · Shear strength · Artificial neural network · Random Forest · Gradient boosting regression 
tree · Graphical user interface

Introduction

Slender reinforced concrete (RC) walls are commonly uti-
lized in high-rise buildings for improving horizontal loading 
capacity. So far, numerous design codes and previous studies 
have proposed formulas to estimate the shear strength of 
RC walls including slender and squat types, in which typi-
cal code-based formulas are from ACI 318 (2014), ASCE/

SEI-43 (2005), and EC8 (2004). Additional, empirical-based 
formulas for calculating shear strength of squat RC walls 
can be found in well-known studies (Adorno-Bonilla, 2016; 
Gulec & Whittaker, 2011; Gulec et al., 2008; Kassem, 2015; 
Sánchez-Alejandre & Alcocer, 2010; Wood, 1990). How-
ever, those proposed formulas are mostly applied for squat 
RC walls.

So far, many studies have been performed to evaluate 
the shear strength of RC squat walls. Gulec and Whittaker 
(2011) proposed empirical formulas to calculate the shear 
capacity of RC walls with rectangular and flanged sec-
tions based on the results of 227 experimental data sets. 
Wood (1990) evaluated the nominal shear strength calcu-
lation formula in ACI 318–83 design standard based on 
143 tested data sets of short RC walls subjected to lateral 
loads. Sánchez-Alejandre and Alcocer (2010) proposed a 
design model for calculating the shear strength of short RC 
walls subjected to earthquake loads. In the study of Kassem 
(2015), an analytical expression was derived to calculate 
the shear strength considering the influence of the diagonal 
concrete section and wall web reinforcement. The model 
parameters were calibrated using 664 experimental data sets 
of rectangular and flanged RC walls. Besides, some typical 
design standards have provided formulas to calculate the 
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shear capacity of rectangular-section walls including ACI 
318 (2014), ASCE/SEI-43 (2005), and EC8 (2004). How-
ever, there are differences in the expressions of the stand-
ards, especially the application limits and accompanying 
assumptions.

Recently, numerous studies have applied machine learn-
ing (ML) for predicting performance of civil engineering 
structures (Chatterjee et al., 2017; Falcone et al., 2020; 
Kaveh & Khavaninzadeh, 2023; Kaveh et al., 2021, 2023; 
Thai, 2022). Some researchers used ML for estimating the 
shear strength and failure patterns of RC walls (Chen et al., 
2018; Mangalathu et al., 2020; Moradi & Hariri-Ardebili, 
2019). Chen et al. (2018) employed the ANN-PSO model 
to estimate the shear capacity of squat rectangular RC walls 
using 139 experimental samples. They emphasized that the 
ML model obtained the shear strength more accurately than 
other models. Nevertheless, it is challenged to apply this ML 
model for engineering designs due to lack of a practical tool. 
Moradi and Hariri-Ardebili (2019) developed a library of 
shear-wall database and then constructed a ANN model for 
estimating shear strength of generic RC walls. The results 
showed that the ANN model achieved good accuracy, how-
ever, practical tools such as graphic user interfaces (GUIs) 
or equations were not proposed. Nguyen et al. (2021) devel-
oped an effective ANN model for predicting shear strength 
of squat flanged RC walls. As a result, a mathematical equa-
tion and GUI were proposed. Keshtegar et al. (2021) com-
bined the support vector regression (SVR) and response sur-
face model (RSM) to predict the shear strength of RC walls 
with flanged sections. They emphasized that the hybrid ML 
model was more efficient compared to others. Tariq et al. 
(2022) developed gene expression programing (GEP) based 
on 646 data samples for predicting shear strength of RC 
squat walls. They showed that GEP was superior to empiri-
cal models. Chou et al. (2022) developed single and ensem-
ble ML models to predict shear strength of RC walls with 
flanged sections using 492 samples. The proposed ensem-
ble and optimized models were better than the single and 
empirical ones. Recently, Farzinpour et al. (2023) developed 
boosting learning algorithms for calculating strength capac-
ity of flanged RC walls. Previous studies mostly focused 
on predicting the shear strength of RC squat/short walls. 
However, an accurate estimation of the shear strength for 
RC slender walls using ML models has not been investigated 
thoroughly. Additionally, practical tools for transferring ML 
models in engineering practices are required.

The purpose of this study is to construct efficient neural 
network- and tree-based ML models to accurately estimate 
the shear strength of RC slender walls. A total of 154 experi-
ments, which were published in the literature, were gathered 

for training ML models. Two powerful neural network-based 
models, i.e., Artificial neural network-Levenberg Marquardt 
(ANN-LM) and Artificial neural network-Bayesian regulari-
zation (ANN-BR), and two tree-based ML models includ-
ing Random Forest (RF) and Gradient boosting regression 
tree (GBRT) were constructed to estimate the shear strength 
of RC slender walls. The results obtained from ML mod-
els were compared to those of two design codes formulas. 
Moreover, a graphical user interface was developed accord-
ing to ML models to simplify the design practice of RC 
slender walls.

