
Finding Maximum Stable Matchings
for the Student-Project Allocation

Problem with Preferences Over Projects

Hoang Huu Viet, Le Van Tan, and Son Thanh Cao(B)

School of Engineering and Technology, Vinh University, Vinh City, Vietnam
{viethh,tandhv,sonct}@vinhuni.edu.vn

Abstract. This paper proposes an efficient algorithm to find a maxi-
mum weakly stable matching for the Student-Project Allocation Problem
with Preferences over Projects. We consider the problem as a constraint
satisfaction problem and solve it using a local search approach based on
the min-conflicts algorithm. By choosing a student generated by a fixed-
increment rule and removing the undominated blocking pair formed by
the student, we aim to remove all the blocking pairs formed by the stu-
dent at each iteration of our algorithm. This allows our algorithm to
obtain a solution of the problem as quickly as possible. Experimental
results show that our algorithm is efficient in terms of both performance
and solution quality for solving the problem.

Keywords: Student-Project Allocation Problem · Matching problem ·
Stable matching · Blocking pair · Local search

1 Introduction

In many undergraduate courses of universities, students have to undertake
projects offered by lecturers. To do this, students firstly need to be assigned
to projects such that both students and lecturers meet their preference and
capacity constraints. This problem originally described by Abraham et al. [7]
and known as the Student-Project Allocation problem (SPA). In the setting of
SPA, each lecturer offers a set of projects and ranks a subset of students in strict
order that he/she intends to supervise, whilst each student ranks a subset of
the available projects that he/she finds acceptable in strict order. There exist
capacity constraints on the maximum number of students that can be assigned
to each project and lecturer. The aim of SPA is to allocate projects to students
to satisfy the constraints on these preferences and capacities. Abraham et al.
[7] proposed two linear-time algorithms to find a stable matching of students
to projects in SPA. The first one returns a student-optimal stable matching in
which each student gets the best project that he/she could get in any stable
matching, while the second one returns a lecturer-optimal stable matching in
which each lecturer gets the best set of students that he/she could get in any
stable matching.
c© Springer Nature Singapore Pte Ltd. 2020
T. K. Dang et al. (Eds.): FDSE 2020, CCIS 1306, pp. 411–422, 2020.
https://doi.org/10.1007/978-981-33-4370-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4370-2_29&domain=pdf
https://doi.org/10.1007/978-981-33-4370-2_29

412 H. H. Viet et al.

In SPA requiring each lecturer to rank a subset of students in a strict order
is unfair for both lecturers and students. For example, lecturers often strongly
prefer to supervise students with good academic results rather than students
with poor academic results. This sometimes leads to conflicts among lecturers
and students. Manlove and Malley [2] proposed a variant of SPA, called SPA with
Preferences over Projects (SPA-P), where lecturers rank a subset of projects they
offer in strict order rather than a subset of students. Given an SPA-P instance,
Manlove et al. showed that stable matchings can have different sizes and the
problem of finding a maximum cardinality stable matching is NP-hard.

Both SPA and SPA-P have recently received a great deal of attention from the
research community in building automated applications for allocating students
to projects. Examples may include the School of Computing Science, University
of Glasgow [10], the Faculty of Science, University of Southern Denmark [1], the
Department of Computing Science, University of York [8].

In the last few years, there are several researchers focused on designing effi-
cient approximation algorithms to consider the lower and upper bounds for SPA-

P. An algorithm is called r-approximation algorithm for SPA-P if it always finds
a stable matching M with |M | ≥ |Mopt|/r, where Mopt is a stable matching of
maximum size. Manlove and Malley [2] extended the well-known Gale-Shapley
algorithm [3] to find an 2-approximation algorithm, namely SPA-P-approx. This
algorithm consists of a sequence of apply operations, in which an unassigned
student with a non-empty list applies to the first project on his/her list to form
pairs of a matching such that the lecturers and projects satisfy their capacity
constraints. The algorithm returns a stable matching in a finite number of iter-
ations. Iwama et al. [6] modified SPA-P-approx using Király’s idea [9] to find an
3
2 - approximation algorithm. Recently, Manlove et al. [11] investigated an integer
programming approach to SPA-P and proposed an 3

2 -approximation algorithm
to find stable matchings that are very close to having maximum cardinality.

