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Abstract— The navigation system of autonomous mobile robots1

has appeared challenging when using exteroceptive sensors such2

as cameras, LiDARs, and radars in textureless and structureless3

environments. This paper presents a robust state estimation4

system for holonomic mobile robots using intrinsic sensors5

based on adaptive factor graph optimization in the degradation6

scenarios. In particular, the neural networks are employed to7

learn the observation and noise model using only IMU sensor8

and wheel encoder data. Investigating the learning model for9

the holonomic mobile robot is discussed with various neural10

network architectures. We also explore the neural networks that11

are far more powerful and have cheaper computing power when12

using the inertial-wheel encoder sensors. Furthermore, we employ13

an industrial holonomic robot platform equipped with multiple14

LiDARs, cameras, IMU, and wheel encoders to conduct the15

experiments and create the ground truth without a bulky motion16

capture system. The collected datasets are then implemented to17

train the neural networks. Finally, the experimental evaluation18

presents that our solution provides better accuracy and real-time19

performance than other solutions.20

Note to Practitioners—Autonomous mobile robots need to serve21

in challenging environments robustly that deny extrinsic sensors22

such as cameras, LiDARs, and radars. In order to operate in this23

situation, the navigation system shall rely on the intrinsic sensor24

as inertial sensor and wheel encoders. Existing conventional25

methods have combined the intrinsic sensors in the form of26

the recursive Bayesian filtering technique without adapting these27

models. Besides, deep learning-based solutions have adopted28

extensive networks like LSTM or CNN to handle the estimation29

problem. This work aims to develop a state estimation subsystem30

of the navigation system for the holonomic mobile robots that31

utilize the intrinsic sensors in adaptive factor graph optimization.32

In particular, we present how to join the factor graph efficiently33

with the learning observation model of IMU and wheel encoder34
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factor. Moreover, the neural networks are introduced to learn the 35

observation model with an IMU and wheel encoder data inputs. 36

We recognize that lightweight neural networks can achieve more 37

power than deep learning techniques using the IMU sensor and 38

wheel encoders. Finally, the neural networks are embedded in 39

a factor graph to handle the smoothing state estimation. The 40

proposed system could operate with high accuracy in real time. 41

Index Terms— State estimation, deep learning based-inertial 42

navigation system, sensor fusion, factor graph optimization. 43

I. INTRODUCTION 44

OVER the years, the increased maturity of autonomous 45

mobile robotics (AMR) has become commercially 46

viable with various industrial applications, such as automated 47

guided vehicles [1], underground autonomous robots [2], and 48

self-driving cars [3]. Positioning plays a fundamental skill that 49

enables AMRs to be reliable [3], [4]. The estimated position is 50

then used for the motion planning and control systems of the 51

autonomous systems [3], [5]. The most advantaged navigation 52

techniques were shown in the DARPA Subterranean (SubT) 53

Challenge [6], which forced robotic researchers to create 54

state-of-the-art technologies to assist operations in complex 55

underground environments, illustrating significant challenges 56

for military and civilians in disaster response [7]. Roboticists 57

employed many complex navigation techniques in exploring 58

and mapping unknown underground sites for the teams of 59

robots in the SubT Challenge [7]. Nevertheless, current state 60

estimation technologies are not flexible and robust sufficiently 61

for what the industry requires in various indoor and outdoor 62

environments. We want to overcome the limitations by devel- 63

oping a multi-sensor fusion system to navigate a holonomic 64

mobile robot using neural networks. This work focuses on 65

implementing a sub-estimator for the whole navigation sys- 66

tem using only intrinsic sensors in case of extrinsic sensors 67

failure. 68

In general, AMRs are equipped with proprioceptive sen- 69

sors such as inertial sensors and wheel encoders working 70

at high frequency (>100 Hz) for the control systems and 71

short-term navigation [8], [9]. The GPS is the critical sensor 72

for long-term positioning [3]. Nevertheless, GPS accuracy is 73

significantly degraded in such environments as indoor parking 74

lots, under high buildings, or tunnels [2]. Especially, GPS 75

is denied in indoor applications like industrial factories or 76

subterranean environments [10], [11]. Therefore, exteroceptive 77

sensors such as LiDAR, camera, and radar are deployed to 78

estimate the robot state in the GPS-denied scenarios [10]. For 79
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Fig. 1. (a) Overview of holonomic robot platform consists of 04 LiDAR, two
Zed 2 cameras, wheel encoders, and IMU. (b) Mechanical design of the robot.
(c) Electrical and electronic inside the robot. (d) Example of the challenge
structureless and textureless environment.

