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Nghién ciru khoa hoc cong nghé

INFLUENCE OF STRUCTURE PARAMETERS ON THE
SUPERCONTINUUM GENERATION OF PHOTONIC CRYSTAL FIBER

Chu Van Bien', Tran Dinh Duc', Nguyen Manh An',
Ho Dinh Quang *, Nguyen Manh Thang’, Le Van Hieu o

Abstract: In this paper, we report a numerical calculation of the influence of
structural parameters on the supercontinuum generation of photonic crystal fibers.
A photonic crystal fiber based on the fused silica glass, eight rings of air holes
ordered in a hexagonal lattice, is proposed. Guiding properties in terms of
dispersion and confinement loss of the fundamental mode are also studied
numerically. As a result, the broadband width of the supercontinuum spectrum will
increase when the lattice pitch decreases or the diameter of air hole in the cladding
increases. However, the coherence of SC will become worse.

Keywords: Nonlinear optics; Photonic crystal fiber; Dispersion; Supercontinuum generation.
1. INTRODUCTION

In recent years, photonic crystal fibers (PCFs) have received more attention of many
scientists all over the world, because it contains special properties such as single-mode
operation [1], high birefringence [2], high nonlinearity [3], easily controllable dispersion
characteristics to achieve the flat or ultra-flattened dispersion [4]. So that, PCFs have been
applied in many areas for supercontinuum generation, biomedical engineering, and sensing
applications [5, 6]. Especially, PCFs enable change dispersion characteristics as well as
nonlinear properties by variations in structural parameters such as hole size, arrangement,
spacing, shape, lattice constant ( A ) and linear filling factors ( /) [7].

Among numerous applications of PCFs, one most popular is the generation of
supercontinuum (SC). Due to its interesting characteristics, the SC generation has widely
used in optical communication systems, optical coherence tomography, frequency
metrology, spectroscopy [8-10]. For efficient broadband SC generation, a PCF with flat
dispersion characteristic and highly nonlinear glass is required, together with an ultra-short
laser pulse is launched into the normal or anomalous dispersion regions [11, 12]. The high
nonlinearity is one of the most important properties, which is generated by using silica or
highly nonlinear soft glasses [12, 13]. However, using these types of PCFs usually requires
a complex pump system as well as high power. Recently, a new method to achieve the
higher nonlinear values of PCFs is using liquid-core [14]. For this, the nonlinear effects
generated with shaped dispersion occur rapidly at the first centimeters, while for medium
nonlinear fibers it needs a longer length fiber requires, i.e. tens of centimeters. However,
high nonlinearity liquids are usually highly toxic which leads to limit their practical
applications, as well as more difficult to fabricate the fibers because of toxic, explosive
liquids, and expensive soft glasses.

Control of dispersion characteristics is another important way because the flattened
dispersion and slope of the dispersion curve always strongly influence on the nonlinear
coefficient as well as the shape and wide of the spectrum in the SC generation [15, 16]. Up
to now, the dispersion and the nonlinearity of many kinds of PCFs have been studied
which is based on the arrangement of air-holes in the cladding or by changing the lattice
pitch and linear filling factor in the hexagonal lattice structure [17]. Besides, air-holes are
designed in the following square lattice, octagonal lattice, equiangular spiral lattice, and
other novel structures that also have similar efficiency [2, 18, 19]. A. Ferrando et al. has
reported that the lattice pitch can be changed the position of the zero-dispersion
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wavelength (ZDW) as well as the flat dispersion curve achieving over a wide band of
wavelength, and the anomalous dispersion region is reduced. Moreover, for a given lattice
pitch value, the ZDW is also moved to the right side by increasing the linear filling factors
[20]. The ultra-flattened dispersion characteristic of square-lattice PCFs has also been
controlled by changing the air-hole diameters and central core diameters. It is indicated
that the dispersion slope increases when the lattice pitch rises and vice versa [21]. A mid-
infrared broadband SC generation with spanning of 1-14 pm is presented by P. Chauhan et
al. by using a 9 mm long fiber of highly nonlinear chalcogenide glass, pumped with 90 fs
laser pulse at a peak power of 8.19 kW, and promise for nonlinear applications of photonic
devices. The results also showed that an increasing the diameter of air-holes, the ZDW
shifted towards the shorter wavelength side. Otherwise, the lattice pitch is increased, the
ZDW shifted towards the longer wavelength side [22]. However, the above studies have
only focused on generating the SC generation in the optimized structure with fixed
parameters. Meanwhile, the influence of internal structure parameters on the SC
generation is still of little interest, resulting in a lack of comparable data relating to the SC
spectrum. In addition, the realization of a PCF fabrication technology with a complicated
structure, i.e. octagonal lattice, square, equiangular spiral fiber, is still so difficult and costly,
then tailoring parameters of the internal structure of PCF is considered efficiency way.

