This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Learning Observation Model for Factor Graph
Based-State Estimation Using Intrinsic Sensors

Dinh Van Nam

Abstract— The navigation system of autonomous mobile robots
has appeared challenging when using exteroceptive sensors such
as cameras, LiDARs, and radars in textureless and structureless
environments. This paper presents a robust state estimation
system for holonomic mobile robots using intrinsic sensors
based on adaptive factor graph optimization in the degradation
scenarios. In particular, the neural networks are employed to
learn the observation and noise model using only IMU sensor
and wheel encoder data. Investigating the learning model for
the holonomic mobile robot is discussed with various neural
network architectures. We also explore the neural networks that
are far more powerful and have cheaper computing power when
using the inertial-wheel encoder sensors. Furthermore, we employ
an industrial holonomic robot platform equipped with multiple
LiDARs, cameras, IMU, and wheel encoders to conduct the
experiments and create the ground truth without a bulky motion
capture system. The collected datasets are then implemented to
train the neural networks. Finally, the experimental evaluation
presents that our solution provides better accuracy and real-time
performance than other solutions.

Note to Practitioners—Autonomous mobile robots need to serve
in challenging environments robustly that deny extrinsic sensors
such as cameras, LiDARs, and radars. In order to operate in this
situation, the navigation system shall rely on the intrinsic sensor
as inertial sensor and wheel encoders. Existing conventional
methods have combined the intrinsic sensors in the form of
the recursive Bayesian filtering technique without adapting these
models. Besides, deep learning-based solutions have adopted
extensive networks like LSTM or CNN to handle the estimation
problem. This work aims to develop a state estimation subsystem
of the navigation system for the holonomic mobile robots that
utilize the intrinsic sensors in adaptive factor graph optimization.
In particular, we present how to join the factor graph efficiently
with the learning observation model of IMU and wheel encoder

Manuscript received 3 June 2022; accepted 18 July 2022. This article was
recommended for publication by Associate Editor A. Pietrabissa and Editor
C. Seatzu upon evaluation of the reviewers’ comments. This work was
supported in part by the Ministry of Science and ICT (MSIT), South Korea,
under the Grand Information Technology Research Center Support Program
Supervised by the Institute for Information and Communications Technology
Planning and Evaluation (II'TP) under Grant IITP-2021-2020-0-01462, and in
part by the Korea Institute for Advancement of Technology (KIAT) Grant
through the Korean Government (MOTIE) (HRD Program for Industrial
Innovation) under Grant P0020536. (Corresponding author: Kim Gon-Woo.)

Dinh Van Nam is with the Intelligent Robotics Laboratory, Department of
Intelligent Systems and Robotics, Chungbuk National University, Cheongju
28644, South Korea, and also with the Faculty of School of Engineering
and Technology, Vinh University, Vinh, Nghe An 43100, Vietnam (e-mail:
namdv @vinhuni.edu.vn).

Kim Gon-Woo is with the Intelligent Robotics Laboratory, Department of
Intelligent Systems and Robotics, Chungbuk National University, Cheongju
28644, South Korea (e-mail: gwkim@cbnu.ac.kr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2022.3193411.

Digital Object Identifier 10.1109/TASE.2022.3193411

and Kim Gon-Woo

, Member, IEEE

factor. Moreover, the neural networks are introduced to learn the
observation model with an IMU and wheel encoder data inputs.
We recognize that lightweight neural networks can achieve more
power than deep learning techniques using the IMU sensor and
wheel encoders. Finally, the neural networks are embedded in
a factor graph to handle the smoothing state estimation. The
proposed system could operate with high accuracy in real time.

Index Terms— State estimation, deep learning based-inertial
navigation system, sensor fusion, factor graph optimization.

I. INTRODUCTION

VER the years, the increased maturity of autonomous

mobile robotics (AMR) has become commercially
viable with various industrial applications, such as automated
guided vehicles [1], underground autonomous robots [2], and
self-driving cars [3]. Positioning plays a fundamental skill that
enables AMRs to be reliable [3], [4]. The estimated position is
then used for the motion planning and control systems of the
autonomous systems [3], [S]. The most advantaged navigation
techniques were shown in the DARPA Subterranean (SubT)
Challenge [6], which forced robotic researchers to create
state-of-the-art technologies to assist operations in complex
underground environments, illustrating significant challenges
for military and civilians in disaster response [7]. Roboticists
employed many complex navigation techniques in exploring
and mapping unknown underground sites for the teams of
robots in the SubT Challenge [7]. Nevertheless, current state
estimation technologies are not flexible and robust sufficiently
for what the industry requires in various indoor and outdoor
environments. We want to overcome the limitations by devel-
oping a multi-sensor fusion system to navigate a holonomic
mobile robot using neural networks. This work focuses on
implementing a sub-estimator for the whole navigation sys-
tem using only intrinsic sensors in case of extrinsic sensors
failure.

In general, AMRs are equipped with proprioceptive sen-
sors such as inertial sensors and wheel encoders working
at high frequency (>100 Hz) for the control systems and
short-term navigation [8], [9]. The GPS is the critical sensor
for long-term positioning [3]. Nevertheless, GPS accuracy is
significantly degraded in such environments as indoor parking
lots, under high buildings, or tunnels [2]. Especially, GPS
is denied in indoor applications like industrial factories or
subterranean environments [10], [11]. Therefore, exteroceptive
sensors such as LiDAR, camera, and radar are deployed to
estimate the robot state in the GPS-denied scenarios [10]. For

1545-5955 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3453-8875
https://orcid.org/0000-0002-4797-0464

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 1. (a) Overview of holonomic robot platform consists of 04 LiDAR, two
Zed 2 cameras, wheel encoders, and IMU. (b) Mechanical design of the robot.
(¢) Electrical and electronic inside the robot. (d) Example of the challenge
structureless and textureless environment.

instance, the camera can observe the invariance landmarks in
its surroundings to update the pose estimation after long-term
navigation [12]. However, the cameras are sensitive to light
conditions such as illumination and darkness conditions [13],
[14]. The cameras can fail to detect the visual features in
textureless scenarios [2], [15]. Furthermore, the radars and
LiDARs are continuously challenging to leverage the unstruc-
tured environments like free spaces or long corridors [2],
[6]. In contrast, the inertial sensors and wheel encoders,
which are immune to environmental conditions, can work well
in short-term estimation [2], [10]. Accordingly, a fusion of
extrinsic and intrinsic sensors can provide a high-performance
estimator in GPS-denied conditions [6], [16].

In robotics, the fundamental approach of multi-sensor fusion
techniques has commonly relied on the Bayesian filtering (BF)
technique [17]. In particular, the BF predicts the state proba-
bility with the process model, which is then corrected using
the observation model [17], [18]. The fusion schemes can
be broadly categorized into loosely coupled and tightly cou-
pled [13], [14]. Although the tightly coupled design can
provide more accuracy, the loosely coupled is more straight-
forward in handling the sensor failure [2], [10]. By contrast,
recent works based on deep learning techniques exemplify
an alternative strategy to the BF solution [8]. Instead of
using Bayes inference, these deep learning solutions replace
the prediction and correction stage using just an end-to-
end process [19]. We aim to develop an accurate estimation
subsystem for a holonomic mobile robot in the lack of visual
and structural features, as shown in Fig. 1-d. Here, the robot
navigation system could handle the cases when both camera
and LiDAR sensors fail to detect the features. The robot shall
rely on intrinsic sensors such as wheel encoders and inertial
sensors. Nevertheless, the estimated state will inevitably drift
over time if not provided with global positioning information.
Besides, the use of inertial sensors is quite challenging because
of unobservable motions, including x, y, z directions and yaw
rotation [13].

In this study, we present a tightly coupled fusion system
based on factor graph optimization leveraging the learning
technique for the holonomic mobile robot to enhance the
estimation performance. The proposed system provides two

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

major advantages. First, the design inherits the Bayesian
filtering strategy, which provides a high-performance estimator
solution. Second, a lightweight neural network is employed
to predict the observation and noise models instead of the
heavy deep learning structures. We shall show several surpris-
ing properties of neural network architectures for holonomic
mobile robots with intrinsic sensors.

The remainder of this paper is organized as follows:
Section II reviews the literature and re-categorizes multi-
sensor fusion methods via the Bayesian filtering and Artificial
intelligence (AI) techniques. Next, section III presents the
problem formulation with the mathematics background.
Section IV then provides the novel factor graph of the pro-
posed formulation. The detailed implementation and evalu-
ation of the proposed method are presented in section V,
followed by a conclusion in section VI.