In this paper, we propose an algorithm to find maximum weakly stable match-
ings of SPA-P instances of large sizes. Our approach is based on a local search
strategy applied for constraint satisfaction problems [12,13]. The local search
strategy uses very little memory and can quickly find solutions in large state
spaces and therefore, it is used for solving SPA-P of large sizes. Our experi-
mental results show that our algorithm is much efficient than the SPA-P-approx
algorithm [2] in terms of performance and solution quality for SPA-P instances
of large sizes.

The rest of this paper is organized as follows. Section 2 describes preliminaries
of SPA-P. Section 3 presents our proposed algorithm. Section 4 discusses the
experiments and evaluations, and Sect. 5 concludes our work.

2 Preliminaries

This section recalls the SPA-P problem given in [2,4,5]. The SPA-P is defined
consisting of a set S = {s1, s2, · · · , sn} of students, a set P = {p1, p2, · · · , pq} of
projects and a set L = {l1, l2, · · · , lm} of lecturers. Each lecturer lk offers a set

Finding Maximum Stable Matchings for SPA-P 413

Pk (k = 1, 2, · · · ,m) of projects ranked in strict order of preference. We assume
that P1, P2, · · · , Pk partitions P and each project pj ∈ P is offered by a unique
lecturer lk ∈ L. Also, each student si ranks a set of projects Ai ⊆ P in strict
order of preference. If project pj ∈ P is ranked by student si, we say that si
finds pj acceptable. Finally, each lecturer lk has a capacity dk, indicating the
maximum number of students that can be supervised by lk, and each project
pj has a capacity cj , indicating the maximum number of students that can be
assigned to pj .

Definition 1 (assignment). An assignment M is a subset of S ×P such that
(si, pj) ∈ M implies that pj ∈ Ai. If (si, pj) ∈ M , we say that si is assigned to
pj, pj is assigned to si and we also say that si is assigned to lk, lk is assigned
to si, where lk is the lecturer who offers pj.

For any student si ∈ S, if si is assigned to pj in M , we let M(si) denote
pj , otherwise, we say that si is unassigned in M or M(si) = ∅. For any project
pj ∈ P, we let M(pj) denote the set of students assigned to pj in M . We
say that project pj is under-subscribed, full or over-subscribed if |M(pj)| < cj ,
|M(pj)| = cj or |M(pj)| > cj , respectively. Similarly, for any lecturer lk ∈ L, we
let M(lk) denote the set of students assigned to lk in M . We also say that lecturer
lk is under-subscribed, full or over-subscribed if |M(lk)| < dk, |M(lk)| = dk or
|M(lk)| > dk, respectively.

Definition 2 (matching). A matching M is an assignment such that
|M(si)| ≤ 1 for each si ∈ S, |M(pj)| ≤ cj for each pj ∈ P, and |M(lk)| ≤ dk for
each lk ∈ L.

Definition 3 (blocking pair). A pair (si, pj) ∈ (S × P)\M is a blocking pair
of a matching M , or blocks M , if the following three conditions are met:

1. pj ∈ Ai (i.e. si finds pj acceptable).
2. Either si is unassigned in M or si prefers pj to M(si).
3. pj is under-subscribed and either

(a) si ∈ M(lk) and lk prefers pj to M(si), or
(b) si /∈ M(lk) and lk is under-subscribed, or
(c) si /∈ M(lk), lk is full, and lk prefers pj to lk’s worst non-empty project,

where lk is the lecturer who offers pj.

