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ABSTRACT

Soil Erosion Susceptibility Mapping (SESM) is one of the practical approaches for managing and mitigating soil erosion. This study applied four

Machine Learning (ML) models namely the Multilayer Perceptron (MLP) classifier, AdaBoost, Ridge classifier, and Gradient Boosting classifier

to perform SESM in a region of Nghe An province, Vietnam. The development of these models incorporated seven factors influencing soil

erosion: slope degree, slope aspect, curvature, elevation, Normalized Difference Vegetation Index (NDVI), rainfall, and soil type. These factors

were determined based on 685 identified soil erosion locations. According to SHapley Additive exPlanations (SHAP) analysis, soil type

emerged as the most significant factor influencing soil erosion. Among all the developed models, the Gradient Boosting classifier demon-

strated the highest prediction power, followed by the MLP classifier, Ridge classifier, and AdaBoost, respectively. Therefore, the Gradient

Boosting classifier is recommended for accurate SESM in other regions too, taking into account the local geo-environmental factors.
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HIGHLIGHTS

• Soil erosion has been modeled and a soil erosion susceptibility map was generated.

• Several ML models, including the MLP classifier, Ada Boost, Ridge classifier, and Gradient Boosting classifier were implemented.

• Developed models were tuned using the Grid search CV technique.

• The Gradient Boosting classifier performed the best.

• About 33% of the study area has a high and very high susceptibility to soil erosion occurrence.

1. INTRODUCTION

Soil erosion is globally acknowledged as a significant challenge that poses a threat not only to agricultural productivity but
also to socio-economic advancement and the sustainability of economies.

Rill, inter-rill, sheet, gully, badland, and landslide are the different kinds of soil erosion forms causing the degradation of

land. Landslide occurrence, as a sub-category of mass movement, is one of the main forms of soil erosion and soil degradation
in Eastern Asian countries such as Nepal, Malaysia, and Vietnam, due to their unique topography, geology river system, land
use pattern, and location in tropical monsoon regions. Rainfall is one of the main causes of soil erosion. Soil erosion has

several negative impacts on the region’s environment and economy. It can lead to reduced soil fertility, decreased agricultural
productivity, and increased sedimentation in waterways, which can affect fish populations and water quality. Soil erosion can
also lead to increased costs for farmers due to the need for soil conservation measures and increased use of inputs such as
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fertilizers and pesticides. Soil erosion also affects morphology of the area and cause serious problem to water quality, aquatic
systems and their habitats, and reduction of dam reservoir storage (Khosravi et al. 2022).

The issue of soil erosion is escalating day by day due to human interference in altering land use patterns for agriculture and

development, deforestation, and also due to the effects of climate change (Yang et al. 2003). For sustainable development, it is
required to prevent soil erosion and degradation of soil mass. Identifying areas susceptible to soil erosion is a key step in
implementing effective remedial measures (Yesuph & Dagnew 2019). These measures aim to stabilize soil in various areas
including ground surfaces, hill slopes, and catchments. Planning for such measures, which may include strategic plantation

and construction of structures to curb river bank erosion, is essential in maintaining the integrity of these landscapes. Areas
vulnerable to soil erosion can be identified by systematic soil erosion susceptibility mapping (SESM) to mitigate the problems
of soil erosion (Saha et al. 2019). In many natural hazard problems, it has been found that future hazards occur under con-

ditions similar to those of the past (Van Westen et al. 2006). Hence, the creation of an inventory, documenting past erosion
locations’ inventory plays an important role in SESM. The traditional ways of SESM include the use of models such as the
Revised Universal Soil Loss Equation (RUSLE), which predicts long-term, average-annual erosion by water for a broad range

Figure 1 | Location map of the study area showing the location of soil erosion sites.
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of farming (Prasannakumar et al. 2012). However, this model can be implemented based on expert opinion, and therefore, it

is associated with high uncertainty. Other traditional methods include the use of Weighted Overlay Analysis (WOA) to ident-
ify soil erosion high-risk areas (Ulain et al. 2022).

