
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Learning Type-2 Fuzzy Logic for Factor Graph
Based-Robust Pose Estimation With

Multi-Sensor Fusion
Dinh Van Nam and Kim Gon-Woo , Member, IEEE

Abstract— Although a wide variety of high-performance state
estimation techniques have been introduced recently, the robust-
ness and extension to actual conditions of the estimation systems
have been challenging. This paper presents a robust adaptive
state estimation framework based on the Type-2 fuzzy inference
system and factor graph optimization for autonomous mobile
robots. We use the hybrid solution to connect the advantages
of the tightly and loosely coupled technique by providing an
inertial sensor and other extrinsic sensors such as LiDARs and
cameras. In order to tackle the uncertainty input covariance
and sensor failures problems, a learnable observation model
is introduced by joining the Type-2 FIS and factor graph
optimization. In particular, the use of Type-2 Takagi-Sugeno FIS
can learn the uncertainty by using particle swarm optimiza-
tion before adding the observation model to the factor graph.
The proposed design consists of four parts: sensor odometry,
up-sampling, FIS based-learning observation model, and factor
graph-based smoothing. We evaluate our system by using a
mobile robot platform equipped with a sensor setup of multiple
stereo cameras, an IMU, and a LiDAR sensor. We imitate the
LiDAR odometry in structure environments without needing
other bulky motion capture systems to learn the observation
model of the visual-inertial estimators. The experimental results
are deployed in real-world environments to present the accuracy
and robustness of the algorithm.

Index Terms— Multi-sensor fusion, state estimation, learning
fuzzy inference systems, factor graph optimization.

I. INTRODUCTION

STATE estimation has been a core component of navigation
and control systems for autonomous mobile robots and

has been revolutionized by pioneering various technologies for
many years [1], [2]. However, robust estimation solutions for
self-driving cars, automated guided vehicles, or mining robots

Manuscript received 14 September 2021; revised 6 August 2022 and
14 November 2022; accepted 29 December 2022. This work was supported
in part by the Ministry of Science and ICT (MSIT), South Korea, under the
Grand Information Technology Research Center Support Program through the
Institute for Information & Communications Technology Planning & Evalu-
ation (IITP) under Grant IITP-2023-2020-0-01462; and in part by the Korea
Institute of Planning and Evaluation for Technology in Food, Agriculture,
Forestry (IPET) through the Open Field Smart Agriculture Technology
Short-Term Advancement Program funded by the Ministry of Agriculture,
Food and Rural Affairs (MAFRA) under Grant 322039-3. The Associate
Editor for this article was N. Bekiaris-Liberis. (Corresponding author:
Kim Gon-Woo.)

Dinh Van Nam is with the School of Engineering and Technology, Vinh
University, Vinh, Nghe An 43100, Vietnam (e-mail: namdv@vinhuni.edu.vn).

Kim Gon-Woo is with the Intelligent Robotics Laboratory, Department of
Intelligent System and Robotics, Chungbuk National University, Cheongju-si
28644, South Korea (e-mail: gwkim@cbnu.ac.kr).

Digital Object Identifier 10.1109/TITS.2023.3234595

in GPS-denied environments have faced significant challenges
such as darkness, dust, or fog scenarios [2], [3]. Extrinsic sen-
sors such as LiDARs, cameras, and radars can perceive their
surrounding environments as invariance landmarks to estimate
the robot poses and map the environments. However, the
LiDAR sensor cannot distinguish features in structureless envi-
ronments like long straight corridors or tunnels. Moreover, the
vision sensors are sensitive to light conditions and fail to track
visual landmarks in texture-less scenarios such as insufficient
illumination or changing light conditions [4], [5]. In contrast,
the inertial sensors or wheel encoders with immunity against
the surrounding conditions [3], [6]. Although the intrinsic
sensors can work well in short-term navigation, intrinsic
sensor-based state estimation drifted over time [1]. Therefore,
incorporating multi-sensor data enables the estimation system
to operate more accurately and robustly [2]. Many sensor
fusion frameworks have recently made available open sources
for the research community [7], [8], [9], [10], [11], [12].

Generally, state estimation can divide into two primary
techniques: loosely coupled and tightly coupled fusion [13].
Regularly, the tightly coupled methods have shown advantages
for accuracy, which scheme handles all sensor data in a central
process [4]. In contrast, the loosely coupled technique inde-
pendently deploys each sensor data to estimate the individual
state. Then the predicted states are joined to get the best
result [5]. Nevertheless, the tightly coupled systems have been
challenging to integrate more sensor data and inherit from
the different former methods, demanding more computational
cost [11], [12]. Moreover, the tightly coupled techniques are
sensitive to sensor failures because of running in one central
process [6]. This method is also hard to compute separately
in distributed computing systems [3], [11]. Compared to the
tightly coupled method, the loosely coupled approaches allow
more simplicity and extendibility. The methods can easily
handle sensor failure by monitoring individual estimation
engines [6]. To leverage the advantages of both techniques,
we propose a hybrid-couple solution that handles the tightly
coupled method for different sensor types. The estimated states
are then combined using the loosely coupled design to get the
optimal estimation [3].

Artificial intelligence (AI) in robotics has recently attracted
many researchers [14]. However, AI solutions need to be
tailored to meet the real-time performance of embedded com-
puters. Recently, although deep learning has been a research
trend topic, it usually needs much data for training and heavy

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3453-8875
https://orcid.org/0000-0002-4797-0464

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

computational cost [14], [15]. In contrast, the fuzzy inference
system (FIS) has effectively employed control systems to
handle complex models for more than four decades [16].
FIS is also an intelligent technique with easy-to-learn para-
meters [17]. Consequently, we introduce an efficient learning
method to handle observation model uncertainties and sensor
failures in multi-sensor fusion problems. The proposed method
deploys Type-2 TS-FIS to improve the observation model of
sensor estimation before adding the information matrices to
the factor graph [18].

This paper is organized as follows: after presenting the
related works in Section II, Section III describes the proposed
framework in detail, including problem formulation, system
architecture, and training Type-2 FIS for adapting the obser-
vation model. Next, Section IV offers experimental results
and comparison with state-of-the-art works, followed by a
conclusion in Section V.

II. RELATED WORKS

State estimation for robotics by using multi-sensor fusion
has been studied thoroughly in various literature [1], [2], [19],
[20], [21]. Generally, the sensor fusion techniques apply the
Bayes filtering inference that can be divided into two classes:
filtering-based and optimization-based [4], [5], [19]. These
fusion methods can further be categorized into loosely coupled
and tightly coupled techniques [4], [5].

The filtering based-solution applies the Kalman filter (KF)
and its variations, such as extended KF (EKF) and unscented
KF (UKF) [20]. The filtering-based systems can quickly ana-
lyze the observability, which is one significant advantage [4],
[22]. Lynen et al. introduced a loosely coupled EKF-based
multi-sensor fusion framework to combine IMU, GPS, and
camera [23]. This framework could manage sensor data with
different frequencies and assist sensor outages. Shen et al. [24]
performed a UKF-based odometry framework to handle the
camera, LiDAR, and GPS sensor. The technique used global
information and visual landmarks to update the state estima-
tion. Although this technique could perform with high accu-
racy due to precision linearization, the computational cost was
increased depending on the variable’s size. A filtering-based
ROS open-source enabled the estimation to fuse odometry data
such as inertial sensor, GPS, and LiDAR sensor [25]. The
ROS package could also decentralize the process with a weak,
tightly coupled fusion. MaRS [26] implemented the recursive
filtering strategy by updating sensor information sequentially.
The tightly coupled approaches for the visual-inertial systems
employed multi-state constraints EKF within a sliding window
to achieve high accuracy with an efficient computation [9],
[27]. Although the filtering solution could achieve high per-
formance when providing global information, it could fail to
the suboptimal state [28].