instance, the camera can observe the invariance landmarks in80

its surroundings to update the pose estimation after long-term81

navigation [12]. However, the cameras are sensitive to light82

conditions such as illumination and darkness conditions [13],83

[14]. The cameras can fail to detect the visual features in84

textureless scenarios [2], [15]. Furthermore, the radars and85

LiDARs are continuously challenging to leverage the unstruc-86

tured environments like free spaces or long corridors [2],87

[6]. In contrast, the inertial sensors and wheel encoders,88

which are immune to environmental conditions, can work well89

in short-term estimation [2], [10]. Accordingly, a fusion of90

extrinsic and intrinsic sensors can provide a high-performance91

estimator in GPS-denied conditions [6], [16].92

In robotics, the fundamental approach of multi-sensor fusion93

techniques has commonly relied on the Bayesian filtering (BF)94

technique [17]. In particular, the BF predicts the state proba-95

bility with the process model, which is then corrected using96

the observation model [17], [18]. The fusion schemes can97

be broadly categorized into loosely coupled and tightly cou-98

pled [13], [14]. Although the tightly coupled design can99

provide more accuracy, the loosely coupled is more straight-100

forward in handling the sensor failure [2], [10]. By contrast,101

recent works based on deep learning techniques exemplify102

an alternative strategy to the BF solution [8]. Instead of103

using Bayes inference, these deep learning solutions replace104

the prediction and correction stage using just an end-to-105

end process [19]. We aim to develop an accurate estimation106

subsystem for a holonomic mobile robot in the lack of visual107

and structural features, as shown in Fig. 1-d. Here, the robot108

navigation system could handle the cases when both camera109

and LiDAR sensors fail to detect the features. The robot shall110

rely on intrinsic sensors such as wheel encoders and inertial111

sensors. Nevertheless, the estimated state will inevitably drift112

over time if not provided with global positioning information.113

Besides, the use of inertial sensors is quite challenging because114

of unobservable motions, including x, y, z directions and yaw115

rotation [13].116

In this study, we present a tightly coupled fusion system117

based on factor graph optimization leveraging the learning118

technique for the holonomic mobile robot to enhance the119

estimation performance. The proposed system provides two120

major advantages. First, the design inherits the Bayesian 121

filtering strategy, which provides a high-performance estimator 122

solution. Second, a lightweight neural network is employed 123

to predict the observation and noise models instead of the 124

heavy deep learning structures. We shall show several surpris- 125

ing properties of neural network architectures for holonomic 126

mobile robots with intrinsic sensors. 127

The remainder of this paper is organized as follows: 128

Section II reviews the literature and re-categorizes multi- 129

sensor fusion methods via the Bayesian filtering and Artificial 130

intelligence (AI) techniques. Next, section III presents the 131

problem formulation with the mathematics background. 132

Section IV then provides the novel factor graph of the pro- 133

posed formulation. The detailed implementation and evalu- 134

ation of the proposed method are presented in section V, 135

followed by a conclusion in section VI. 136

II. RELATED WORKS 137

This section provides a concise review and classifies the 138

state-of-the-art multi-sensor fusion techniques. In general, 139

extrinsic sensors such as GPS, LiDARs, radars, and cam- 140

eras and intrinsic sensors like IMUs and wheel encoders 141

are equipped for AMRs [4], [5]. The Bayesian inference 142

is regularly utilized to handle all the sensor information to 143

maximize the state posterior probability [17]. 144

The sensor fusion techniques can be divided into three 145

broad classes: filtering-based, optimization-based, and end-to- 146

end solution [5], [13], [14]. While researchers have formed 147

estimation technologies using extended Kalman filter (EKF) 148

since the 1970s, optimization-based methods have only oper- 149

ated and flourished over the last two decades [17]. The filtering 150

method commonly manipulates the EKF, unscented KF (UKF), 151

and particle filter operating with prediction and correction 152

phases. One of the most high-performance navigation systems 153

is the multi-state constraints EKF, which performs the tightly 154

coupled method for the real-time visual-inertial navigation 155

system [20], [21]. 156

By contrast, optimization-based solutions leverage histor- 157

ical states and sensor information for better accuracy and 158

easy integration of the loop closure detection in long-term 159

navigation [5]. VINS-Mono [22] is a pioneer open-source 160

visual-inertial simultaneous localization and mapping (SLAM) 161

leveraging factor graph optimization (FGO) [18], [23]. 162

LILI-OM [24] and LIO-SAM [25] have been introduced as 163

the state-of-the-art tightly coupled methods of LiDAR-inertial 164

SLAM since 2020. LVI-SAM [26] has lately been proposed 165

for the tightly coupled fusion of 3D LiDAR, camera, and IMU 166

via smoothing estimation. 167

Recently, more powerful artificial intelligence (AI) tech- 168

niques have been available, leading to rapidly developing end- 169

to-end learning for the third category state estimation. Overall, 170

AI-based multi-sensor fusion is divided into three primary 171

strategies in which the AI can be employed to learn the sensor 172

noise model, the relative motion model, and the end-to-end 173

solution [11], [19]. The classification overview is concisely 174

represented, as shown in Fig. 2. The AI approach can assist 175

the BF in predicting the observation model or sensor noise 176

model [19]. In particular, AI can be used to predict the relative 177

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore.  Restrictions apply. 



NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 3

Fig. 2. Overview of the multi-sensor fusion technique. (a) Presents the
overall multi-sensor fusion divided into three classes; (b) AI is used to learn
the sensor noise model; (c) AI-based relative state model; (d) the end-to-end
solution using AI; (e) Briefly describes our technique which applied AI to
learn both the sensor noise and relative state model.