II. RELATED WORKS

This section provides a concise review and classifies the
state-of-the-art multi-sensor fusion techniques. In general,
extrinsic sensors such as GPS, LiDARs, radars, and cam-
eras and intrinsic sensors like IMUs and wheel encoders
are equipped for AMRs [4], [5]. The Bayesian inference
is regularly utilized to handle all the sensor information to
maximize the state posterior probability [17].

The sensor fusion techniques can be divided into three
broad classes: filtering-based, optimization-based, and end-to-
end solution [5], [13], [14]. While researchers have formed
estimation technologies using extended Kalman filter (EKF)
since the 1970s, optimization-based methods have only oper-
ated and flourished over the last two decades [17]. The filtering
method commonly manipulates the EKF, unscented KF (UKF),
and particle filter operating with prediction and correction
phases. One of the most high-performance navigation systems
is the multi-state constraints EKF, which performs the tightly
coupled method for the real-time visual-inertial navigation
system [20], [21].

By contrast, optimization-based solutions leverage histor-
ical states and sensor information for better accuracy and
easy integration of the loop closure detection in long-term
navigation [5]. VINS-Mono [22] is a pioneer open-source
visual-inertial simultaneous localization and mapping (SLAM)
leveraging factor graph optimization (FGO) [18], [23].
LILI-OM [24] and LIO-SAM [25] have been introduced as
the state-of-the-art tightly coupled methods of LiDAR-inertial
SLAM since 2020. LVI-SAM [26] has lately been proposed
for the tightly coupled fusion of 3D LiDAR, camera, and IMU
via smoothing estimation.

Recently, more powerful artificial intelligence (Al) tech-
niques have been available, leading to rapidly developing end-
to-end learning for the third category state estimation. Overall,
Al-based multi-sensor fusion is divided into three primary
strategies in which the Al can be employed to learn the sensor
noise model, the relative motion model, and the end-to-end
solution [11], [19]. The classification overview is concisely
represented, as shown in Fig. 2. The AI approach can assist
the BF in predicting the observation model or sensor noise
model [19]. In particular, Al can be used to predict the relative

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 3

(a) Overview (b) A (e)

. Al-
SensorFuslonO—b. based

]

Optimization-

Wheel Odometers
Stack % b
—d e
Data MU I

Uncenaimyl

S o EKF, UKF, PF
ST ensors « TGO
Filtering Input N .

Based Based O ¥ STA Prediction
g Phase
© Y
i Al based-uncertainty lel(xf)l"“
(d)
Q A AR, Update

e EKF, UKF, PF

e Sensors Phase
. FGO;:,,,‘\

Sensors et)
Input State

Input
Cmm—p

+
-4 Al added-prediction

'z
bel(x,)

End-to-end solution Overview of the proposed method

Fig. 2. Overview of the multi-sensor fusion technique. (a) Presents the
overall multi-sensor fusion divided into three classes; (b) Al is used to learn
the sensor noise model; (¢) Al-based relative state model; (d) the end-to-end
solution using Al; (e) Briefly describes our technique which applied Al to
learn both the sensor noise and relative state model.

robot motion between two consecutive poses immediately [8],
[19], [27]. Furthermore, learning the sensor noise model can
be integrated into the BF process [28], [29].

AI-IMU dead-reckoning [28] and the tight learned inertial
odometry (TLIO) [30] are the critical approaches that use the
convolution of neural networks (CNNs) to predict the noise
model in the correction phase of the EKF. Moreover, the
relative state motion is computed to update the belief states
of BF using Al directly. For instance, RINS-W proposed an
EKF based on a long short-term memory (LSTM) network
for motion profile detector on Manifold [31]. The differen-
tiable filters [19], [32] employed deep learning to the rela-
tive motion, measurement, or uncertainty models. Backprop
KF [33] is a pioneer solution combining the EKF and CNN
model for visual odometry and tracking on the KITTI dataset.
In 2018, Jonschkowski et al. proposed the particle filter with
a learning model for state estimation [34]. By contrast, the
state estimation can be directly estimated by AI without
using the BF technique. The robust neural inertial navigation
(RoNIN) [9] and inertial odometry neural network (IONet) [8]
performed the recurrent neural networks to predict the rel-
ative state motion. An extended method applied LSTM for
the neural visual-inertial odometry [35]. Table I describes
a summary of the Al-based state estimation problem. The
performance of each solution is evaluated by remarked with
* (star) score. In general, the end-to-end method is straight-
forward to implement without the Bayes inference, which
needs to improve accuracy. In contrast, the adapting uncer-
tainty model using deep learning in the Bayes filtering tech-
nique to correct the uncertainty model provides better results.
Moreover, Bayes inference with deep learning in differen-
tiable filtering promises good performance. We implement the
Al-based solution to learn the observation and noise models
based on the wheel-inertial sensor data, as briefly presented
in Fig. 2-e.

We highlight our contributions as follows:

« A link between factor graph optimization and the neural
network with a novel learnable model enables us to fuse
inertial sensors and wheel encoders efficiently.

o Using IMU sensor and wheel encoder data, simple but
powerful neural network architectures are proposed for

TABLE I
OVERVIEW OF THE AI-BASED STATE ESTIMATION

Al-based State Estimation

Name Techniques Al Model ~ Perform
. 1. ALIMU [28] 1. CNN
nggcvee“am‘y 2. TLIO [30] 2.CNN %% %%

P 3. RINS-W [31] 3. LSTM
- 1. Backprop KF [33] 1. CNN
gsi?fr;itrg;ble 2. Differentiable 2LONN - EE
filters [19] 2. LSTM
. LSTM
Al-based ; Fgglﬂg] 1. ResNet
End-to-End 3 LSwa 0] 2. LSTM *
‘ 3. LSTM

the observation and noise models. In particular, we com-
pare the neural network architectures using different
training methods, including the LSTM model, deep neural
network, and multilayer perceptron MLP) network.

o We implement an accurate and robust real-time estimator
system to conduct the experimental evaluation with a
holonomic robot platform.

III. PROBLEM STATEMENT

An autonomous navigation system is generally designed
with three parts: state estimation and mapping, motion plan-
ning, and control system [3], [6], as shown in Fig. 3. In this
section, we describe how to embed the neural networks into
the Bayesian filter for state estimation using the inertial-wheel
encoder setup. The complete sensor setup of the holonomic
robot is equipped with stereo cameras, LiDARs, IMU, and
wheel encoders. We aim to estimate the robot position over
time using only the IMU sensor and wheel encoders in the
degradation scenarios of LiDARs and cameras.

A. Notations

In this article, we represent matrices by uppercase
Roman bold (A, B, C...), vectors are lowercase Roman bold
(a,b,c...), and scalars are donated by lowercase italics
(a,b,c,...). *X, represents a transformation X from frame
b to frame a. The squared Mahalanobis distance of X with
covariance matrix ¥ is [|X|2 = X"X~!'X. Frame b denotes
the robot’s body coordinate that matches the IMU frame i, and
w represents a fixed coordinate to earth. Let M and 7 be
n-manifold and its tangent space, respectively. For the robotics
field, manifold M is usually considered as a Lie group, and
the operator (“boxplus”) H is defined to compute the action u
on tangent space to a Lie group a, and operator (“boxminus’)
H is denoted as a differ of Lie group a and b on Euclidean
space as follows,

H: MxR"—> M= afHu=aoExp(u) (D
H:MxM-—R'=bHa=_Log@a'ob), (2

where the Exp and Log are capitalized exponential and loga-
rithm map, and o is composite operation [36]. The mapping
between M and 7, is also computed by using the capitalized
Exp and Log explained in [36]. SE(3) denotes the Special
Euclidean Group, and SO(3) is the Special Orthogonal Group

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
Sensor data Mapping Path Planner
Path
S dat:
cnsor caia State estimation
Fig. 3. Autonomous system overview and the sensors coordinate system of

the holonomic robot. The world coordinate w is fixed to the earth. Frame
i is the IMU frame. b denotes the body frame. W0, W1, W2, W3 are
the coordinate of the front left, front right, rear left, and rear right wheel,
respectively. CO and CI1 are the front and rear camera frames, respectively.
The IMU frame i has coincided with body frame b.

in 3D space [36]. se(3) and so(3) are the Lie-algebra of
SE(3) and SO(3), respectively. Similarly, SE(2) and SO(2)
are denoted on the 2D planar. The skew-symmetric matrix of
vector @ is represented as [6],.. Visit [17], [36] for more detail.
I, is an n-identity matrix. e, e; and e3 represent the 1, 2, and
3 column vectors of I, respectively.