The optimization-based systems leverage all state informa-
tion and sensor data to estimate the complete robot trajec-
tory [4], [19]. The visual-inertial navigation system (VINS),
such as VIN-Fusion [7] and GOMSF [29], was introduced with
high performance using the factor graph optimization (FGO)
in a sliding window [21]. Con-Fusion was an open-source for
multi-sensor data fusion using FGO [8]. In 2021, LiLiOM [12]

enabled the directly combining 3D solid-state LiDAR and
IMU to provide real-time applications with superior accuracy.
Tixiao et al. proposed the LVI-SAM, a tightly-coupled 3D
LiDAR, camera, and IMU odometry method via smooth-
ing and mapping [21]. David et al. suggested a unified
multi-sensor fusion framework for tightly coupled LiDAR-
visual-inertial odometry using point and line features [30]. The
LIC-Fusion performed the sliding-window edge and plane fea-
tures tracking using 3D Lidar-inertial-camera odometry [31],
[32]. Nevertheless, the above estimation techniques used 3D
LiDAR without considering the sensor’s degradation and pre-
dicting observation model uncertainty.

Recently, AI-IMU dead-reckoning applied the convolutional
neural network (CNN) to predict the noise model using
the invariant EKF for IMU odometry [33]. The TLIO [34]
was a tight learned inertial odometry, which applied deep
learning to join the correction phase of the EKF directly.
Sodhi et al. proposed a factor graph-based estimation for
learning tactile models and ground encoding using CNN [35],
[36]. Kloss et al. presented an excellent overview and showed
how to train the differentiable filtering methods for state
estimation [37]. A differentiable factor graph optimization was
introduced using an end-to-end learning method [38]. This
method uses backpropagation to adjust the system models
using the CNN model. Nam et al. [18] used Type-2 FIS
without training to solve the online calibration problem by
adapting the sensor noise model in a factor graph. Recent
work exploited factor graph optimization with the learning
observation model using a neural network to adapt the covari-
ance and model for intrinsic sensors [39]. In July 2022,
Facebook released an exciting toolbox called Theseus for dif-
ferentiable nonlinear optimization with custom layers written
in Pytorch [40]. SymForce is a symbolic computation and code
generation for Robotics developed and maintained by Skydio.
The toolbox can auto-generated high-performance optimized
code in C++ [41]. Theseus and SymForce can combine to
become the perfect toolboxes that expect to help boost the
application of estimation techniques in robotics.

SIMSF [42] proposed an optimization-based solution with
fault detection using the Chi-square test. LOCUS [6] pre-
sented a simple solution with a non-smoothing switching
estimation. An efficient lidar odometry technique for real-time
subterranean 3D localization called LOCUS 2.0 has been
released for heterogeneous sensors framework using the GICP
formula [43]. In recent work, Super Odometry [3] intro-
duced a hybrid fusion technique of multiple tightly-coupled
odometry using an IMU-centric estimation. However, SIMSF,
LOCUS, and Super Odometry techniques are not open
sources. A tightly-coupled Sparse-Direct technique called
FAST-LIVO using 3D LiDAR-Inertial-Visual Odometry [44].
FAST-LIVO is an open source that can provide good accuracy
with a simple sensor degradation technique suitable for 3D
solid-state LiDAR.

We believe that there are no solutions using intuitive and
interpretable Type-2 Fuzzy logic to handle the uncertainty
problem with sensor fusion of 2D LiDAR and more than one
stereo camera fusion. We note that the earlier methods do not
correct the noise model before registering to the factor graph

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

NAM AND GON-WOO: LEARNING TYPE-2 FUZZY LOGIC FOR FACTOR GRAPH BASED-ROBUST POSE ESTIMATION 3

using Type-2 TS FIS. Also, all the methods were just applied
for 3D liDAR, while we used 2D LiDAR, which is very tough
to perform the tight-coupled technique.

In contrast with previous works, we highlight our contribu-
tions as follows,

• We propose a novel learnable observation noise model
for robust pose estimation by joining Type-2 TS FIS and
factor graph optimization. The optimization guarantee of
the learnable observation model is also discussed.

• We perform a system framework using the visual-LiDAR-
inertial sensor based on a lightweight but practical Type-2
FIS to handle uncertainty sensor noise models and sensor
failure problems with a highly accurate and low-latency
estimation. The proposed system can achieve real-time
performance and verify robustness in various perceptual
degradation scenarios.

III. METHODOLOGY

This section describes the proposed multi-sensor fusion
framework in detail. Firstly, we present several notations and
problem formulation. Secondly, the techniques consisting of
the IMU preintegration, up-sampling, and system architecture
are described. Next, we exhibit the proposed system archi-
tecture using factor graph optimization. Finally, an adaptive
observation noise model strategy based on learning Type-2
Takagi-Sugeno FIS is shown.

A. Notations

In this paper, the primary notations are defined as follows,
1) (X, Y, Z . . .) denote matrices, (x, y, z . . .) represent vec-

tors, and lowercase italics (x, y, z, . . .) are scalars.
2) I denotes the IMU-frame that coincides with the body

coordinate B , and O represents the odometry’s initial
coordinate. O TB is the transformation of frame B to
frame O.

3) The p-norm of an n-vector x = (x1, . . . , xn) is defined

as, �x�p = (
n�

i=1
|xi |p)1/p, where p ≥ 1 is a real number.

p = 2 denotes the Euclidean norm, and �x�∞
�=

max
i

|xi | denotes the max norm.

4) Max-norm of matrix Xn×m is defined by the maximum

absolute column sum of X as �X�∞ = max
1≤ j≤n

m�
i=1

��xi j
��.

5) �x�2
� = xT�x denotes the squared Mahalanobis

distance.
6) In is an n-by-n identity matrix, Iα

n
�= α×In and ae−α

�=
a × 10−α , where a, α ∈ R.

7) M denotes an n-manifold. A tangent space TM of M
is locally homeomorphic to Rn .

8) Capitalized Exp and Log are the exponential and loga-
rithm maps between tangent space and manifold [45].

9) Lowercased exp and log present exponential and loga-
rithm maps between lie algebra and manifold [45].

10) In this work, manifold M is a Lie group, then the local
map can establish via operator (“oplus”) ⊕ and operator
(“ominus”) � as,

⊕ : M × R
n → M ⇒ x ⊕ u = x ◦ Exp(u)

� : M × M → R
n ⇒ y � x = Log(x−1 ◦ y), (1)

where ◦ is a composition operation [45].
11) SO(3) is the Special Orthogonal Group,

SO(3) =
�

C ∈ R
3×3| det(C) = 1, CTC = I

�
.

12) SE(3) is the Special Euclidean Group,

SE(3) =
��

C t
0 1

�
∈ R

4×4|C ∈ SO(3), t ∈ R
3
	

.

13) The Lie-algebra of SO(3) and SE(3) are so(3) and se(3),
respectively [45].