robot motion between two consecutive poses immediately [8],178

[19], [27]. Furthermore, learning the sensor noise model can179

be integrated into the BF process [28], [29].180

AI-IMU dead-reckoning [28] and the tight learned inertial181

odometry (TLIO) [30] are the critical approaches that use the182

convolution of neural networks (CNNs) to predict the noise183

model in the correction phase of the EKF. Moreover, the184

relative state motion is computed to update the belief states185

of BF using AI directly. For instance, RINS-W proposed an186

EKF based on a long short-term memory (LSTM) network187

for motion profile detector on Manifold [31]. The differen-188

tiable filters [19], [32] employed deep learning to the rela-189

tive motion, measurement, or uncertainty models. Backprop190

KF [33] is a pioneer solution combining the EKF and CNN191

model for visual odometry and tracking on the KITTI dataset.192

In 2018, Jonschkowski et al. proposed the particle filter with193

a learning model for state estimation [34]. By contrast, the194

state estimation can be directly estimated by AI without195

using the BF technique. The robust neural inertial navigation196

(RoNIN) [9] and inertial odometry neural network (IONet) [8]197

performed the recurrent neural networks to predict the rel-198

ative state motion. An extended method applied LSTM for199

the neural visual-inertial odometry [35]. Table I describes200

a summary of the AI-based state estimation problem. The201

performance of each solution is evaluated by remarked with202

� (star) score. In general, the end-to-end method is straight-203

forward to implement without the Bayes inference, which204

needs to improve accuracy. In contrast, the adapting uncer-205

tainty model using deep learning in the Bayes filtering tech-206

nique to correct the uncertainty model provides better results.207

Moreover, Bayes inference with deep learning in differen-208

tiable filtering promises good performance. We implement the209

AI-based solution to learn the observation and noise models210

based on the wheel-inertial sensor data, as briefly presented211

in Fig. 2-e.212

We highlight our contributions as follows:213

• A link between factor graph optimization and the neural214

network with a novel learnable model enables us to fuse215

inertial sensors and wheel encoders efficiently.216

• Using IMU sensor and wheel encoder data, simple but217

powerful neural network architectures are proposed for218

TABLE I

OVERVIEW OF THE AI-BASED STATE ESTIMATION

the observation and noise models. In particular, we com- 219

pare the neural network architectures using different 220

training methods, including the LSTM model, deep neural 221

network, and multilayer perceptron MLP) network. 222

• We implement an accurate and robust real-time estimator 223

system to conduct the experimental evaluation with a 224

holonomic robot platform. 225

III. PROBLEM STATEMENT 226

An autonomous navigation system is generally designed 227

with three parts: state estimation and mapping, motion plan- 228

ning, and control system [3], [6], as shown in Fig. 3. In this 229

section, we describe how to embed the neural networks into 230

the Bayesian filter for state estimation using the inertial-wheel 231

encoder setup. The complete sensor setup of the holonomic 232

robot is equipped with stereo cameras, LiDARs, IMU, and 233

wheel encoders. We aim to estimate the robot position over 234

time using only the IMU sensor and wheel encoders in the 235

degradation scenarios of LiDARs and cameras. 236

A. Notations 237

In this article, we represent matrices by uppercase 238

Roman bold (A,B,C . . .), vectors are lowercase Roman bold 239

(a,b, c . . .), and scalars are donated by lowercase italics 240

(a, b, c, . . .). aXb represents a transformation X from frame 241

b to frame a. The squared Mahalanobis distance of X with 242

covariance matrix � is ‖X‖2
� = XT�−1X. Frame b denotes 243

the robot’s body coordinate that matches the IMU frame i , and 244

w represents a fixed coordinate to earth. Let M and TM be 245

n-manifold and its tangent space, respectively. For the robotics 246

field, manifold M is usually considered as a Lie group, and 247

the operator (“boxplus”) � is defined to compute the action u 248

on tangent space to a Lie group a, and operator (“boxminus”) 249

� is denoted as a differ of Lie group a and b on Euclidean 250

space as follows, 251

� : M × R
n → M ⇒ a � u = a ◦ Exp(u) (1) 252

� : M × M → R
n ⇒ b � a = Log(a−1 ◦ b), (2) 253

where the Exp and Log are capitalized exponential and loga- 254

rithm map, and ◦ is composite operation [36]. The mapping 255

between M and TM is also computed by using the capitalized 256

Exp and Log explained in [36]. SE(3) denotes the Special 257

Euclidean Group, and SO(3) is the Special Orthogonal Group 258
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Fig. 3. Autonomous system overview and the sensors coordinate system of
the holonomic robot. The world coordinate w is fixed to the earth. Frame
i is the IMU frame. b denotes the body frame. W0, W1, W2, W3 are
the coordinate of the front left, front right, rear left, and rear right wheel,
respectively. C0 and C1 are the front and rear camera frames, respectively.
The IMU frame i has coincided with body frame b.

in 3D space [36]. se(3) and so(3) are the Lie-algebra of259

SE(3) and SO(3), respectively. Similarly, SE(2) and SO(2)260

are denoted on the 2D planar. The skew-symmetric matrix of261

vector θ is represented as [θ]×. Visit [17], [36] for more detail.262

In is an n-identity matrix. e1, e2 and e3 represent the 1, 2, and263

3 column vectors of I3, respectively.264

B. Problem Formulation265

Let us provide the transformation of each sensor frame to266

the robot center, as shown in Fig. 3. In particular, an IMU is267

located at frame i , and four wheel encoders are fixed at frames268

W0, W1, W2, W3. Frame b is the body frame of the robot269

that coincides with frame i . We assume that the intrinsic and270

extrinsic calibration parameters of all sensors are computed271

precisely.272

Let us define a robot state at time ti as follows,273

xi
�= [Ri , pi , vi , ba

i , bωi ] ∈ SO(3)× R
12, (3)274

where Ri ∈ SO(3), pi , vi ∈ R
3 are the robot orientation,275

position and velocity with respect to world frame w, respec-276

tively; ba
i , bωi ∈ R3 are the IMU bias of accelerometer and277

gyroscope [13], respectively. A set of robot state up to time278

step tk is denoted as,279

χk
�= {x1, x2, . . . , xi , . . .}i∈�, (4)280

where � is the sets of robot keyframes up to tk . The robot281

utilizes just IMU sensor and wheel encoders, so the entire set282

of observing sensors data is given as,283

Zk
�= {Ii , Wi}i∈K, (5)284

where Ii and Wi represent the collection data of IMU mea-285

surements and wheel encoders up to time tk , respectively; K is286

a set of time steps at the observed sensor data. The robot pose287

at time ti is predicted by using the kinematic motion model288

with IMU measurement as [20], 289

∂

∂ t
xi = f (xi , t), (6) 290

where f (.) is a time-varying vector field function [20]. 291

The objective is to maximize the likelihood of the sensor 292

measurements Zk given a set of robot states χk . By using the 293

maximum a posterior probability (MAP) inference [17], the 294

problem is turned to, 295

χ∗
k = arg max

χk

p(χk |Zk,H0) ∝ p(H0)p(Zk |χk), (7) 296

where H0 is the set of prior state information computed 297

by the motion model and historical robot state. Given that 298

the Gaussian white noise models all states and measurement 299

noises, the measurement data is also independent. The MAP 300

problem can be transformed to a nonlinear least-square opti- 301

mization as follows [18], 302

χ∗
k = arg min

χk

(
‖r0‖2

�0
+

∑ ∥∥rρ
∥∥2
�ρ

+
∑

‖rz‖2
�z

)
, (8) 303

where r0 is the initial pose constraint; rρ denotes the prior 304

residual related to the motion model and historical states; 305

rz is the residual constructed by sensor information; �(.) is 306

the covariance matrices corresponding to its residual. Note 307

that if all the history information is maintained, the size of 308

the optimization problem (8) shall be enormous. We cannot 309

employ this large-scale optimization problem for real-time 310

applications. Therefore, the number of variables is limited to 311

a constant value to reduce the computational cost. To this 312

end, at the beginning of the sliding window, a marginalization 313

constraint of the previous window joins the optimization 314

problem [22]. In particular, in the case of using the inertial and 315

wheel encoders measurement, we indicate the total residual as 316

minimizing the following cost function as follows, 317

rM +
∑
i∈S

(∥∥rIi

∥∥2
�Ii

+ ∥∥rbi

∥∥2
�bi

+ ∥∥rWi

∥∥2
�Wi

+ ∥∥rψi

∥∥2
�ψi

)
,(9) 318

where rM is the residual marginalization [22] that is the 319

residual of the initial pose in the window S; rIi and rbi is the 320

IMU preintegration and bias factor between two consecutive 321

keyframes, respectively; rWi is the wheel encoders constraint 322

between two consecutive keyframes; rψi is the inference 323

constraints including relative velocity, zero velocity, and neural 324

network factor. 325

Here, the multi-objective non-linear least squares optimiza- 326

tion (9) called multi-criterion problem with covariance matrix 327

�(.) indicated by the weighted sum factor [37]. The covariance 328

matrix �(.) denotes the optimal trade-off for each factor. The 329

non-linear least square optimization problem (9) is represented 330

as a factor graph, as shown in Fig. 4. All sensor information 331

is observed to compute the factor on the graph and predict the 332

relative motion and noise model using the supervised learning 333

techniques [38]. The detail of this method shall be described 334

in Section IV. 335

Remark 1: The value of covariance matrix �(.) significantly 336

influences the optimal solution. A smaller covariance matrix 337

means it has more influence on the optimal answer. Note that 338

rψi or covariance matrices �(.) (9) can be directly learned 339

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore.  Restrictions apply. 