In recent years, advanced Machine Learning (ML) models have been increasingly utilized in fields such as hydrology and

geotechnical engineering (Nearing et al. 2021; Zhang et al. 2021). These models are particularly effective in addressing classi-
fication and prediction challenges, including those found in SESM. Golkarian et al. (2023) compared the prediction accuracy
of various ML models namely Convolutional Neural Networks (CNNs) and CNN optimized by gray wolf optimizer (CNN-
GWO), Support Vector Machine (SVM) and SVM optimized by GWO (SVM-GWO), Group Method of Data Handling

(GMDH) and GMDH optimized by GWO (GMDH-GWO), and Extreme Gradient Boosting (XGBoost) with the RUSLE
model for soil erosion in Iran, and ML models are significantly better than the traditional RUSLE model. Sajedi-Hosseini
et al. (2018) applied the fuzzy analytical network process (ANP) for soil erosion modeling in Iran, and stated that the

fuzzy FANP model has reasonable prediction power. Mosavi et al. (2020) applied a new kind of random forest model
named weighted subspace random forest (WSRF), and compared the results with the Gaussian Process and Naive Bayes
(NB) model for SESM at Noor-Rood watershed, Iran, and reported that WSRF outperformed the other studied models.

Sahour et al. (2021) implemented three different ML/linear models, including deep learning (DL), boosted regression
trees (BRT), and multiple linear regression (MLR) for soil erosion in Iran, and reported that the BRT model outperformed
the other studied models. Khosravi et al. (2023) applied three different kinds of DL models namely CNN, RNN, and

LSTM for SESM in the North of Iran, and suggested that RNN has the highest prediction accuracy compared with the
other studied models.

In general, literature reviews indicate that ML models are superior to SESM. This is because ML methods offer several
advantages over traditional methods. They can handle large amounts of data and complex relationships between variables,

which can lead to more accurate predictions (Vishnu & Rajput 2020). Moreover, model development and selection of the best
model is a continuous process for solving classification and prediction problems. In the present study, therefore, we have used
four ML classifier algorithms namely Multilayer Perceptron (MLP), Ada Boost, Ridge, and Gradient Boosting for the devel-

opment of SESM. In addition, soil erosion is a significant challenge for Nghe An province, Vietnam. Efforts to mitigate its
impacts are essential for the region’s sustainable development. Therefore, we have selected a part of this province for soil
erosion study and development of SES models. The novelty of the current work lies in its unique approach to SESM. Specifi-

cally, this study is one of the first to assess and compare the predictive power of the Gradient Boosting classifier (GBC) model
with other established models such as the MLP, Ada Boost, and Ridge classifier. While Extreme Gradient Boosting has been
utilized for natural hazard assessments, the application of the GBC model in the geoscience field is relatively rare. This study,
therefore, not only fills a significant gap in the literature but also contributes to our understanding of the potential and effec-

tiveness of different ML models in geoscience and SESM. By exploring these proposed models, this research could pave the
way for more innovative and effective approaches to SESM in the future. Python software was used for data analysis and
plotting while ArcGIS software was used for data processing and mapping.

2. STUDY AREA

The study area is a part of Nghe An province, Vietnam, located in the upper middle part of the Lam River basin, covering an
area of about 1,074 sq. km. This province is characterized by a diverse topography, comprising mountains, hills, plains, and
coastal areas. The western part of the province is dominated by the Annamite Range, which runs from north to south and

forms a natural border with Laos. The eastern part of the province consists of coastal plains and sandy beaches.
Nghe An province has a complex geology, with a variety of rocks and mineral deposits. The province is rich in minerals

such as coal, iron, lead, zinc, copper, gold, and silver. The western part of the province is also known for its karst landscapes
and cave systems. Nghe An province has a diverse range of crops, including rice, maize, cassava, sugarcane, and coffee. This

region has a tropical monsoon climate, with two distinct seasons. The average temperature varies between 23° and 25 °C, and
the annual rainfall is around 1,600–1,800 mm.