14) [θ]× is a skew-symmetric matrix of vector θ [45], given
as

�ω× =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ .

15) A similar definition for SO(2) and SE(2) Lie group, for
more detail on SO(n), SE(n)|n=2,3, visit [19], [45].

B. Problem Formulation

Let us define the robot state at time step tk embedded in a
vector xk on 15-dimensional manifold M as,

xk = �
Rk, pk, vk, ba

k , bω
k

�
, (2)

where Rk ∈ SO(3), pk, vk ∈ R3 are the robot’s orienta-
tion, position, and velocity with respect to navigation coor-
dinate O, respectively; ba

k , bω
k ∈ R

3 are the accelerometer
and gyroscope biases [4]. Here, the scope of the proposed
sensor setup uses two stereo cameras, a LiDAR, and an
IMU. We assume that all extrinsic calibration parameters
of each sensor to the body frame B are known precisely.
The LiDAR sensor can provide the relationship between two
consequence poses [46]. Moreover, by using the stereo-visual-
inertial odometry techniques [9], [27], both stereo cameras
can also compute the relative motion between two consecutive
poses.

Hence, the stereo-LiDAR-inertial fusion problem is written
as a nonlinear least-square optimization with a cost function
given as [19],

J (x) =
�

m,n∈C

�er (xm, xn)�2
�r

+
�
k∈W

���rk
I

���2

�I

+ �eM (xs)�2
�s

+
�
p∈P

���ek
p(xp)

���2

�p
(3)

where er (xm, xn) and �r are the residual and information
matrix of the relative motion between pose m and pose n;
C is a set of relative motion factors in the sliding window
W and is limited to a fixed number for efficient computing
called fixed-lag smoothing solution [21]; rk

I and �I are the
residuals and information matrix of the IMU that will be
discussed in the next Subsection; eM (xs) is the marginalization
residual [8], [47] that uses to limit the size of sliding window
and maintain the information of the first pose xs in the
sliding window W ; ek

p(xp) and �p are the prior factor and
information matrix of pose k in prior space P . The prior

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. An illustration of the factor graph framework pipeline. The factors
are divided into adaptive and non-adaptive factors. We can integrate another
sensor like radar (sensor N) into the framework. (a)- represents the factor
graph between two consecutive poses. (b)- describes the factor graph in a
sliding window.

factors are added, indicating the prior information of the robot
poses to deal with the general problem. Usually, in this case,
we add a prior factor for the initial pose. However, suppose we
know prior pose information, such as the visual fiducial system
AprilTag [48], during robot operation. In that case, that can
be added directly to the factor graph. Equation 3 indicates a
factor graph optimization problem [21] where the constrained
variables are described as the factors above.

We note that the covariance matrices above are usually
constant that possess several limits to achieve robust perfor-
mance. This paper brings an AI approach to update these
covariance matrices. We design a factor graph architecture
to model the optimization problem (3), as shown in Fig. 1.
We note that the belief of the observation model is denoted
by the inverse of the covariance matrix of each sensor model.
A factor with a smaller covariance matrix contributes more
influence to the optimal solution [49]. Here, the results of
the MAP problem are strongly affected by the belief in the
observation model [19].

C. IMU Preintegration and Upsampling Estimation

We show how to compute inertial residual ek
I (3). The

measurement outputs of an IMU are given as [4],

ω̃ = ω + bg + ng

ã = R(wa − g) + ba + na (4)

where ω̃ and ω are the measured values and actual output
of the instantaneous angular velocity expressed in the body
frame, respectively; ã is the measurement acceleration in
the body frame, and wa is the actual acceleration in world
coordinate; R is the rotation of the body frame to the world
frame; g is the gravity vector in the world coordinate; bg is
angular velocity bias and ba is the accelerator bias; ng and
na are the zero-mean Gaussian noises of the angular veloc-
ity and acceleration, respectively. The continuous differential

equations in the world coordinate are computed as [9],

Ṙ(t) = R(t)�ω�t×
ṗ(t) = v(t)

v̇(t) = wa(t) = g + RT(t) (ã(t) − ba)

ḃa(t) = 0, ḃg(t) = 0 (5)

To avoid re-computing the inertial propagation over time (5),
the IMU preintegration enables a high-frequency propagation
process with an efficient computational cost [50]. The IMU
factor (3) predicts the navigation state xn from the current state
xm given a batch of IMU measurements. The key idea is that
the velocity and position are separated into the gravity and
acceleration components [50]. Here, the preintegrated mea-
surements are turned into pseudo-measurements of position,
velocity, and rotation. The preintegration is computed up to
time �t given as,

rImn =
�
rT
γmn

, rT
βmn

, rT
αmn

�
, (6)

where each element of residual rImn is computed as,

rαmn = RT
m(pn − pm − vm�t − 1

2
g�t2)

−�p̃mn(bgm , bam),

rβmn = RT
m(vn − vm − g�t) − �ṽmn(bgm , bam),

rγmn = Log(�R̃mn(bgm))RT
mRn,

where �t = tn − tm . The pseudo-measurements of rotation
�R̃mn , velocity �ṽmn and position �p̃mn are implemented as
follows [50],

�R̃mn =
n−1�
k=m

Exp((ω̃k − bg
m)�t)

�ṽmn =
n−1�
k=m

�R̃mk(ãk − ba
m)�t

�p̃mn =
n−1�
k=m

�
ṽmk�t + 1

2
�R̃mk(ãk − ba

m)�t2
�
. (7)

The preintegration noise can be iteratively propagated as
reported in [50].

We note that each sensor estimation operates at a different
frequency in practice, such as camera odometry at 30 Hz and
LiDAR odometry at 15 Hz. So, a high-speed IMU with a
frequency of 400 Hz is used to synchronize all the estimations.
An overview of the up-sampling process is represented in
Fig. 2. Using the discrete IMU kinetic model (5), robot
state Y to world coordinate can be upsampled to IMU
frequency as,

Y(t) =
⎛
⎝ Ri+1

vi+1

pi+1

⎞
⎠ =

⎛
⎝ Ri exp(�ω�t×)

vi + wai�t
pi + vi�t + 1

2
wai�t2

⎞
⎠ , (8)

where �t = ti+1−ti , wai = RiT
�
ãi − bi

a

�+g. The preintegra-
tion is updated to compensate for the bias velocity and rotated
gravity vector whenever other sensor data is obtained [47].

To sum up, Algorithm 1 is implemented to perform the
up-sampling process.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

NAM AND GON-WOO: LEARNING TYPE-2 FUZZY LOGIC FOR FACTOR GRAPH BASED-ROBUST POSE ESTIMATION 5

Fig. 2. The up-sampling and synchronization process using multi-stereo
cameras, LiDAR, IMU. (a)- represents the time clock of each sensor.
(b)- illustrates the upsampling process of the robot trajectory using IMU.

Algorithm 1 Preintegration and Upsampling
Input: IMU data, estimation observing at time tk
Output: estimation Yt at time t

1 Initialization preintegration P ;
2 if new IMU data come then
3 Integrated preintegration P at t (7);
4 end
5 if new estimation observed then
6 Update bias of preintegration P at tk [47];
7 end
8 Generate estimation Yt at time t (8)

Remark 1: In this work, the adaptive covariance �a in
which its format is diagonal matrix as,

�a = diag(σ1, σ2, . . . , σn), (9)

where 0 < σ1, σ2, . . . , σn < ξ are scalars that are
learned and bounded by AI technique. So, the covariances
of non-adaptive and adaptive factors are symmetric positive
definite matrix and bounded. Therefore, given the estimation
variable x̂, the optimization problem is convergence using the
Levenberg–Marquardt algorithm toward robustness [19].