NAM AND GON-WOO: LEARNING OBSERVATION MODEL FOR FACTOR GRAPH BASED-STATE ESTIMATION 5

Fig. 4. Overview of the AI-based adaptive factor graph optimization (9).
(a)-the illustration of a factor graph in which the zero-velocity detection and
two neural network based-learning sensor models are calculated within a
sliding window. (b)- the type of factors and the link between them, where
their detailed description is presented in Section 2. (c)- the depiction of the
wheel encoder clock and IMU sensor clock, where each sensor operates at a
different frequency.

using the AI approaches. We can find the influence of covari-340

ance on the optimal solution in [37] and [29]. Furthermore,341

studying convergence properties on the manifold is presented342

in [17].343

IV. LEARNING-BASED FACTOR GRAPH OPTIMIZATION344

As we discussed in Section III. In this section, we will345

explain how to establish the non-linear least-squares opti-346

mization (9) as well as the factor graph as shown in Fig. 4.347

To conduct solving the optimization problem (9), we need to348

define the IMU preintegration factor, wheel odometer factor,349

and neural network factor.350

A. Preintegration IMU Factors351

In general, an IMU sensor can directly provide 6 DoF352

measurements [13] that are corrupted by noises and biases353

given as,354

bω̃ = bω + bg + ηg (10)355

bã = bRw(
wab − g)+ ba + ηa, (11)356

where bω̃, bã ∈ R3 are angular velocity and acceleration vector357

to body coordinate b, respectively; bg,ba ∈ R3 are quasi-358

constant biases, ηg
�= N(0, σ 2

g ), ηa
�= N(0, σ 2

a ) are zero-mean359

Gaussian noises whose standard deviations are σg and σa ;360

bRw ∈ SO(3) denotes a rotation from frame w to frame b [39].361

The biases are computed following the random walk process 362

given as [13], 363

ḃg = ηbω, ḃa = ηba, (12) 364

where ηbω and ηba are white Gaussian noises [13]. The discrete 365

IMU kinematic model can be established as follows [20], 366

wRi+1
b = wRi

b exp(	ωb�ti
×) 367

wvi+1
b = wvi

b + wai
b�ti , 368

wpi+1
b = wpi

b + wvi
b�ti + 1

2
wai

b�t2
i , (13) 369

where �ti is the sampling time, wai
b = wRi

bab + g is the 370

free acceleration in w coordinate, and g is the gravity vector. 371

The IMU preintegration technique can efficiently free the 372

computational cost, avoiding re-calculating the propagation 373

task during each IMU cycle. The core idea is to detach 374

the velocity and position into the gravity and acceleration 375

components. A set of IMU data Ii j between two consecutive 376

keyframes i and j is perceived, as shown in Fig. 4-c. Let 377

drop the denotation frames b and w (13) for readability. 378

By substituting the IMU measurement (11) into the IMU 379

kinematic model (12) (13). The inertial propagation process 380

with a batch of IMU data from time i to j can draw into the 381

residual of rotation, position, and velocity as, 382

rIi j =
[
rT
γi j
, rT

βi j
, rT

αi j

]
, (14) 383

where each element of residual rIi j is computed given as, 384

rαi j = RT
i (p j − pi − vi�t − 1

2
g�t2)−�p̃i j(b

g
i , ba

i ) 385

rβi j = RT
i (v j − vi − g�t)−�ṽi j(b

g
i , ba

i ) 386

rγi j = Log(�R̃i j(b
g
i ))R

T
i R j , 387

where �t = t j − ti . See [39] for more detail about the 388

explanation. 389

The pseudo-measurements of rotation �R̃i j , velocity �ṽi j 390

and position �p̃i j are implemented as follows [39], 391

�R̃i j =
j−1∏
ρ=i

Exp((ω̃ρ − bg
i )�t) 392

�ṽi j =
j−1∑
ρ=i

�R̃iρ(ãρ − ba
i )�t 393

�p̃i j =
j−1∑
ρ=i

[
ṽiρ�t + 1

2
�R̃iρ(ãρ − ba

i )�t2

]
, 394

These pseudo-measurements, independent of the gravity effect 395

and state variables, can be directly computed from IMU 396

measurements. Using Eq. 12, following the random walk 397

process, the derivatives acceleration bias and gyroscope bias 398

are Gaussian. Hence, a bias constraint between two consecu- 399

tive keyframes at time i to j is taken into account by the IMU 400

preintegration factor. 401

After having the computed preintegration residual, the 402

noises at time step i are iteratively propagated to step j , 403

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

as shown in Fig. 4-c. Following [39], the noises propagation404

process is computed given as,405

ψ i,ρ+1 = Aρψ i,ρ + Bρηi,ρ , (15)406

where ψ i,ρ = [
δφi,ρ δvi,ρ δpi,ρ

]T; ηi,ρ = [
ηd

gi
ηd

ai

]T
;407

Aρ =
⎡
⎣ �R̃T

ρ,ρ+1 0 0
−�R̃iρ(ãρ − ba

i )
∧�t I 0

−1
/

2�R̃iρ(ãρ − ba
i )

∧�t2 I�t I

⎤
⎦ (16)408

Bρ =
⎡
⎣ Jρr�t 0

0 �R̃iρ

0 1
/

2�R̃iρ�t2

⎤
⎦, (17)409

where �t = tρ+1 − tρ ; Jρr
�= Jρr

(
(ω̃ρ − bg

i )�t
)