Code‑based formulas for calculating shear 
strength of RC walls

This study investigated the formulas in two typical design 
standards including ACI 318 Chapter 11 (2014) and EC8 
(2004). Details of these equations are presented as follows.

ACI 318 Chapter 11 (2014)

The shear strength of RC walls ( V  ) is determined by the 
following expression.

where

or

 where Vc is strength provided by concrete; Vs is the strength 
provided by horizontal reinforcement; fc′ is the compressive 
strength of concrete; tw is the web thickness; lw is the length 
of web; P is axial load; Av is area of horizontal reinforce-
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EC8 (2004)

The shear strength of RC walls ( V  ) according to EC8 is 
calculated by:

where dw = 0.8lw ; Mn

Vnlw
 is the ratio of moment to shear force; 

�h is the horizontal reinforcement ratio; �v is the vertical 
reinforcement ratio; fyh is the yield strength of horizontal 
reinforcement; fyv is the yield strength of vertical reinforce-
ment; Aw is the wall cross-section area.

Experimental database

A set of 154 experimental samples on rectangular RC slen-
der walls was collected from published works. It should be 
noted that the data sets covered a very wide range of input 
parameters such as the slenderness, the axial compression 
ratio, and used material properties. Input design proper-
ties include the wall height ( Hw ), wall length ( Lw ), wall 
thickness ( tw ), length of flange ( Lf  ), thickness of flange 
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f
 ), vertical reinforcement ratio of flange ( �vf  ), horizon-

tal reinforcement ratio of flange ( �hf  ), vertical reinforce-
ment ratio of web ( �vw ), horizontal reinforcement ratio of 
web ( �hw ), yield strength of flange reinforcement ( fyf  ), 
yield strength of vertical reinforcement of web ( fywv ), 
yield strength of horizontal reinforcement of web ( fywh ), 
compressive strength of concrete ( fc′ ), and axial compres-
sion force ( P ). Meanwhile, the output target is the shear 
strength ( V  ). Figure 1 illustrates RC slender walls. Table 1 
statistically summarizes the collected database used in this 
study. Statistical properties are the minimum value (Min), 
maximum value (Max), average value (Mean), standard 
deviation (SD) and coefficient of variation (CoV). In this 
table, the first 15 parameters are input parameters, while 
the last parameter ( V  ) is the output shear strength. The 
distributions of collected database are shown in Fig. 2.

Overview of ML models

In this study, two neural network- and two tree-based ML 
models were developed to predict the shear capacity of 
RC slender walls, in which ANN-LM, ANN-BR, RF, and 
GBRT were considered. Neural network- and tree-based 
ML models contain some typical beneficials such as easy 
interpretation and understanding, well-performing with 
both larger and less database, and successful application 
for classification and regression problems. Brief introduc-
tion of these models is presented as follows. A general 
flowchart of used ML models is shown in Fig. 3.

Fig. 1   Illustration of RC slender 
walls
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ANN‑LM

ANN-LM is the ML model, in which the Levenberg–Mar-
quardt (LM) algorithm (Ranganathan, 2004) is combined 
with ANN to improve the prediction for engineering prob-
lems. The LM algorithm provides a stable convergence for 
training ANNs. Typical steps for implementing ANN-LM 
are as follows:

(1)	 Data preparation: A large enough database is required 
to gather, in which cleaning and preprocessing steps for 
removing unnecessary characters and outliers.

(2)	 Feature extraction: Based on the dataset input param-
eters are identified for building neural networks.

(3)	 Model architecture: Design the architecture of ANN-
LM with the input parameters, number of hidden lay-
ers, number of neurons in the hidden layer(s).

(4)	 Training: Split the database into training and validation 
sets. Train ANN-LM model on the training set, using 
techniques like backpropagation and gradient descent 
to optimize the model's parameters. Adjust hyperpa-
rameters such as learning rate, batch size, and number 
of epochs to improve model performance.

(5)	 Evaluation: Evaluate the performance of the trained 
model on the validation set using some typical statisti-
cal metrics such as mean squared error and goodness 
of fit.

(6)	 Fine-tuning and iteration: Depending on the perfor-
mance, the model can be fine-tuned by modifying 
hyperparameters or adjusting the architecture.

(7)	 Testing: Since the model's performance is satisfied on 
the validation set, a test on unseen data is required to 
assess its generalization capability.

ANN‑BR

The hybrid ANN-BR model combines the ANN and Bayes-
ian regularization (BR) algorithm (Burden & Winkler, 
2009). Bayes’ theorem is employed to fine-tune the weights 
of the ANN model and optimize the loss function param-
eters in the training of ANN. As a result, the overfitting, 
an unexpected problem in training model, can be avoided. 
For performing the ANN-BR model, a similar procedure to 
the ANN-LM model can be adopted. The difference is that 
instead of using backpropagation, the Bayesian regression 
is applied to train the ANN model. This method considers 
uncertainty in the database, and then provide a better predic-
tion (Nguyen & Nguyen, 2023).