D. A Simulation for Adaptive Factor Graph Optimization
Let us provide an example of state estimation using a factor

graph with an adaptive element, as shown in Fig. 3-a. A robot
moves on a planner over five steps from pose x1 to pose x5.
Each robot pose is represented on SE(2) given as,

xi =
�

Ri ti

0 1

�
∈ SE(2). (10)

The relative motion between two consecutive poses is com-
puted as follows,

ri = Log(xi+1 � xi) − ui , (11)

where ui =
⎡
⎣ δx

δy
δθ

⎤
⎦ +

⎡
⎣ nx

ny

nθ

⎤
⎦ is the odometry on se(2) of x ,

y and θ ; nx ∼ N (0, σx), ny ∼ N (0, σy) and nθ ∼ N (0, σθ)

TABLE I

THE PARAMETERS OF THE FACTOR GRAPH

Fig. 3. The experiment setup for the simulation. (a)-the visualization of the
robot’s trajectory. (b)-the factor graph represents the robot motion as shown
in (a).

are the uncertainties modelled by zero mean Gaussian noise.
To tackle the state estimation problem, we build a factor graph
to solve the state estimation problem, as shown in Fig. 3-b.
All parameters of the relative odometry factors are presented
in Table I. Here, the relative factors F1, F2, F3, F4, and prior
factor F6 are indicated with constant parameters. Only the
noise model of factor F5 is manually adjusted as follows,

1e − 3 ≤ σx ≤ 1, 2e − 3 ≤ σy ≤ 2, 1e − 2 ≤ σθ ≤ 2.

(12)

We note that factor F5 is added to mimic the uncertainty
information of the relative odometry from pose 1 to pose 2.

Next, the Levenberg–Marquardt algorithm is applied to
solve the optimization problem. The results of the factor
graph optimization are illustrated as shown in Fig. 4. The
estimated trajectories show that the uncertainty model of factor
F5 decided the accuracy of the state estimation. In particular,
the results are better when the covariance values of factor F5
have increased, as shown in Fig. 4-a. Moreover, the variation of
the relative odometry of factor F5 is present as in Fig. 4-b. The
above results confirmed that increasing the values (σx , σy, σθ)
produced better estimation outcomes.

We also increase the value of (σx , σy, σθ) to 1000, the
estimated trajectory almost coincides with the ground truth,
which validated Remark 1.

E. System Architecture

The proposed system is designed as shown in Fig. 5, which
consists of four modules: sensor estimation, up-sampling and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 4. The simulation results are illustrated when the covariance is manually
changed. (a)- estimated robot states corresponding with each covariance
matrix. (b)- The relation of the covariance scale factor to the difference
between end-pose estimated odometry with ground truth.

synchronization, Type-2 FIS covariance prediction, and local
factor graph.

1) Sensor Estimators: The sensor estimators can leverage
various fusion approaches to compute the robot pose. In par-
ticular, the sensor setup is equipped with two stereo cameras, a
9-DoF IMU, and a LiDAR sensor rigidly attached to the robot
frame, as shown in Fig. 8. This sensor system can effortlessly
add more external sensors such as wheel encoders and radars.

Firstly, the point cloud data generated from the LiDAR
sensor is filtered by downsampling and normalizing [46].
Then, the geometric registration utilizes S2M of the new
point cloud to the local point cloud submap [10], [46]. The
registration process then provides the transformation O TL by
solving a nonlinear least-square optimization problem [46],

OT∗
L = arg min

O TL

�
e
�

OTL(PL),PO

��
, (13)

where e(.) denotes the error function calculated by com-
paring the transformed reading point cloud PL to the local
map point cloud PO . The point cloud registration is done
using the iterative closest point (ICP) method [46]. To over-
come human-made environments with various plane structures,
the point-to-plane minimizer with IMU prediction search
range [51] is applied to solve Eq. 13. Here, LiDAR-IMU
fusion provides the robot poses from the laser frame L to
Odom frame O. Therefore, the trajectory information provided
by LiDAR-IMU needs to be transformed from frame B to
frame O as follows,

OY L
B (tk) = OTL(tk)

BT−1
L ∈ SE(3), �L ∈ R

6×6, (14)

where tk is the time step obtained by LiDAR measurement,
and �L is the information matrix of LiDAR odometry.

Secondly, the VINS using a stereo camera and IMU is
handled to compute the state estimation. The proposed system
with two stereo cameras employs two VINS estimations.
We note that all open sources based on VINS methods [7],
[9], [52] fail when the camera loses track and cannot recover.
In contrast, Zed-VINS1 provides high accuracy and can
recover after failures. Nevertheless, the Zed VINS covariance

1https://github.com/stereolabs/zed-ros-wrapper

matrix cannot reflect correct information in several cases like
lost feature tracking. Therefore, we provide an AI technique to
solve the uncertainty problem for the system. The Zed VINS
estimations of both stereo cameras represent their odometry
information in frame B as,

OYC1
B (tm) = O TC1(tm)BT−1

C1 ∈ SE(3),�C1 ∈ R
6×6, (15)

OYC2
B (tp) = O TC2(tp)

BT−1
C2 ∈ SE(3),�C2 ∈ R

6×6, (16)

where tm and tp are the time step observed by the front and
rear camera, respectively; �C1 and �C2 are the front and rear
camera odometry information matrix, respectively. A similar
process is deployed if we have extra other sensors.

2) Up-Sampling and Synchronization: We note that each
sensor has a different frequency. So, the sensor estimators
provide their trajectory information at different times. Herein,
trajectories generated from LiDAR OY L

B (tk) (14), front camera
OYC1

B (tm) (15) and rear camera OYC2
B (tp) (16) are obtained at

different time steps at tk , tm , and tp , respectively. The sensor
estimations can obtain at the IMU time step by using the
up-sampling technique in Subsection III-C. In practice, LiDAR
frequency is smaller than the camera frequency. Therefore,
the LiDAR clock is utilized to create the triggers for the
synchronization of all sensor estimators. Finally, the estimation
information of the front camera BYC1(tk) and rear camera
BYC2(tk) are simultaneously observable at time tk .

3) Local Factor Graph Optimization: Once all sensor esti-
mators are synchronized, their residual is added to the factor
graph (3). Whenever a laser estimation is computed, its
observed time step is selected as a local keyframe [47].
The factors are divided into two categories: adaptive and
non-adaptive factors, as shown in Fig. 1. The non-adaptive
factor consists of F1, F2, F7, and F8, as shown in Fig. 1.
Factor F1 is the IMU bias factor that remains a constant
value between two keyframes. Factor F2 denotes the IMU
preintegration as present in Subsection III-C. Note that Factor
F1 and F2 are combined to correct the bias error of the
IMU preintegration. Factor F7 is optional if proving prior
information of a keyframe such as GPS [42] and UWB [53].
Factor F8 is the marginalization factor deployed in the front
of the sliding window described in Subsection III-B [7], [8].
The adaptive factors, including LiDAR factor F3, front camera
factor F4 and rear camera factor F5, will be updated using
Type-2 FIS, as shown in Subsection III-F. Finally, the cost
function J (x) (3) of the factor graph is solved to find the
optimal states.