denotes the410

right Jacobian [36]. Through the linear noise model (15), the411

preintegrated measurement covariance matrix is computed as412

follows,413

�i, j = A j−1�i, j−1AT
j−1 + B j−1�ηBT

j−1. (18)414

Furthermore, the Jacobians of each element of residual rIi j415

concerning all variables at time step ti and t j is computed,416

as reported in [39].417

B. Holonomic Wheel Odometry Factors418

Following the kinematic model of the holonomic robot [1],419

[40], the instance velocity of the holonomic robot is calculated420

as follows,421

⎡
⎣ ovx

ovy
oω

⎤
⎦ = ρ

4

⎡
⎣ 1 1 1 1

−1 1 1 −1
−1/

d
1/

d
−1/

d
1/

d

⎤
⎦

⎡
⎢⎢⎣

Eω0
Eω1
Eω2
Eω3

⎤
⎥⎥⎦, (19)422

where Eωi is the angular velocity of wheel i , ρ is the wheel’s423

radius, and d is the mechanical size of the robot [1], [40].424

Therefore, the general 3D velocity is computed as follows [41],425

oωm = oωe3 + nω (20)426

ovm = [
e1 e2 03

][
ovx

ovy 0
]T + nv , (21)427

where nω and nv are zero-mean Gaussian noises of the428

angular and linear velocity, respectively. Like Eq. 13, the robot429

kinematic model using wheel odometer is given as,430

wRi+1
o = wRi

oExp(oωi
m�t) (22)431

wvi+1
o = wRi+1

o
ovi+1

m . (23)432

wpi+1
o = wpi

o + wvi
o�t + 1

2

(
wvi+1

o − wvi
o

)
�t (24)433

Therefore, we can calculate the robot state at the wheel434

encoders clock as follows,435

wNi
b = [

wRi
o

oRb; oRb
wpi

o + otb; oRb
wvi

o

]
, (25)436

where oTb =
[

oRb
otb

0 1

]
∈ SE(3) is the transformation from437

wheel odometry frame to body frame, is known. Let us438

assume that body frame b coincides with wheel odometry439

frame o, so oTb =
[

I3 0
0 1

]
. The relative motion factor of the 440

robot is expressed as follows, 441

wrpi j = T̃pi j � Tpi j = T̃pi j � Exp(wTpi � wTp j ), (26) 442

where T̃pi j is the observed relative motion in (25); wTpi ∈ 443

SE(3) is the robot pose at time step i . We note that the wheel 444

odometer factor (26) is calculated in the global coordinate 445

instead of the temporary local coordinate [42]. We note that the 446

global wheel coordinate is the world coordinate that coincides 447

with the first position of the robot. Next, the velocity factor 448

in the global coordinate can be established as follows, 449

wrvi = wvi
b − wṽi

b = wvi
b − wRi

b
oRT

b
oṽi

m . (27) 450

Similarly, we determine the zero velocity factor as follows, 451

wrzero
vi

= wvi
b − 0. (28) 452

To minimize the cost function (9) using the iterative optimiza- 453

tion process [17], we need to calculated the Jacobians. Let us 454

calculate the Jacobian of relative motion residual wrpi j with 455

respect to each variable, 456

J
wrpi j
wTp j

= J−1
l (wrpi j ), (29) 457

J
wrpi j
wTpi

= −J−1
r (τ pi j ). (30) 458

Similarly, we can compute the Jacobian matrices for the 459

velocity and zero velocity factors, 460

J
wrvi
wvi

b
= I, (31) 461

J
wrvi
wRi

b
= wRi

b

⌊
oṽi

m

⌋
×, (32) 462

J
wrzero

vi
wvi

b
= I. (33) 463

See Appendix A for the proof. 464

The global velocity (23) is formed as follows, 465

wv j
o = wR j

o
ov̂ j

m = wR j
o(

ov j
m − nv ) 466

= wR j
o

ov j
m − wR j

onv = wv̂ j
o − δv j

o . (34) 467

Hence, the velocity noise is expressed as, 468

δv j
o = wR j

o nv . (35) 469

From Eq. (20), on 2D planar, the robot orientation is deter- 470

mined as, 471

φi+1 + δφi+1 = φi + δφi + (oω + ηω)�t, (36) 472

where φi is the yaw angle at time step i . Hence, the yaw angle 473

noise is denoted as, 474

δφi+1 = δφi + ηi
ω�t . (37) 475

The robot orientation noise from time step i to j is also 476

computed as follows, 477

δφi j = δφi +
j−i∑
k=1

ηk
ω�t . (38) 478

Accordingly, we can solve the orientation noise as given, 479

δRi j = δφi j e3. (39) 480
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From Eq. (24), the relative measurement noise is propagated481

following the accumulative encoder errors as yields,482

�pk,k+1 = bRk
w(
wpk+1

o − wpk
o) = �p̂k,k+1 − δpk,k+1 . (40)483

Therefore, the relative motion noise is propagated given as,484

δpk,k+1 = 1

2
kRk+1nv�t + 1

2
nv�t = 1

2
(kRk+1 + I)nv�t,485

where nv remains constant. The proof is present in Appendix486

B. So, the relative noise from time i to j is given as,487

δpi j=
1

2

j−1∑
k=i

(kRk+1 + I)nv�t . (41)488

Finally, the measurement uncertainties are updated following489

Eq. (35), (39) and (41).490

C. Learning Observation and Noise Model Based491

on Neural Network492

The AI techniques are used to learn the relative state motion493

and noise model updated in the BF solution, as shown in494

Section II. Here, the AI based-estimation problem can be495

represented as,496

Y = GAI(I, θ), (42)497

where G(.) indicates the AI model such as deep neural net-498

works or recurrent neural networks (RNN), et cetera; θ is the499

trainable parameters of the AI model; Y is the BF parameters500

as shown in Eq. 9; I is the input of the AI technique as the501

sensor data or historical states.502

In particular, in order to feed into the neural network (NN),503

the sensor measurements in a sliding window S are stacked504

as follows,505

I S
α = GRN N (α{ωρb , aρb , vρm,ω

ρ
m}∣∣

ρ
�=i : j
) (43)506

I S
β = GN N (β{ωρb , aρb , vρm,ω

ρ
m}∣∣

ρ
�=i : j
), (44)507

where GRN N and GN N are the RNN function and neural net-508

work function, respectively; α is a function to merge the sensor509

data into the sequential vectors; β denotes the vectorization510

function to combine the sensor outputs into a unique vector; I S
α511

and I S
β are the output of the neural networks utilized to predict512

the observation model or noise model. The overall solution is513

described as shown in Fig. 5. Here, GRN N or GN N is employed514

to calculate the AI factor rψ (9).515

Remark 2: Two dominant approaches are using the neural516

network to assist the BF technique. On the one hand, the517

relative state motion can be estimated given a batch of sensor518

measurements called the learning observation model. The519

residual is designed similarly to (26). On the other hand, the520

noise model (41) can be predicted and used as the uncertainty521

information in BF. The experiment result of each NN solution522

is evaluated in the next section.523

V. EXPERIMENTS524

In the following experiments, we will show the implementa-525

tion as well as the performance of the proposed method. First,526

in the implementation part, we will describe the system setup527

and deal with sensor synchronization, zero velocity detection,528

Fig. 5. Overview of the neural network-based state estimation. There are
two approaches consisting of the NN solution and the RNN method. The
sensor’s data input is converted to a unique vector, which feeds into a neural
network. The sensor’s data input can also be transformed sequentially to an
RNN model. The neural network’s output is then employed to the Bayesian
filters such as EKF or FGO, as shown in Fig. 2.

Fig. 6. Pipeline of the proposed method uses an IMU sensor and wheel
encoders. The neural networks are applied to predict the relative motion and
noise model adopted to a factor graph.

and algorithm design. Second, the neural networks for the 529

predicting problem of relative state motion and noise model 530

are presented. Finally, we report the experimental evaluations 531

in which the performance of the proposed method is compared 532

to other methods. 533

A. Implementation 534

The architecture of the proposed estimator design is 535

described as shown in Fig. 6, which consists of four parts: 536

sensor synchronization, IMU preintegration and wheel encoder 537

factor, neural network prediction, and factor graph solver. The 538

system operates within three parallel threads, including wheel 539

encoder handling, IMU processing, and neural prediction and 540

factor graph optimization. 541

1) Zero Velocity Detection Factor: Zero velocity factor (28) 542

can limit the drift and exactly reset the IMU sensor bias. The 543

robot detect stationary when zero translation and rotation are 544

observed, then a zero velocity factor (28) is immediately added 545

to the factor graph (9). In particular, the stationary motion can 546

be figured out using the wheel encoder measurements in which 547

the sensor data reported zero velocities with a small threshold 548

of 0.1 mm translation and 0.5 degree rotation. 549

2) Sensor Synchronization: In practice, the IMU and wheel 550

encoder is configured at the same frequency of 100 Hz. 551

However, the IMU sensor data and wheel velocity are not 552
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observed simultaneously, as shown in Fig. 4-c. The inertial553