Soil erosion in Nghe An province is a significant problem that affects the region’s agricultural productivity, environmental

health, and economic development. The province experiences high levels of soil erosion due to a combination of natural and
human factors. Natural factors contributing to soil erosion include the region’s topography, which is characterized by steep
slopes that increase the risk of soil erosion. The province also experiences high levels of rainfall, which can cause soil erosion
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during heavy downpours. Human factors contributing to soil erosion include intensive agricultural practices such as excessive

tillage, use of chemical fertilizers and pesticides, as well as overgrazing by livestock. These practices can result in soil degra-
dation, nutrient depletion, and ultimately, soil erosion. In addition, deforestation is another significant contributor to soil
erosion in the province. Deforestation leads to the loss of vegetation cover, which can cause soil erosion and soil nutrient

depletion. Climate change is also a contributing factor as it can increase the frequency and severity of rainfall events,
which can exacerbate soil erosion in the province.

3. MATERIALS AND METHODS

3.1. Data used

3.1.1. Soil erosion inventory

An inventory of soil erosion was prepared for 685 locations within the Lam River basin of Nghe An province that have been

affected by soil erosion (Figure 2). This inventory was used to evaluate factors that could potentially influence future soil ero-
sion in the study area. Historical soil erosion data locations were identified using Google Earth images, documentary sources,
satellite data, and field surveys with the help of the Global Positioning System (GPS) tool. For modeling, non-soil erosion and

soil erosion areas were delineated and extracted from the total study area by drawing buffers around soil erosion individual
sites. For the ML model study, 685 non-soil erosion locations (i.e. equal to the number of identified erosion sites) were ran-
domly selected using GIS software. Both types of soil erosion and non-soil erosion data were separated into a 70:30 ratio for

training and testing models, respectively (Nguyen et al. 2021b).
The entire historical soil dataset, including training and testing datasets, was converted to a raster format, and soil erosion

pixels were allocated ‘1’ and non-soil erosion pixels ‘0’. In the next step, all assigned pixels were overlaid with all seven con-

sidered soil erosion geo-environmental related conditioning factors to extract the attribute values including historical soil
erosion data which are located within the soil erosion conditioning factors. In the subsequent step, extracted values were con-
verted into an Excel file and exported to the GIS and Weka software for soil erosion modeling and mapping.

3.1.2. Soil erosion influencing factors

Identification of the relevant potential soil erosion influencing factors is crucial for developing a robust model for SESM.
Redundant and irrelevant factors/ features are to be removed from the models using feature selection methods to overcome

the problem of dimensionality and to reduce overfitting problems in models. Soil erosion in any area is influenced by a mul-
titude of factors, including topography, geo-environment, geology, hydrology, anthropogenic activities, climate conditions,
and rainfall. In this study, we have incorporated seven of these factors into our model’s development, based on historical
records and past experiences. In this study, a digital elevation model (DEM) of 30 m resolution (https://asterweb.jpl.nasa.

gov/gdem.asp) was used for the development of slope degree, slope aspect, curvature, and elevation maps. A Normalized
Difference Vegetation Index (NDVI) map was generated using Landsat 7 satellite images collected from USGS (https://

Figure 2 | Example of soil erosion site photo of the study area.
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earthexplorer.usgs.gov/). Rainfall and soil maps were extracted from the available published data and maps collected from
authorized agencies. A brief description of the soil erosion affecting factors is given below:

The slope angle significantly contributes to soil erosion due to landslides and direct removal of soil in the event of rain

(Bradford & Foster 1996; Wu et al. 2017). Soil erosion in the area is more on the slope angle, which is more than 10 degrees.
The higher the slope angle, the greater the possibility of soil erosion. For the study area, a slope angle map was generated and
divided into nine classes (Figure 3(a)).

The slope aspect significantly influences the direction and intensity of solar radiation, moisture, and rainfall, all of which
contribute to soil erosion (van Breda Weaver 1991; Sadeghi et al. 2012). Additionally, the wind flow, which is also dependent
on the slope aspect, can further erode soil from sloping surfaces. To better understand these effects, a slope aspect map of the

Figure 3 | Generated maps of the soil erosion influencing factor of the study area: (a) slope, (b) aspect, (c) curvature, (d) elevation, (e) NDVI,
(f) rainfall, and (g) soil type. (continued.).
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study area was created. This map was divided into nine categories: flat, north, northeast, east, southeast, south, southwest,
west, and northwest (Figure 3(b)).