F. Type-2 TS FIS for Observation Noise Model
There are three FIS types: Mamdani, Takagi-Sugeno (TS),

and singleton-type. Mamdani FIS uses IF-THEN rules regis-
tered by linguistic variables [17]. Although Mamdani FIS is
an intuitive and interpretable method, TS FIS is more compu-
tationally efficient and suitable for optimization and adaptive
solutions [16], [17]. Besides, the TS type can quickly learn
the rules and guarantee the output surface’s continuity [16].
In particular, the Type-2 membership functions can handle the
uncertainty problem of the inputs [17]. Furthermore, Type-2
TS-FIS is an efficient solution for uncertainty data, with
impressive results in the control system [16].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

NAM AND GON-WOO: LEARNING TYPE-2 FUZZY LOGIC FOR FACTOR GRAPH BASED-ROBUST POSE ESTIMATION 7

Fig. 5. The pipeline of the proposed system architecture is equipped with a LiDAR sensor, two Zed 2 cameras, an IMU sensor, and an option using wheel
encoders. LiDAR odometry uses the scan-to-map (S2M) method [46]; The camera estimation leverages the visual-inertial navigation system (VINS). These
estimators are up-sampled and synchronized, then added to a factor graph with FIS-updated covariance.

Fig. 6. The proposed architecture using Type-2 FIS. The inputs are the error
of estimations and IMU preintegration and the norm of covariance matrices.
First, block FIS1a, FIS2a and FIS3a use to estimate the error to ground
truth. Then, block FIS1b, FIS2b, and FIS3b are performed to calculate the
covariance scales, which are optional depending on the experimental system.

We design a FIS framework for adapting noise parame-
ters, as shown in Fig. 6. Here, block FIS1a, FIS2a and
FIS3a are Type-2 TS FIS are utilized to predict the error
of the front camera, rear camera, and LiDAR sensor to the
ground truth. Block FIS1a is defined as following TS fuzzy
model [16], [17],

RULE Ri : IF �eC1 is SC1
i and ��C1�∞is S�

i

THEN �eG1 = ai�eC1 + bi��C1�∞ + ci ,

where Ri represents the i th rule of FIS1a; ��C1�∞ is
the max-norm of front camera covariance matrix; �eC1 =
�Log(eI � eC1)�2; eI is the prediction using IMU preintegra-
tion, eC1 is the front camera estimation; �eG1 is the prediction
error of the front VINS-Zed to ground truth. SC

i and S�
i are

the fuzzy sets to handle the error of the front camera estimation
and its covariance matrix [16], respectively. Block FIS2a and
FIS3a are designed for the rear camera and LiDAR error
estimation similar to block FIS1a.

Next, block FIS1b, FIS2b, and FIS3b are deployed to predict
the scale coefficients of the covariance matrix of the front
camera, rear camera, and LiDAR sensor. Block FIS1b is

Fig. 7. The training process of Type-2 FIS for FIS1a. The FIS first learned
the rule, then tuned the MF parameter of the input and output. The PSO
algorithm can learn the FIS parameter during training using the input and
output datasets.

designed as,

RULE Ri : IF �eG1 is SG1
i and ��L�∞is SL

i

THEN αC1 = ai�eG1 + bi��L�∞ + ci ,

where �eG1 is the output of FIS1a, αC1 is a coefficient of the
covariance matrix of the front camera factor F4 in the factor
graph as, �F4

C1
�= αC1I1e−6

6 . Block FIS2b and block FIS3b are
designed like block FIS1a. αC2 and αL are the coefficients of

the rear camera factor F5 and LiDAR factor F3 as, �F3
L

�=
αLI1e−6

6 ; �F5
C2

�= αC2I1e−6
6 . SG1

i and SL
i are the fuzzy sets of

�eG1 and ��L�∞, respectively.
An overview of the training process for FIS is shown in

Fig. 7. Since we have input/output training data, FIS1a is
trained following three steps,

• Step 1 (learning): keep the input MF SC1
i , ��C1�∞ and

output MF, and learn rules Ri of Type-2 TS fuzzy logic.
• Step 2 (turning): retain the learned rules Ri and lower

parameters of input MF SC1
i , and turn the output MF and

upper parameters of input MF SC1
i .

• Step 3 (turning): hold the rules Ri , output MF and
upper parameters of input MF SC1

i , and turn the lower
parameters of the input MF SC1

i .

Many global optimization solutions are inspired by wildlife,
such as flocks of birds or insects swarming. The genetic
algorithms and particle swarm optimization perform better in
dealing with the large ranges parameter of FIS. Similar to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 2 Multi-Sensor Fusion Algorithm
Input: Heterogeneous sensor data
Output: State estimation at time t

1 Init the odometry system: IMU, cameras, LiDAR;
2 Init the front and rear camera up-sampling (Algorithm 1);
3 while LiDAR estimation obtained do
4 Synchronization of all sensor estimators ;
5 Feed all estimation information to FIS (III-F);
6 Add factor with adaptive covariance matrices;
7 Solve the graph optimization (Fig. 1);
8 Update bias for IMU preintegration;
9 if size of the graph is maximum then

10 Reset the factor graph;
11 Update the marginalization factor;
12 end
13 end
14 while IMU data observed do
15 Add to global buffer;
16 Integration and generate estimation Yt ;
17 end

genetic algorithm, the Particle swarm is a population-based
technique in which a set of particles follow in steps throughout
a search area [54]. The objective function evaluates the process
at each step to determine the best velocity of each particle.
After updating the new particle position, the algorithm will
be re-evaluated. We perform the above process until the algo-
rithm achieves a stopping criterion. Here, the particle swarm
optimization (PSO) algorithm with the MATLAB-Global Opti-
mization Toolbox2 is used to learn the rules and tune the
membership functions (MFs) of the FIS system. FIS2a is
trained similarly to FIS1a. The training dataset is collected in
a realistic environment, then offline training the FIS structure
on a Desktop computer. Finally, we deploy the FIS framework
in C++ embedded in the whole system, as shown in Fig. 5.

IV. EXPERIMENTS

This section describes the implementation and evaluation of
the proposed system in sensor failure scenarios and uncertainty
input covariance.

A. Implementation and Experiment Setup

We implemented Algorithm 2 to run the proposed system
with four parallel threads running on the CPU resources.
The datasets were collected with a sensor system, as shown
in Fig. 8.

We built a sensor setup consisting of two stereo cameras,
a LiDAR and an IMU equipped on a mobile robot platform
which utilized the mobile robot Pioneer P3DX,3 as shown in
Fig. 8a. In order to expand the field of view of visual informa-
tion, the first Zed 2 camera4 was placed in the robot’s front,
and the second Zed 2 camera was fixed in the robot’s rear,

2http://mathworks.com/products/global-optimization.html
3http://generationrobots.com/402395-robot-mobile-pioneer-3-dx.html
4http://stereolabs.com/zed-2/

Fig. 8. (a)-The experimental structure consists of LiDAR, two Zed 2 cameras,
and an IMU that is connected to an embedded computer-Jetson NVIDIA
Xavier by USB wire; (b)-The map environment is to evaluate the investiga-
tions; (c)- The local point cloud submap for S2M method with LiDAR sensor.

as shown in Fig. 8a. Both cameras utilized the 720p resolution
image 2560 × 720 pixels at 30 Hz for real-time performance.
LiDAR sensor used Hokuyo UTM-30LX5 operating at 40 Hz,
and an MTi-100 IMU6 sampled at 400 Hz (dt = 2.5 ms).
We employed an embedded computer-NVIDIA Jetson AGX

Xavier,7 to operate the proposed system. Zed 2 cameras were
connected to the embedded computer using a USB 3.0 hub.
Hokuyo LiDAR and IMU were linked to the Xavier board with
wire USB 2.0, as shown in Fig. 8a. A C++ software framework
on the Linux-based operating system and ROS Melodic8 is
used to implement Algorithm 2. The FIS algorithm was trained
on MATLAB with a desktop PC with an Intel 4-core i7-7700
processor CPU. We then implemented Algorithm 2 with four
parallel threads on the CPU resources of the Jetson Xavier.