In this paper, we present a numerical simulation of the influence of geometrical parameters
on the SC generation of PCFs. We analyzed a PCF made of fused silica glass consisting of
eight rings of air holes ordered in a hexagonal lattice. The work is organized into two main
steps. The first one is to consider the effects of structure parameters on the properties of PCF
like characteristics dispersion or confinement loss via changing lattice pitch and filling factor
in the cladding. Next, by using the generalized nonlinear Schrodinger equation (GNLSE), the
influence of structure parameters on the SC generation was considered.

2. NUMERICAL MODELING OF THE PCFs

Figures 1(a) and 1(b) show a sketch of a PCF and its cross-section. We assume that the
fiber is made of fused silica glass, consists of eight rings of air holes arranged in regular
hexagonal lattice defined by the lattice pitch A and air holes diameter d. The filling factor
of the cladding is defined as f = d/A and is used as a constant filling factor for all rings to
simplify future fiber development.
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Figure 1. Sketch of a PCF with solid core (a) and its cross section (b).
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Figure 2. Real part of refractive index of fused silica (a), transmission of fused silica (b) [23].

The refractive index of fused silica glass is followed by the Sellmeier equation and it is
given by the formula [23]:

2 2 2
n(/l)z\/1+ fl/l + 1292/1 + fﬁ’ (1)
P2-C A-C -G

where B, = 0.69675, B, = 0.40821, B; = 0.890815, C, = 4.770112 x 10° um?, C, =
1.3377689 x 107 um?, C; = 98.02106851 um? are Sellmeier coefficients, A is the
wavelength (um). The real part of the refractive index of fused silica is shown in Figure 2a.

In the simulation, we have took into account measured transmission of fused silica, as
presented in Figure 2b. Numerical analysis was carried out by the Lumerical Mode Solution
software [24]. This method is commonly used for calculations of the PCFs properties.

3. SIMULATION RESULTS AND DISCUSSION

3.1. Influence of structure parameters on the dispersion characteristics

To investigate the influence of structure parameters on the dispersion properties, we
consider the structures with the lattice pitch A changing from 2.0 to 3.5 with changing
internal of 0.5 and filling factor changing from 0.2 to 0.5 with changing internal of 0.05. In
each case, we have calculated the dispersion characteristics of the fundamental mode as a
function of the wavelength in the range of 0.5-2 um.

Figure 3 shows the characteristics of dispersion for the fundamental mode. For a given
A value, the increase of the filling factor causes not only an increase in the flattened
dispersion but also increases the bandwidth of dispersion range. On the other hand,
reducing the filling factor makes dispersion flatter and ultimately becomes monotonic (see
Figure 3a-d). The ZDWs have shifted forward smaller wavelengths when filling factor
increases. Meanwhile, for a given f value, the dispersion properties are shifted from the
normal regime to the anomalous regime and flattened with increasing A. For this case, the
ZDW forward longer wavelengths with reducing the filling factor (see Figure 3f).
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Figure 3. Dispersion characteristics of the fundamental mode for different lattice pitch A
and filling factors f.

3.2. Influence of structure parameters on the loss

We have calculated the confinement loss of the fundamental mode as a function of
wavelength for various structure parameters and are plotted in Figure 4. The results show
that the losses maintain an overall tendency to increase with increasing wavelength.
Besides that, the losses also depend on the structure parameters of PCFs. For a give d
value, when we increase lattice pitch A the loss also increases. For example, at wavelength
of 1.55 um, confinement loss equal to 4.272, 14.41, 41.76, and 42.1 dB/cm, respectively,
for A=2um, A=2.5um, A=3.0 um, and A = 3.5 um (detail in Figure 4a). Meanwhile,
for a give A, the loss will decrease when we increase filling factor. In other words, the
losses decrease with increasing diameter of air hole (detail in Figure 4b).
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Figure 4. Confinement loss of the PCFs as a function of the wavelength for various lattice
pitches A with d = 0.625 um (a) and various filling factors with A = 2.5 um (b).
3.3. Influence of structure parameters on the supercontinuum generation of PCFs
To consider the influence of structure parameters on the SC generation of the PCF, the

generalized nonlinear Schrodinger equation (GNLSE) were solved by using the split-step
Fourier method [6].