The curvature of the surface significantly affects the runoff in the area, leading to increased soil erosion on the convex sur-

face (D’souza & Morgan 1976; Stefano et al. 2000). This is in contrast to concave and flat surfaces, where the accumulation
and infiltration of surface water are more pronounced, thereby reducing the likelihood of erosion. A curvature map was pre-
pared from the DEM and classified into three classes: convex, flat, and concave (Figure 3(c)).

Elevation plays a crucial role in the occurrence of soil erosion. It directly influences factors such as the volume, intensity,
and duration of rainfall, the type of vegetation cover, and soil depth (Aslam et al. 2021). These effects are particularly pro-
nounced in hilly and mountainous regions where variations in elevation are significant. An elevation map of the study

Figure 3 | Continued.
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area was derived from the DEM. This map was then categorized into six distinct classes for a more detailed study

(Figure 3(d)).
NDVI affects soil erosion as this factor evaluates the vegetation cover (Karaburun 2010). In this study, this index was

derived using Landsat 7 satellite images. NDVI quantifies the amount of green vegetation using the formula: NDVI¼ (NIR

– Red)/(NIRþRed), where NIR represents Near Infrared spectral reflectance (Figure 3(e)).
Rainfall is the primary contributor to soil erosion, accounting for the majority of total erosion, especially in tropical areas

(Martınez-Casasnovas et al. 2002). It leads to the disintegration of soil particles, breakdown of soil aggregates, and migration
of eroded soil materials or sediment. Furthermore, rainfall is a key factor triggering landslides (Varnes 1978). A rainfall map

of the study area was constructed using the mean annual rainfall data collected over a 30-year period (1991–2021) from the
Meteorological and Hydrological Station of North Central Vietnam (Figure 3(f)).

Soil type plays a significant role in soil erosion. The susceptibility of soil to erosion depends on its physico-mechanical and

chemical properties (Mekonnen & Melesse 2011). Factors such as the mineral composition, size, and texture of the soil are
crucial in determining its erodibility. For instance, loose, sandy, cohesionless soil is more prone to erosion than sticky, clayey
soil. The soil map of the study area, derived from the existing soil map of Nghe An province, was reclassified into five distinct

groups. These groups are illustrated in Figure 3 and detailed in Table 1.

3.2. Methods used

3.2.1. MLP classifier

MLP classifier algorithm, which is a sub-category of the feed forward artificial neural network (ANN) model, relies on under-

lying Neural Networks (NNs) to implement the classification scheme (Sahana et al. 2022). At its core, the MLP classifier is
composed of multiple interconnected layers of artificial neurons or nodes. These layers include an input layer, one or more
hidden layers, and an output layer (Yao et al. 2021). Each neuron in a layer is connected to every neuron in the subsequent

layer, forming a dense and layered network. This architecture allows the MLP classifier to capture intricate patterns and
relationships within the data. One of the distinguishing features of the MLP classifier is its capability to handle non-linear
and high-dimensional data (Guragai et al. 2020). Training an MLP classifier involves a process known as backpropagation,
where the model iteratively adjusts its internal parameters (weights and biases) to minimize a specified loss function (Ding

et al. 2023). This optimization process aims to reduce the discrepancy between the predicted outputs and the true labels
in the training data. MLP classifiers can be applied to both binary and multiclass classification problems. In binary classifi-
cation, the output layer typically consists of a single neuron with a sigmoid activation function, while in multiclass

classification, the output layer can have multiple neurons, each representing a class and employing activation functions.

3.2.2. Adaboost

AdaBoost is a kind of statistical classification model, which is one of the most successful and efficient algorithms of the
ensemble learning technique, especially to reduce the sensitivity of noisy data through hybridization (Nhu et al. 2020). There-
fore, the AdaBoost model can be integrated with many other types of algorithms to enhance the performance of base

algorithms (Yang et al. 2021). Although the AdaBoost model is developed for binary classification, it can be for implemen-
tation to multiple classes or bounded intervals as well (Sun et al. 2021). In the first step, a subset is created from the training

Table 1 | Soil type group’s description

No Group Description

1 Red-yellow ferralite soil formed on
sandstone

The soil mechanical composition is light, the proportion of clay is about ,20%, limited water
holding capacity.