In this work, we calibrated the extrinsic parameters of the
sensor setup step by step. First, the front camera and IMU were
calibrated by using the kalibr toolbox.9 Then, we determined
the front and rear cameras using the ROS-based-package
TagSLAM.10 Next, 2D LiDAR and the front camera were
computed by using ROS package.11 Finally, we combine all
the extrinsic parameters concerning the front camera frame.
Table II shows the setting parameters of the proposed method
as described in Subsection III-E.

B. Learning and Analysis Type-2 FIS
The mobile robot was manually controlled to operate in a

human-made environment of around 2.5 m×60 m, as shown
in Fig. 8b. Then, we collected a realistic dataset to train
the Type 2-FIS structure and parameters as explained in

5http://hokuyo-usa.com/products/lidar-obstacle-detection/utm-30lx
6http://xsens.com/products/mti-100-series
7http://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
8http://wiki.ros.org/melodic
9https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration
10https://berndpfrommer.github.io/tagslam_web/
11https://github.com/TurtleZhong/camera_lidar_calibration

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

NAM AND GON-WOO: LEARNING TYPE-2 FUZZY LOGIC FOR FACTOR GRAPH BASED-ROBUST POSE ESTIMATION 9

Fig. 9. The evaluation of the training dataset collected using inertial sensor, IMU preintegration, LiDAR, and stereo cameras estimation.

TABLE II

AN OVERVIEW OF THE SETTING OF THE EXPERIMENT

Subsection III-F. We note that the S2M method with LiDAR
sensor supports superior accuracy for the odometry in the envi-
ronments mentioned earlier. Therefore, the proposed method
used laser-based S2M to create the ground truth in the structure
environments.

After collecting the dataset, the relative transition errors
between the two keyframes were computed. The max-norm of
the covariance matrices of VINS-Zed estimators were multi-
plied by 103 for handling efficiency. Fig 9 shows the training
data after preprocessing. We note that the smaller the value
of the max-norm of the covariance matrix, the more likely
the information is valuable. However, in several regions, the
VINS-Zed provided the wrong covariance matrices. Specifi-
cally, although arrow S1 shows a failure estimation of the front
camera, arrow S2 indicates the trustable area simultaneously,
as shown in Fig. 9. Furthermore, arrows S3 and S4 present
the rear camera estimation failure regions, but arrows S5 and
S6 indicate the small covariance at the same time, as shown
in Fig. 9. Therefore, we design the blocks FIS1a and FIS2a to
detect these uncertainty input covariances. Block FIS1a and
FIS2a are trained with collected datasets mimicking laser-
based S2M odometry. After training, the results of rules and
MFs of block FIS1a and FIS2a are shown in Fig. 10. It is noted
that the laser covariance matrix accurately reflects estimation
information. So FIS3a is not used in this test. We do not
train blocks FIS1b, FIS2b, and FIS3b which are only manually

Fig. 10. The membership functions of the Type-2 FIS scheme (as shown in
Fig. 6) after learning. Here, Dom represents the degree of membership which
describe in MATLAB- Fuzzy Logic Toolbox.

designed with five MFs of the inputs and outputs. The rules
for block FIS3b differ from block FIS1b and block FIS2b.
In general, the output after block FIS1b and block FIS2b
gets larger when laser covariance increases. In contrast, the
output of block FIS3b is grown if the laser covariance turns
in no small value. Instead of directly updating the factor
covariances, we leverage naive logic to only keep the smallest
coefficient after block FIS1b, FIS2b, and FIS3b. Then we
increase other factor scales by 103. Researchers can design
another configuration depending on the experimental results
or other sensor setups.

The parameters of the FIS design are presented in Table III.
Table IV shows that we also compare the learned Type-2
FIS with other state-of-the-art supervised learning methods
[45] by using MATLAB Statistics and Machine Learning
Toolbox.12 Although all other regression methods using local
optimization can achieve faster training, Type-2 FIS achieves
better accuracy and robustness. The neural networks (NNs)
with a fully connected layer with 25 neural indicate the best
result in all the local optimization approaches, as shown in
Fig. 12. Nevertheless, the results of NNs indicate a small error,

12https://www.mathworks.com/products/statistics.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 11. The result of trained Type-2 FIS structure. On the left is the training process, and on the right is the validation plot.

TABLE III

THE DESIGN AND CHARACTERISTICS OF THE FIS STRUCTURE

TABLE IV

THE COMPARATIVE RESULTS OF THE SUPERVISED LEARNING METHOD

which is not consistent with uncertainty compared with Type-2
FIS, as shown in Fig. 11.

C. Performance Evaluation and Comparison

1) Real-Time Performance: We analyze the processing
time to run Algorithm 2 on an embedded computer under
30W - Jetson Xavier in this part. We benchmarked the pro-
posed technique on an onboard system using an 8-core ARM
v8.2 64-bit CPU running Ubuntu 18.04 LTS. The S2M method
using 2D LiDAR has achieved the estimation frequencies
of around 15 Hz. VINS-front and VINS-rear implementing
Zed-VINS odometry obtained their state estimation at 30 Hz
with a bit of time drift between the two estimators. The overall

Fig. 12. The prediction results of the medium neural networks (NNs) after
training indicate much error in the higher response.

processing time is shown in Table II. The preprocessing task
consumed only 0.2 ms, and the FIS structure only demanded
0.8 ms, as explained in Algorithm 2. The optimization period
of the proposed method is similar to the S2M solution of
about 15 Hz. In particular, the optimization time depends
on the sliding window size of around 5-10 ms when the
number of keyframes is limited to 1000. Furthermore, the
estimation output could be upsampled up to 400 Hz as the IMU
clock.

2) Performance Evaluation: The proposed algorithm is
evaluated in two sessions using the testing datasets,

1) In the first round, the noise model and the accuracy of
VINS-Zed estimations were incorrect in several regions
where cameras defected.

2) The second round imitated an actual situation by creat-
ing an error in LiDAR scan data. Although the S2M esti-
mation method failed, the proposed system was robustly
operating with a small error.

In the first scenario, the stereo cameras were masked with
sheets of paper to examine the robustness of the proposed
method. After moving for approximately one minute, the
front camera was first covered, then the rear camera fol-
lowed. Here, we masked the front and rear cameras for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

NAM AND GON-WOO: LEARNING TYPE-2 FUZZY LOGIC FOR FACTOR GRAPH BASED-ROBUST POSE ESTIMATION 11

Fig. 13. (a)-The experimental results in round 1 when the camera fails,
(b)-when the laser fails in round 2.

