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Abstract
Reinforced concrete (RC) frames with infills have been widely used in conventional low-rise buildings. Due to the pres-
ence of infill walls, the shear failure as well as lateral bearing capacity of the structural system will be changed significantly 
compared to the bare RC frames. The purpose of this study is to predict the shear strength of masonry-infilled RC frames 
using hybrid neural network models, which are combined based on the Bayesian regularization (BR) algorithm and Artifi-
cial neural network (ANN). A database containing 153 test results is gathered from the literature to construct the machine 
learning models. The shear strength predicted by BR-ANN in this study is then compared with the conventional ANN 
using the Levenberg-Marquardt algorithm. Four statistical metrics, including the goodness of fit 

(

R
2
)

 , root-mean-squared 
error (RMSE ) , mean average error (MAE ) , and a20 − index are calculated to evaluate the prediction performance of the ANN 
models. The comparison emphasizes that the BR-ANN model accurately predicts the shear strength of infilled RC frames 
with a high R2 of 0.92, a small RMSE of 12 kN, and a20-index of 0.7. Moreover, the influence of input design parameters 
on the shear strength is assessed. Finally, a graphical user interface tool is developed for practically calculating the shear 
strength of infilled RC frames.

Keywords  Infilled reinforced concrete frame · Shear strength · Artificial neural network · Bayesian regularization · 
Graphical user interface

1  Introduction

Masonry walls are often used as infills in reinforced concrete 
(RC) frames without considering their ability to withstand 
horizontal loads such as earthquakes. The infill walls con-
tribute to the seismic capacity of the structures. Moreover, 

the higher lateral strength and stiffness of RC frames 
with infills compared to bare frames change the structural 
dynamic characteristics significantly. Specifically, it can 
reduce the fundamental period and increase the accelera-
tion of the structure [7].

RC frames with masonry infill walls have been conven-
tionally designed without consideration of the load-bearing 
capacity of infills except for its self-weight. This simpli-
fied design approach is widely accepted in various code 
provisions due to the complexity of the modeling process. 
In fact, the structural response can be significantly affected 
by the presence of infills when the structures subjected to 
earthquakes [11]. The challenge is to determine the shear 
strength of the infilled RC frame system during the design 
step. Therefore, a new approach is required to quickly calcu-
late the shear strength of the infilled RC frame.

Peak shear strength is one of the critical values in seis-
mic designs and structural evaluation of infilled RC frames. 
Numerous researchers have performed experimental and 
numerical studies to evaluate the seismic responses and fail-
ure mechanisms of infilled RC structures [2, 5, 6, 9, 17, 18, 
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23, 26, 28, 34]. Those studies demonstrated that the shear 
strength of the infilled RC structure completely depends 
on various parameters such as infill wall properties, infill 
opening distribution, and RC frame dimensions properties. 
Therefore, it is challenged to determine a precise formula-
tion to estimate the strength of RC frames with infill panels.

The ultimate shear strength of infilled RC frames is speci-
fied in some design codes and guidelines such as ASCE/SEI 
41 − 06 [3], Canadian Concrete Masonry Producers Asso-
ciation [10, 27], Turkish code [40]. These models proposed 
shear capacity equations based on the stiffness and strength 
equivalent strut model. However, few studies pointed out 
that the code-based models showed a discrepancy in calcu-
lating the stiffness and deformation of infilled frames com-
pared to experimental results [46]. Therefore, it is neces-
sary to evaluate the shear strength of RC frames with infill 
walls using a sufficient database. To deal with this challenge, 
data-driven models such as artificial intelligence (AI) and 
machine learning (ML) techniques should be a promising 
solution.

AI models have been widely applied in various civil engi-
neering predictions [19, 22, 25, 30, 41, 44, 45]. Among AI 
models, artificial neural network (ANN) is considered one 
of the efficient algorithms for capacity and performance 
prediction of structures [1, 4, 12, 20, 21, 32, 29, 33, 35, 
39, 43]. Furthermore, typical optimization algorithms have 
been integrated with ANN to enhance accuracy, such as 
Particle Swarm Optimization [13, 31], Genetic algorithm 
[37], and Evolutionary optimization [36]. Another model, 
namely Bayesian regularization (BR), is also utilized to pre-
vent overfitting in neural network models by incorporating 
Bayesian principles into the training process [8]. Specifi-
cally, an application of BR-ANN for structural prediction of 
RC frames with infill panels is a feasible study.

