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Abstract This paper proposes a novel methodology for trajectory planning in au-
tonomous vehicles (AVs), addressing the complex challenge of negotiating speed
bumps within a unified Mixed-Integer Quadratic Programming (MIQP) framework.
By leveraging Model Predictive Control (MPC), we develop trajectories that opti-
mize both the traversal of speed bumps and the overall passenger comfort. A key
contribution of this work is the formulation of speed bump handling constraints that
closely emulate human driving behavior, seamlessly integrating these with broader
road navigation requirements. Through extensive simulations in varied urban driv-
ing environments, we demonstrate the efficacy of our approach, highlighting its
ability to ensure smooth speed transitions over speed bumps while maintaining com-
putational efficiency suitable for real-time deployment. The method’s capability to
handle both static road features and dynamic constraints with expert human driving
represents a significant step forward in trajectory planning for urban autonomous
driving applications.

1 Introduction

Autonomous vehicles (AVs) are poised to transform transportation, offering im-
provements in safety, efficiency, and accessibility [1]. Figure 1 illustrates the ar-
chitecture of an autonomous driving system, which is structured hierarchically and
comprises several core components that work together to facilitate safe and effi-
cient navigation, particularly in scenarios such as speed reduction zones. Figure 1-
(a) illustrates the traditional approach to autonomous driving, where the framework
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is structured into sequential layers: Mapping and Localization, Decision Making,
Motion Planning, Path Tracking and Control, and Actuator Control. Each module
functions independently, relying on preceding layers for input, which can introduce
delays and reduce adaptability in dynamic environments [2]. Additionally, recent
works have made significant strides in localization techniques for enhancing percep-
tion and state estimation in autonomous systems [3, 4]. Cadena et al. [5] provides
a comprehensive review of SLAM (Simultaneous Localization and Mapping) tech-
niques, addressing both traditional methods and recent advancements. Furthermore,
recent studies [6] introduce advanced learning-based solutions for state estimation
applied to dynamic, real-world environments. These works are pivotal as they in-
tegrate machine learning with traditional state estimation, enabling the system to
adapt to a variety of scenarios, including complex and rapidly changing urban envi-
ronments. By integrating these works, we establish a robust basis for state estima-
tion and perception, underscoring their collective impact on enabling autonomous
vehicles to make accurate, real-time decisions.

This work focuses on the motion planning control for AVs [1]. Two major
enhancements are introduced on the right side of the architecture, as shown in
Fig. 1(b). The first is the MIQP-based Motion Planning module, which employs
Mixed-Integer Quadratic Programming to generate optimal trajectories [7, 8]. This
is particularly useful for navigating complex scenarios with discrete decisions, such
as speed bumps or construction zones [9]. The second enhancement is a tracking-
based NMPC module, utilizing Nonlinear Model Predictive Control to ensure robust
tracking of the planned trajectory while adapting in real-time to changing conditions
[10]. Integrating these advanced motion planning and control techniques with high-
level decision-making allows the autonomous system to handle complex driving sit-
uations with greater safety and efficiency, ensuring smooth operation across diverse
driving conditions.

Navigating speed bumps is a critical yet often underappreciated component of
trajectory planning for autonomous vehicles (AVs), especially in urban settings [11].
Speed bumps are traffic-calming measures implemented to slow vehicles down and
enhance safety in areas with significant pedestrian or cyclist activity. While human
drivers manage these obstacles with relative ease, they pose substantial challenges
for autonomous systems due to the need to simultaneously balance safety, ride com-
fort, and adherence to traffic regulations [11, 12]. One of the core challenges lies in
decelerating sufficiently to minimize impact while maintaining efficient travel times.
Human drivers, particularly those with less experience, may brake too abruptly or
fail to accelerate smoothly afterward, resulting in jerky motions that compromise
passenger comfort. In contrast, autonomous systems have the potential to optimize
these transitions through real-time trajectory adjustments, considering both the ve-
hicle’s dynamics and the surrounding environment.

Trajectory planning for AVs has been a major area of research, with a focus on
ensuring safe and efficient navigation in complex, dynamic environments. Various
strategies have been proposed, ranging from graph-based methods to continuous op-
timization techniques, each tackling different facets of the problem [1]. Dolgov et
al. [13] introduced the hybrid A* algorithm for path planning in semi-structured en-
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Fig. 1 The Hierarchical Autonomous Driving Framework. (a) presents the traditional solution for
planning and control; (b) shows our adapted solution, incorporating MIQP-based motion planning
for decision-making and motion planning.

vironments. Although this method handled scenarios with road boundaries and tight
passages effectively, it did not explicitly account for dynamic obstacles or vehicle
speed constraints, making it less suitable for navigating speed bumps or other irreg-
ular road conditions. Similarly, Ferguson et al. [14] developed an anytime D* search
algorithm for urban driving, offering real-time path planning performance in envi-
ronments with static obstacles. However, this approach did not address continuous
dynamic constraints, limiting its ability to manage the speed modulation required
for negotiating speed bumps.