Fig. 14. The output of the FIS scaling factor is indicated in the experiments
in Fig. 13.

about 60 and 20 seconds, respectively. The VINS-front and
VINS-rear estimations failed, but they could recover when
the cameras’ masks were removed. We used the same scale
factors without updating covariance information, called the
naive fusion approach. The first case result is presented in
Fig. 13a. We used the absolute trajectory error (ATE) [56]
to calculate the accuracy. Here, the ATE is represented by
the average root-mean-square error (RMSE) of the estimated
trajectory and ground truth given as,

eAT E =
���� 1

K

K�
i=1

��pi − p̂i
��2

(m) (17)

where pi and p̂i are the current position and ground-truth at
time step i ; K is the number of samplings.

In particular, arrow S1 indicated the lost tracking area of
the front camera, and the front VINS-Zed estimator began
failure, as shown in Fig. 13-a. Region S2 indicated the lost
tracking area of the rear camera. However, the influence of
region S2 was much smaller than region S1, as shown in
Fig. 13-a. In this case, the accuracy of LiDAR was the most
precise, followed by the rear camera, and the worst result was
the front camera. Hence, the prediction outcomes of the scale
factor of the LiDAR sensor were about 5, the rear VINS round
1000, and the front VINS round 105, as shown in area S1 of
Fig. 14-a. The error estimation of the front-VINS and rear-
VINS is the output of FIS1a and FIS2a, as shown in area S3
of Fig. 14-b.

The second scenario began when the robot passed the
initial pose after finishing the first round. The laser-based

TABLE V

THE EVALUATION RESULTS OF OURS AND OTHER METHODS. THE BEST
SCORE IS IN BOLD, ‘X’ DENOTES A FAILED EXPERIMENT, AND ‘O’

INDICATES THE WRONG ESTIMATION BUT NOT FAILURE. D2E IS

THE DISTANCE-TO-END POINT FOLLOWING THE KITTI
EVALUATION CRITICAL [57]

S2M method provided poor results as represented by a green
trajectory denoted by region S3, as shown in Fig. 13-b. Note
that we removed the previous masks to recover the field of
view of both stereo cameras. In contrast, we narrowed the laser
scan data with a mask to mimic the geometrically degenerate
cases.

Table V presents our evaluation results and other methods.
Although the VINS-front and VINS-rear failed in section 1,
the system used their estimation information for the data fusion
process. We used a remote control device to drive the robot to
return to the initial pose. The first visualization realized that
our system could follow the ground truth with the same draw.
Here, the ATE was less than 0.005m, calculated similarly to
our previous work [27]. The VINS-ZED of the front and rear
cameras can recover after failure. The total error of both VINS
depends on the time of failure tracking. Table V showed that
the error of ZED-VINS in ATE is more than four times higher
than ours, much far away from the initial point indicated by
the D2E score. Then we examined the error using the KITTI
criterion [27], [57] of about 0.2%. Although the fusion without
FIS got poor results with a fluctuated estimation indicated
in area S4, as shown in Fig. 13-b, the ATE was smaller
than VINS-ZED because it did not fail. In this situation, the
covariance scale of the laser factor was enormous, and the
front and rear camera scales were small, as shown in regions
S3 and S4 of Fig. 14.

The result of other VINS methods such as ORB-SLAM
[52], [58], VINS-fusion [7], and OpenVINS [9] failed in this
scenario because of covered the field of view of the cameras.
The main reason is that the methods can not recover from
failure. Also, the naive fusion approach did not guarantee
accuracy with much drift compared to the ground truth,
as shown in Fig. 13-a.

V. CONCLUSION

This paper proposed a fundamental method for a robust
multi-sensor fusion framework based on AI-assisted factor
graph optimization. Our system could handle challenging sce-
narios such as uncertainty sensor observation models or sensor
failures. We deployed Type-2 FIS to learn the uncertainty with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

PSO global optimization to update the information matrices
in the factor graph. The integration of the learned Type-2 FIS
enabled adapting the covariance for each visual sensor factor.
The outcomes indicated that the proposed method presented
great accuracy and robustness for uncertainty input covariances
and sensor failures. Our system could be quickly applied to
various sensors for diverse applications.

REFERENCES

[1] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots. Cambridge, MA, USA: MIT Press, 2011.

[2] C. Cadena et al., “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age,” IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1309–1332, Dec. 2016.

[3] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
odometry: IMU-centric LiDAR-visual-inertial estimator for challenging
environments,” 2021, arXiv:2104.14938.

[4] G. Huang, “Visual-inertial navigation: A concise review,” in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2019, pp. 9572–9582.

[5] D. Scaramuzza and Z. Zhang, “Visual-inertial odometry of aerial robots,”
2019, arXiv:1906.03289.

[6] M. Palieri et al., “LOCUS: A multi-sensor LiDAR-centric solution for
high-precision odometry and 3D mapping in real-time,” IEEE Robot.
Autom. Lett., vol. 6, no. 2, pp. 421–428, Apr. 2021.

[7] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based
framework for global pose estimation with multiple sensors,” 2019,
arXiv:1901.03642.

[8] T. Sandy, L. Stadelmann, S. Kerscher, and J. Buchli, “ConFusion:
Sensor fusion for complex robotic systems using nonlinear opti-
mization,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1093–1100,
Apr. 2019.

[9] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A research platform for visual-inertial estimation,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 4666–4672.

[10] M. Labbé and F. Michaud, “RTAB-Map as an open-source LiDAR and
visual simultaneous localization and mapping library for large-scale and
long-term online operation,” J. Field Robot., vol. 36, no. 2, pp. 416–446,
2019.

[11] T. Shan, B. Englot, C. Ratti, and D. Rus, “LVI-SAM: Tightly-coupled
LiDAR-visual-inertial odometry via smoothing and mapping,” 2021,
arXiv:2104.10831.

[12] K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-
state-LiDAR-inertial odometry and mapping,” IEEE Robot. Autom. Lett.,
vol. 6, no. 3, pp. 5167–5174, Jul. 2021.

[13] P. Corke, J. Lobo, and J. Dias, “An introduction to inertial and visual
sensing,” Int. J. Robot. Res., vol. 26, no. 6, pp. 519–535, 2007, doi:
10.1177/0278364907079279.

[14] N. Sünderhauf et al., “The limits and potentials of deep learning
for robotics,” Int. J. Robot. Res., vol. 37, nos. 4–5, pp. 405–420,
2018.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1, no. 2. Cambridge, U.K.: MIT Press, 2016.

[16] A.-T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, and
M. Sugeno, “Fuzzy control systems: Past, present and future,” IEEE
Comput. Intell. Mag., vol. 14, no. 1, pp. 56–68, Feb. 2019.

[17] J. Mendel et al., Introduction to Type-2 Fuzzy Logic Control: Theory
and Applications. Hoboken, NJ, USA: Wiley, 2014.

[18] D. V. Nam and G.-W. Kim, “Online self-calibration of multiple 2D
LiDARs using line features with fuzzy adaptive covariance,” IEEE
Sensors J., vol. 21, no. 12, pp. 13714–13726, Jun. 2021.

[19] T. D. Barfoot, State Estimation for Robotics. Cambridge, U.K.:
Cambridge Univ. Press, 2017.

[20] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). Cambridge, MA, USA: MIT Press,
2005.

[21] F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Found.
Trends Robot., vol. 6, nos. 1–2, pp. 1–139, 2017.

