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INFLUENCE OF STRUCTURE PARAMETERS ON THE 
SUPERCONTINUUM GENERATION OF PHOTONIC CRYSTAL FIBER 

Chu Van Bien1, Tran Dinh Duc1, Nguyen Manh An1,  
Ho Dinh Quang 2, Nguyen Manh Thang3, Le Van Hieu 1,*

 

Abstract: In this paper, we report a numerical calculation of the influence of 
structural parameters on the supercontinuum generation of photonic crystal fibers. 
A photonic crystal fiber based on the fused silica glass, eight rings of air holes 
ordered in a hexagonal lattice, is proposed. Guiding properties in terms of 
dispersion and confinement loss of the fundamental mode are also studied 
numerically. As a result, the broadband width of the supercontinuum spectrum will 
increase when the lattice pitch decreases or the diameter of air hole in the cladding 
increases. However, the coherence of SC will become worse. 

Keywords: Nonlinear optics; Photonic crystal fiber; Dispersion; Supercontinuum generation. 

1. INTRODUCTION 

In recent years, photonic crystal fibers (PCFs) have received more attention of many 
scientists all over the world, because it contains special properties such as single-mode 
operation [1], high birefringence [2], high nonlinearity [3], easily controllable dispersion 
characteristics to achieve the flat or ultra-flattened dispersion [4]. So that, PCFs have been 
applied in many areas for supercontinuum generation, biomedical engineering, and sensing 
applications [5, 6]. Especially, PCFs enable change dispersion characteristics as well as 
nonlinear properties by variations in structural parameters such as hole size, arrangement, 
spacing, shape, lattice constant ( ) and linear filling factors ( f ) [7]. 

Among numerous applications of PCFs, one most popular is the generation of 
supercontinuum (SC). Due to its interesting characteristics, the SC generation has widely 
used in optical communication systems, optical coherence tomography, frequency 
metrology, spectroscopy [8-10]. For efficient broadband SC generation, a PCF with flat 
dispersion characteristic and highly nonlinear glass is required, together with an ultra-short 
laser pulse is launched into the normal or anomalous dispersion regions [11, 12]. The high 
nonlinearity is one of the most important properties, which is generated by using silica or 
highly nonlinear soft glasses [12, 13]. However, using these types of PCFs usually requires 
a complex pump system as well as high power. Recently, a new method to achieve the 
higher nonlinear values of PCFs is using liquid-core [14]. For this, the nonlinear effects 
generated with shaped dispersion occur rapidly at the first centimeters, while for medium 
nonlinear fibers it needs a longer length fiber requires, i.e. tens of centimeters. However, 
high nonlinearity liquids are usually highly toxic which leads to limit their practical 
applications, as well as more difficult to fabricate the fibers because of toxic, explosive 
liquids, and expensive soft glasses.  

Control of dispersion characteristics is another important way because the flattened 
dispersion and slope of the dispersion curve always strongly influence on the nonlinear 
coefficient as well as the shape and wide of the spectrum in the SC generation [15, 16]. Up 
to now, the dispersion and the nonlinearity of many kinds of PCFs have been studied 
which is based on the arrangement of air-holes in the cladding or by changing the lattice 
pitch and linear filling factor in the hexagonal lattice structure [17]. Besides, air-holes are 
designed in the following square lattice, octagonal lattice, equiangular spiral lattice, and 
other novel structures that also have similar efficiency [2, 18, 19]. A. Ferrando et al. has 
reported that the lattice pitch can be changed the position of the zero-dispersion 
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wavelength (ZDW) as well as the flat dispersion curve achieving over a wide band of 
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laser pulse at a pea
devices. The results also showed that an increasing the diameter of air
shifted towards the shorter wavelength side. Otherwise, the lattice pitch is increased, the 
ZDW sh
only focused on generating the SC generation in the optimized structure with fixed 
parameters. Meanwhile, the influence of internal structure parameters on the SC 
generation is 
spectrum. In addition, the realization of a PCF fabrication technology with a complicated 
structure, i.e. octagonal lattice, square, equiangular spiral fiber,  is still so 
then tailoring parameters of the internal structure of PCF is considered efficiency way.
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steps. The first one is to consider the effects of structure parameters on the properties of PCF 
like characteristics dispersio
in the cladding. Next, by using the generalized nonlinear Schrödinger equation (GNLSE), the 
influence of structure parameters on the SC generation was considered.
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hexagonal lattice defined by the lattice pitch Λ and air holes dia
of the cladding is defined as f = d/Λ and is used as a constant filling factor for all rings to 
simplify future fiber development. 
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consider the structures with the lattice pitch Λ 
internal of 0.5 and filling factor changing from 0.2 to 0.5 with changing internal of 0.05. In 
each case, we have calculated the dispersion characteristics of the fundamental mode as a 
function of the wavelength in th

Λ value, the increase of the filling factor causes not only an increase in the flattened 
dispersion but also increases the bandwidth of dispersion r
reducing the filling factor makes dispersion flatter and ultimately becomes monotonic (see 
Figure 3a
increases. Meanwhile, for a given f value, the dispersio
normal regime to the anomalous regime and flattened with increasing Λ. For this case, the 
ZDW forward longer wavelengths with reducing the filling factor (see Figure 3f). 
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Figure 3. Dispersion characteristics of the fundamental mode for different lattice pitch Λ 

and filling factors f. 