More recently, Model Predictive Control (MPC) has gained attention as a ro-
bust tool for trajectory planning, owing to its capacity to incorporate complex ve-
hicle dynamics and constraints into the optimization process. Li et al. [15] applied
MPC to lane-change maneuvers, producing smooth, collision-free trajectories. De-
spite demonstrating the real-time effectiveness of MPC in trajectory generation,
their work did not consider obstacle avoidance in dense environments or account
for speed bump negotiation, which necessitates precise speed control to ensure pas-
senger comfort.

Mixed-Integer Programming (MIP) has been widely employed to handle dis-
crete decision-making in trajectory planning. Schouwenaars et al. [16] used Mixed-
Integer Linear Programming (MILP) to address aircraft collision avoidance. While
this offered a robust framework for handling discrete constraints, the challenges
posed by ground vehicle navigation—such as road boundaries, speed limits, and
speed bumps—were not considered. Adapting MIP to AV trajectory planning intro-
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duces additional complexities, requiring the integration of both discrete obstacles
(e.g., lane boundaries) and continuous variables (e.g., speed and position).

The issue of speed bump negotiation in autonomous driving has received lim-
ited attention. Handling speed bumps requires AVs to adjust their speed to ensure
passenger comfort and protect the vehicle’s suspension. This task becomes more
complicated when speed bumps are combined with other constraints, such as dy-
namic obstacles or road boundaries. A study by Navarro et al. [11] explored using
MPC to manage speed bumps in a parking lot setting, but their approach focused on
low-speed environments and did not address the challenges posed by speed bumps
in more dynamic urban driving scenarios.

In this paper, we propose an advanced trajectory planning method incorporat-
ing speed bump negotiation into the larger problem of autonomous driving in urban
environments. While most existing methods for AV trajectory planning focus pri-
marily on obstacle avoidance and lane-keeping, we specifically address the unique
challenges posed by speed bumps. Our approach uses a Model Predictive Control
(MPC) framework to generate optimal trajectories that balance speed regulation,
comfort, and safety. By formulating the problem as a Mixed-Integer Quadratic Pro-
gramming (MIQP) optimization, we can seamlessly integrate speed bump handling
into the broader task of urban navigation.

The contributions of this paper are as follows:

• A detailed analysis of vehicle dynamics related to speed bump traversal, high-
lighting the need for speed modulation to minimize discomfort and mechanical
stress.

• A novel MIQP-based optimization framework that integrates speed bump nego-
tiation into a unified trajectory planning solution for urban driving.

• Extensive simulations demonstrating the system’s ability to handle speed bumps
smoothly while maintaining efficient, safe, and comfortable vehicle motion.

By focusing on speed bump negotiation within the context of AV trajectory plan-
ning, we address an important gap in the current literature. The proposed approach
ensures that autonomous systems can handle the diverse range of road conditions
found in urban environments, contributing to safer, more comfortable, and more
efficient AV operations. The rest of this paper is organized as follows: Section 2
presents our MIQP formulation and vehicle model. Section 3 discusses our MPC-
based trajectory generation method. Section V presents our experimental setup and
results, followed by a conclusion in Section VI.

2 Methodology

This work assumes that the autonomous vehicle’s perception system can reliably
detect speed bumps and provide accurate information about their positions within a
predefined range. Specifically, the detection range is defined as [dmin,dmax], where
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dmin and dmax represent the minimum and maximum distances from the vehicle at
which speed bumps can be perceived.

2.1 Vehicle Dynamics and Linearize Non-honolomic Constraints

2.1.1 Vehicle Dynamics

Generally, the vehicle’s dynamic model is a non-linear system [2, 12], that can be
represented as:

ẋ = f (x) =


ẋ
ẏ
θ̇

v̇

=


vcos(θ)
vsin(θ)
v
L tan(σ)

a

 (1)

where, x and y are the coordinates of the vehicle’s position, θ is the heading angle
of the vehicle; v is the linear velocity of the vehicle, σ is the steering angle, L is the
wheelbase of the vehicle, a is the acceleration of the vehicle.