RF

RF model is a powerful ML algorithm that’s widely used for 
classification and regression tasks (Breiman, 2001). It’s like 
a team of decision trees working together to make predic-
tions. Firstly, it randomly selects a subset of the available 
features from the dataset. Then, it creates multiple decision 
trees using these subsets of features and different subsets of 
the training data. Each decision tree in RF independently 
predicts the outcome. To make a prediction, RF combines 
the predictions from all the decision trees and uses a voting 
mechanism (for classification) or averaging (for regression) 
to arrive at the final prediction. By aggregating the predic-
tions of multiple trees, the RF model helps to reduce overfit-
ting and improve the overall accuracy and robustness of the 
predictions. Typical flowing steps are required in performing 
the RF model.

Table 1   Statistical summary of 
used database

Parameter Units Min Mean Max SD COV

Hw mm 1067.00 3043.81 11,760.00 1580.22 0.52
Lw mm 254.00 1221.69 2800.00 550.72 0.45
Hw∕Lw – 2.05 2.53 7.24 0.65 0.26
tw mm 50.00 115.30 300.00 50.71 0.44
Lf mm 0.00 91.23 380.00 112.70 1.24
tf mm 0.00 129.59 914.00 182.43 1.41
�vf % 0.00 2.79 11.00 1.82 0.65
�hf % 0.00 0.82 3.58 0.81 0.99
�vw % 0.17 0.76 3.00 0.56 0.74
�hw % 0.00 0.63 2.45 0.45 0.72
fyf MPa 276.00 491.08 1412.00 152.33 0.31
fywv MPa 276.00 487.88 1412.00 157.94 0.32
fywh MPa 216.00 501.19 1412.00 164.13 0.33
fc′ MPa 12.30 42.19 130.80 18.19 0.43
P kN 0.00 428.66 1764.00 433.93 1.01
V kN 15.35 395.19 1062.00 296.26 0.75
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(1)	 Gather and preprocess database: Collecting the dataset 
and ensuring it is properly formatted. This may involve 
cleaning missing values, handling categorical variables, 
and splitting the data into training and testing sets.

(2)	 Choose the number of trees: Determining on the num-
ber of decision trees for RF model. This is a crucial 
hyperparameter that can affect the model’s perfor-
mance.

(3)	 Randomly select subsets of data: Randomly select sub-
sets of the training data, with replacement. This process 

is known as bootstrapping. Each subset, also called a 
bootstrap sample, will be used to train an individual 
decision tree.

(4)	 Build decision trees: For each bootstrap sample, con-
struct a decision tree using a specific algorithm like 
CART (Classification and Regression Trees). Each tree 
is trained on a different subset of the data.

(5)	 Aggregate predictions: Once all the decision trees are 
built, predictions are made by each tree on the testing 
data. For classification tasks, the most common class 

Fig. 2   Distribution of collected 
database
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predicted by the trees is chosen as the final prediction. 
For regression tasks, the average of the predicted values 
is taken.

(6)	 Evaluate the model: Assess the performance of the 
RF model using appropriate evaluation metrics such 
as accuracy, precision, recall, or mean squared error, 
depending on the problem type.

(7)	 Fine-tune the model: Adjust the hyperparameters of the 
RF model, such as the number of trees or the maximum 
depth of each tree, to optimize its performance. This 
can be done using techniques like cross-validation or 
grid search.

(8)	 Make predictions: Once the model is trained and fine-
tuned, it can be used to make predictions on new data.

GBRT

GBRT model is the one of popular ML algorithms used 
for regression tasks. It combines the principles of gradient 
boosting and decision trees to solve regression problems 
(Chen & Guestrin, 2016). This model is also known as Gra-
dient Boosting Machines or simply Gradient Boosting. Some 
key points in GBRT are:

•	 Ensemble method: GBRT is an ensemble method that 
combines multiple weak prediction models, typically 
decision trees, to create a strong predictive model. It 
builds the model in an iterative manner, where each new 
tree is trained to correct the mistakes made by the previ-
ous trees.

•	 Gradient boosting: GBRT uses gradient boosting, which 
is a technique that minimizes the loss function by itera-
tively adding new models to the ensemble. It focuses 
on reducing the errors made by the previous models by 
assigning higher weights to the misclassified instances.

•	 Decision trees: GBRT uses decision trees as the base 
models. Decision trees are constructed based on features 
and their corresponding target values. Each tree is built to 
predict the residuals (the differences between the actual 
and predicted values) of the previous trees.

•	 Sequential training: GBRT trains the trees in a sequen-
tial manner, where each tree is built to correct the errors 
made by the previous trees. The predictions of all the 
trees are combined to make the final prediction.

•	 Feature importance: GBRT provides a measure of feature 
importance, which indicates the relative importance of 
each feature in making predictions. This can be useful 
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for feature selection and understanding the underlying 
patterns in the data.

•	 Regularization: GBRT models can be prone to overfit-
ting, especially if the number of trees is too high. Regu-
larization techniques, such as limiting the depth of the 
trees or adding a shrinkage parameter, can be applied to 
prevent overfitting and improve generalization.

•	 Hyperparameter tuning: GBRT models have several 
hyperparameters that can be tuned to optimize perfor-
mance, such as the learning rate, number of trees, maxi-
mum depth of the trees, and the number of features con-
sidered at each split.