So far, some studies have employed ML techniques for 
infilled RC frames such as fundamental period of structures 
[38, 42, 43, 47], seismic performance [15], in-plane failure 
modes [16], and optimization of masonry [24]. However, an 
evaluation of the shear capacity of infilled RC frames using 
ML models has not been considered yet.

The purpose of this study is to predict the shear strength 
of masonry-infilled RC frames using hybrid neural network 
models, which combine the BR and ANN models. A data-
base containing 153 experimental results is collected from 
the literature to construct the ML models. The shear strength 
predicted by BR-ANN in this study is then compared with 
that of the conventional ANN with the Levenberg-Marquardt 
algorithm. Four statistical metrics, including the goodness 
of fit 

(

R2
)

 , root-mean-squared error (RMSE ) , mean average 
error (MAE ) , and a20 − index are calculated to evaluate the 
prediction performance of the ANN models. Moreover, the 
influence of input design parameters on the shear strength is 

assessed. Finally, a graphical user interface tool is developed 
to calculate the shear strength of infilled RC frames.

2 � Collected database

In this section, a dataset consisting of 153 previously con-
ducted experimental results is collected to build predictive 
ML models (Blasi et al. [7]). Table 1 presents a summary 
of the datasets used in this study. Definitions of parameters 
are as follows.

•	 P is the axial force
•	 H is the story height of the frame, measured to the cen-

terline of the beams
•	 L Span of the frame bay, measured to the centerline of 

columns
•	 bb is the width of beam section
•	 hb is the height of beam section
•	 Agb is the gross area of beam cross-section
•	 Ixb is the moment of inertia about the x-axis of beam 

cross-section
•	 bc is the width of column

Table 1   Summary of the used database

Parameter Min Mean Max SD CoV

P 0.00 27.90 84.30 26.17 0.94
H 24.76 65.05 123.03 20.32 0.31
L 39.37 93.36 283.47 37.12 0.40
bb 2.36 7.60 27.56 4.16 0.55
hb 3.94 10.17 23.62 3.80 0.37
Agb 9.30 92.81 325.48 80.51 0.87
Ixb 12.03 1421.87 15132.39 2659.83 1.87
bc 2.36 7.80 13.78 2.53 0.32
hc 3.94 8.46 15.75 2.88 0.34
Agc 9.30 71.78 217.04 47.86 0.67
Ixc 12.03 692.06 4486.52 990.01 1.43
f ′
c

1.407 4.277 8.040 1.518 0.355
Ec 2137.970 3648.276 5110.965 676.529 0.185
fyl 31.908 67.056 89.924 12.865 0.192
fyt 30.777 59.339 89.924 17.783 0.300
�l,total 0.0041 0.0189 0.0484 0.0114 0.6001
�tb 0.0013 0.0046 0.0130 0.0027 0.5755
Sc 0.787 3.457 9.843 1.658 0.480
�tc 0.0007 0.0043 0.0168 0.0029 0.6796
hw 22.01 60.08 116.14 19.32 0.32
lw 33.86 84.90 267.72 35.13 0.41
tw 1.25 5.01 13.78 2.29 0.46
f ′
m

0.116 1.081 3.878 0.982 0.909
Em 15.519 632.215 2132.914 522.605 0.827
Vmax 8.21 48.44954 264.18 37.11867 0.76613
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•	 hc is the height of column section
•	 Agc is the gross area of column cross-section
•	 Ixc is the moment of inertia about the x-axis of column 

cross-section
•	 f ′

c is the compressive strength of frame concrete
•	 Ec is the elastic modulus of frame concrete
•	 fyl is the yield strength of longitudinal reinforcement
•	 fyt is the yield strength of transversal reinforcement
•	 �l,total is the ratio of total longitudinal reinforcement to 

the effective beam cross-section
•	 �tb is the ratio of transversal reinforcement, at the end 

region of beam
•	 �tc is the ratio of transversal reinforcement, at the end 

region of column
•	 Sc is the spacing of transverse reinforcement, at the end 

region of column
•	 hw is the height of masonry infill panel
•	 lw is the length of masonry infill panel
•	 tw is the thickness of masonry infill panel
•	 f ′

m is the compressive strength of masonry prism
•	 Em is the elastic modulus of masonry prism
•	 Vmax is the maximum shear strength of the infilled RC 

frame

3 � Machine learning model

3.1 � Theoretical backgrounds

An Artificial Neural Network (ANN) is a computational 
model inspired by the structure and function of the human 
brain. It consists of interconnected nodes, called neurons, 
organized in layers. The three main types of layers in an 
ANN are the input layer, hidden layers, and output layer.