Definition 4 (dominated blocking pair). A blocking pair (si, pj) dominates
a blocking pair (si, pk) if si prefers pj to pk.

Definition 5 (undominated blocking pair). A blocking pair (si, pj) is
undominated if there is no other blocking pair that dominates (si, pj).

Definition 6 (stable matching). A matching M is called weakly stable if it
admits no blocking pair, otherwise it is called unstable. The size of a weakly
stable matching M , denoted |M |, is the number of students assigned in M .

414 H. H. Viet et al.

Table 1. An instance of SPA-P

Student preferences Lecturer preferences Project capacities

s1: p1 p2 p6 l1: p3 p1 p2 p4 c1 = 1

s2: p1 p4 l2: p5 p6 c2 = 2

s3: p1 p2 p5 c3 = 2

s4: p3 Lecturer capacities c4 = 1

s5: p3 p5 d1 = 3 c5 = 1

s6: p5 p3 p6 d2 = 3 c6 = 2

In this paper, we consider only weakly stable matchings and therefore, we
simply call a weakly stable matching a stable matching. The aim of SPA-P is
to find a stable matching of maximum size, i.e. the stable matching admits the
smallest number of unassigned students.

Definition 7 (perfect matching). A stable matching M is called perfect if all
students are assigned in M (i.e. |M | = n), otherwise it is called non-perfect.

An instance of SPA-P consists of S = {s1, s2, s3, s4, s5, s6}, P = {p1, p2, p3,
p4, p5, p6} and L = {l1, l2} is shown in Table 1, where P1 = {p3, p1, p2, p4},
P2 = {p5, p6}, A1 = {p1, p2, p6}, A2 = {p1, p4}, A3 = {p1, p2, p5}, A4 = {p3},
A5 = {p3, p5}, A6 = {p5, p3, p6}. The matching M = {(s1, p6), (s2, p4), (s3, p2),
(s5, p3), (s6, p6)} is unstable since there exist blocking pairs {(s1, p1), (s1, p2),
(s2, p1), (s3, p1), (s6, p5)} of M . Moreover, blocking pair (s1, p1) dominates block-
ing pair (s1, p2) since s1 prefers p1 to p2 and blocking pair (s1, p1) is undom-
inated. The matchings M = {(s1, p1), (s2, p1), (s3, p5), (s4, p3), (s6, p6)} and
M = {(s1, p6), (s2, p1), (s3, p1),(s4, p3),(s5, p5),(s6, p6)} are stable with sizes 5
and 6, respectively.

3 Algorithm for SPA-P

In this section, we propose an algorithm to find a maximum stable matching
for SPA-P. We consider SPA-P as a constraint satisfaction problem (CSP), in
which students are variables, projects ranked in each student’s preference list
is the domain of each variable and constraints are conditions of the blocking
pair definition. Accordingly, a stable matching is an assignment of projects to
students such that it does not violate constraints. Our key idea is that we adapt
the min-conflicts heuristic for the CSP [12,13], in which at each iteration we
select a project pj ∈ Ai to assign for a student si that results in the minimum
number of conflicts with other students in terms of the number of blocking
pairs. This means that we have to remove blocking pairs to improve stability
of an unstable matching. However, some blocking pairs removed may be useless
since the student remains involved in other blocking pairs. We thus focus on the

Finding Maximum Stable Matchings for SPA-P 415

concept of undominated blocking pairs applied for the stable marriage problem
with ties and incomplete lists [4,5].

Algorithm 1: SPA-P-MCH Algorithm
Input: - An instance I of SPA-P.

- A maximum number of iterations max iters.
Output: A matching M .