To conduct the GBRT model, the flowing typical steps 
are required.

	 (1)	 Gather and preprocess database: Collect the datasets 
and ensure it is properly formatted. This may involve 
cleaning missing values, handling categorical vari-

ables, and splitting the data into training and testing 
sets.

	 (2)	 Choose the number of trees: Decide on the number 
of regression trees in the GBRT model. This is an 
important hyperparameter that can affect the model's 
performance.

	 (3)	 Initialize the model: Start by initializing the GBRT 
model with an initial prediction value. This can be a 
simple estimate, such as the mean or median of the 
target variable.

	 (4)	 Build the first tree: Train the first regression tree using 
the training data. The tree is built to predict the residu-
als (the differences between the actual target values 
and the initial predictions) from the previous step.

	 (5)	 Update the model: Update the model's predictions by 
adding the predictions from the first tree to the initial 
predictions. This creates a new set of predictions that 
are closer to the actual target values.

	 (6)	 Build subsequent trees: Repeat steps 4 and 5 to build 
additional regression trees. Each tree is trained to pre-

Fig. 3   General flowchart of ML 
models
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dict the residuals from the previous step, and its pre-
dictions are added to the model's current predictions.

	 (7)	 Define the learning rate: The learning rate is a hyper-
parameter that controls the contribution of each tree 
to the final predictions. It determines how much each 
tree's predictions are scaled before being added to the 
model. A lower learning rate makes the model more 
conservative, while a higher learning rate allows for 
more aggressive updates.

	 (8)	 Evaluate the model: Assess the performance of the 
GBRT model using appropriate evaluation metrics 
such as mean squared error or R-squared. This can be 
done using the testing data.

	 (9)	 Fine-tune the model: Adjust the hyperparameters of 
the GBRT model, such as the number of trees, the 

learning rate, or the maximum depth of each tree, 
to optimize its performance. This can be done using 
techniques like cross-validation or grid search.

	(10)	 Make predictions: Once the model is trained and fine-
tuned, it can be used to make predictions on new data.

Figures 4, 5, 6 and 7 show the performance of ANN-
LM, ANN-BR, RF, and GBRT models, respectively. All ML 
models were trained with the training and testing ratio of 
0.7 and 0.3, respectively. The RF and GBRT models were 
selected with training data ratios of 0.7 and 1000 trees. It can 
be observed that the predicted values were very close to the 
actual values (i.e., experimental values) for both ML models.

Fig. 4   Performance of ANN-
LM
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Fig. 5   Performance of ANN-BR
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Fig. 6   Performance of RF 
model
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Evaluation of predicted models for shear 
capacity of RC walls

The shear strength of RC slender walls is calculated accord-
ing to two empirical formulas for the experimental data-
base. Afterward, the shear strength obtained from design 
codes and two tree-based ML models are compared with 
that of the experiments. Figure 8 shows the comparison of 

calculated shear strength of RC walls based on predictive 
models and experiments. It should be noted that the dashed 
line represents the perfect results, in which the predicted 
values are exactly equal to experiments. It was observed that 
shear strength results calculated by ACI-318 (2014) and EC8 
(2004) show to be significantly scattered. This dispersion 
can be due to not taking account the boundary properties on 

Fig. 7   Performance of GBRT 
model

0 20 40 60 80 100 120
Training Data point

0

200

400

600

800

1000

1200

V
.p
re

(k
N
)

Actual
Predicted

0 200 400 600 800 1000
Number of trees of GBRT

0

0.5

1

1.5

2

2.5

M
ea

n
S
qu

ar
ed

E
rro

r

105

Training Set Loss
Test Set Loss

Fig. 8   Comparison of shear 
strength between predicted 
models and experiments
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the equations. Additionally, Fig. 8 shows that the ML mod-
els estimated shear strengths more accurately compared to 
the empirical models. Specifically, RF and GBRT achieved 
highly accurate predictions with R2 values equal to 0.9997 
and 0.9999, and very small RMSE of 5.2 kN and 3.3 kN, 
respectively.

Figure  9 and Table  2 show the calculated statistical 
indices including R2 , RMSE, a20-index, and ratio between 
predicted and experimental strength ( Vpredict∕Vtest ) for four 
predictive models. The results show that the ML models 
predicted the shear capacity of the RC wall more accurately 
compared with the empirical formulas. The RF and GBRT 
models emphasize the best performance with the highest R2 
(0.999), the lowest RMSE (~ 3.3 kN and 5.2 kN), and the 
average Vpredict∕Vtest ratio value was 1.0. The second-best 
predictive models are ANN-LM and ANN-BR. Meanwhile, 
the empirical models show a low accuracy in predicting the 
shear strength of RC slender walls.

Practical GUI tool

For employing the ML models in practical designs, a graphi-
cal user interface (GUI) is be developed. A GUI tool based 
on RF and GBRT models is proposed to simplify the calcu-
lated process of the RC wall shear strength. Figure 10 illus-
trates the GUI tool in MATLAB, in which users can obtain 
the shear strength easily. Note that the prediction model is 
limited to the dataset provided in Table 1. The developed 
GUI tool can be download freely at https://​github.​com/​
duydu​an1304/​GUI_​RCSle​nderW​alls.