2 Red-yellow ferralite formed on acidic
igneous rocks

The mechanical component is light. The clay content in the soil is, 30%.

3 Red-yellow soil is formed on
metamorphic rocks

The mechanical composition of the soil is quite heavy, the proportion of clay is about
25–35%,

4 Humus on the mountain Humus on the mountain is formed on shale, sandstone, at an altitude of over 700 m. The soil
has a granular structure, the proportion of clay in the soil is quite high, 35–40%.

5 Alluvial soil in the valley The mechanical component is light, mostly fine grain. The clay content in the soil is, 30%.
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data, and therefore, one early classifier algorithm is developed; then, the early model is implemented to predict all instances

in the training dataset; next, the misclassified cases get higher weights, but the weights of the correctly classified cases remain
the same; and finally, the weights of all cases in the training dataset are scaled and a new subset is then randomly created to
construct a next classifier-based model. This process continues until pre-defined stopping criteria are reached. The final model

is calculated based on a weighted sum of all classifier-based models.

3.2.3. Ridge classifier

A ridge classifier is a powerful ML algorithm designed for solving classification problems (Elgeldawi et al. 2021). This algor-
ithm is an extension of the well-known Ridge regression technique used for regression tasks, and it brings the benefits of

regularization to the realm of classification. At its core, the Ridge classifier is a linear classification model (Nouman et al.
2023). It operates by establishing a linear decision boundary within the feature space to distinguish between different classes.
One of the notable strengths of the Ridge classifier is its versatility in handling both binary and multiclass classification tasks.

In binary classification, it discerns between two classes, while in multiclass classification, it extends its capabilities to classify
data into multiple classes through strategies like one-vs-all or one-vs-one. Additionally, the Ridge classifier offers the ability to
provide probability estimates for class predictions, which can be invaluable in applications where understanding the model’s
confidence is essential. However, like many ML algorithms, fine-tuning hyperparameters is crucial to achieving optimal per-
formance. Among these hyperparameters, the regularization strength, often denoted as alpha or lambda, is pivotal in
controlling the level of regularization applied to the model.

3.2.4. Gradient boosting classifier

A Gradient Boosting classifier is an effective, flexible, and robust ML model that has gained immense popularity for solving
classification problems (Khan et al. 2022). It belongs to the family of boosting algorithms and is known for its exceptional
predictive accuracy and ability to handle complex data relationships (Bentéjac et al. 2021). At its core, Gradient Boosting

is an ensemble learning method that combines the predictions of multiple weak learners, typically decision trees, to create
a robust and accurate predictive model. In this model, each weak learner is trained to correct the errors made by the previous
ones. This sequential training process leads to a powerful ensemble model that continually improves its predictive perform-

ance. One of the notable advantages of Gradient Boosting is its high predictive accuracy. By focusing on correcting errors
made by the earlier models, it gradually refines its predictions, resulting in a strong and accurate model. Gradient Boosting
is also robust to overfitting, a common issue in ML. The sequential nature of the algorithm and the regularization techniques

applied during training, such as shrinkage and depth constraints on decision trees, help to prevent overfitting and improve the
model’s generalization to unseen data. While it may require careful hyperparameter tuning and can be computationally
expensive, the superior performance it offers often justifies the effort, making the Gradient Boosting classifier a valuable
tool for data scientists and ML practitioners in various domains.

3.2.5. SHAP analysis

SHapley Additive exPlanations (SHAP) is a tool used in ML for explainability and interpretability (Mangalathu et al. 2020). It
computes the contribution of each feature to the prediction, making the outcomes of ML models more understandable. Thus,

it provides a way to understand and interpret complex ML models, making them more accessible and useful in practical appli-
cations. In SHAP’s plot, the x-axis shows the SHAP value while the y-axis indicates the variable name (commonly in the order
of importance from top to bottom) (Park et al. 2022). A SHAP value shows how much is the change in log-odds, and can be

used to interpret the probability of success. In the variable name axis, the value next to them is the mean SHAP value. In
addition, feature importance can be extracted based on SHAP values. Positive SHAP values indicate that a feature contributes
positively to the prediction, causing the model to predict a higher output value. On the other hand, negative SHAP values
suggest that a feature contributes negatively to the prediction, causing the model to predict a lower output value. According

to the color bar, red color shows higher values while lower values are presented in blue. In this study, the SHAP technique
was used to feature the importance of the input factors used in soil erosion modeling.