B. Problem Formulation

Let us provide the transformation of each sensor frame to
the robot center, as shown in Fig. 3. In particular, an IMU is
located at frame i, and four wheel encoders are fixed at frames
WO, W1, W2, W3. Frame b is the body frame of the robot
that coincides with frame i. We assume that the intrinsic and
extrinsic calibration parameters of all sensors are computed
precisely.

Let us define a robot state at time #; as follows,

X; 2 [R;, pi, vi, b}, by’] € SO(3) x L 3

where R; € SO(3), pi, vi € R? are the robot orientation,
position and velocity with respect to world frame w, respec-
tively; bf, b? € R? are the IMU bias of accelerometer and
gyroscope [13], respectively. A set of robot state up to time
step #; is denoted as,

Jicas “)

A
Xk:{X19X29'-"Xi9'-

where Q is the sets of robot keyframes up to #. The robot
utilizes just IMU sensor and wheel encoders, so the entire set
of observing sensors data is given as,

Ze AT, Wikies (5)

where Z; and W; represent the collection data of IMU mea-
surements and wheel encoders up to time #, respectively; K is
a set of time steps at the observed sensor data. The robot pose
at time #; is predicted by using the kinematic motion model

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

with IMU measurement as [20],

0
Exi = f(xi’ t), (6)

where f(.) is a time-varying vector field function [20].

The objective is to maximize the likelihood of the sensor
measurements Z; given a set of robot states y;. By using the
maximum a posterior probability (MAP) inference [17], the
problem is turned to,

xi = argmax p(x|Zk, Ho) o< p(Ho)p(Zilx), ()
Xk

where Hy is the set of prior state information computed
by the motion model and historical robot state. Given that
the Gaussian white noise models all states and measurement
noises, the measurement data is also independent. The MAP
problem can be transformed to a nonlinear least-square opti-
mization as follows [18],

7 = argmin(oI, + > [, 3 + > IeR), ®)
Xk

where ry is the initial pose constraint; r, denotes the prior
residual related to the motion model and historical states;
r; is the residual constructed by sensor information; X, is
the covariance matrices corresponding to its residual. Note
that if all the history information is maintained, the size of
the optimization problem (8) shall be enormous. We cannot
employ this large-scale optimization problem for real-time
applications. Therefore, the number of variables is limited to
a constant value to reduce the computational cost. To this
end, at the beginning of the sliding window, a marginalization
constraint of the previous window joins the optimization
problem [22]. In particular, in the case of using the inertial and
wheel encoders measurement, we indicate the total residual as
minimizing the following cost function as follows,

2 2 2 2
Ty + Z (”rIi ” t1, + ”rbi ” 5, + ”rWi HZW,- + ”r‘//i szl_)°(9)
ieS

where r), is the residual marginalization [22] that is the
residual of the initial pose in the window S; rz, and ry, is the
IMU preintegration and bias factor between two consecutive
keyframes, respectively; ryy. is the wheel encoders constraint
between two consecutive keyframes; r,, is the inference
constraints including relative velocity, zero velocity, and neural
network factor.

Here, the multi-objective non-linear least squares optimiza-
tion (9) called multi-criterion problem with covariance matrix
X, indicated by the weighted sum factor [37]. The covariance
matrix X() denotes the optimal trade-off for each factor. The
non-linear least square optimization problem (9) is represented
as a factor graph, as shown in Fig. 4. All sensor information
is observed to compute the factor on the graph and predict the
relative motion and noise model using the supervised learning
techniques [38]. The detail of this method shall be described
in Section IV.

Remark 1: The value of covariance matrix X significantly
influences the optimal solution. A smaller covariance matrix
means it has more influence on the optimal answer. Note that
r,, or covariance matrices Xy (9) can be directly learned

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 5

@aammiiii
e L

Learning relatlve
motion model

%3 Ka
b L — .

Zero detection

Learning uncertainty
model

--------------- optional i t !

(b) P Factor link —— updated | MU IWheel;
N b i . 3

% Pose 1 Bias B IMUbias B zero velocity H wheel odom |

Vv, Velocity W velocity Al factor |
o m MU) |
Marginalization preintcgration B factor B prior |

heel odom,

wheel

t ot mu

t, MU prei.ntegration time | kst

Fig. 4. Overview of the Al-based adaptive factor graph optimization (9).
(a)-the illustration of a factor graph in which the zero-velocity detection and
two neural network based-learning sensor models are calculated within a
sliding window. (b)- the type of factors and the link between them, where
their detailed description is presented in Section 2. (¢)- the depiction of the
wheel encoder clock and IMU sensor clock, where each sensor operates at a
different frequency.

using the Al approaches. We can find the influence of covari-
ance on the optimal solution in [37] and [29]. Furthermore,
studying convergence properties on the manifold is presented
in [17].

IV. LEARNING-BASED FACTOR GRAPH OPTIMIZATION

As we discussed in Section III. In this section, we will
explain how to establish the non-linear least-squares opti-
mization (9) as well as the factor graph as shown in Fig. 4.
To conduct solving the optimization problem (9), we need to
define the IMU preintegration factor, wheel odometer factor,
and neural network factor.

A. Preintegration IMU Factors

In general, an IMU sensor can directly provide 6 DoF
measurements [13] that are corrupted by noises and biases
given as,

(10)

(1D

where ?@, *a € R? are angular velocity and acceleration vector

to body coordinate b, respectively; b%, b* € R? are quasi-
. A A

constant biases, 5, = N(0,0;), 1, = N(0, 5,}) are zero-mean

Gaussian noises whose standard deviations are ¢, and og;
bR,, € SO(3) denotes a rotation from frame w to frame b [39].

bo =tw+ b+ n,
"a = "R, ("a, — g) + b +1,,

The biases are computed following the random walk process
given as [13],

b = 1 B = 1, (12)
where 13, and 7,,, are white Gaussian noises [13]. The discrete
IMU kinematic model can be established as follows [20],

R, = "R} exp(lwp Ari)
“’v;fl = wa + abAti,

wi+1

. 1. .
p, = Uyl At + =" al At?,

7 13)

where At is the sampling time, “a = “Ria, + g is the
free acceleration in w coordinate, and g is the gravity vector.
The IMU preintegration technique can efficiently free the
computational cost, avoiding re-calculating the propagation
task during each IMU cycle. The core idea is to detach
the velocity and position into the gravity and acceleration
components. A set of IMU data Z;; between two consecutive
keyframes i and j is perceived, as shown in Fig. 4-c. Let
drop the denotation frames b and w (13) for readability.
By substituting the IMU measurement (11) into the IMU
kinematic model (12) (13). The inertial propagation process
with a batch of IMU data from time i to j can draw into the
residual of rotation, position, and velocity as,

_ | T T T
rz; = I:ryij’ T raij]’ (14)

where each element of residual rz; is computed given as,

1
—V; At — EgAtz) - Apij(bf’ bla)
—gAt) — Af’ij(bf, b?)
r,, = Log(AR;; (b)))R'R;,

Io; = R;F(p] — Pi

— RT(v. —
rg, =R (v;—v;

where At = ¢
explanation.

The pseudo-measurements of rotation AR; j, velocity AV;;
and position Ap;; are implemented as follows [39],

— t;. See [39] for more detail about the

j—1

[TExp(@, —bf)An)

p=i

~

AR;; =

j—1
AVij = D AR;,(@, — bf) At
p=i
Jj—1 1
Apij = ,)Z [vipA; + 5 AR;, @, - b;’)mz},

These pseudo-measurements, independent of the gravity effect
and state variables, can be directly computed from IMU
measurements. Using Eq. 12, following the random walk
process, the derivatives acceleration bias and gyroscope bias
are Gaussian. Hence, a bias constraint between two consecu-
tive keyframes at time i to j is taken into account by the IMU
preintegration factor.

After having the computed preintegration residual, the
noises at time step i are iteratively propagated to step j,

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

as shown in Fig. 4-c. Following [39], the noises propagation
process is computed given as,

'/,i,p+1 = pri,p + Bpﬂi,p’ (15)
T T
where ¥, , = [0¢; , Vi, Opiy] i mi, =08 ni]
= DT
_AR] 0 0
A, = —AR,Z)(ﬁp —b?) At I 0 (16)
| —1/2AR;, (@, — b)) "A> TAr 1
7 At 0
B, = 0 AR;, , (17)
0 1/2AR;, At

where At = 1,41 — 1,5 J/ e f((&)p — bf)At) denotes the
right Jacobian [36]. Through the linear noise model (15), the
preintegrated measurement covariance matrix is computed as
follows,

T =A% A +B;Z,B]_. (18)

Furthermore, the Jacobians of each element of residual rz,
concerning all variables at time step #; and 7; is computed,
as reported in [39].