•	 Input layer: The input layer receives the initial data or 
features that are fed into the neural network for process-
ing.

•	 Hidden layers: Hidden layers are intermediate layers 
between the input and output layers. They perform com-
plex transformations on the input data through weighted 
connections and activation functions.

•	 Output layer: The output layer produces the final predic-
tions or classifications based on the processed input data.

Neurons in each layer are connected to neurons in the 
subsequent layer through weighted connections, which are 
adjusted during the training process to optimize the perfor-
mance of network. Activation functions introduce nonlin-
earity into the network, allowing it to learn complex pat-
terns and relationships in the data. ANNs are trained using 
algorithms like backpropagation, where the network learns 
from its mistakes by adjusting the weights to minimize a 

predefined loss function. Once trained, an ANN can make 
predictions, classify data, or perform other tasks based on 
the patterns it has learned from the training data. Figure 1 
shows the ANN structure and used activation functions.

Bayesian regularization (BR), also known as Bayesian 
neural networks, is a technique used in ANN models to pre-
vent overfitting and improve generalization performance. 
The purpose of BR in an ANN model is to introduce a prob-
abilistic framework that incorporates prior knowledge about 
the model parameters, allowing for more robust and stable 
predictions. BR takes a probabilistic approach by treating 
the weights of the neural network as random variables with 
prior distributions. During training, the model updates these 
distributions based on the data, leading to posterior distribu-
tions that capture the uncertainty in the weights.

The hybrid BR-ANN model is employed to optimize the 
objective function F(w) , expressed by Eq. (1).

where ED and Ew are the mean-squared error and weight, 
respectively; � and � denote hyper-parameters of the model; 
w and m represent weight and weight numbers, respectively; 
D
(

xi, ti
)

 is the training data; N is the number of database; 
yi and ti are the i-th prediction output and the i-th target, 
respectively.

It should be noted that the initiated weights of the model 
are random values. The density function P(w|D, � , � , M) 
of weights is based on Bayes’ theorem, expressed by Eq. (4).

where M  is the structure of ANN; P(w|� , M) and 
P(D|w, � , M) represent the prior density and the likelihood 
functions, respectively. Noting that weights are assumed to 
be interference variables in the Gaussian distribution during 
training data sets. The probability densities of P(w|� , M) 
and P(D|w, � , M) can be calculated by follow expressions.

(1)F(w) = � ED + � Ew

(2)ED =
1

N

N
∑

i

(

yi − ti
)2

=
1

N

N
∑

i

e2
i

(3)Ew =
1

2

m
∑

i

w2

i

(4)P(w|D, � , � , M) =
P(D|w, � , M)P(w|� , M)

P(D|� , � , M)

(5)P(D|w, � , M) =
1

Z
D
(� )

exp
(

−� E
D

)

=

(

�

�

)−
N

2

exp
(

−� E
D

)

(6)

P(w|� , M) =
1

Zw(� )
exp

(

−� Ew

)

=

(

�

�

)−
m

2

exp
(

−� Ew

)
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The probability function P(w|D, � , � , M) is re-
expressed by substituting Eqs. (5) and (6) into Eq. (4), as 
follows.

where

Foresee and Hagan [14] suggested an expression of Hes-
sian matrix ( H ), which can be determined based on the 
Gauss-Newton approximation as follows.

(7)
P(w|D, � , � , M) =

1

Z
D(� )

.
1

Z
w(� )

exp
(

−
(

� E
D
+ � E

w

))

P(D|� , � , M)

=
1

Z
F(� , � )

exp(−F(w))

� =
�

2Ew

; � =
N − �

2ED

; � = N − 2� tr(H)
−1

(8)H = ∇ 2F(w) ≈ 2� JTJ + 2� IN

It should be noted that weights are optimized by maxi-
mizing the function P(w|D, � , � , M) or minimizing the 
function F(w) . The iteration of training is conducted until 
obtaining a convergence of F(w) . The backpropagation pro-
cess is performed to updating the weight of network to mini-
mize the loss function, expressed by

where J denotes the Jacobian matrix.
The basic steps for performing BR-ANN model are as 

follows.