3.3. Validation methods

Evaluation and comparison of the model were conducted using a Receiver Operating Characteristic curve (ROC) approach
and several statistical indices, including the positive predictive value (PPV), negative predictive value (NPV), sensitivity (SST),
specificity (SPF), accuracy (ACC), Kappa (K), root mean square error (RMSE), and mean absolute error (MAE).
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The ROC curve is a plot that displays the diagnostic ability of a binary classifier system—on the y-axis, a true positive rate,

whereas on the x-axis, a false positive rate (Chakrabortty et al. 2020). A true positive rate or recall, or sensitivity or probability
of detection is defined as the rate of correctly determined soil erosion locations. A false positive rate or probability of false
alarm is defined as the rate of wrongly determined soil erosion locations. The ROC curve quantitatively measures model per-

formance through the Area Under the ROC Curve (AUC) (Bien et al. 2022, 2023). The AUC value ranges from 0.5 to 1. An
ideal model has an AUC equal to 1, indicating a perfect classification. Therefore, the larger the AUC value, the higher the
performance of the model.

With standard statistical indices (Chakrabortty et al. 2022; Chakrabortty & Pal 2023), PPV is defined as the likelihood that

pixels in the study area are correctly classified as soil erosion data; NPV is considered as the probability of pixels being cor-
rectly classified as non-soil erosion data; ACC is the proportion of soil erosion and non-soil erosion data pixels that are
correctly classified; SST is the proportion of soil erosion data pixels that are correctly identified; SPF is the proportion of

non-soil erosion data pixels that are correctly identified; and Kappa (K) statistic is used to evaluate the reliability of the
SESM. Additionally, RMSE and MAE were applied for model evaluation and comparison through the error analysis of
the models. Generally, higher values of SST, SPF, ACC, K, RMSE, MAE, NPV, and PPV indicate better predictive capability

of the models. In contrast, lower values of RMSE and MAE indicate better predictive capability of the models.

4. RESULTS AND DISCUSSION

4.1. Importance of the input factors in the soil erosion modeling

In this study, sensitivity analysis was carried out by applying SHAP analysis to evaluate the importance of the input factors in
the modeling of soil erosion. The SHAP technique’s plot is composed of thousands of distinct points, with higher values rep-
resented in more intense red and lower values in deeper blue. This color scheme corresponds to the feature values. If the
points on one side of the central line progressively shift from red to blue, it indicates that increasing or decreasing values,

respectively, push the predicted soil erosion in that direction (Figures 4 and 5). It can be seen from SHAP analysis that
while all considered factors are important, soil type is the most influential factor on soil erosion occurrence, with a mean
SHAP value of 0.63. This is followed by slope degree (mean SHAP: 0.42), rainfall (mean SHAP: 0.41), elevation (mean

SHAP: 0.33), NDVI (mean SHAP: 0.28), aspect (mean SHAP: 0.18), and curvature (mean SHAP: 0.08), respectively. This
aligns with the natural process of soil erosion, as soil erodibility depends on the particle size, compactness, cohesiveness,
and mineral composition of soil (Egbueri et al. 2021). Rainfall or runoff is the primary causative factor for soil erosion in

the study area (Martínez-Mena et al. 2020). Heavy rainfall in Nghe An province during typhoons causes significant soil ero-
sion and deep landslides. In addition, it is important to note that other parameters such as NDVI and land use patterns can

Figure 4 | SHAP values of the soil erosion affecting factors used in this study.
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also significantly influence soil erosion (Ayalew et al. 2020). Therefore, the factors influencing soil erosion can vary from

region to region, depending on ground conditions and geo-environmental factors.