B. Holonomic Wheel Odometry Factors

Following the kinematic model of the holonomic robot [1],
[40], the instance velocity of the holonomic robot is calculated
as follows,

E
% 1 1 1 1 o
X p Ea)
wy =7 UL =T L 9)
o — — 2
® Ya Ya Ya Yal| e,

where F; is the angular velocity of wheel i, p is the wheel’s
radius, and d is the mechanical size of the robot [1], [40].
Therefore, the general 3D velocity is computed as follows [41],

= ‘we3 + n,, (20)

21

o
wﬂl
T
o o o
Vi = [el € 03][Dy Dy O] +n,,
where n, and n, are zero-mean Gaussian noises of the

angular and linear velocity, respectively. Like Eq. 13, the robot
kinematic model using wheel odometer is given as,

YR = "RIExp(e’, A1) (22)

wvi)-&-l — wa)-&-loV;‘:-l. (23)
. . . 1 . .

wpitt = vpl 4 Vi AL 4+ — (Vi — UV AL (24)

2

Therefore, we can calculate the robot state at the wheel
encoders clock as follows,

"N, = ["Ry“Ry; Ry, + "ty RV, |, (25)
where °T) = lgb Tb € SE(3) is the transformation from

wheel odometry frame to body frame, is known. Let us
assume that body frame b coincides with wheel odometry

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

0
01
robot is expressed as follows,

frame o, so °T, = :| The relative motion factor of the

“r,, =T, BT, =T, BExp(“T, B“T,), (26)

where Tp” is the observed relative motion in (25); “T,, €
SE(3) is the robot pose at time step i. We note that the wheel
odometer factor (26) is calculated in the global coordinate
instead of the temporary local coordinate [42]. We note that the
global wheel coordinate is the world coordinate that coincides
with the first position of the robot. Next, the velocity factor
in the global coordinate can be established as follows,

wru — wv;) _

Wl Wl wpiopTogi
: v, ="v, — "R,°R,V,,. (27)

Similarly, we determine the zero velocity factor as follows,

(28)

w.zero
r

_wgl
o ="v, —0.

To minimize the cost function (9) using the iterative optimiza-
tion process [17], we need to calculated the Jacobians. Let us
calculate the Jacobian of relative motion residual “rj, with
respect to each variable,

w
Tpij

J'UTF‘,' = J;I(ll}rpij)a (29)
Iy = =37). (30)

Similarly, we can compute the Jacobian matrices for the
velocity and zero velocity factors,

w
Ty
v

Jwvi =1, (31)
b
Yo wpi |ogi
J“il};" - Rb L Vm x (32)
Jwvgi =1L (33)
See Appendix A for the proof.
The global velocity (23) is formed as follows,
vyl = "RV = "RI(°v/ —n,)
= “R/°v/ — “R/n, = "9/ — ov/. (34)
Hence, the velocity noise is expressed as,
ovl = "R/n,. (35)

From Eq. (20), on 2D planar, the robot orientation is deter-
mined as,

Giv1 + 0pit1 = ¢i + 0pi + Co+ ny)At,

where ¢; is the yaw angle at time step i. Hence, the yaw angle
noise is denoted as,

Sy = Opi + 1, At

The robot orientation noise from time step i to j is also
computed as follows,

(36)

(37)

j—i
Opij = opi + Z ﬂqut.

(38)
k=1
Accordingly, we can solve the orientation noise as given,
OR;; = d¢ijes. (39)

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 7

From Eq. (24), the relative measurement noise is propagated
following the accumulative encoder errors as yields,

Apiirr = "RE(pET —“pb) = APrirt — OPrssr. (40)

Therefore, the relative motion noise is propagated given as,
1, 1 L,
0Pt = > Ri+im, At + 7 Ar = 5(Riy1 +Dn, Az,

where n, remains constant. The proof is present in Appendix
B. So, the relative noise from time i to j is given as,
1
5pij:§ ; (‘Regr +Dn, Az

(41)

Finally, the measurement uncertainties are updated following
Eq. (35), (39) and (41).

C. Learning Observation and Noise Model Based
on Neural Network

The Al techniques are used to learn the relative state motion
and noise model updated in the BF solution, as shown in
Section II. Here, the AI based-estimation problem can be
represented as,

y = gAI(I’ 9)9

where G(.) indicates the Al model such as deep neural net-
works or recurrent neural networks (RNN), et cetera; 6 is the
trainable parameters of the AI model;) is the BF parameters
as shown in Eq. 9; 7 is the input of the Al technique as the
sensor data or historical states.

In particular, in order to feed into the neural network (NN),
the sensor measurements in a sliding window S are stacked
as follows,

(42)

I3 = Grun (a{w) 8], Vi, 0]) “43)
T} = G (Blop. af Vi @) 0,) @9

where Gryy and Gyy are the RNN function and neural net-
work function, respectively; a is a function to merge the sensor
data into the sequential vectors; f denotes the vectorization
function to combine the sensor outputs into a unique vector; Z5
and 7, /g are the output of the neural networks utilized to predict
the observation model or noise model. The overall solution is
described as shown in Fig. 5. Here, Ggyny or Gy is employed
to calculate the AI factor r,, (9).

Remark 2: Two dominant approaches are using the neural
network to assist the BF technique. On the one hand, the
relative state motion can be estimated given a batch of sensor
measurements called the learning observation model. The
residual is designed similarly to (26). On the other hand, the
noise model (41) can be predicted and used as the uncertainty
information in BF. The experiment result of each NN solution
is evaluated in the next section.

V. EXPERIMENTS

In the following experiments, we will show the implementa-
tion as well as the performance of the proposed method. First,
in the implementation part, we will describe the system setup
and deal with sensor synchronization, zero velocity detection,

Sensor Inputs Recurrent Neural Network Bayes Filters
I —fiona voo)
3o
[b BV ®, L bel(x,)
] S A
e
[I ecryooa— T T T T T ——» T8 = Ganw bel(x,) .
YTime

% =argmax piy | Z,11,)

x pE)IPZ |1
AR @g

Vectorization
I? =0nN

Fig. 5. Overview of the neural network-based state estimation. There are
two approaches consisting of the NN solution and the RNN method. The
sensor’s data input is converted to a unique vector, which feeds into a neural
network. The sensor’s data input can also be transformed sequentially to an
RNN model. The neural network’s output is then employed to the Bayesian
filters such as EKF or FGO, as shown in Fig. 2.

MU "o ="w+b!+n, Triggerf
b5 = "R, (Vap — g) + b +1, Pre-Integration Factor Graph
_ [y pT
.l FZi; = |Tvi0 TBiio Tay; i = m;,ma\p k| 25 Ho)|

Encoders

‘% % Synchronization

Kinematic model

Ey,

[T | } l'*”]
SR
“Ya Ya Ya Vall e
s

W = “wey + 1y

Ge

Zero Velocity
Detection Relative Factor
Ty = Ty, =Ty

V=[e e 03[0 %, 0" +n, State Prediction
T T VR = UR{Exp(*w, Af)
| w i+l _ wRitloyitl
E E v =R v
N @ @, 1
P wpitl = pi 4 UviAL 5 (Pvirt —mvi) At

Fig. 6. Pipeline of the proposed method uses an IMU sensor and wheel
encoders. The neural networks are applied to predict the relative motion and
noise model adopted to a factor graph.

and algorithm design. Second, the neural networks for the
predicting problem of relative state motion and noise model
are presented. Finally, we report the experimental evaluations
in which the performance of the proposed method is compared
to other methods.

A. Implementation

The architecture of the proposed estimator design is
described as shown in Fig. 6, which consists of four parts:
sensor synchronization, IMU preintegration and wheel encoder
factor, neural network prediction, and factor graph solver. The
system operates within three parallel threads, including wheel
encoder handling, IMU processing, and neural prediction and
factor graph optimization.

1) Zero Velocity Detection Factor: Zero velocity factor (28)
can limit the drift and exactly reset the IMU sensor bias. The
robot detect stationary when zero translation and rotation are
observed, then a zero velocity factor (28) is immediately added
to the factor graph (9). In particular, the stationary motion can
be figured out using the wheel encoder measurements in which
the sensor data reported zero velocities with a small threshold
of 0.1 mm translation and 0.5 degree rotation.