1. function Main(I)
2. M := a randomly generated matching;
3. Mbest := M ;
4. si := a random student;
5. iter := 0;
6. while (iter ≤ max iters) do
7. iter := iter + 1;
8. for (r = 1 · · · n) do
9. si := mod(si, n) + 1;

10. pj := Find Project(si,M);
11. if (pj �= ∅) then
12. break;
13. end
14. end
15. if (pj = ∅) then
16. if (|Mbest| < |M |) then
17. Mbest := M ;
18. end
19. if (|Mbest| = n) then
20. break;
21. else
22. M := a randomly generated matching;
23. continue;
24. end
25. end
26. M := M ∪ {(si, pj)}, where pj is offered by lk;
27. if (pj is over-subscribed) then
28. sw := pj ’s worst non-empty student;
29. M := M\{(sw, pj)};
30. end
31. if (lk is over-subscribed) then
32. pz := lk’s worst non-empty project;
33. sw := pz’s worst non-empty student;
34. M := M\{(sw, pz)};
35. end
36. end
37. return Mbest;
38. end function

Our algorithm based on the min-conflicts heuristic for the SPA-P, so-called
SPA-P-MCH, is shown in Algorithm 1. Initially, the algorithm assigns the best
matching, Mbest, to a randomly generated matching, M , and takes a random

416 H. H. Viet et al.

student si ∈ S. At each iteration, the algorithm finds a project pj ∈ Ai so that
the pair (si, pj) is an undominated blocking pair of the current matching, as
shown in Algorithm 2. If there exists no such project pj for every student, the
algorithm has rearched a stable maching. If so, the algorithm checks if the current
matching is better than Mbest in terms of its size, it assigns the current matching
to Mbest. Moreover, if Mbest is a perfect matching, the algorithm returns Mbest,
otherwise, it restarts at a randomly generated matching. However, if there exists
a project pj such that (si, pj) is an undominated blocking pair, the algorithm
removes (si, pj) of M by assigning pj to si, i.e. M(si) = pj . Next, the algorithm
checks if pj is over-subscribed then it removes the pair (sw, pj) ∈ M such that
pj is full, where sw is the worst student assigned to pj . Since pj is assigned
to si, this means lk is assigned to si, where lk is the lecturer who offers pj .
Therefore, the algorithm has to check the capacity dk of lk. Specifically, if lk is
over-subscribed, the pair (sw, pz) ∈ M is removed such that lk is full, where pz
is the worst project offered by lk and sw is the worst student assigned to project
pz. The algorithm repeats until either Mbest is a perfect matching or a maximum
number of iterations is reached. In the latter case, the algorithm returns either
a maximum stable matching or an unstable matching.

Given a student si ∈ S, the function to find a project pj ∈ Ai such that
the pair (si, pj) is an undominated blocking pair of a matching M is shown
in Algorithm 2. The function performs an iteration for each project pj in an
ascending order of ranks in Ai and stops at the first blocking pair encountered,
then (si, pj) is an undominated blocking pair. If a blocking pair is found, the
function returns pj , otherwise, it returns an empty set.

Algorithm 2: Find pj such that (si, pj) is an undominated blocking pair
Input: A student si ∈ S and a matching M .
Output: A project pj ∈ Ai or empty.

1. function pj = Find Project(si,M)

2. pj := ∅;
3. sort si’s rank list in ascending order;
4. for (each pk ∈ Ai such that rank(si, pk) < rank(si,M(si))) do
5. if ((si, pk) is a blocking pair) then
6. pj := pk;
7. break;
8. end
9. end

10. return pj ;
11. end function

An execution of the algorithm for the SPA-P instance shown in Table 1 is
illustrated as in Table 2, where we initialize M = {(s1, p2), (s2, p4), (s3, p2),
(s5, p5), (s6, p6)} and the algorithm starts from s1. After 5 iterations, the algo-
rithm terminates and returns a stable matching M = {(s1, p6), (s2, p1), (s3, p1),
(s4, p3), (s5, p5), (s6, p6)}, where every student is assigned to one project.