4.2. Hyperparameter tuning for training the models

Hyperparameter tuning involves finding a set of optimal hyperparameter values for the learning algorithm to control the
learning process of the ML model. This technique helps in maximizing the performance of the model. In this study, we

have used the Grid Search (GS) technique for hyperparameter tuning as it has certain advantages such as (Hossain &
Timmer 2021): (i) Exhaustive search: the GS conducts a thorough exploration of the search space, ensuring that no potential
combination of hyperparameters is overlooked, and (ii) Interpretability: by evaluating all possible combinations, the GS pro-

vides a comprehensive understanding of how each hyperparameter influences the model’s performance.
Basically, the GS implements through various parameters that enter into the parameter grid and generates the best inte-

gration of parameters, based on a scoring metric of researcher choice. By applying the GS technique, the optimal values
of hyperparameters of each model are obtained and presented in Table 2.

Figure 5 | Mean absolute SHAP values of the soil erosion affecting factors used in this study.

Table 2 | Best values of tuning hyperparameters of the models using the GS technique

No Parameters

Models

MLP classifier AdaBoost Ridge classifier Gradient boosting classifier

1 Activation logistic – – –

2 Alpha 1 – 290 –

3 Hidden layers 100 – – –

4 Learning rate – 0.1 – –

5 Number of estimators – 200 – 200

6 Fit intercept – – true

7 Max depth – – – 4

8 Max features – – – 0.3

9 Min samples leaf – – – 100

10 Cross validation 10 10 10 10
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4.3. Validation of the models

Validation results for the four developed models, which were implemented using a set of quantitative statistical indices includ-
ing PPV, NPV, SST, SPF, ACC, K, MAE, and RMSE, are summarized in Table 3. It indicated that the performance of all

models is good, but that of the Gradient Boosting classifier is the best on both training and validation data, followed by
the MLP classifier, Ridge classifier, and AdaBoost, respectively. The Gradient Boosting classifier model has the lowest
value of error index (MAE¼ 0.238 and RMSE¼ 0.488) in the validation phase. The NPV classifier is also high with an
80% probability of correctly classifying pixels of the soil erosion class; in terms of SST, it had a 74.32% probability of incor-

rectly classifying soil erosion pixels into the soil erosion classes; in terms of SPF, 78.3% of non-soil erosion pixels were
correctly classified as a non-soil erosion location. In terms of NPV, it had a 72.2% probability that correctly classified
non-soil erosion pixels as a non-soil erosion location. The Gradient Boosting classifier with an ACC value of 76.15% and

a K value of 0.523 outperformed other models in the validation phase, followed by theMLP (ACC:74.2% and K:0.484),
AdaBoost (ACC:70.80% and K:0.416), and Ridge classifiers (ACC:70.56% and K:0.411).

Based on the finding from the ROC curve, the MLP classifier model with an AUC of 0.89 for the training phase has the

highest prediction power among all developed models but it has a lower performance than the Gradient Boosting classifier
model during the validation phase. It shows that the MLP classifier model has a lower generalization power, while the Gra-
dient Boosting classifier model has the highest generalization power. Overall, the Gradient Boosting classifier model with an
AUC of 0.83 for validation phases, has better prediction power among all developed models followed by the MLP classifier

(AUC:0.81), Ridge classifier (AUC: 0.71), and AdaBoost (AUC:0.79), respectively (Figure 6(a) and 6(b)).
Based on the above analysis of the validation results of the models, it can be concluded that among the four ML classifiers

applied in the study area, the Gradient Boosting classifier demonstrated the best performance in accurately predicting soil

erosion susceptibility. This was followed by the MLP classifier, Ridge classifier, and AdaBoost, respectively. The superior pre-
dictive capability of the Gradient Boosting classifier can be attributed to its high flexibility and ability to optimize on different
loss functions. In addition, this model has other advantages such as: (i) it is less prone to overfitting as it builds trees sequen-

tially, and each tree focuses on correcting the errors of the previous ones, (ii) it can effectively handle features with different
scales, and (iii) it can more effectively handle outliers of the data used. The findings of this work are also in line with the other
published works (Nguyen et al. 2021a; Saha et al. 2022).