Conclusions

Efficient neural network- and tree-based ML models were 
developed to estimate the shear strength of RC slender walls. 
A dataset of 154 experiments were collected and employed 
to train ML models. Four ML models were ANN-LM, 

Fig. 9   Statistical values of dif-
ferent models
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Table 2   Statistic indicators for 
evaluating predicted models

Model R2 a20-index RMSE Vpredict∕Vtest

Min Max Mean SD CoV

ACI 318 0.298 0.110 436.5 0.047 2.258 0.427 0.352 0.825
EC 8 0.136 0.097 2743.2 0.906 23.156 3.119 2.658 0.852
ANN-LM 0.960 0.893 58.7 0.290 7.154 1.093 0.753 0.689
ANN-BR 0.993 0.954 25.3 0.609 1.484 1.003 0.092 0.092
RF 0.999 0.993 5.2 0.933 1.268 1.003 0.026 0.026
GBRT 0.999 1.000 3.3 0.880 1.116 1.000 0.019 0.019

https://github.com/duyduan1304/GUI_RCSlenderWalls
https://github.com/duyduan1304/GUI_RCSlenderWalls
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ANN-BR, RF, and GBRT. The predicted results obtained 
from ML models were compared with those of two empiri-
cal formulas in design codes (ACI 318 and Eurocode 8). The 
following conclusions are achieved.

•	 Neural network- and tree-based ML models accurately 
predicted the shear strength of RC slender walls, among 
that the RF and GBRT models were efficient to predict 
the shear strength with R2 of 0.999 and small RMSE of 
3 kN.

•	 Formulas of ACI-318 (2014) and EC8 (2004) obtained 
a large scattering results since it does not include the 
boundary element properties in calculated expressions.

•	 A graphical user interface was proposed based on effi-
cient tree-based models to simplify the design practice 
of RC slender walls.

Appendix

Detailed information of the database

ID Hw

(mm)
Lw
(mm)

tw
(mm)

Hw∕Lw
–

tf
(mm)

Lf
(mm)

�vf
(%)

�vw
(%)

�hw
(%)

fc′

(MPa)
fyf
(MPa)

fywv
(MPa)

fywh
(MPa)

P

(kN)
V

(kN)

1 11,760 1625 127 7.24 203 380 0.67 0.27 0.27 49 455 455 455 1500 160
2 2200 1000 150 2.20 150 160 1.3 0.88 0.88 30.5 410 425 425 0 156
3 1500 600 80 2.50 0 0 0.18 0.18 0.1 34.65 500 500 500 90 25
4 3450 1600 200 2.16 385 200 1.2 0.86 0.39 41.2 510 505 505 600 482
5 3450 1600 200 2.16 407 200 1.13 0.86 0.39 42.1 510 505 505 600 448
6 3450 1600 200 2.16 407 200 1.13 0.86 0.39 42.1 510 505 505 600 462
7 3450 1600 200 2.16 407 200 1.13 0.86 0.39 42.1 510 505 505 600 439
8 3450 1600 200 2.16 407 200 1.13 0.86 0.39 42.1 510 505 505 600 456
9 3450 1600 200 2.16 407 200 1.13 0.86 0.39 42.1 510 505 505 600 462

Fig. 10   GUI for estimating shear strength of RC slender walls
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ID Hw

(mm)
Lw
(mm)

tw
(mm)

Hw∕Lw
–

tf
(mm)

Lf
(mm)

�vf
(%)

�vw
(%)

�hw
(%)

fc′

(MPa)
fyf
(MPa)

fywv
(MPa)

fywh
(MPa)

P

(kN)
V

(kN)