However, nonlinear systems are challenging to handle in MIQP-MPC. To en-
able real-time performance, we model the vehicle as a third-order linear point-mass
system [9]. The state vector xxx(k) and control input uuu(k) at time step k are defined
as:

xxx(k) = [x(k),vx(k),ax(k),y(k),vy(k),ay(k),θ(k)]⊤

uuu(k) = [ jx(k), jy(k)]⊤
(2)

where (x,y) is the position, (vx,vy) are velocities, (ax,ay) are accelerations, θ is
the heading angle, and ( jx, jy) are jerks in the longitudinal and lateral directions,
respectively.

The discrete-time dynamics are given by:

xxx(k+1) = AAAxxx(k)+BBBuuu(k) (3)

where

AAA =

[
AAAd 000
000 AAAd

]
, BBB =

[
BBBd 000
000 BBBd

]
(4)

with

AAAd =

1 ∆ t 1
2 ∆ t2

0 1 ∆ t
0 0 1

 , BBBd =

 1
6 ∆ t3

1
2 ∆ t2

∆ t

 (5)

and ∆ t is the time step. The heading angle update can be approximated as:

θ(k+1) = θ(k)+∆ t ·
vy(k)
vx(k)

(6)

The vehicle dynamics are modeled using a discrete-time kinematic model:
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x(k+1) = x(k)+ vx(k)∆ t +
1
2

ax(k)∆ t2 +
1
6

jx(k)∆ t3

y(k+1) = y(k)+ vy(k)∆ t +
1
2

ay(k)∆ t2 +
1
6

jy(k)∆ t3

vx(k+1) = vx(k)+ax(k)∆ t +
1
2

jx(k)∆ t2

vy(k+1) = vy(k)+ay(k)∆ t +
1
2

jy(k)∆ t2

ax(k+1) = ax(k)+ jx(k)∆ t

ay(k+1) = ay(k)+ jy(k)∆ t

(7)

where ∆ t is the time step.

2.1.2 Linearize Non-honolomic Constraints

The lateral velocity vy(k) is related to the longitudinal velocity vx(k) and the steering
angle θ by:

vy = vx tan(θ)

Given the steering angle constraints θmin and θmax, the lateral velocity vy(k) must
satisfy:

vy(k) ∈ [vx(k) tan(θmin),vx(k) tan(θmax)]

The lateral acceleration ay(k) is the time derivative of the lateral velocity:

ay =
d
dt
(vx tan(θ))≈ vx

d
dt
(tan(θ))

Assuming ω represents the steering rate, we have:

ay ≈ vxω

Therefore, the lateral acceleration constraint is:

ay(k) ∈ [−vx(k)ωmax,vx(k)ωmax]

These constraints approximate the nonholonomic constraints of the vehicle by
bounding the possible values of lateral velocity and acceleration based on the ve-
hicle’s longitudinal velocity and steering capabilities.

Therefore, the vehicle is subject to various constraints:

vy(k) ∈ [vx(k) tan(θmin),vx(k) tan(θmax)] (8a)
ay(k) ∈ [−vx(k)ωmax,vx(k)ωmax] (8b)

where the last two constraints approximate the nonholonomic constraints of the ve-
hicle.



Real-time Mixed-Integer Quadratic Programming for Optimal Trajectory Planning 7

2.2 MIQP Objective Function, Constraints, and Algorithm

We formulate trajectory planning for autonomous vehicles as a Mixed-Integer
Quadratic Programming based-MPC (MIQP-MPC) [17]. This framework allows
for the simultaneous modeling of the vehicle’s continuous dynamics and the dis-
crete decision-making processes involved in obstacle avoidance, lane changing, and
handling complex road scenarios like speed bumps. The MIQP-MPC provides an ef-
fective means of ensuring optimal navigation under such conditions. The following
provides a detailed explanation of each MIOCP formulation as follows,

min
X,U

N

∑
i=0

1
2

[
x(i)
u(i)

]T

H(i)
[

x(i)
u(i)

]
+

[
q(i)
r(i)

]T [x(i)
u(i)

]
(a)

s.t. x(i+1) =
[
A(i) B(i)

][x(i)
u(i)

]
+a(i), ∀i ∈ ZN−1

0 , (b)

x(i)≤ x(i)≤ x(i), u(i)≤ u(i)≤ u(i), ∀i ∈ ZN
0 , (c)

c(i)≤
[
C(i) D(i)

][x(i)
u(i)

]
≤ c(i), ∀i ∈ ZN

0 , (d)

u j(i) ∈ Z, ∀ j ∈ I(i), ∀i ∈ ZN
0 . (e)

Finally, the MIOCP (9) is converted into the following MIQP formulation:

min
z

1
2

z⊤Hz+h⊤z (a)

s.t. Gz≤ g, Fz = f, (a)
z j ∈ Z, j ∈I , (a)

where z includes all optimization variables, and the index set I denotes the
integer variables.