2) Sensor Synchronization: In practice, the IMU and wheel
encoder is configured at the same frequency of 100 Hz.
However, the IMU sensor data and wheel velocity are not

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

observed simultaneously, as shown in Fig. 4-c. The inertial
sensor and wheel velocity need to synchronize to deploy
the neural network and factor graph, as shown in Fig. 6.
Herein, the IMU clocks are set as the references. Let observing
the wheel velocities [0} v} @] and [v7*! 0! @W!*H1] at two
consecutive time steps n and n + 1, as shown in Fig. 4. Let
us assume that the acceleration had remained constant during
time f, to f,4+1. Therefore, the acceleration is reckoned as
follows,

n+l _ n n+l _ n n+l _ _n
Uy Uy Z)y Z)y w w

At At At

lay, ay, 1=

where At = t,41 —t,. Let £, is an IMU time step that falls
between time #, and f,,; as shown in Fig. 4. Hence, the
velocity at time f, is calculated as follows,

[v] v; oy 1" = [} z)(Z a);‘]T + [aff a;f (S]T(ty — t,,).

Therefore, the velocity
computed as follows,

is synchronized at the IMU clock

Y ()]T

! (45)

(46)

v, = [e;e;0][v] v

—
W, = ;. €3.

3) Algorithm: We design Algorithm 1 following the
pipeline, as shown in Fig. 6. The program is implemented
with three parallel threads in which thread Qy and Q;,y are
employed to observe wheel encoder and IMU measurement,
respectively. Unlike other open sources [22], [25], [26], [43],
the central computing thread is processed by using a fast
timer checking the thread to observe the size of the global
buffers. Whenever the size reaches 20, the optimization trigger
is computed in this thread. The technique helps us separate
the IMU and wheel recording thread, which can continue
registering data while optimizing.

B. Experimental Setup and Dataset

1) Experimental Setup: A holonomic mobile robot platform
with four omnidirectional wheels was used to conduct the
experiment evaluation, as shown in Fig. 1. The robot was
equipped with an IMU, four Kamotek wheel-encoders,' two
Sick 2D LiDAR sensors, and two Zed 2 cameras. The speci-
fication of the sensors is described in Table. II. An embedded
computer-NVIDIA Jetson AGX Xavier’ with Linux-based
operating system and ROS Melodic® using C++ language was
employed to implement Algorithm 1.

2) Evaluation Dataset and Preprocessing Data: The holo-
nomic robot was employed to collect the datasets in an
industrial environment. The ground truth was created by
using the multi-sensor fusion of LiDAR, IMU, and camera,
which provided a superior accuracy trajectory in the structured
environment with localization mode [44]. Raw inertial data,
including angular velocity and acceleration of one experiment,
is shown in Fig. 7. Following Eq. (19), we can calculate the
wheel velocity, which is filtered with a low-pass filter [45] and

Thttp://komotek.com/
Zhttp://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
3http://wiki.ros.org/melodic

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 1 Inertial-Wheel Fusion Algorithm

Input: IMU sensor and wheel encoder data
Output: Robot state
1 Initialization system: IMU, wheel encoder sensor;
2 Init IMU thread Q;py and wheel encoder thread Qyy;
3 Init checking timer thread (1ms) Qr;
4 while wheel encoder obtained (Qw) do
5 Calculate wheel velocity 19;
Add to global wheel buffer;
Integration and generate temporary estimator;
end
while IMU data observed (Q;yy) do
10 Convert to body coordinate;
1 Add to IMU global buffer;
12 end
13 while checking time (Qr) do
14 | if the size of IMU global buffer is 20 then

o e 9

15 Synchronization and stacking data V-A2;
16 Compute neural network factorIV-C;
17 Compute and add IMU factor IV-A;
18 Compute and add wheel factor IV-B;
19 if Zero velocity V-Al then
20 | add zero factor 28;
21 end
22 Solve the graph optimization (9);
23 Update bias for IMU preintegration;
24 if the size of the graph is maximum then
25 Reset the factor graph;
26 Add the marginalization factor r;;
27 end
28 Generate optimal state;
29 | end
30 end
TABLE II

SENSOR SPECIFICATION OF THE EXPERIMENTAL SETUP

Sensor Model Hz Specification

IMU MicroStrain 100 Bias Stab: 0.004 mg; 8°/hr
01 3DM-GX5-GNSS/INS Init Bias: 2 mg; 0.04°/s
2D LiDAR Sick LiDAR 125 Meas Range: 0-30m

02 S30B-3011BA . Angular Res: 0.5°

Camera Zed 2 30 Res: 2560x720 px

02 Stereo Camera FoV: 110° (H) x 70° (V)
Encoder Kamotek Motor 100 2500.Pulse/R0und

04 15 wires

transformed to the global coordinate. A sample wheel velocity
is described in Fig. 8. The zero velocities are straightforward
to recognize in the sample dataset, as shown in Fig. 8.

The data smoothing and outlier removal were employed
to eliminate the noise of the estimated trajectory. Here, the
datasets were smoothed by applying the Gaussian-weighted
moving average [45]. The smoothed datasets had then cleaned
the outlier using the Modified Akima cubic interpolation [46].
A sample dataset was treated, as shown in Fig. 9.

C. Learning Relative State Motion and Noise Model
As shown in Subsection IV-C, the neural networks were
used to predict the factor parameters in graph optimization (9).

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 9
Angular Rate Acceleration
0.04 12 Output Output
| H ‘ > = IMUswheel |5y jog || 128256
0.02 0 J MU *
Ll *‘ WM | 1 : s ' Fully- y y
O [y 20IMU Fully- ‘SZR,leéfrr;A H Connected
= " »nw) Frames | | Connected tlstM ! BatchNormalization
£-002 i \‘ — 8 : v v Relu
i.o,m £ . IML&V{VJMEI vobix 128 [128256 (256 ~ y |- Ouput 64
.g oo .5 i Sigmoid
§ . ® (a) Relu
5008 3¢ 512 30
g -0.1 < P IM[{'&"["}‘CCI — x 128 256 BalchN\;:r‘\:huuon
: Fully-
o . wmu | Ry || e Comnected 1024
] ! IMU+wheel |
0165 10 20 30 PO 10 20 30 40 o x 128 Zl 256y 0N el IMUwheel
Time (s) Time (s) vector vector
(b) (©) (d)
Fig. 7. Angular velocity and acceleration were recorded from one of the
datasets. Fig. 10. Pipeline of neural networks has been studied. The network’s input
is constructed by an IMU sensor and wheel encoder data. Here, x = 9 and
x1 = 180 if using IMU sensor and wheel encoders, x = 6 and x1 = 120 using
0.3 [y, sl —v, [mis] —wiradisi} only IMU sensor; The output predicts the relative state motion (y =2 or y =
02k | 1) or noise model (y = 1). (a)-the neural network uses two layers of Bi-LSTM
or LSTM; (b)-the network with one layer of Bi-LSTM or LSTM; (c)-a deep
% 0.1 1 neural network structure; (d)-an MLP network with two layers.
<} Al
—_ 0 PN —
2 A\ / |
T-0.1- 1
S 0ol] The lost function for two dimensional (y = 2) is simply the
03k | mean square error (MSE) between the mean of the prediction
04l | state motion and actual relative state at each timestep as,
0 50 100 150_|__ ()200 250 300 350 1 &
ime (s T
P A 14 A
L, = - E (Axi — Axi) (Axi — Axi), 7
Fig. 8. Sample dataset of the wheel velocity in global coordinate was i=l1
recorded.
where Axf’ = [Ax;, Ay;] is the prediction state motion;

0.1

(a) Input data — Smoothed datal

0.05

Ad [m]
°

}“ v
I

005 | | il !]
[~ Input data —Cleaned data_x Outliers_* Filled outliers — Outlier thresholds]

01 I I
0 200 400 600 800 1000 1200 1400 1600 1800

Step

Fig. 9. Estimated trajectory was preprocessed by using the data smoothing
and outlier removal.

Herein, the neural network’s input is the IMU and wheel
velocity data, and the neural network’s output is the relative
state motion or sensor noise model of two consecutive robot
poses. The input of the recurrent neural network is fed
continuously at each time step as Eq. (43). Besides, the IMU
and wheel velocity information can also be assembled as a
unique vector (44) to be supplied to the neural network once.

Remark 3: In practice, the rotation is accurately computed
using the angular velocity of inertial data and wheel encoder.
Therefore, the estimation output only need to handle the rela-
tive translation values, which are two dimensional [Ax, Ay]
(y = 2) or one dimensional Ad = /Ax> + Ay* (y = 1).
Later, the NN relative motion is built as a relative motion
factor indicated as Eq. 26. Moreover, the noise model of the
wheel odometer can be learned with the same input.