Finding Maximum Stable Matchings for SPA-P 417

Table 2. An execution of the algorithm for the SPA-P instance shown in Table 1

Iter. si pj Matching M Blocking pairs

0 s1 - {(s1, p2), (s2, p4), (s3, p2),
(s5, p5), (s6, p6)}

{(s1, p1), (s2, p1), (s3, p1),
(s4, p3), (s5, p3), (s6, p3)}

1 s2 p1 {(s1, p2), (s2, p1), (s3, p2),
(s5, p5), (s6, p6)}

{(s1, p1), (s3, p1), (s4, p3),
(s5, p3), (s6, p3)}

2 s3 p1 {(s1, p2), (s2, p1), (s3, p1),
(s5, p5), (s6, p6)}

{(s4, p3), (s5, p3), (s6, p3)}

3 s4 p3 {(s2, p1), (s3, p1), (s4, p3),
(s5, p5)}, (s6, p6)}

{(s1, p6)}

4 s1 p6 {(s1, p6), (s2, p1), (s3, p1),
(s4, p3), (s5, p5), (s6, p6)}

{}

5 ∀si ∅ |M | = 6 → return M = {(s1, p6), (s2, p1), (s3, p1), (s4, p3),
(s5, p5), (s6, p6)}.

4 Experiments

In this section, we present experiments to evaluate the efficiency of our SPA-P-

MCH algorithm. To do so, we compared the execution time and matching quality
found by SPA-P-MCH with those found by SPA-P-approx [2]. We implemented
both SPA-P-MCH and SPA-P-approx algorithms by Matlab R2017a software on
a laptop computer with Core i7-8550U CPU 1.8 GHz and 16 GB RAM, running
on Windows 10.

Datasets. To compare the efficiency of SPA-P-MCH and SPA-P-approx algo-
rithms, we randomly generated SPA-P instances by varying parameters such as
the number of students, lecturers and projects; the total capacities of the lec-
turers and projects; the number of projects ranked by each student in his/her
preference list. Table 3 shows the number of students (n), lecturers (m) and
projects (q) in our experiments. For each n varying from 500 to 5000 with steps
500, we randomly generated 100 instances of parameters (n,m, q) such that
0.02n ≤ m ≤ 0.1n (i.e., the student-to-lecturer ratio is from 10 to 50) and
0.1n ≤ q ≤ 0.5n (i.e., the student-to-project ratio is from 2 to 10 and each
lecturer offers from 1 to 25 projects). In addition, we set a probability of incom-
pleteness, |Ai|/q, indicating that, on average, each student si ranks |Ai| projects
in his/her preference list, where |Ai| = 10, 20 and 30.

Experiment 1. In this experiment, we set the total capacity, C, of projects
offered by all the lecturers: C = 1.1n. Then, we distributed C to the capacity cj
of each project pj such that 2 ≤ cj ≤ 11 (since the number of projects is 0.1n ≤
q ≤ 0.5n). Next, we set the capacity of each lecturer lk to be dk =

∑|Pk|
j=1 cj ,

where cj is the capacity of project pj offered by lecturer lk. Figure 1(a) shows
the average execution time of SPA-P-MCH and SPA-P-approx algorithms. The
average execution time of both SPA-P-MCH and SPA-P-approx increases when n
increases. When students increase the number of projects, |Ai|(i = 1, 2, · · · , n),

418 H. H. Viet et al.

Table 3. Parameter values for experiments

ID n Number of lecturers
(0.02n ≤ m ≤ 0.1n)

Number of projects
(0.1n ≤ q ≤ 0.5n)

Number of projects
offered by lecturer lk
(i.e. |Pk|)