The adoption of Gurobi1 for solving the MIQP allows our trajectory planning
framework to manage the intricate balance between discrete decision-making and
continuous optimization, ensuring real-time feasibility in the context of autonomous
driving [18]. Its performance is especially beneficial for resource-constrained plat-
forms, enabling our model predictive control (MPC) approach to handle complex
dynamic environments while maintaining computational efficiency.

1 https://www.gurobi.com/
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2.2.1 MIQP Objective Function

The objective function for the optimal control problem over a prediction horizon of
N steps is given by:

J =
N−1

∑
k=0

(
q1(vx(k)− vr)

2 +q2ax(k)2 +q3(y(k)− yr)
2

+q4vy(k)2 +q5ay(k)2 + r1 jx(k)2 + r2 jy(k)2
) (11)

where q1, . . . ,q5 and r1,r2 are weighting coefficients, vr is the reference velocity,
and yr is the reference lateral position. The state variables vx(k), ax(k), y(k), vy(k),
ay(k) represent the longitudinal and lateral velocities, accelerations, and positions
of the system, while the control inputs jx(k) and jy(k) represent the longitudinal and
lateral jerks at time step k.

To convert the objective function J into the standard Mixed-Integer Optimal Con-
trol Problem (MIOCP) format, we first define the decision vector v(k) at each time
step k as:

v(k) =
[
x(k) vx(k) ax(k) y(k) vy(k) ay(k) jx(k) jy(k)

]⊤
Next, we express the quadratic terms in (11) in matrix form. The quadratic terms
can be rewritten as:

J =
N−1

∑
k=0

v(k)⊤Hv(k)+q⊤v(k)

where H is the matrix containing the quadratic coefficients, and q contains the linear
terms arising from the reference velocity vr and reference lateral position yr. The
matrix H is defined as:

H =



0 0 0 0 0 0 0 0
0 q1 0 0 0 0 0 0
0 0 q2 0 0 0 0 0
0 0 0 q3 0 0 0 0
0 0 0 0 q4 0 0 0
0 0 0 0 0 q5 0 0
0 0 0 0 0 0 r1 0
0 0 0 0 0 0 0 r2


The vector q is given by:
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q =



0
−2q1vr

0
−2q3yr

0
0
0
0


Finally, the constant terms (such as q1v2

r and q3y2
r ) are ignored since they do not

affect the optimization problem. In summary, the objective function J has been suc-
cessfully transformed into the quadratic form required for Mixed-Integer Optimal
Control Problems, where each term can now be efficiently handled by an appropri-
ate solver:

J =
N−1

∑
k=0

[
v(k)⊤Hv(k)+q⊤v(k)

]

2.2.2 Speed Bump Negotiation Mimicking Human Driving Behavior
Constraints

In general, the state and control input variables are bounded:

xxxmin ≤xxx(k)≤ xxxmax

uuumin ≤uuu(k)≤ uuumax
(12)

When approaching a speed bump, human drivers typically exhibit certain be-
haviors to ensure a comfortable and safe passage. Our model aims to mimic these
behaviors through a set of logical constraints. We introduce binary variables δ1(k),
δ2(k), and δ3(k) to represent the logical conditions related to the speed bump, and
turn left(k), turn right(k), and is turning(k) to represent turning behavior. The fol-
lowing constraints implement the logical conditions for speed bump negotiation:
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δ1(k) = 1⇔ x(k)≥ xbump start (13a)
δ2(k) = 1⇔ x(k)≤ xbump end (13b)
δ3(k) = 1⇔ vx(k)≤ vmax bump (13c)
turn left(k) = 1⇔ vy(k)≥ vturn (13d)
turn right(k) = 1⇔ vy(k)≤−vturn (13e)
is turning(k) = turn left(k)∨ turn right(k) (13f)
δ1(k)+δ2(k)− is turning(k)≤ 1 (13g)
−δ1(k)+δ3(k)≤ 0 (13h)
−δ2(k)+δ3(k)≤ 0 (13i)
δ1(k)+δ2(k)−δ3(k)≤ 1 (13j)

where xbump start and xbump end are the start and end positions of the speed bump,
vmax bump is the maximum allowed speed over the bump, and vturn is the threshold
lateral velocity for considering a turn.

By incorporating these human-like behaviors into the optimization model, we
aim to generate trajectories that satisfy the mathematical constraints and produce a
driving style that feels natural and comfortable to passengers, enhancing the overall
experience of autonomous navigation over speed bumps.