AX; = [AX;, AP;] is the true relative state; n is the number
of timestep.

Similarly, The lost function for one dimensional (y = 1) is
denoted by the MSE of the relative distance of belief and true
state at each timestep as,

n

1 .
Li=2 ~(Ad] - Ady)’,
i=1

(48)

where Adip and Ad; are the relative distance of prediction and
actual state.

1) Learning Observation Model: We investigate the neural
network architectures for the end-to-end learning relative state
motion. The network structures are designed following three
types of neural network architectures, as shown in Fig. 10.
The first scheme employs the recurrent neural network (RNN)
designed following the IONet architecture [8]. Instead of using
only IMU data as IONet [8] (x = 6), we add the wheel
velocities into the input (x = 9), as shown in Subsection I'V-C.
The system can utilize two Bi-LSTM or LSTM, as shown in
Fig. 10-a. The two layers network also can employ one-layer
Bi-LSTM or LSTM to reduce the learnable weights, as shown
in Fig. 10-b. Moreover, a deep neural network can conducts
to learn the relative state model [47], as shown in Fig. 10-c.
Finally, a multilayer neural network (MLP) with two layers
is applied for the prediction problem, as shown in Fig. 10-d.
The total number of weights and activation functions for each
neural network with x = 9,y = 1 is shown in Table III.
Here, the total number of weights of two layers of Bi-LSTM is

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

—GT —DeepNN

IONet —NN-BR]

05 @

0.05

-0.05 (b)

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 100 200 300 400
Step

Fig. 11.
part of (a) and (b), respectively.

TABLE III
PROPERTIES OF THE NEURAL NETWORK ARCHITECTURES

0 100 200 300 400
Step

Performances of each neural network handling two outputs [Ax, Ay]. (a) Prediction of Ax. (b) Prediction of Ay. (¢) and (d) Enlarged from one

TABLE IV
EXPERIMENTAL RESULTS OF EACH NEURAL NETWORK ARCHITECTURE

No. No. Activation No. Learnable

Training Validation Training

Neural Network Layer Function Parameters Network RMSE (m) RMSE (m) Time (s) Specs
IONet- 2 Bi-LSTM 5 1163 1446657 IONet 2 Bi-LSTM 0.035 0.05 860 adam
IONet- 2 LSTM 5 779 593117 (y=2 AND y=1) 0.009 0.01 600 GPU
IONet- 1 Bi-LSTM 4 907 921345 IONet 1 Bi-LSTM 0.05 0.06 510 adam
IONet- 1 LSTM 4 651 461569 (y=2 AND y=1) 0.01 0.009 320 GPU
Deep NN 7 4982 746241 IONet 2 LSTM 0.05 0.07 530 adam
MLP 2 31 5461 (y=2 AND y=1) 0.01 0.008 200 GPU
IONet 1 LSTM 0.05 0.06 330 adam
(y=2 AND y=1) 0.01 0.012 180 GPU
approximately double the deep NN and is more than 260 times Deep NN 0.01 0.07 1080 adam
the shallow MLP, as presented in Table III. (y=2 AND y=1) 0.008 0.04 1050 GPU
K ined desk t MLP (H=30) 0.03 0.08 10 LM
The neural networks were trained on a desktop computer (y=2 AND y=1) 0.0058 0.0045 10 GPU
using an 8GB NVIDIA RTX 3070TI GPU. For the LSTM MLP (H=60) 0.03 0.08 20 LM
and deep NN, the dataset was randomly shuffled during each ~ _(y=2 AND y=1) _ 0.0066 0.0063 20 GPU
epoch. We employed a batch size of 2048 and an ADAM MLP (H=30) 0.02 0.07 200 M
poch. ploy¢ : : (y=2 AND y=1) 0.0032 0.0045 200 CPU
optimizer. The initial learning rate was practically selected MLP (H=30) 0.02 0.07 1500 BR
at 0.001. The Levenberg-Marquardt (LM) [48] and Bayesian (y=2 AND y=1) 0.0014 0.0015 1500 CrPU
Regularization (BR) algorithm [49] were used to train the IONet 2 BiLSTM) . 0.03 620 adam
MLP. Although the LM algorithm could quickly train the (x=6, y=1) i i GPU
neural network, the BR method was more accurate and suitable g(fﬁp 1;51) 0.0046 0.01 520 ‘é‘ifg’
for the noise dataset [49]. The evaluation of each neural MLP (H=30) 0.0074 0.01 s M
network is specified by each training method, as shown in (x=6, y=1))) CPU
Table IV. For y = 2, the MLP accuracy achieved 0.02, which ?f]_“g (yIi:SO) 0.0052 0.01 820 gI;U
was 1.5 times better than the Bi-LSTM but worse than Deep =
. . . MLP (H=60) 0.0006 0.005 3800 BR
NN, approximately two times. For y = 1, the multilayer neural (x=6, y=1) CPU

network accuracy was just about 0.0014, and the Bi-LSTM
and deep NN were around 0.009 and 0.008, respectively.
The MLP with the LM and BR algorithm could be obtained
with 8 to 9 times better accuracy than Bi-LSTM and Deep
NN. The results of each neural network with two outputs
(y = 2) are illustrated, as shown in Fig. 11. Although the
response of Ax to the ground truth of each neural network
was suitable, the accuracy of Ay was fair, as shown in Fig. 11.
The evaluation results of each neural network with one output
(y = 1) are presented, as shown in Fig. 12. In this case, the
MLP provided the best results compared with Bi-LSTM and
deep NN. The MLP using the BR algorithm could smoothly
match the ground truth. Although the MLP adopting the LM
method provided good results, the results were noise. The

Bi-LSTM and deep NN could track the ground truth with a
gap. The last five rows in Table IV indicated the predicting
results using only IMU input (x = 6). Here, the deep NN
achieved 0.0046, which was better than MLP with H = 30.
When the number of neural increased to H = 60, the accuracy
of MLP was better than Deep NN. However, the results of
MLP were pretty sensitive to the noise of IMU, as shown in
Fig. 13. Here, IONet got poor results compared to the deep NN
and MLP.

Remark 4: Using only IMU, the MLP is sensitive to sensor
noises. In this case, the experimental results confirmed that
the deep neural network has more potential than other neural
networks.

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION

11

018 —GT —DeepNN —IONet —NN-BR| "(a)
E 0.1
o
<o.05 8
0 1 1 1 1 I 1
0 500 1000 1500 2000 2500 3000 3500 4000
0.08 T T T T T T T T
0.06 - b
E
5 0.04 8
<
0.02 |- =
0 [VN M
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Step
Fig. 12. Accuracy of each neural network with one output Ad. (a) Comparison of each neural network estimation. (b) Result is enlarged from step 1000
to 2000.

[—GT —DeepNN

IONet =—NN-30 —NN-60
3500 4000

0.2 I I I
0

1
1000 1500 2000 2500 3000

T

1300 1350 1400 1450 1500
Step

I
1250 1550

Fig. 13. Accuracy of each neural network using only IMU as input x = 6 and
x1 = 120. (a) Comparison of each neural network estimation. (b) Result is
enlarged from step 1200 to 1600.

Remark 5: The MLP is deployed to learn the relative state
motion, as shown in Fig. 6.

2) Neural Networks for Predicting Noise Model: Similarly,
the NN architectures are used to learn the noise model of
wheel relative motion factor (26), as shown in Fig. 10. The
loss function for the noise model is defined as,

(49)

where Ae; is the output created by a difference of the
relative motion of wheel odometer prediction and ground truth,
as follows,

Aer = Gty — 52+ Gy — 90
2 2
—/ (e =D+ O —)7, (50)

where [x”, yP] and [x{', y{'] are the 2D position of the
robot computed by wheel encoders and ground truth, respec-
tively. The performance of each neural network is shown
in Table V. In this case, the training accuracy of MLP
with the BR algorithm was the best at only 0.0017. MLP
achieved the accuracy 1.8 times better than a deep neural
network of 0.003 and 5.3 times than IONet. Here, IONet

TABLE V
NOISE MODEL PREDICTION OF EACH NEURAL NETWORK ARCHITECTURE

Training Validation Training

Network RMSE (m) RMSE (m) Time (s) SP€cS
IONet ‘adam’
S Riisty 0009 0.008 600 P
Deep NN 0.003 0.04 1050 gg‘l’]’”
i
MLP (H=30) 0.0058 0.0049 10 GoU
MLP (H=30) 0.003 0.0032 80 CL%J
MLP (H=30) 0.0017 0.0028 1500 ng

provided the worst results compared with MLP and deep
NN. The response results of the neural networks are shown
in Fig. 14.