•	 Step 1. Data preparation:
•	  Collect database: Gather data sets from experimental 

tests, which were published in articles in journals and 
conference proceedings.

•	  Preprocess data: For this step, the data is cleaned to 
handle missing values and remove outliers. Addition-

(9)wi+1 = wi

(

JT
i
Ji + � iI

)−1
JT
i
ei

Fig. 1   Illustration of ANN 
model and activation functions
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ally, features of the model are normalized or standard-
ized to ensure they are on a similar scale. Moreover, 
the dataset is split into training, validation, and test 
sets with a ratio of 70/15/15.

•	 Step 2. Choose the neural network architecture:
•	  Define input and output layers: Determine the number 

of input features and the structure of the output layer 
(single output for regression, multiple for classifica-
tion).

•	  Select hidden layers and neurons: Decide on the num-
ber of hidden layers and the number of neurons in each 
layer based on the complexity of the data.

•	 Step 3. Initialize the BR-ANN model:

In this study, MATLAB is used for implementation. 
The required hyperparameters are defined for the net-
work, including learning rate, number of epochs, batch 
size, and regularization parameters.

•	 Step 4. Train the model:

Before training the model, weights are randomly ini-
tialized for the network. Then, the model is training, in 
which the weights are updated using backpropagation and 
Bayesian regularization is used to minimize the loss func-
tion. This technique ensures to prevent overfitting during 
the training process.

•	 Step 5. Validate the model evaluate on validation set:

After training, the performance of the model is vali-
dated using the validation set. Also, to improve the model, 
the hyperparameters are adjusted based on validation 
performance.

•	 Step 6. Test the model using the test set:

Finally, the model is tested on the unseen test set to 
assess its generalization performance. The mean squared 
error (MSE) is used to check for regression problem.

•	 Step 7. Use the model for new prediction: The optimal 
trained model is saved for future prediction.

The flowchart of BR-ANN is shown in Fig. 2.

3.2 � Performance indicators

In this study, we employ four statistical indicators, which are 
goodness of fit 

(

R2
)

 , root-mean-squared error (RMSE ) , mean 
average error (MAE ) , and a20 − index , to evaluate the perfor-
mance of predictive models. It should be noted that the R2 rep-
resents how well a calculated set of data fits an experimental 

result. The higher of R2 , the better performance of the predic-
tive model. Meanwhile, RMSE and MAE are widely used to 
measure the discrepancy between predicted values and experi-
mental data. The lower the RMSE and MAE , the better the 
model is at estimating the output. Moreover, a20 − index is 
utilized to calculate the proportion of predicted outputs that 
falling ±20% over total predictions. The expressions of these 
metrics are as follows.

(10)R2 = 1 −

�

∑N

i=1
(ti − oi)

2

∑N

i=1

�

ti − ō
�2

�

(11)RMSE =

√

√

√

√

(

1

n

)

n
∑

i=1

(

ti − oi
)2
;

(12)MAE =

∑ n

i=1
�

�

ti − oi
�

�

N

(13)a20 − index =
N20

N

Fig. 2   Flowchart of BR-ANN
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where ti and oi denote the experimental and prediction out-
put value of ith set, respectively; 

−
o is the mean of prediction 

outputs; N is the number of the database.

4 � Results and discussion

4.1 � Performance of BR‑ANN model

In this study, two models BR-ANN and LM-ANN are used 
to predict the shear capacity of the infilled RC frames. Fig-
ures 3 and 4 show the regression results of BR-ANN and 
LM-ANN, respectively. It can be found that R2 is larger 
than 0.92, while RMSE is smaller than 14 kN in the case of 
BR-ANN. Table 2 shows the training results of the two ML 
models with training, testing and all datasets. The statistical 
parameters including R2 , RMSE, MAE and a20-index are 
used to evaluate the forecasting performance of the models, 
as shown in Fig. 5. It is observed that the ANN-BR model 
outperforms the LM-ANN with higher values ​​of R2 and a20-
index, smaller RMSE and MAE values. In other words, it 
implies that BR-ANN predicts the shear strength accurately 
and the hybrid BR-ANN model is superior to the traditional 
LM-ANN model.