Min Max Min Max Min Max

1 500 10 50 50 250 1 25

2 1000 20 100 100 500 1 25

3 1500 30 150 150 750 1 25

4 2000 40 200 200 1000 1 25

5 2500 50 250 250 1250 1 25

6 3000 60 300 300 1500 1 25

7 3500 70 350 350 1750 1 25

8 4000 80 400 400 2000 1 25

9 4500 90 450 450 2250 1 25

10 5000 100 500 500 2500 1 25

Fig. 1. Results for Experiment 1: (a) the average execution time and (b) the percentage
of perfect matchings

in their preference lists, the average execution time of SPA-P-MCH is almost the
same as that of SPA-P-approx. However, when |Ai| = 10, the average execution
time of SPA-P-MCH is larger than that of SPA-P-approx. This is because when
a found matching is non-perfect, SPA-P-MCH applies a restart strategy from a
new random matching to find a better one in terms of matching size. Figure 1(b)
shows the percentage of perfect matchings found by SPA-P-MCH and SPA-P-

approx. When n increases, the percentage of perfect matchings found by both
SPA-P-MCH and SPA-P-approx decreases. However, the percentage of perfect
matchings found by SPA-P-MCH is always higher than that found by SPA-P-

Finding Maximum Stable Matchings for SPA-P 419

Fig. 2. Results for Experiment 2: (a) the average execution time and (b) the percentage
of perfect matchings

Fig. 3. Results for Experiment 3: (a) the average execution time and (b) the percentage
of perfect matchings

approx. In particularly, when |Ai| = 20 or |Ai| = 30, SPA-P-MCH always finds
100% of perfect matchings.

Experiment 2. In this experiment, we increase the total capacity of projects
offered by all the lecturers: C = 1.2n. Then, we distributed C to the capacity
cj of each project pj such that 2 ≤ cj ≤ 12. The other parameters are set the
same as those in Experiment 1. Figure 2 shows our experimental results. When
the total capacity of projects is increased, i.e. the capacity of each project is
increased, the average execution time of both SPA-P-MCH and SPA-P-approx
decreases, while the percentage of perfect matchings found by both SPA-P-MCH

and SPA-P-approx increases. This is because when the capacity of each project
is increased, the opportunity to assign a project for students is increased.

420 H. H. Viet et al.

Fig. 4. Results for Experiment 4: (a) the average execution time and (b) the percentage
of perfect matchings

Experiment 3. In the above two experiments, we set the capacity of each lec-
turer to be equal to the total capacities of projects offered by him/her. But, in
practice, the capacity of each lecturer often is smaller than the total capacity
of projects offered by him/her. Therefore, in this experiment, we set the capac-
ity dk of each lecturer lk to be a random number between 0.6Ck and 0.85Ck,
where Ck is the total capacity of the projects offered by lk. In addition, we set
the total capacity of projects to be C = 1.5n and distributed C to the capac-
ity cj of each project pj such that 3 ≤ cj ≤ 15. The other parameter values
are the same as those in Experiment 2. Figure 3(a) shows the average execution
time of SPA-P-MCH and SPA-P-approx. The average execution time of SPA-P-

MCH is much smaller than that of SPA-P-approx when the number of projects
in students’ preference lists is about 10, but it is almost the same of that of
SPA-P-approx when the number of projects in students’ preference lists is 20.
Figure 3(b) shows the percentage of perfect matchings found by SPA-P-MCH

and SPA-P-approx. SPA-P-MCH always finds 100% of perfect matchings when
|Ai| = 20 and finds more than 65% of perfect matchings when |Ai| = 10. SPA-P-

approx always finds the percentage of perfect matchings that is much lower than
that found by SPA-P-MCH.

Experiment 4. In the above experiments, the maximum number of iterations
in SPA-P-MCH is 20000. It should be noted that, when the umber of iterations in
SPA-P-MCH is increased, the opportunity to find perfect matchings increases,
but the execution time is also increased. In this experiment, we run SPA-P-

MCH in which it returns the first stable matching found in iterations. Figure 4
shows the average execution time and matching quality found by SPA-P-MCH

and SPA-P-approx, where the parameter values of SPA-P-MCH are the same
as those in Experiment 3. It can be seen that the average execution time of
SPA-P-MCH is much smaller than that of SPA-P-approx, while the percentage
of perfect matchings found by SPA-P-MCH is almost the same as that found by

Finding Maximum Stable Matchings for SPA-P 421

SPA-P-approx. In other words, SPA-P-MCH outperforms SPA-P-approx in terms
of execution time in this case.