[22] M. Wang and A. Tayebi, “Observers design for inertial navigation
systems: A brief tutorial,” in Proc. 59th IEEE Conf. Decis. Control
(CDC), Dec. 2020, pp. 1320–1327.

[23] S. Lynen et al., “A robust and modular multi-sensor fusion approach
applied to MAV navigation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Nov. 2013, pp. 3923–3929.

[24] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor fusion
for robust autonomous flight in indoor and outdoor environments with
a rotorcraft MAV,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2014, pp. 4974–4981.

[25] T. Moore and D. Stouch, “A generalized extended Kalman filter imple-
mentation for the robot operating system,” in Intelligent Autonomous
Systems 13 (Advances in Intelligent Systems and Computing), vol. 302,
E. Menegatti, N. Michael, K. Berns, and H. Yamaguchi, Eds. Cham,
Switzerland: Springer, 2016, doi: 10.1007/978-3-319-08338-4_25.

[26] C. Brommer, R. Jung, J. Steinbrener, and S. Weiss, “MaRS: A modular
and robust sensor-fusion framework,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 359–366, Apr. 2021.

[27] D. V. Nam and K. Gon-Woo, “Robust stereo visual inertial navigation
system based on multi-stage outlier removal in dynamic environments,”
Sensors, vol. 20, no. 10, p. 2922, May 2020.

[28] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: Why
filter?” Image Vis. Comput., vol. 30, no. 2, pp. 65–77, 2012.

[29] R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, and M. Chli,
“GOMSF: Graph-optimization based multi-sensor fusion for robust UAV
pose estimation,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 1421–1428.

[30] D. Wisth, M. Camurri, S. Das, and M. Fallon, “Unified multi-modal
landmark tracking for tightly coupled LiDAR-visual-inertial odometry,”
IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1004–1011, Apr. 2021.

[31] X. Zuo et al., “LIC-fusion 2.0: LiDAR-inertial-camera odometry with
sliding-window plane-feature tracking,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2020, pp. 5112–5119.

[32] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, “LIC-fusion: LiDAR-
inertial-camera odometry,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Nov. 2019, pp. 5848–5854.

[33] M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU dead-
reckoning,” IEEE Trans. Intell. Vehicles, vol. 5, no. 4, pp. 585–595,
Dec. 2020.

[34] W. Liu et al., “TLIO: Tight learned inertial odometry,” IEEE Robot.
Autom. Lett., vol. 5, no. 4, pp. 5653–5660, Oct. 2020.

[35] P. Sodhi, M. Kaess, M. Mukadam, and S. Anderson, “Learning tactile
models for factor graph-based estimation,” 2020, arXiv:2012.03768.

[36] A. Baikovitz, P. Sodhi, M. Dille, and M. Kaess, “Ground encoding:
Learned factor graph-based models for localizing ground penetrating
radar,” 2021, arXiv:2103.15317.

[37] A. Kloss, G. Martius, and J. Bohg, “How to train your differentiable
filter,” Auto. Robots, vol. 45, pp. 1–18, Jun. 2021.

[38] B. Yi, M. A. Lee, A. Kloss, R. Martín-Martín, and J. Bohg, “Dif-
ferentiable factor graph optimization for learning smoothers,” 2021,
arXiv:2105.08257.

[39] D. V. Nam and K. Gon-Woo, “Learning observation model
for factor graph based-state estimation using intrinsic sensors,”
IEEE Trans. Autom. Sci. Eng., early access, Jun. 28, 2022, doi:
10.1109/TASE.2022.3193411.

[40] L. Pineda et al., “Theseus: A library for differentiable nonlinear opti-
mization,” 2022, arXiv:2207.09442.

[41] H. Martiros et al., “SymForce: Symbolic computation and code gener-
ation for robotics,” 2022, arXiv:2204.07889.

[42] B. Dai, Y. He, L. Yang, Y. Su, Y. Yue, and W. Xu, “SIMSF: A scale
insensitive multi-sensor fusion framework for unmanned aerial vehicles
based on graph optimization,” IEEE Access, vol. 8, pp. 118273–118284,
2020.

[43] A. Reinke et al., “LOCUS 2.0: Robust and computationally efficient
lidar odometry for real-time 3D mapping,” IEEE Robot. Autom. Lett.,
vol. 7, no. 4, pp. 9043–9050, Oct. 2022.

[44] C. Zheng, Q. Zhu, W. Xu, X. Liu, Q. Guo, and F. Zhang, “FAST-LIVO:
Fast and tightly-coupled sparse-direct LiDAR-inertial-visual odometry,”
2022, arXiv:2203.00893.

[45] J. Sola, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” 2018, arXiv:1812.01537.

[46] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing
ICP variants on real-world data sets,” Auto. Robots, vol. 34, no. 3,
pp. 133–148, 2013.

[47] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” Int. J. Robot. Res., vol. 34, no. 3, pp. 314–334, 2015.

[48] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 3400–3407.

[49] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra:
Vectors, Matrices, and Least Squares. Cambridge, U.K.: Cambridge
Univ. Press, 2018.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1177/0278364907079279
http://dx.doi.org/10.1007/978-3-319-08338-4_25
http://dx.doi.org/10.1109/TASE.2022.3193411

NAM AND GON-WOO: LEARNING TYPE-2 FUZZY LOGIC FOR FACTOR GRAPH BASED-ROBUST POSE ESTIMATION 13

[50] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Trans.
Robot., vol. 33, no. 1, pp. 1–21, Feb. 2017.

[51] A. Censi, “An ICP variant using a point-to-line metric,” in Proc. IEEE
Int. Conf. Robot. Autom., May 2008, pp. 19–25.

[52] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel,
and J. D. Tardós, “ORB-SLAM3: An accurate open-source library
for visual, visual-inertial and multi-map SLAM,” 2020, arXiv:2007.
11898.

[53] J. Li et al., “Accurate 3D localization for MAV swarms by UWB and
IMU fusion,” in Proc. IEEE 14th Int. Conf. Control Autom. (ICCA),
Jun. 2018, pp. 100–105.

[54] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intell., vol. 1, no. 1, pp. 33–57, Jun. 2007.

[55] D. Wu and M. Nie, “Comparison and practical implementation
of type-reduction algorithms for type-2 fuzzy sets and systems,”
in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jun. 2011,
pp. 2131–2138.

[56] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative
trajectory evaluation for visual(-inertial) odometry,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018,
pp. 7244–7251.

[57] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[58] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source slam
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Oct. 2017.

Dinh Van Nam received the B.Eng. degree in
control and automation engineering from the Hanoi
University of Science and Technology (HUST),
Hanoi, Vietnam, in 2012, and the Ph.D. degree
in control and robot engineering from Chungbuk
National University, South Korea, in February 2022.
He has been a Lecturer at the School of Engineering
and Technology, Vinh University, Vietnam, since
2013. His research interests include AI-robotics,
SLAM, motion planning, and control systems.

Kim Gon-Woo (Member, IEEE) received the M.S.
and Ph.D. degrees from Seoul National University,
South Korea, in 2002 and 2006, respectively. He is
currently a Professor with the Department of Elec-
tronics Engineering, Chungbuk National University,
South Korea. His research interests include naviga-
tion, localization, and SLAM for mobile robots and
autonomous vehicles.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Ulsan. Downloaded on February 01,2023 at 07:50:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