4.4. Construction of soil erosion susceptibility maps

A soil erosion susceptibility map of the study area was developed using the best ML model, namely the Gradient Boosting

classifier, as shown in Figure 7. In the first step, soil erosion susceptibility indices of the whole study area were extracted
by training the model for all pixels of the study area. Thereafter, these indices were classified into various categories based
on the natural break classification method embedded in the ArcGIS application (Amiri et al. 2019). Five categories

namely very low, low, moderate, high, and very high soil erosion susceptibility were identified to construct soil erosion sus-
ceptibility maps of the study area. It can be seen that the north part of the study area has a higher susceptibility to soil erosion

Table 3 | Accuracy analysis of the models

No Parameters

Training dataset Validation dataset

MLP
classifier AdaBoost

Ridge
classifier

Gradient Boosting
classifier

MLP
classifier AdaBoost

Ridge
classifier

Gradient Boosting
classifier

1 PPV (%) 73.695 60.752 65.136 79.958 68.447 60.194 68.932 80.097

2 NPV (%) 79.167 77.500 71.042 76.875 80.000 81.463 72.195 72.195

3 SST (%) 77.925 72.932 69.180 77.530 77.473 76.543 71.357 74.324

4 SPF (%) 75.099 66.429 67.126 79.355 71.616 67.068 69.811 78.307

5 ACC (%) 76.434 69.135 68.092 78.415 74.209 70.803 70.560 76.156

6 K 0.529 0.383 0.362 0.568 0.484 0.416 0.411 0.523

7 MAE 0.236 0.309 0.319 0.215 0.258 0.292 0.294 0.238

8 RMSE 0.485 0.556 0.565 0.464 0.508 0.540 0.543 0.488
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in comparison to the other parts. Frequency ratio analysis, which is a ratio of the percentage of soil erosion pixels and class
pixels on each susceptibility class of the map (Gayen et al. 2019), was then used to validate the performance of the soil erosion
susceptibility map generated. It can be observed that the frequency ratio values have an increasing trend from very low sus-

ceptibility (0.38) classes to very high susceptibility (1.7); thus, it can be stated that the achieved map has a high degree of
accuracy (Figure 8).

5. CONCLUDING REMARKS

In this study, four ML models namely the MLP classifier, AdaBoost, Ridge classifier, and Gradient Boosting classifier were
applied for SESM in a part of Nghe An province, Vietnam. Seven soil erosion influencing factors were considered for model

Figure 6 | Model performance evaluation using ROC approach for (a) training and (b) validating datasets.
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Figure 7 | Soil erosion susceptibility map generated from Gradient Boosting classifier.

Figure 8 | Frequency ratio analysis of the susceptibility map generated from Gradient Boosting classifier.
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development. These factors include slope degree, slope aspect, curvature, elevation, NDVI, rainfall, and soil type. Feature

selection methods, including SHAP, were used to evaluate the importance of the relevant soil erosion influencing factors.
All these factors were found to be relevant as input parameters in modeling. However, SHAP analysis indicated that soil
type is the most important factor, followed by slope degree, rainfall, elevation, NDVI, aspect, and curvature, respectively.

The developed models were tuned using the GS technique, which proved successful in hyperparameter tuning. The per-
formance of the models was evaluated using standard statistical measures including the ROC curve. Among all four
models, the Gradient Boosting classifier performed the best, followed by the MLP classifier, Ridge classifier, and AdaBoost,
respectively. Therefore, it is recommended that the Gradient Boosting classifier is an effective tool for SESM in the study area

and could potentially be applied in other areas depending on ground conditions and local geo-environmental conditions.
It is important to note that factors such as glacier-induced erosion, solifluction, and wind erosion were not considered in

this study as they were not relevant to the study area. In addition, it is important to note that in this work, the GS technique

was used for turning the hyperparameters of the models; however, other methods such as random search and Bayesian optim-
ization also have their own strengths for hyperparameter tuning. For instance, random search can be more efficient than GS
when dealing with a large number of hyperparameters. Bayesian optimization, on the other hand, uses probability to find the

optimal set of hyperparameters, which can be more effective in certain situations. Therefore, the choice of method depends
on the specific requirements and constraints of the ML task.
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