10 3650 1700 200 2.15 415 200 1.94 1.15 0.39 41.2 510 505 505 750 580
11 3650 1700 200 2.15 415 200 1.94 1.15 0.39 42.1 510 505 505 750 605
12 3650 1700 200 2.15 415 200 1.94 1.15 0.39 42.1 510 505 505 750 598
13 3550 1500 200 2.37 140 200 0.5 0.23 0.63 39.2 400 400 400 823.2 476
14 3550 1500 200 2.37 140 200 1.43 0.58 0.58 39.9 412 412 412 838 586
15 3550 1200 200 2.96 140 200 0 0.62 0 39.8 412 412 412 668.6 449
16 3550 1000 200 3.55 140 200 0 0.59 0 40.2 412 412 412 562.8 289
17 3250 1200 150 2.71 0 0 0.83 0.83 0.26 31.2 460 470 470 0 95
18 3250 1200 150 2.71 0 0 1.5 1.5 0.26 30.4 460 470 470 0 141
19 2700 1300 200 2.08 150 200 5.33 0.6 0.66 28.3 429 440 440 0 488
20 2700 1300 200 2.08 150 200 5.33 0.6 0.66 28.3 429 440 440 0 479
21 1140 548 84 2.08 60 200 2.36 0.48 0.66 47 437 437 437 0 87
22 1140 548 84 2.08 60 200 2.36 0.48 0.66 47 437 437 437 0 89
23 3900 1000 152 3.90 140 152 11 0.28 0.49 38.7 450 450 450 600 334
24 1600 700 100 2.29 140 100 0.45 0.72 0.44 27.4 469 445 445 287 144
25 1600 700 100 2.29 140 100 0.45 0.72 0.44 27.4 469 445 445 479 166
26 1600 700 100 2.29 140 100 0.45 0.72 0.44 27.4 469 445 445 671.6 186
27 3000 1300 80 2.31 200 200 2.13 0.53 0.53 87.6 776 1001 1001 1764 1062
28 3000 1300 80 2.31 200 200 2.13 0.265 0.265 55.5 713 753 753 1372 717
29 3000 1300 80 2.31 200 200 2.84 0.265 0.265 54.6 713 753 753 1568 784
30 3000 1300 80 2.31 200 200 2.84 0.53 0.53 60.3 713 753 753 1372 900
31 3000 1300 80 2.31 200 200 3.81 0.53 0.53 65.2 726 753 753 1568 1056
32 6400 2300 150 2.78 200 150 5 0.37 0.49 35.4 413 413.7 413.7 0 840
33 3800 1000 100 3.80 150 100 1.3 0.57 0.28 30 400 400 400 0 158
34 1800 880 240 2.05 0 0 0 1.19 1.28 40 500 500 500 0 382
35 2200 540 80 4.07 130 130 1.19 0.47 0.63 60 415 415 415 0 54
36 2200 540 80 4.07 130 130 1.19 0.47 0.63 60 415 415 415 0 55
37 1375 650 65 2.12 0 0 3.3 2.5 0.8 42.8 420 470 520 0 127
38 1375 650 65 2.12 0 0 3.3 2.5 0.8 50.6 420 470 520 182 150
39 1375 650 65 2.12 0 0 3.3 2.5 0.8 47.8 420 470 520 343 180
40 1375 650 65 2.12 0 0 3.3 2.5 0.8 48.3 420 470 520 0 120
41 1375 650 65 2.12 0 0 3.3 2.5 0.8 45 420 470 520 325 150
42 1375 650 65 2.12 0 0 3.3 2.5 0.4 30.1 420 470 520 0 123
43 1375 650 65 2.12 0 0 3.3 1.5 0.35 30.1 420 470 520 0 118
44 1375 650 65 2.12 0 0 3.3 1.5 0.35 35.2 420 470 520 0 116
45 1375 650 65 2.12 0 0 3.3 1.5 0.35 34.9 420 470 520 0 140
46 1375 650 65 2.12 0 0 3.3 1.5 0.35 53.6 420 470 520 0 111
47 1375 650 65 2.12 0 0 3.3 1.5 0.35 38.2 420 470 520 0 83
48 1375 650 65 2.12 0 0 3.3 1.5 0.35 49.2 420 470 520 0 112
49 1375 650 65 2.12 0 0 3.3 1.5 0.35 38.1 420 470 520 0 94
50 2500 1200 150 2.08 0 0 2.68 0.56 0.67 40 500 540 500 0 339
51 2500 1200 150 2.08 0 0 2.68 0.56 0.67 40 500 540 500 0 340
52 2500 1200 150 2.08 0 0 2.05 0.67 0.67 40 500 435 450 600 330
53 2500 1200 150 2.08 0 0 2.05 0.67 0.67 40 500 540 450 600 340
54 2500 1200 150 2.08 0 0 2.05 0.67 0.67 40 500 435 450 600 330
55 2500 1200 150 2.08 0 0 2.05 0.67 0.67 40 500 540 450 600 357
56 2500 1200 150 2.08 0 0 1.51 1.51 1.51 40 500 442 450 600 525
57 2500 1200 150 2.08 0 0 1.51 1.51 1.51 40 500 442 450 600 555
58 2500 1200 150 2.08 0 0 1.51 1.51 1.51 40 500 552 450 600 580
59 2500 1200 150 2.08 0 0 1.51 1.51 1.51 40 500 552 450 600 575
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ID Hw

(mm)
Lw
(mm)

tw
(mm)

Hw∕Lw
–

tf
(mm)

Lf
(mm)

�vf
(%)

�vw
(%)

�hw
(%)

fc′

(MPa)
fyf
(MPa)

fywv
(MPa)

fywh
(MPa)

P

(kN)
V

(kN)