4.2 � Effects of input parameters on the shear 
strength of infilled RC frames

Figure 6 shows the influence of input parameters on the 
predicted shear capacity of reinforced concrete frames with 
infill walls. It can be found that the shear capacity of the 
frame system is significantly improved when the width of 
the frame column 

(

bc
)

 , the width of the reinforced con-
crete frame (L ) and the elastic modulus of the infill mate-
rial 

(

Em

)

 increase. The other parameters have a negligible 
influence on the shear capacity of the frame.

Fig. 3   Performance of BR-ANN
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Fig. 4   Performance of LM-
ANN
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Table 2   Comparison of results obtained by BR-ANN and LM-ANN

R
2  RMSE  MAE  a20 − index 

BR-ANN
  Training data 0.9210 13.0538 7.5093 0.6542

  Validation data 0.8775 10.4745 6.6754 0.7826
  All data 0.9144 12.3351 7.2586 0.6928
LM-ANN
  Training data 0.9230 11.8667 7.2753 0.6449
  Validation data 0.6533 23.9566 16.9661 0.4348

  All data 0.8475 16.4630 10.1889 0.5817



Journal of Building Pathology and Rehabilitation           (2025) 10:40 	 Page 7 of 13     40 

4.3 � Formular for calculating the shear strength 
of infilled RC frames

An BR-ANN based formula for shear strength 
(

Vu

)

  of 
infilled RC frames is determined by

where VN is the normalized shear strength, calculated by

(14)Vu = 127.985 ×
(

VN + 1
)

+ 8.21

(15)VN = h
0
+

n
∑

i=1

hiHi

where n = 14 is the number of neurons in the hidden layer 
of ANN-BR; h

0
 and hi are bias and weight obtained from 

training ANN-BR, respectively. Those coefficients are as 
follows:

h
0
= [−0.145]

hi = [0.063 − 0.063 − 0.063 − 0.063
−0.063 0.710 − 0.063 0.850 0.515
−0.945 0.063 0.063 − 0.063 1.021]

Hi = tanh
(

ci0 + ci1X1
+ ci2X2

+ ci3X3
+… + ci24X24

)

Ci0 =
[
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4.4 � GUI tool

To apply the ML model to the practice of predicting the 
shear capacity of infilled RC frames, a GUI tool has been 
built based on the developed ANN-BR model. The GUI tool 
is to help engineers conveniently calculate the shear capac-
ity of RC frames with infill walls. Figure 7 describes the 
GUI tool, in which users only need to enter the input param-
eters and receive the output quickly. Note that the prediction 
model is limited to the scope of the data set provided in 
Table 1. Users can download this GUI tool completely free 
of charge at https://​github.​com/​duydu​an1304/​GUI_​SS_​Infil​
ledRC​Frames.

5 � Conclusions

This study proposed the hybrid Bayesian regularization 
– Artificial neural network (BR-ANN) model for calculat-
ing the shear strength of infilled reinforced concrete (RC) 
frames. A set of 153 data samples was gathered and used 
to develop the machine learning model. The shear strength 
predicted by BR-ANN in this study is then compared with 
that of the conventional Levenberg-Marquardt ANN algo-
rithm. Four statistical metrices including the goodness of 
fit 

(

R2
)

 , root-mean-squared error (RMSE ) , mean average 
error (MAE ) , and a20 − index are calculated to evaluate the 
prediction performance of the ANN models. The following 
conclusions are drawn.

Fig. 7   GUI for predicting shear strength of infilled RC frames

https://github.com/duyduan1304/GUI_SS_InfilledRCFrames
https://github.com/duyduan1304/GUI_SS_InfilledRCFrames


	 Journal of Building Pathology and Rehabilitation           (2025) 10:40    40   Page 12 of 13

•	 The hybrid BR-ANN model predicts the shear strength 
of infilled RC frames accurately with a high R2 of 0.92, 
a small RMSE of 12 kN, and a20-index of 0.7.

•	 The effects of input design parameters on the shear 
strength are evaluated. The width of the frame col-
umn 

(

bc
)

 , the width of the RC frame (L ) , and the elastic 
modulus of the infill material 

(

Em

)

 are significantly influ-
ential parameters on the output.

•	 A graphical user interface tool is developed for practical 
calculation of the shear strength of infilled RC frames.

•	 It should be noted that the BR-ANN model can only pre-
dict the shear strength of infilled RC frames within the 
range of datasets provided in Table 1. A re-training pro-
cess of the model is required if the values of input param-
eters stay outside of the range. Moreover, a wide range 
of datasets should be employed to extend the applied 
boundaries of the BR-ANN model.
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