sensor and wheel velocity need to synchronize to deploy554

the neural network and factor graph, as shown in Fig. 6.555

Herein, the IMU clocks are set as the references. Let observing556

the wheel velocities [vn
x v

n
y ω

n
x ] and [vn+1

x vn+1
y ωn+1

x ] at two557

consecutive time steps n and n + 1, as shown in Fig. 4. Let558

us assume that the acceleration had remained constant during559

time tn to tn+1. Therefore, the acceleration is reckoned as560

follows,561

[an
x , an

y , ζ
n
x ] =

[
vn+1

x − vn
x

�t
,
vn+1

y − vn
y

�t
,
ωn+1 − ωn

�t

]
,562

where �t = tn+1 − tn . Let tγ is an IMU time step that falls563

between time tn and tn+1 as shown in Fig. 4. Hence, the564

velocity at time tγ is calculated as follows,565

[vγx vγy ωγx ]T = [vn
x v

n
y ω

n
x ]T + [an

x an
y ζ

n
x ]T

(
tγ − tn

)
.566

Therefore, the velocity is synchronized at the IMU clock567

computed as follows,568

vγ = [e1 e2 0][vγx vγy 0]T (45)569

ωγ = ωγx e3. (46)570

3) Algorithm: We design Algorithm 1 following the571

pipeline, as shown in Fig. 6. The program is implemented572

with three parallel threads in which thread �W and �I MU are573

employed to observe wheel encoder and IMU measurement,574

respectively. Unlike other open sources [22], [25], [26], [43],575

the central computing thread is processed by using a fast576

timer checking the thread to observe the size of the global577

buffers. Whenever the size reaches 20, the optimization trigger578

is computed in this thread. The technique helps us separate579

the IMU and wheel recording thread, which can continue580

registering data while optimizing.581

B. Experimental Setup and Dataset582

1) Experimental Setup: A holonomic mobile robot platform583

with four omnidirectional wheels was used to conduct the584

experiment evaluation, as shown in Fig. 1. The robot was585

equipped with an IMU, four Kamotek wheel-encoders,1 two586

Sick 2D LiDAR sensors, and two Zed 2 cameras. The speci-587

fication of the sensors is described in Table. II. An embedded588

computer-NVIDIA Jetson AGX Xavier2 with Linux-based589

operating system and ROS Melodic3 using C++ language was590

employed to implement Algorithm 1.591

2) Evaluation Dataset and Preprocessing Data: The holo-592

nomic robot was employed to collect the datasets in an593

industrial environment. The ground truth was created by594

using the multi-sensor fusion of LiDAR, IMU, and camera,595

which provided a superior accuracy trajectory in the structured596

environment with localization mode [44]. Raw inertial data,597

including angular velocity and acceleration of one experiment,598

is shown in Fig. 7. Following Eq. (19), we can calculate the599

wheel velocity, which is filtered with a low-pass filter [45] and600

1http://komotek.com/
2http://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
3http://wiki.ros.org/melodic

Algorithm 1 Inertial-Wheel Fusion Algorithm
Input: IMU sensor and wheel encoder data
Output: Robot state

1 Initialization system: IMU, wheel encoder sensor;
2 Init IMU thread �I MU and wheel encoder thread �W ;
3 Init checking timer thread (1ms) �T ;
4 while wheel encoder obtained (�W ) do
5 Calculate wheel velocity 19;
6 Add to global wheel buffer;
7 Integration and generate temporary estimator;
8 end
9 while IMU data observed (�I MU ) do

10 Convert to body coordinate;
11 Add to IMU global buffer;
12 end
13 while checking time (�T ) do
14 if the size of IMU global buffer is 20 then
15 Synchronization and stacking data V-A2;
16 Compute neural network factorIV-C;
17 Compute and add IMU factor IV-A;
18 Compute and add wheel factor IV-B;
19 if Zero velocity V-A1 then
20 add zero factor 28;
21 end
22 Solve the graph optimization (9);
23 Update bias for IMU preintegration;
24 if the size of the graph is maximum then
25 Reset the factor graph;
26 Add the marginalization factor rM ;
27 end
28 Generate optimal state;
29 end
30 end

TABLE II

SENSOR SPECIFICATION OF THE EXPERIMENTAL SETUP

transformed to the global coordinate. A sample wheel velocity 601

is described in Fig. 8. The zero velocities are straightforward 602

to recognize in the sample dataset, as shown in Fig. 8. 603

The data smoothing and outlier removal were employed 604

to eliminate the noise of the estimated trajectory. Here, the 605

datasets were smoothed by applying the Gaussian-weighted 606

moving average [45]. The smoothed datasets had then cleaned 607

the outlier using the Modified Akima cubic interpolation [46]. 608

A sample dataset was treated, as shown in Fig. 9. 609

C. Learning Relative State Motion and Noise Model 610

As shown in Subsection IV-C, the neural networks were 611

used to predict the factor parameters in graph optimization (9). 612
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Fig. 7. Angular velocity and acceleration were recorded from one of the
datasets.

Fig. 8. Sample dataset of the wheel velocity in global coordinate was
recorded.

Fig. 9. Estimated trajectory was preprocessed by using the data smoothing
and outlier removal.

Herein, the neural network’s input is the IMU and wheel613

velocity data, and the neural network’s output is the relative614

state motion or sensor noise model of two consecutive robot615

poses. The input of the recurrent neural network is fed616

continuously at each time step as Eq. (43). Besides, the IMU617

and wheel velocity information can also be assembled as a618

unique vector (44) to be supplied to the neural network once.619

Remark 3: In practice, the rotation is accurately computed620

using the angular velocity of inertial data and wheel encoder.621

Therefore, the estimation output only need to handle the rela-622

tive translation values, which are two dimensional [�x,�y]623

(y = 2) or one dimensional �d =
√
�x2 +�y2 (y = 1).624

Later, the NN relative motion is built as a relative motion625

factor indicated as Eq. 26. Moreover, the noise model of the626

wheel odometer can be learned with the same input.627

Fig. 10. Pipeline of neural networks has been studied. The network’s input
is constructed by an IMU sensor and wheel encoder data. Here, x = 9 and
x1 = 180 if using IMU sensor and wheel encoders, x = 6 and x1 = 120 using
only IMU sensor; The output predicts the relative state motion (y = 2 or y =
1) or noise model (y = 1). (a)-the neural network uses two layers of Bi-LSTM
or LSTM; (b)-the network with one layer of Bi-LSTM or LSTM; (c)-a deep
neural network structure; (d)-an MLP network with two layers.