60 5750 2800 300 2.05 0 0 0.75 0.17 1.68 40.7 560 560 560 0 365
61 2200 1000 100 2.20 500 120 3.88 0.28 0.28 103.3 617 610 610 1012.34 596
62 2200 1000 100 2.20 500 120 3.88 0.75 0.28 96.8 617 578 610 948.64 724
63 2200 1000 100 2.20 500 120 3.88 0.28 0.75 110.7 617 610 578 1084.86 895
64 3810 1219 102 3.13 0 0 2.93 0.3 0.33 40.5 434 434 448 400.34 149
65 3810 1219 102 3.13 0 0 2.93 0.3 0.33 38.7 434 434 448 378.099 158
66 4572 1905 101.6 2.40 0 0 1.47 0.25 0.31 44.7 501.6 511 521.6 0 118
67 4572 1905 101.6 2.40 0 0 4 0.25 0.31 46.4 534.7 449 534.7 0 217
68 4572 1905 101.6 2.40 305 305 1.11 0.29 0.31 53 501.6 449 520.2 0 271
69 4572 1905 101.6 2.40 305 305 1.11 0.29 0.31 47.3 478.5 437 478.5 0 276
70 4572 1905 101.6 2.40 305 305 1.11 0.29 0.31 45 504.7 449 504.3 0 335
71 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 53.6 501.6 410 531.9 0 680
72 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 45.3 501.6 443 501.6 0 762
73 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 42.8 501.6 443 501.6 0 746
74 4572 1905 101.6 2.40 914 102 3.89 0.3 0.71 38.4 501.6 444 525 0 836
75 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 21.8 487.1 440 511.2 932.236 825
76 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 49.3 489.2 457 489.2 1195.456 980
77 4572 1905 101.6 2.40 305 305 3.67 0.29 1.38 42 453.4 447 481.6 1195.456 978
78 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 44.1 460.9 429 460.9 1195.456 977
79 4572 1905 152.4 2.40 305 305 3.67 0.2 0.42 51.8 460.9 429 460.9 1187.97 973
80 4572 1905 101.6 2.40 305 305 1.97 0.29 0.63 45.6 474.7 437 474.7 1195.456 707
81 4572 1905 101.6 2.40 914 102 4.35 0.31 0.63 45.6 463.7 429 463.7 1191.612 887
82 5486 1905 101.6 2.88 0 0 5.58 0.25 0.37 23.3 488.1 476 472.7 0 339
83 1750 700 100 2.50 0 0 0.45 0.72 0.44 27.4 445 445 608.9 287.4 144
84 1750 700 100 2.50 0 0 0.45 0.72 0.44 27.4 445 445 608.9 479 166
85 1750 700 100 2.50 0 0 0.45 0.72 0.44 27.4 445 445 608.9 671.6 186
86 1067 254 51 4.20 102 51 2.8 0.79 0.48 36.5 552 552 572.3 0 19
87 1067 254 51 4.20 102 51 2.8 0.79 0.48 36.5 552 552 572.3 0 17
88 1067 254 51 4.20 102 51 2.8 0.79 0.48 33.8 552 552 572.3 0 19
89 1067 254 51 4.20 102 51 2.8 0.79 0.48 32.4 552 552 572.3 0 16
90 1067 254 51 4.20 102 51 2.8 0.79 0.48 31.7 552 552 572.3 0 19
91 1067 254 51 4.20 102 51 2.8 0.79 0.48 30.3 552 552 572.3 0 15
92 2525 1020 120 2.48 300 300 2.68 0.22 0.62 38.3 411 389 411 540 440
93 6096 2286 152.4 2.67 0 0 4.41 0.39 0.49 54.3 441 441 411 0 838
94 6096 2286 152.4 2.67 0 0 4.41 0.39 0.49 57.5 441 441 411 0 890
95 6096 2286 152.4 2.67 0 0 4.41 0.39 0.49 56 441 441 411 0 815
96 4572 1905 101.6 2.40 0 0 6 0.22 0.42 24.4 483 517 517 329.168 568
97 4572 1905 101.6 2.40 0 0 3.5 0.28 0.31 22.7 483 490 517 329.168 282
98 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 53.8 517 436 517 48.93 726
99 4572 1905 101.6 2.40 305 305 3.67 0.29 0.63 41.7 517 432 517 48.93 792
100 4572 1905 101.6 2.40 914 102 2.29 0.25 0.31 27.9 483 517 517 596.062 421
101 2540 1016 76 2.50 254 254 5.55 1.47 1.84 45.9 458 447 458.4 578.269 812
102 2540 1016 76 2.50 254 254 5.55 1.47 1.84 38.9 458 447 458.4 578.269 854
103 2540 1016 76 2.50 254 254 5.55 1.47 1.84 56.4 544.3 448 544.7 578.269 747
104 2540 1016 76 2.50 254 254 5.55 1.47 1.84 101.6 544.3 448 544.7 578.269 936
105 2540 1016 76 2.50 254 254 5.3 1.47 1.84 80.1 503 439 503.3 578.269 818
106 2540 1016 76 2.50 254 254 5.55 1.47 1.84 101.3 509.9 420 510.2 578.269 993
107 2540 1016 76 2.50 254 254 5.55 1.47 2.45 130.8 442.7 438 443 578.269 815
108 2540 1016 76 2.50 254 254 5.55 1.47 2.45 110.5 442.7 438 443 578.269 955
109 2700 1300 200 2.08 0 0 4.03 0.59 0.59 28.3 412 412 452 0 460
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ID Hw

(mm)
Lw
(mm)

tw
(mm)

Hw∕Lw
–

tf
(mm)

Lf
(mm)

�vf
(%)

�vw
(%)

�hw
(%)

fc′

(MPa)
fyf
(MPa)

fywv
(MPa)

fywh
(MPa)

P

(kN)
V

(kN)