4« it 1 0 2 [ 2
g_—3A+;ﬂn - aTﬂA+zyw—0(1+a—Tj{(l—fR)|A| A+fRA_!hR(t)|A(z,T—t)| dt} )
where A = A(z, t) is the complex amplitude of the optical field, a represent the total loss in
the PCF, B, are the various coefficients in the Taylor series expansion of the propagation
constant around the carrier frequency, y is the nonlinear coefficient, A. is the pump
wavelength, and f; is the fractional contribution of the Raman response, respectively.
Meanwhile, hg(t) represents the Raman response function, and was approximated:

he () = (z7 +73)7 "7, exp(~t / 7,)sin(t / 7,) .
In simulations, the following parameters were used: the fiber length 40 cm, the pulse of
duration 80 fs, the Raman fraction f; of fused silica glass equal to 0.18, 7; = 12.2 fs, 7, = 32

fs, the nonlinear refractive index of fused silica n, = 3.0 x 10°° m* W' [4] and the coupled
energy 5 nJ at the pump wavelength of 1.06 yum.
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Figure 5. Numerical simulation of the SC spectrum in the PCF
for different lattice pitches with d = 0.625 um.
Figure 5 presents the influence of lattice pitch on the SC generation of the PCF when

diameter of air hole is constant. The obtained results show that the spectral broadening
will decrease when increases a lattice pitch. For example, the broadband width of spectrum
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are 336.5 nm, 446.1 nm, 610 nm and 795.9 nm, respectively, for A =2.0 um, A =2.5 um,
A =3.0um, and A = 3.5 um. This is due to the increase in the lattice pitch makes an
increase of loss when light propagates in the fiber. In addition, the increase of the lattice
pitch also leads to an increase in the dispersion and effective mode area and then results in
a decrease of spectral broadening.

Meanwhile, the influence of the air-hole diameter on the SC generation is illustrated in
Figure 6. The results indicated that spectral broadening can be achieved with an increase in
the air-hole diameter. The spectral bandwidths are 367.2 nm, 488.1 nm and 638.5 nm for
the filling factor of 0.2, 0.25, and 0.3, respectively. This can explain that the increase in
the filling factor leads to reduce the confinement loss of the PCF. Simultaneously, the
dispersion also shifted from the normal dispersion regime to the anomalous dispersion
regime. Therefore, it is expected that a wider SC can be obtained by increasing the filling
factor (the air hole diameter), but the coherence of SC will become worse.
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Figure 6. Numerical simulation of the SC spectrum in the PCF
for different filling factors with A = 2.5 ym.

4. CONCLUSION

In this work, we present a numerical simulation of the influence of geometrical
parameters on the SC generation. We analyzed a PCF made of silica glass consisting of
eight rings of air holes ordered in a hexagonal lattice. Our numerical simulations
demonstrate that the properties of a PCF (including dispersion characteristics, confinement
loss) are greatly influenced by its structural parameters. In addition, we are able to control
the shape and spectral bandwidth of the SC spectrum in the PCFs by changing the lattice
pitch or air hole diameter. The broadband width of the supercontinuum spectrum will
increase with the decrease in the lattice pitch or increase the air-hole diameter in the
cladding. The increase in the filling factor or decreasing lattice constant leads to reduce the
confinement loss of the PCF. The dispersion also shifted from the normal dispersion
regime to the anomalous dispersion regime. Therefore, it is expected that a wider SC can
be obtained by increasing the air-hole diameter or reducing the lattice constant, but the
coherence of SC will become worse.
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TOM TAT
ANH HUONG CUA CAC THAM SO CAU TRUC TRONG SU PHAT SIEU LIEN
TUC CUA SOI TINH THE QUANG TU

Trong bai bdo nay, ching téi trinh bay két qua tinh todn sé dnh hiong cia céc
tham s6 cau triic 1én su phat siéu lién tuc trong soi tinh thé quang tir. Mot soi tinh
thé quang tr duwoc ché tao tir thity tinh nguyén chat nong chay, bao gom 8 vong 16
khi dwoc xép déu trong mang luc gide dd dwoc dé xudt cho nghién ciru. Cdc ddc tinh
dan song cua tan sac va mat mdt ciia phuong thirc truyén co ban ciing dwoc khdo
sdt bang phiwrong phap s6. Két qua cho thay, do rong bang thong ca pho sé ting
khi giam hing so mang hodc tang dwong kinh ciia 16 khi trong I6p vo, tuy nhién,
tinh két hop cia phé giam.

Tir khéa: Quang phi tuyén; Soi tinh thé quang tir; Tan séc; Su phét siéu lién tuc.
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