The lost function for two dimensional (y = 2) is simply the 628

mean square error (MSE) between the mean of the prediction 629

state motion and actual relative state at each timestep as, 630

L2 = 1

n

n∑
i=1

(
�xp

i −�x̂i
)T(
�xp

i −�x̂i
)
, (47) 631

where �xp
i = [�xi, �yi ] is the prediction state motion; 632

�x̂i = [�x̂i, �ŷi ] is the true relative state; n is the number 633

of timestep. 634

Similarly, The lost function for one dimensional (y = 1) is 635

denoted by the MSE of the relative distance of belief and true 636

state at each timestep as, 637

L1 =
n∑

i=1

1

n

(
�d p

i −�d̂i
)2
, (48) 638

where �d p
i and �d̂i are the relative distance of prediction and 639

actual state. 640

1) Learning Observation Model: We investigate the neural 641

network architectures for the end-to-end learning relative state 642

motion. The network structures are designed following three 643

types of neural network architectures, as shown in Fig. 10. 644

The first scheme employs the recurrent neural network (RNN) 645

designed following the IONet architecture [8]. Instead of using 646

only IMU data as IONet [8] (x = 6), we add the wheel 647

velocities into the input (x = 9), as shown in Subsection IV-C. 648

The system can utilize two Bi-LSTM or LSTM, as shown in 649

Fig. 10-a. The two layers network also can employ one-layer 650

Bi-LSTM or LSTM to reduce the learnable weights, as shown 651

in Fig. 10-b. Moreover, a deep neural network can conducts 652

to learn the relative state model [47], as shown in Fig. 10-c. 653

Finally, a multilayer neural network (MLP) with two layers 654

is applied for the prediction problem, as shown in Fig. 10-d. 655

The total number of weights and activation functions for each 656

neural network with x = 9, y = 1 is shown in Table III. 657

Here, the total number of weights of two layers of Bi-LSTM is 658

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on December 05,2022 at 08:57:04 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 11. Performances of each neural network handling two outputs [�x,�y]. (a) Prediction of �x . (b) Prediction of �y. (c) and (d) Enlarged from one
part of (a) and (b), respectively.

TABLE III

PROPERTIES OF THE NEURAL NETWORK ARCHITECTURES

approximately double the deep NN and is more than 260 times659

the shallow MLP, as presented in Table III.660

The neural networks were trained on a desktop computer661

using an 8GB NVIDIA RTX 3070TI GPU. For the LSTM662

and deep NN, the dataset was randomly shuffled during each663

epoch. We employed a batch size of 2048 and an ADAM664

optimizer. The initial learning rate was practically selected665

at 0.001. The Levenberg-Marquardt (LM) [48] and Bayesian666

Regularization (BR) algorithm [49] were used to train the667

MLP. Although the LM algorithm could quickly train the668

neural network, the BR method was more accurate and suitable669

for the noise dataset [49]. The evaluation of each neural670

network is specified by each training method, as shown in671

Table IV. For y = 2, the MLP accuracy achieved 0.02, which672

was 1.5 times better than the Bi-LSTM but worse than Deep673

NN, approximately two times. For y = 1, the multilayer neural674

network accuracy was just about 0.0014, and the Bi-LSTM675

and deep NN were around 0.009 and 0.008, respectively.676

The MLP with the LM and BR algorithm could be obtained677

with 8 to 9 times better accuracy than Bi-LSTM and Deep678

NN. The results of each neural network with two outputs679

(y = 2) are illustrated, as shown in Fig. 11. Although the680

response of �x to the ground truth of each neural network681

was suitable, the accuracy of �y was fair, as shown in Fig. 11.682

The evaluation results of each neural network with one output683

(y = 1) are presented, as shown in Fig. 12. In this case, the684

MLP provided the best results compared with Bi-LSTM and685

deep NN. The MLP using the BR algorithm could smoothly686

match the ground truth. Although the MLP adopting the LM687

method provided good results, the results were noise. The688

TABLE IV

EXPERIMENTAL RESULTS OF EACH NEURAL NETWORK ARCHITECTURE

Bi-LSTM and deep NN could track the ground truth with a 689

gap. The last five rows in Table IV indicated the predicting 690

results using only IMU input (x = 6). Here, the deep NN 691

achieved 0.0046, which was better than MLP with H = 30. 692

When the number of neural increased to H = 60, the accuracy 693

of MLP was better than Deep NN. However, the results of 694

MLP were pretty sensitive to the noise of IMU, as shown in 695

Fig. 13. Here, IONet got poor results compared to the deep NN 696

and MLP. 697

Remark 4: Using only IMU, the MLP is sensitive to sensor 698

noises. In this case, the experimental results confirmed that 699

the deep neural network has more potential than other neural 700

networks. 701
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Fig. 12. Accuracy of each neural network with one output �d. (a) Comparison of each neural network estimation. (b) Result is enlarged from step 1000
to 2000.

Fig. 13. Accuracy of each neural network using only IMU as input x = 6 and
x1 = 120. (a) Comparison of each neural network estimation. (b) Result is
enlarged from step 1200 to 1600.

Remark 5: The MLP is deployed to learn the relative state702

motion, as shown in Fig. 6.703

2) Neural Networks for Predicting Noise Model: Similarly,704

the NN architectures are used to learn the noise model of705

wheel relative motion factor (26), as shown in Fig. 10. The706

loss function for the noise model is defined as,707

Le =
√√√√ n∑

i=1

1

n
e2

k , (49)708

where �ek is the output created by a difference of the709

relative motion of wheel odometer prediction and ground truth,710

as follows,711

�ek =
√
(xwk+1 − xwk )

2 + (ywk+1 − ywk )
2

712

−
√
(x gt

k+1 − x gt
k )

2 + (ygt
k+1 − ygt

k )
2
, (50)713

where [xwk , ywk ] and [x gt
k , ygt

k ] are the 2D position of the714

robot computed by wheel encoders and ground truth, respec-715

tively. The performance of each neural network is shown716

in Table V. In this case, the training accuracy of MLP717

with the BR algorithm was the best at only 0.0017. MLP718

achieved the accuracy 1.8 times better than a deep neural719

network of 0.003 and 5.3 times than IONet. Here, IONet720

TABLE V

NOISE MODEL PREDICTION OF EACH NEURAL NETWORK ARCHITECTURE

provided the worst results compared with MLP and deep 721

NN. The response results of the neural networks are shown 722

in Fig. 14. 723

Remark 6: The learning noise model using an MLP is 724

applied in the factor graph optimization, as shown in Fig. 6. 725

Therefore, the observation error covariance at keyframe k is 726

then defined as, 727

Qk
�= ϕk

e diag{σ 2
ϑ1
, σ 2

ϑ2
, . . . , σ 2

ϑ6
}, (51) 728

where σ 2
ϑ1
, σ 2

ϑ2
, . . . , σ 2

ϑ6
are empirically determined; ϕk

e is the 729

output of the neural network for predicting noise model. 730

D. State Estimation Comparison 731

The experimental results are evaluated following two 732

standard metrics: the absolute trajectory error (ATE) and 733

the relative trajectory error (RTE) [8]. The ATE is defined 734

by average the root-mean-square error (RMSE) of predicted 735

trajectory and ground truth as follows, 736

ATE =
√√√√ 1

n

n∑
k=1

∥∥pk − pgt
k

∥∥2
(m) (52) 737

where pk and pgt
k are the current position and ground truth at 738

time step k; n is the number of sampling. The process of ATE 739

rotation is similar. 740
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Fig. 14. (a) Results of each neural network architecture to learn the sensor noise model. (b) Same results were enlarged from time step 1000 to 2000.