110 2700 1300 200 2.08 0 0 4.03 0.59 0.59 28.3 412 412 452 0 429
111 1140 548 84 2.08 0 0 3.56 0.71 0.67 47 412 450 450 0 83
112 1140 548 84 2.08 0 0 3.56 0.71 0.67 47 412 450 450 0 82
113 4560 2000 150 2.28 0 0 1.32 0.3 0.25 45 583.6 547 583.6 689 336
114 4560 2000 150 2.28 0 0 1.32 0.3 0.25 40.5 484.9 583 484.9 691 359
115 4560 2000 150 2.28 0 0 1.54 0.54 0.25 39.2 489 569 489 686 454
116 4560 2000 150 2.28 0 0 1.54 0.54 0.25 40.9 489 576 518.9 695 443
117 4560 2000 150 2.28 0 0 0.67 0.27 0.25 38.3 562.2 518 518.9 1474 439
118 4520 2000 150 2.26 0 0 1.54 0.54 0.25 45.6 518.9 576 518.9 1476 597
119 3315 1524 203.2 2.18 0 0 4.9 0.4 0.55 30.7 482.6 434 530.9 889.644 703
120 3315 1524 203.2 2.18 0 0 4.9 0.4 0.55 30.3 482.6 434 530.9 889.644 694
121 3315 1524 203.2 2.18 0 0 4.9 0.4 0.55 33.8 482.6 434 530.9 889.644 707
122 3315 1524 203.2 2.18 0 0 4.9 0.4 0.55 31.4 482.6 462 530.9 889.644 721
123 3315 1524 203.2 2.18 0 0 4.9 0.4 0.55 31 482.6 462 530.9 889.644 721
124 3315 1524 203.2 2.18 0 0 4.9 0.4 0.55 31.7 482.6 462 455.1 889.644 756
125 1500 700 100 2.14 0 0 0.88 0.67 1.01 36.8 405 405 305 498.96 201
126 1500 700 100 2.14 0 0 0.65 0.67 1.01 40.2 405 405 305 784 224
127 1500 700 100 2.14 0 0 1.8 0.67 1.01 43.1 405 405 305 594.72 304
128 1500 700 100 2.14 0 0 1.53 0.67 1.01 34.7 405 405 305 688.45 266
129 1750 700 75 2.50 0 0 0.49 0.67 0.46 27.4 445 445 523.9 216 113
130 1750 700 100 2.50 0 0 0 1.34 0.44 27.4 445 445 608.9 287 138
131 1750 700 100 2.50 0 0 0.45 0.72 0.44 27.4 445 445 608.9 287 149
132 1750 700 100 2.50 0 0 0.45 0.72 0.64 27.4 608.9 445 608.9 287 156
133 1750 700 100 2.50 0 0 0.45 0.72 0.56 27.4 445 445 608.9 287 145
134 4500 1500 200 3.00 0 0 1.27 0.32 0.28 36.9 335 335 335 1107 321
135 2900 1000 75 2.90 0 0 2.33 0.91 0.91 24.1 289 289 289 200 125
136 2900 1000 75 2.90 0 0 2.33 0.91 0.91 24.9 289 289 289 200 90
137 3000 1000 60 3.00 0 0 9.4 0.4 0.4 12.3 452.9 365 452.9 220 92
138 3000 1000 60 3.00 120 120 4.7 0.4 0.4 12.8 450.8 365 452.9 180 117
139 3000 1000 60 3.00 420 60 2.39 0.4 0.4 12.8 452.9 365 452.9 115 137
140 2350 900 75 2.61 0 0 3.72 0.7 0.84 37.3 526 526 345 400 140
141 2350 900 75 2.61 0 0 3.72 0.7 0.84 37.3 526 526 345 0 155
142 2350 900 75 2.61 0 0 3.72 0.7 0.42 37.3 526 526 345 0 137
143 2350 900 75 2.61 0 0 3.72 0.7 0.42 37.3 526 526 345 400 169
144 1650 700 125 2.36 325 125 4.83 1.21 1.26 32 285 341 285 400 345
145 1650 700 125 2.36 325 125 4.83 1.21 1.8 32 285 341 285 400 379
146 1100 500 50 2.20 0 0 2.24 0.28 0.28 21.6 276 276 216 0 15
147 1100 500 50 2.20 0 0 2.24 0.28 0.28 21.6 276 276 216 0 20
148 1100 500 50 2.20 0 0 2.24 0.28 0.28 22.5 276 276 216 0 18
149 1100 500 50 2.20 0 0 2.24 0.28 0.28 23.5 276 276 216 0 20
150 6401 1905 76 3.36 0 0 0.27 0.27 0.27 51.2 415.1 415.1 422.6 415.353 118
151 6401 1905 76 3.36 0 0 1 1 0.27 47.4 450.9 450.9 420.6 430.365 184
152 6401 1905 76 3.36 0 0 3 3 0.27 46.7 455.1 455.1 413.7 420.357 294
153 6401 1905 76 3.36 0 0 7.67 1 0.27 41 434.4 434.4 482.6 430.365 322
154 4384 1572 57 2.79 143 143 1.11 0.33 0.47 31.7 448 448 510 178 106
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