Remark 6: The learning noise model using an MLP is
applied in the factor graph optimization, as shown in Fig. 6.
Therefore, the observation error covariance at keyframe k is
then defined as,

2
) 0-'196 }9

A .
Q= (/)fdzag{al?l, 032, . on

where 0,07 ,...,0; are empirically determined; ¢ is the
output of the neural network for predicting noise model.

D. State Estimation Comparison

The experimental results are evaluated following two
standard metrics: the absolute trajectory error (ATE) and
the relative trajectory error (RTE) [8]. The ATE is defined
by average the root-mean-square error (RMSE) of predicted
trajectory and ground truth as follows,

1 n .
ATE= | > e = pf' [(m) (52)
k=1

where p; and pit are the current position and ground truth at
time step k; n is the number of sampling. The process of ATE
rotation is similar.

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[[=—GT —DeepNN —IONet —NN-BR]

500

1000 1500

2000

01
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 200C
Step
Fig. 14. (a) Results of each neural network architecture to learn the sensor noise model. (b) Same results were enlarged from time step 1000 to 2000.
[— 6T — ours FGO ——— EKF-velo ====IMU-Preint [=——GT —— Ours FGO ———EKF-velo ===IMU-Preint
14 o st O Ena 157 6 st O end
121
" (a)
[101
8l
E6 T
E £ 5
>4 >
2L
0} or
210
-4 5l s s |
0 5 20 25 0 5 10 15 20 25 30 35
x [m] x [m]
Fig. 15. Comparison of the proposed method to other solutions is shown. (a) Represents the trajectories of each solution in a trained dataset. (b) Illustrates

the estimated trajectories in an untrained dataset.

The RTE denotes the average RMSE of the estimated and
ground truth trajectory in a constant period of 0.2 ms as,

_ |1 n gt 12
RTE = ;ZHApi — Apf'| (53)

i=l1

where Ap; and Apf’ are the relative motion of the robot pose
and its ground truth.

The proposed algorithm is compared with the other methods
as follows,

« EKF: The EKF state estimation enabled fuse inertial
data and wheel velocity for the robot [43]. The ROS
configuration and source code are available in the robot
localization toolbox.*

IMU: The IMU-preintegration estimation with
updated bias each optimization period as shown in
Subsection IV-A. This technique is a cumulative relative
robot motion computed by the IMU preintegration.
FGO: The proposed factor graph optimization is operated
without using neural network prediction.

Fig. 15-a,b illustrate the predicted trajectories of each solu-
tion using two datasets. The dataset in Fig. 15-a is trained, and
Fig. 15-b is not trained. It was seen that the proposed approach

“https://github.com/cra-ros-pkg/robot_localization

provides the estimated trajectories more closely to ground
truth. The proposed method outperformed other approaches
in global coordinate. The EKF-Velo and IMU-preintegration
results were worse in that their predicted trajectories ran
outside of scope. Fig. 15-a represented the estimated trajectory
of FGO that was also close to the proposed system with slight
differences. However, the proposed solution was much better
than FGO, which was far from the ground truth, as shown
in Fig. 15-b. The ATE and RTE quantitative results are
reported in Table VI. The proposed approach achieved the best
performance compared with other solutions. The overall ATE
errors were approximately 1.3 m in translation and 0.02 rad in
rotation. The mean RTE error was only 0.02 m for translation
and 0.001 rad for rotation. Compared to FGO, the results of
ATE and RTE in rotation were pretty similar. However, for
ATE translation, our approach was much better than FGO.
EKF and IMU-preintegration presented poor results for ATE
in which they ran out of scope.

Remark 7: In Fig. 15, the estimated trajectories demon-
strate that the relative accuracy can be learned accurately
when the robot moves straight following the x and y axis. The
estimation is not too efficient when the robot moves and turns
simultaneously. Therefore, the robot should travel parallel to
the x or y axis or rotate without moving to achieve the best
estimating performance.

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 13

TABLE VI
ATE AND RTE ACCURACY OF EACH ESTIMATION APPROACH

Datal
(66.27 m) EKF MU FGO Ours
Trans. [m] 14.1111 12.0707 1.6740 1.3450
Trans. [RTE] 0.0225 0.0189 0.0162 0.0162
Rots. [m] 0.3823 0.1572 0.0210 0.0280
Rots. [RTE] 0.0053 0.0016 7.33e-04 5.26¢-04
Data2
(78.64 m) EKF IMU FGO Ours
Trans. [m] 34.1809 15.240 2.5237 1.3272
Trans. [RTE] 0.0383 0.0250 0.0241 0.0223
Rots. [m] 0.3687 0.1443 0.0545 0.0330
Rots. [RTE] 0.0139 0.0013 0.0011 0.0011
TABLE VII

THE TIMING CONSUMPTION OF THE PROPOSED METHOD

Module Task Time Consuming [p1s] Freq. [Hz]
Wheel 5 100

IMU 10 100
Checking Timer 1 1000
Preprocessing 250 5

Neural Network 25 5

FGO 900 5

Total 1500 5

E. Timing Consumption Analysis

Computational time is the most critical task in dealing with
real-time applications. The computation time of the proposed
method running on an 8-core ARM 64-bit CPU of JETSON
AGX XAVIER is summarized in Table VII. Here, the IMU
and wheel encoder operated at 100 Hz. A software timer was
created at 1000 Hz to check the size of sensor data. These tasks
consumed a short time of about 1-10 ws. The neural network
using MLP demanded only 25 us, and FGO was needed about
900 us for a sliding window size of 100. The overall process
was averagely required only 1.5 ms.

VI. CONCLUSION

We present a comprehensive report on the intrinsic sensors
fusion of IMU and wheel encoder with neural networks
based-adaptive factor graph optimization. First, we sur-
veyed the state-of-the-art multi-sensor fusion techniques using
Bayesian filtering and learning approaches. Then, a detailed
explanation for state estimating problems using inertial and
wheel encoder sensors is presented. At the core of the
estimation system, we analyzed the different neural network
architectures for learning the relative and uncertainty model.
The results confirmed that a simple MLP technique could
enhance the performance. We implemented a sensor sys-
tem with multiple sensors of LiDAR, Camera, IMU, and
wheel encoders on a holonomic mobile robot. The exper-
imental results reported that the proposed technique can
achieve the most accuracy and outperform other strategies.
The researchers can quickly implement the proposed method
in the multi-sensor fusion of intrinsic and extrinsic state
estimation.

APPENDIX
ODOMETRY FACTOR

A. The Jacobians of Relative Motion

The Jacobians of relative motion factor is computed as
follows,

w w » w w w wp-1
J rh,j — J rll,j JLOg(Tp,'EI ij)J Tp,E ijJlij
wT!’j L()g(‘UTp’_E'”ij) wTF,'EleF‘/ "’T;‘; prj
-1 -1
= (-DJ, (rp,.j)Adl,)Tm (_Ad'UT,,j)
_ 7l
= Jl‘ (I‘pl.j)AdwT;j!me
7l —1 I = 2)
- Jr (rl’fj)AdExp(rp’.j) _J] (rpij)
Jwrp,-‘,' _ J'“r],”. JLOg(pr,-_prj) pr,-EIpr‘/
mT[’i Log(mT[)i EU} ij) mT[’i EU} ij w T[’i
_ -1
- _Jr (Tpij)
The Jacobians of the velocity constraint is calculated as,
er: _ wr”i MRLURZUWH _wpl |ogi
JwR; = JwR;',vRZvv;,Jng = "R, [V,],
B. The Relative Motion Noise
The relative motion noise is computed as,
__ bpk jw k+1 w .k
Apk,k"rl - Rw(p() - p())
1
_ _bpk (wgk+l w gk
=3 Rw(v, o+ vo)At
1
_ " bpk (wpk+l o k+1 wpk ok
=5 RY (YR, OVt —n,) + “RE(°VE, — n,)) At
1 1 1 1
- EkRkH”Vﬁjl Az+§0v,’;Az—EkRanUAz—EnUAz

= AP k1 — OPrk+1

REFERENCES

[1] G. Ullrich et al., Automated Guided Vehicle Systems, vol. 10. Berlin,
Germany: Springer-Verlag, 2015, p. 978.

[2] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
odometry: IMU-centric LIDAR-Visual-Inertial estimator for challenging
environments,” 2021, arXiv:2104.14938.

[3] N. D. Van, M. Sualeh, D. Kim, and G.-W. Kim, “A hierarchical control
system for autonomous driving towards urban challenges,” Appl. Sci.,
vol. 10, no. 10, p. 3543, May 2020.