Fig. 15. Comparison of the proposed method to other solutions is shown. (a) Represents the trajectories of each solution in a trained dataset. (b) Illustrates
the estimated trajectories in an untrained dataset.

The RTE denotes the average RMSE of the estimated and741

ground truth trajectory in a constant period of 0.2 ms as,742

RTE =
√√√√1

n

n∑
i=1

∥∥�pi −�pgt
i

∥∥2
(53)743

where �pi and �pgt
i are the relative motion of the robot pose744

and its ground truth.745

The proposed algorithm is compared with the other methods746

as follows,747

• EKF: The EKF state estimation enabled fuse inertial748

data and wheel velocity for the robot [43]. The ROS749

configuration and source code are available in the robot750

localization toolbox.4751

• IMU: The IMU-preintegration estimation with752

updated bias each optimization period as shown in753

Subsection IV-A. This technique is a cumulative relative754

robot motion computed by the IMU preintegration.755

• FGO: The proposed factor graph optimization is operated756

without using neural network prediction.757

Fig. 15-a,b illustrate the predicted trajectories of each solu-758

tion using two datasets. The dataset in Fig. 15-a is trained, and759

Fig. 15-b is not trained. It was seen that the proposed approach760

4https://github.com/cra-ros-pkg/robot_localization

provides the estimated trajectories more closely to ground 761

truth. The proposed method outperformed other approaches 762

in global coordinate. The EKF-Velo and IMU-preintegration 763

results were worse in that their predicted trajectories ran 764

outside of scope. Fig. 15-a represented the estimated trajectory 765

of FGO that was also close to the proposed system with slight 766

differences. However, the proposed solution was much better 767

than FGO, which was far from the ground truth, as shown 768

in Fig. 15-b. The ATE and RTE quantitative results are 769

reported in Table VI. The proposed approach achieved the best 770

performance compared with other solutions. The overall ATE 771

errors were approximately 1.3 m in translation and 0.02 rad in 772

rotation. The mean RTE error was only 0.02 m for translation 773

and 0.001 rad for rotation. Compared to FGO, the results of 774

ATE and RTE in rotation were pretty similar. However, for 775

ATE translation, our approach was much better than FGO. 776

EKF and IMU-preintegration presented poor results for ATE 777

in which they ran out of scope. 778

Remark 7: In Fig. 15, the estimated trajectories demon- 779

strate that the relative accuracy can be learned accurately 780

when the robot moves straight following the x and y axis. The 781

estimation is not too efficient when the robot moves and turns 782

simultaneously. Therefore, the robot should travel parallel to 783

the x or y axis or rotate without moving to achieve the best 784

estimating performance. 785
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TABLE VI

ATE AND RTE ACCURACY OF EACH ESTIMATION APPROACH

TABLE VII

THE TIMING CONSUMPTION OF THE PROPOSED METHOD

E. Timing Consumption Analysis786

Computational time is the most critical task in dealing with787

real-time applications. The computation time of the proposed788

method running on an 8-core ARM 64-bit CPU of JETSON789

AGX XAVIER is summarized in Table VII. Here, the IMU790

and wheel encoder operated at 100 Hz. A software timer was791

created at 1000 Hz to check the size of sensor data. These tasks792

consumed a short time of about 1-10 μs. The neural network793

using MLP demanded only 25 μs, and FGO was needed about794

900 μs for a sliding window size of 100. The overall process795

was averagely required only 1.5 ms.796

VI. CONCLUSION797

We present a comprehensive report on the intrinsic sensors798

fusion of IMU and wheel encoder with neural networks799

based-adaptive factor graph optimization. First, we sur-800

veyed the state-of-the-art multi-sensor fusion techniques using801

Bayesian filtering and learning approaches. Then, a detailed802

explanation for state estimating problems using inertial and803

wheel encoder sensors is presented. At the core of the804

estimation system, we analyzed the different neural network805

architectures for learning the relative and uncertainty model.806

The results confirmed that a simple MLP technique could807

enhance the performance. We implemented a sensor sys-808

tem with multiple sensors of LiDAR, Camera, IMU, and809

wheel encoders on a holonomic mobile robot. The exper-810

imental results reported that the proposed technique can811

achieve the most accuracy and outperform other strategies.812

The researchers can quickly implement the proposed method813

in the multi-sensor fusion of intrinsic and extrinsic state814

estimation.815

APPENDIX 816

ODOMETRY FACTOR 817

A. The Jacobians of Relative Motion 818

The Jacobians of relative motion factor is computed as 819

follows, 820

J
wrpi j
wTp j

= J
wrpi j

Log(wTpi �wTp j )
J

Log(wTpi �wTp j )
wTpi �wTp j

J
wTpi �wTp j

wT−1
p j

J
wT−1

p j
wTp j

821

= (−I)J−1
r (τpi j )Ad−1

wTpi
(−AdwTp j

) 822

= J−1
r (wrpi j )AdwT−1

p j
wTpi

823

= J−1
r (wrpi j )Ad−1

Exp(τ pi j )
= J−1

l (wrpi j ) 824

J
wrpi j
wTpi

= J
wrpi j

Log(wTpi �wTp j )
J

Log(wTpi −wTp j )

wTpi �wTp j
J
wTpi �wTp j
wTpi

825

= −J−1
r (τ pi j ) 826

The Jacobians of the velocity constraint is calculated as, 827

J
wrvi
wRi

b
= J

wrvi
wRi

b
oRT

b
o ṽi

m
J
wRi

b
oRT

b
oṽi

m
wRi

b
= wRi

b

⌊
oṽi

m

⌋
× 828

B. The Relative Motion Noise 829

The relative motion noise is computed as, 830

�pk,k+1 = bRk
w(
wpk+1

o − wpk
o) 831

= 1

2
bRk

w

(
w v̂k+1

o + w v̂k
o

)
�t 832

= 1

2
bRk

w

(
wRk+1

b (ovk+1
m − nv )+ wRk

b(
ovk

m − nv )
)
�t 833

= 1

2
kRk+1

ovk+1
m �t+ 1

2
ovk

m�t− 1

2
kRk+1nv�t− 1

2
nv�t 834

=�p̂k,k+1 − δpk,k+1 835
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