5 Conclusions

This paper proposed a SPA-P-MCH algorithm to find a maximum weakly stable
matching for the SPA-P problem. Our algorithm starts to search a solution of
the problem from a random matching. At each iteration, the algorithm finds a
project for a student such that the pair (student, project) is an undominated
blocking pair. If there exists such a project, the algorithm removes the pair
(student, project). Otherwise, the algorithm checks if a perfect matching is found,
it returns the found matching, otherwise, it continues searching a solution of the
problem from a random matching. Our algorithm repeats until it finds a perfect
matching or reaches a maximum number of search steps. In the latter case,
the found matching is either a maximum stable matching or an approximate
maximum matching. Experiments showed that our algorithm outperforms the
SPA-P-approx in terms of execution time and matching quality for the SPA-P

problem.

References

1. Chiarandini, M., Fagerberg, R., Gualandi, S.: Handling preferences in student-
project allocation. Ann. Oper. Res. 275(1), 39–78 (2017). https://doi.org/10.1007/
s10479-017-2710-1

2. Manlove, D.F., O’Malley, G.: Student-project allocation with preferences over
projects. J. Discrete Algorithms 6(4), 553–560 (2008)

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 9(1), 9–15 (1962)

4. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search for stable
marriage problems with ties and incomplete lists. In: Proceedings of 11th Pacific
Rim International Conference on Artificial Intelligence. pp. 64–75. Daegu, Korea
(August 2010)

5. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Local search approaches
in stable matching problems. Algorithms 6(4), 591–617 (2013)

6. Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for
the student-project allocation problem with preferences over projects. J. Discrete
Algorithms 13(1), 59–66 (2012)

7. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the student-
project allocation problem. J. Discrete Algorithms 5(1), 73–90 (2007)

8. Kazakov, D.: Co-ordination of student-project allocation. Manuscript, University of
York, Department of Computer Science http://www-users.cs.york.ac.uk/kazakov/
papers/proj.pdf (2001)

9. Király, Z.: Better and simpler approximation algorithms for the stable marriage
problem. Algorithmica 60(1), 3–20 (2011). https://doi.org/10.1007/s00453-009-
9371-710.1007/s00453-009-9371-7

https://doi.org/10.1007/s10479-017-2710-1
https://doi.org/10.1007/s10479-017-2710-1
http://www-users.cs.york.ac.uk/kazakov /papers/proj.pdf
http://www-users.cs.york.ac.uk/kazakov /papers/proj.pdf
https://doi.org/10.1007/s00453-009-9371-710.1007/s00453-009-9371-7
https://doi.org/10.1007/s00453-009-9371-710.1007/s00453-009-9371-7

422 H. H. Viet et al.

10. Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal
matchings in the student/project allocation problem. In: Proceedings of 25th Inter-
national Workshop on Combinatorial Algorithms, pp. 213–225. Duluth, USA (15–
17 October 2014)

11. Manlove, D., Milne, D., Olaosebikan, S.: An integer programming approach to
the student-project allocation problem with preferences over projects. In: Proceed-
ings of 5th International Symposium on Combinatorial Optimization, pp. 313–325.
Morocco (April 2018)

12. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a heuris-
tic repair method for constraint satisfaction and scheduling problems. Artif. Intell.
58(1–3), 161–205 (1992)

13. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice
Hall Press, Upper Saddle River (2009)

	Finding Maximum Stable Matchings for the Student-Project Allocation Problem with Preferences Over Projects
	1 Introduction
	2 Preliminaries
	3 Algorithm for SPA-P
	4 Experiments
	5 Conclusions
	References