[4] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots. Cambridge, MA, USA: MIT Press, 2011.

[5] C. Cadena et al., “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age,” IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1309-1332, Dec. 2016.

[6] M. Tranzatto et al., “CERBERUS in the DARPA subterranean chal-
lenge,” Sci. Robot., vol. 7, no. 66, May 2022, eabp9742.

[71 M. Tranzatto et al., “CERBERUS: Autonomous legged and aerial robotic
exploration in the tunnel and urban circuits of the DARPA subterranean
challenge,” 2022, arXiv:2201.07067.

[8] C. Chen, X. Lu, A. Markham, and N. Trigoni, “IONet: Learning to cure
the curse of drift in inertial odometry,” in Proc. AAAI Conf. Artif. Intell.,
2018, vol. 32, no. 1, pp. 1-9.

[9] S. Herath, H. Yan, and Y. Furukawa, “RoNIN: Robust neural inertial nav-

igation in the wild: Benchmark, evaluations, & new methods,” in Proc.

IEEE Int. Conf. Robot. Automat. (ICRA), May 2020, pp. 3146-3152.

A. Reinke et al., “LOCUS 2.0: Robust and computationally effi-

cient lidar odometry for real-time underground 3D mapping,” 2022,

arXiv:2205.11784.

D. Van Nam and K. Gon-Woo, “Deep learning based-state estimation

for holonomic mobile robots using intrinsic sensors,” in Proc. 21st Int.

Conf. Control, Autom. Syst. (ICCAS), Oct. 2021, pp. 12-16.

[10]

(1]

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM?2: An open-source slam
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255-1262, Oct. 2017.

G. Huang, “Visual-inertial navigation: A concise review,” in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2019, pp. 9572-9582.

N. V. Dinh and G.-W. Kim, “Multi-sensor fusion towards VINS: A
concise tutorial, survey, framework and challenges,” in Proc. IEEE Int.
Conf. Big Data Smart Comput. (BigComp), Feb. 2020, pp. 459—462.
M. Sizintsev, A. Rajvanshi, H.-P. Chiu, K. Kaighn, S. Samarasekera, and
D. P. Snyder, “Multi-sensor fusion for motion estimation in visually-
degraded environments,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue
Robot. (SSRR), Sep. 2019, pp. 7-14.

D. Wisth, M. Camurri, and M. Fallon, “VILENS: Visual, inertial, lidar,
and leg odometry for all-terrain legged robots,” 2021, arXiv:2107.07243.
T. D. Barfoot, State Estimation for Robotics. Cambridge, U.K.: Cam-
bridge Univ. Press, 2017.

F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Found.
Trends Robot., vol. 6, nos. 1-2, pp. 1-139, 2017.

M. A. Lee, B. Yi, R. Martin-Martin, S. Savarese, and J. Bohg, “Multi-
modal sensor fusion with differentiable filters,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2020, pp. 10444-10451.

P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A research platform for visual-inertial estimation,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 4666-4672.

D. V. Nam and K. Gon-Woo, “Robust stereo visual inertial navigation
system based on multi-stage outlier removal in dynamic environments,”
Sensors, vol. 20, no. 10, p. 2922, May 2020.

T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34,
no. 4, pp. 1004-1020, Aug. 2018.

V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Information fusion
in navigation systems via factor graph based incremental smoothing,”
Robot. Auto. Syst., vol. 61, no. 8, pp. 721-738, Aug. 2013.

K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-
state-LiDAR-inertial odometry and mapping,” IEEE Robot. Autom. Lett.,
vol. 6, no. 3, pp. 5167-5174, Jul. 2021.

T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2020, pp. 5135-5142.

T. Shan, B. Englot, C. Ratti, and D. Rus, “LVI-SAM: Tightly-
coupled lidar-visual-inertial odometry via smoothing and mapping,”
2021, arXiv:2104.10831.

X. Zhao, C. Deng, X. Kong, J. Xu, and Y. Liu, “Learning to compensate
for the drift and error of gyroscope in vehicle localization,” in Proc.
IEEE Intell. Vehicles Symp. (1V), Oct. 2020, pp. 852-857.

M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU dead-reckoning,”
IEEE Trans. Intell. Vehicles, vol. 5, no. 4, pp. 585-595, Dec. 2020.

D. V. Nam and G.-W. Kim, “Online self-calibration of multiple 2D
LiDARs using line features with fuzzy adaptive covariance,” IEEE
Sensors J., vol. 21, no. 12, pp. 13714-13726, Jun. 2021.

W. Liu et al., “TLIO: Tight learned inertial odometry,” IEEE Robot.
Autom. Lett., vol. 5, no. 4, pp. 5653-5660, Oct. 2020.

M. Brossard, A. Barrau, and S. Bonnabel, “RINS-W: Robust inertial
navigation system on wheels,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Nov. 2019, pp. 2068-2075.

B. Yi, M. A. Lee, A. Kloss, R. Martin-Martin, and J. Bohg, “Dif-
ferentiable factor graph optimization for learning smoothers,” 2021,
arXiv:2105.08257.

T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop KF: Learning
discriminative deterministic state estimators,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 4376-4384.

R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable par-
ticle filters: End-to-end learning with algorithmic priors,” 2018,
arXiv:1805.11122.

C. Chen et al., “Selective sensor fusion for neural visual-inertial odom-
etry,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10542-10551.

J. Sola, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” 2018, arXiv:1812.01537.

S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra:
Vectors, Matrices, and Least Squares. Cambridge, U.K.: Cambridge
Univ. Press, 2018.

C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, vol. 4, no. 4. New York, NY, USA: Springer, 2006.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” [EEE Trans.
Robot., vol. 33, no. 1, pp. 1-21, Feb. 2017.

H. Taheri, B. Qiao, and N. Ghaeminezhad, “Kinematic model of a four
Mecanum wheeled mobile robot,” Int. J. Comput. Appl., vol. 113, no. 3,
pp. 69, Mar. 2015.

P. Geneva, N. Merrill, Y. Yang, C. Chen, W. Lee, and G. Huang,
“Versatile 3D multi-sensor fusion for lightweight 2D localization,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020,
pp. 4513-4520.

M. Quan, S. Piao, M. Tan, and S.-S. Huang, “Tightly-coupled monocular
visual-odometric SLAM using wheels and a MEMS gyroscope,” IEEE
Access, vol. 7, pp. 97374-97389, 2019.

T. Moore and D. Stouch, “A generalized extended Kalman filter imple-
mentation for the robot operating system,” in Intelligent Autonomous
Systems 13, E. Menegatti, N. Michael, K. Berns, and H. Yamaguchi,
Eds. Cham, Switzerland: Springer, 2016, pp. 335-348.

M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale and
long-term online operation,” J. Field Robot., vol. 36, no. 2, pp. 416446,
2019.

P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identifica-
tion, and Adaptive Control. Philadelphia, PA, USA: SIAM, 2015.

H. Akima, “A new method of interpolation and smooth curve fitting
based on local procedures,” J. ACM, vol. 17, no. 4, pp. 589-602,
Oct. 1970.

Y. Wang, H. Cheng, C. Wanga, and M. Q.-H. Meng, “Pose-invariant
inertial odometry for pedestrian localization,” IEEE Trans. Instrum.
Meas., vol. 70, 2021, Art. no. 8503512.

L. Saini and M. Soni, “Artificial neural network based peak load
forecasting using Levenberg—Marquardt and quasi-Newton methods,”
IEE Proc.-Gener., Transmiss. Distrib., vol. 149, no. 5, pp. 578-584,
2002.

F. Burden and D. Winkler, “Bayesian regularization of neural networks,”
in Artificial Neural Networks. 2008, pp. 23-42.

Dinh Van Nam received the B.Eng. degree in
control and automation engineering from the Hanoi
University of Science and Technology (HUST),
Hanoi, Vietnam, in 2012, and the Ph.D. degree
in control and robot engineering from Chungbuk
National University, South Korea, in February 2022.
Since 2022, he has been a Post-Doctoral Research
Fellow with Chungbuk National University. He is
a Lecturer with Vinh University, Vietnam. His
research interests include Al-robotics, multi-sensor
fusion for SLAM, optimization, and control systems.

T

Kim Gon-Woo (Member, IEEE) received the M.S.
and Ph.D. degrees from Seoul National University,
South Korea, in 2002 and 2006, respectively. He is
currently a Professor with the Department of Elec-
tronics Engineering, Chungbuk National University,
South Korea. His research interests include naviga-
tion, localization and SLAM for mobile robots, and
autonomous vehicles.

z

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