3.2. Influence of structure parameters on the loss 

We have calculated the confinement loss of the fundamental mode as a function of 
wavelength for various structure parameters and are plotted in Figure 4. The results show 
that the losses maintain an overall tendency to increase with increasing wavelength. 
Besides that, the losses also depend on the structure parameters of PCFs. For a give d 
value, when we increase lattice pitch Λ the loss also increases. For example, at wavelength 
of 1.55 ��, confinement loss equal to 4.272, 14.41, 41.76, and 42.1 dB/cm, respectively, 
for Λ = 2 ��, Λ = 2.5 ��, Λ = 3.0 ��, and Λ = 3.5 �� (detail in Figure 4a). Meanwhile, 
for a give Λ, the loss will decrease when we increase filling factor. In other words, the 
losses decrease with increasing diameter of air hole (detail in Figure 4b). 
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Figure 4. Confinement loss of the PCFs as a function of the wavelength for various lattice 

pitches Λ with d = 0.625 �� (a) and various filling factors with Λ = 2.5 �� (b). 

3.3. Influence of structure parameters on the supercontinuum generation of PCFs   

To consider the influence of structure parameters on the SC generation of the PCF, the 
generalized nonlinear Schrödinger equation (GNLSE) were solved by using the split-step 
Fourier method [6]. 
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where A = A(z, t) is the complex amplitude of the optical field, � represent the total loss in 
the PCF, βn are the various coefficients in the Taylor series expansion of the propagation 
constant around the carrier frequency, γ is the nonlinear coefficient, λc is the pump 
wavelength, and fR is the fractional contribution of the Raman response, respectively. 
Meanwhile, ℎ�(�) represents the Raman response function, and was approximated: 

2 2 1 2
1 2 1 2 2 1( ) ( ) exp( / )sin( / )Rh t t t         . 

In simulations, the following parameters were used: the fiber length 40 cm, the pulse of 
duration 80 fs, the Raman fraction fR of fused silica glass equal to 0.18, τ1 = 12.2 fs, τ2 = 32 
fs, the nonlinear refractive index of fused silica n2 = 3.0 × 10-20 m2 W-1 [4] and the coupled 
energy 5 nJ at the pump wavelength of 1.06 μm. 

 
Figure 5. Numerical simulation of the SC spectrum in the PCF 

for different lattice pitches with d = 0.625 ��. 

Figure 5 presents the influence of lattice pitch on the SC generation of the PCF when 
diameter of air hole is constant. The obtained results show that the spectral broadening 
will decrease when increases a lattice pitch. For example, the broadband width of spectrum 
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are 336.5 nm, 446.1 nm, 610 nm and 795.9 nm, respectively, for Λ = 2.0 ��, Λ = 2.5 ��, 
Λ = 3.0 ��, and Λ = 3.5 ��. This is due to the increase in the lattice pitch makes an 
increase of loss when light propagates in the fiber. In addition, the increase of the lattice 
pitch also leads to an increase in the dispersion and effective mode area and then results in 
a decrease of spectral broadening. 

Meanwhile, the influence of the air-hole diameter on the SC generation is illustrated in 
Figure 6. The results indicated that spectral broadening can be achieved with an increase in 
the air-hole diameter. The spectral bandwidths are 367.2 nm, 488.1 nm and 638.5 nm for 
the filling factor of 0.2, 0.25, and 0.3, respectively. This can explain that the increase in 
the filling factor leads to reduce the confinement loss of the PCF. Simultaneously, the 
dispersion also shifted from the normal dispersion regime to the anomalous dispersion 
regime. Therefore, it is expected that a wider SC can be obtained by increasing the filling 
factor (the air hole diameter), but the coherence of SC will become worse.  

 
Figure 6. Numerical simulation of the SC spectrum in the PCF 

for different filling factors with Λ = 2.5 ��. 

4. CONCLUSION 

In this work, we present a numerical simulation of the influence of geometrical 
parameters on the SC generation. We analyzed a PCF made of silica glass consisting of 
eight rings of air holes ordered in a hexagonal lattice. Our numerical simulations 
demonstrate that the properties of a PCF (including dispersion characteristics, confinement 
loss) are greatly influenced by its structural parameters. In addition, we are able to control 
the shape and spectral bandwidth of the SC spectrum in the PCFs by changing the lattice 
pitch or air hole diameter. The broadband width of the supercontinuum spectrum will 
increase with the decrease in the lattice pitch or increase the air-hole diameter in the 
cladding. The increase in the filling factor or decreasing lattice constant leads to reduce the 
confinement loss of the PCF. The dispersion also shifted from the normal dispersion 
regime to the anomalous dispersion regime. Therefore, it is expected that a wider SC can 
be obtained by increasing the air-hole diameter or reducing the lattice constant, but the 
coherence of SC will become worse. 
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TÓM TẮT 

ẢNH HƯỞNG CỦA CÁC THAM SỐ CẤU TRÚC TRONG SỰ PHÁT SIÊU LIÊN 

TỤC CỦA SỢI TINH THỂ QUANG TỬ 

Trong bài báo này, chúng tôi trình bày kết quả tính toán số ảnh hưởng của các 
tham số cấu trúc lên sự phát siêu liên tục trong sợi tinh thể quang tử. Một sợi tinh 
thể quang tử được chế tạo từ thủy tinh nguyên chất nóng chảy, bao gồm 8 vòng lỗ 
khí được xếp đều trong mạng lục giác đã được đề xuất cho nghiên cứu. Các đặc tính 
dẫn sóng của tán sắc và mất mát của phương thức truyền cơ bản cũng được khảo 
sát bằng phương pháp số. Kết quả cho thấy, độ rộng băng thông của phổ sẽ tăng 
khi giảm hằng số mạng hoặc tăng đường kính của lổ khí trong lớp vỏ, tuy nhiên, 
tính kết hợp của phổ giảm. 

Từ khóa: Quang phi tuyến; Sợi tinh thể quang tử; Tán sắc; Sự phát siêu liên tục. 
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