2.2.3 MIQP-MPC Algorithm

The complete MIQP-MPC algorithm for trajectory planning is summarized as fol-
lows:

Algorithm 1 MIQP-MPC for Trajectory Planning
Initialize state x(0)
while not at goal do

Formulate MIQP problem with objective function and constraints
Solve MIQP to obtain optimal control sequence u∗(k : k+N−1)
Apply first control input u∗(k)
Update state x(k+1) based on vehicle dynamics
k← k+1

end while
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3 Experimental Results

3.1 Experimental Setup

To evaluate the proposed method, we implemented the MIQP-MPC algorithm using
the Gurobi optimizer. We simulated various driving scenarios on a straight road with
a width of 5 meters, including multiple obstacles and a speed bump. The simulation
parameters were set as follows:

Parameter Value
Simulation Parameters

Prediction horizon (T) 20 seconds
Time step (∆ t) 0.1 seconds
Number of time steps (N) 200

Scenario Setup
Road width 2.0 meters
Initial x-position (x0) 0 m
Initial y-position (y0) 0.75 m
Initial longitudinal velocity (vx0) 10 m/s
Initial lateral velocity (vy0) 0 m/s
Reference speed (vr) 10 m/s
Speed bump start (xbump start) 30 m
Speed bump end (xbump end) 35 m
Maximum speed over bump (vmax bump) 5 m/s
Wheelbase (L) 2.7 m
Lateral velocity threshold for turning (vturn) 0.1 m/s

Cost Function Weights
q1 (longitudinal velocity deviation) 1
q2 (longitudinal acceleration) 1
q3 (lateral position deviation) 1
q4 (lateral velocity) 2
q5 (lateral acceleration) 4
r1 (longitudinal jerk) 4
r2 (lateral jerk) 4

Table 1 Simulation Parameters, Scenario Setup, and Cost Function Weights

3.2 Results and Discussion

The experiments demonstrated the effectiveness of the proposed MIQP-MPC ap-
proach in generating safe and comfortable trajectories for autonomous vehicles in
complex scenarios involving obstacles and speed bumps.

Fig. 2 illustrates the speed profile during speed bump negotiation. The vehicle
consistently reduced its speed when approaching the speed bump, maintaining a
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Fig. 2 The result with bumper width of 2m- no steering to reduce jerk

speed below the specified limit of 5 m/s while traversing the bump. Note that, in
this experiment, we do not mimic human driving, and it goes straight to pass the
bumper.

The subsequent experiment incorporates expert driving behavior, as in fig 3. At
this time, the system steers the vehicle when it reaches the bumper.

The generated trajectories exhibited smooth changes in position, velocity, and
acceleration, minimizing jerk and ensuring passenger comfort. Fig. 4 shows the ac-
celeration and jerk profiles for a typical trajectory.

Last but not least, we conducted a study on the high speed before going to the
bumper, the system can easily handle the problem and after that track the lateral
lane, as shown in Fig. 5

Despite the computational complexity of MIQP and hardware, our implementa-
tion achieves solve times compatible with real-time operation in the tested scenarios.
The computational time is about 10ms-100ms and was conducted on a laptop Intel
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Fig. 3 The result with human behavior steering

core i5. However, the current formulation assumes perfect knowledge of obstacle
positions and road conditions. Incorporating uncertainty estimation and robust opti-
mization techniques could enhance the method’s performance in real-world condi-
tions.

4 Conclusion

We propose a new approach to trajectory planning for autonomous vehicles. This
approach incorporates speed bump negotiation using Mixed-Integer Quadratic Pro-
gramming (MIQP) within a Model Predictive Control (MPC) framework. This
method can produce safe, comfortable, and efficient trajectories, particularly in com-
plex urban environments. This work contributes to a unified MIQP formulation that
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Fig. 4 The result with bumper 2m, longer run to converge to reference speed

simultaneously addresses speed bump negotiation, an MPC-based strategy that gen-
erates smooth trajectories while adhering to multiple constraints, and experimen-
tal validation demonstrating the method’s effectiveness in simulated urban driving
conditions. The results show that the proposed approach navigates complex envi-
ronments with speed bumps while preserving both passenger comfort and computa-
tional efficiency. The ability to handle various constraints within a single optimiza-
tion framework marks a significant step forward in autonomous vehicle trajectory
planning. In future research, we aim to expand this method to encompass a wider
range of urban driving scenarios, including interactions with obstacles, pedestrians,
and other vehicles, thereby narrowing the gap between controlled simulations and
real-world autonomous driving applications.
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Fig. 5 The result handling high-speed over bumper
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