NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research

Natural Product Communications

EDITOR-IN-CHIEF

DR. PAWAN K AGRAWAL

Natural Product Inc. 7963, Anderson Park Lane, Westerville, Ohio 43081, USA agrawal@naturalproduct.us

EDITORS

PROFESSOR ALEJANDRO F. BARRERO Department of Organic Chemistry, University of Granada, Campus de Fuente Nueva, s/n, 18071, Granada, Spain afbarre@ugr.es

PROFESSOR MAURIZIO BRUNO Department STEBICEF, University of Palermo, Viale delle Scienze, Parco d'Orleans II - 90128 Palermo, Italy maurizio bruno@unipa.it

PROFESSOR DE-AN GUO National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China gda5958@163.com

PROFESSOR VLADIMIR I. KALININ

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation kalininv@piboc.dvo.ru

PROFESSOR YOSHIHIRO MIMAKI School of Pharmacy, Tokyo University of Pharmacy and Life Sciences,

Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia sypre@uow.edu.au

PROFESSOR MANFRED G. REINECKE

Department of Chemistry, Texas Christian University, Forts Worth, TX 76129, USA m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL 35809, USA wsetzer@chemistry.uah.edu

PROFESSOR YASUHIRO TEZUKA Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan y-tezuka@hokuriku-u.ac.jp

PROFESSOR DAVID E. THURSTON

Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London, Britannia House 7 Trinity Street, London SE1 1DB, UK david.thurston@kcl.ac.uk

HONORARY EDITOR

PROFESSOR GERALD BLUNDEN The School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT U.K. axuf64@dsl.pipex.com

ADVISORY BOARD

Prof. Viqar Uddin Ahmad Karachi, Pakistan Prof. Giovanni Appendino Novara, Italy Prof. Yoshinori Asakawa Tokushima, Japan Prof. Roberto G. S. Berlinck São Carlos, Brazil Prof. Anna R. Bilia Florence, Italy Prof. Josep Coll Barcelona, Spain Prof. Geoffrey Cordell Chicago, IL, USA Prof. Fatih Demirci Eskişehir, Turkey Prof. Francesco Epifano Chieti Scalo, Italy Prof. Ana Cristina Figueiredo Lisbon, Portugal Prof. Cristina Gracia-Viguera Murcia, Spain Dr. Christopher Gray Saint John, NB, Canada Prof. Dominique Guillaume Reims, France Prof. Duvvuru Gunasekar Tirupati, India Prof. Hisahiro Hagiwara Niigata, Japan Prof. Judith Hohmann Szeged, Hungary Prof. Tsukasa Iwashina Tsukuba, Japan Prof. Leopold Jirovetz Vienna, Austria Prof. Phan Van Kiem Hanoi, Vietnam

Prof. Niel A. Koorbanally Durban, South Africa Prof. Chiaki Kuroda Tokyo, Japan Prof. Hartmut Laatsch Gottingen, Germany Prof. Marie Lacaille-Dubois Diion. France Prof. Shoei-Sheng Lee Taipei, Taiwan Prof. Imre Mathe Szeged, Hungary Prof. M. Soledade C. Pedras Saskatoon, Canada Prof. Luc Pieters Antwerp, Belgium Prof Peter Proksch Düsseldorf, Germany Prof. Phila Raharivelomanana Tahiti, French Polynesia Prof. Luca Rastrelli Fisciano, Italy Prof. Stefano Serra Milano, Italy Dr. Bikram Singh Palampur, India Prof. John L. Sorensen Manitoba, Canada Prof. Johannes van Staden Scottsville, South Africa Prof. Valentin Stonik Vladivostok, Russia Prof. Ping-Jyun Sung Pingtung, Taiwan Prof Winston F Tinto Barbados, West Indies Prof. Svlvia Urban Melbourne, Australia Prof. Karen Valant-Vetschera Vienna, Austria

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national "fair use" laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2016 subscription price: US\$2,595 (Print, ISSN# 1934-578X); US\$2,595 (Web edition, ISSN# 1555-9475); US\$2,995 (Print + single site online); US\$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.

NPC Natural Product Communications

Analysis and Olfactory Description of Four Essential Oils from Vietnam

Erich Schmidt^{a*}, Le T. Huong^b, Do N. Dai^c, Tran D. Thang^d, Juergen Wanner^c and Leopold Jirovetz^a

^aDepartment of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria ^bFaculty of Biology, Vinh University, 182-Le Duan, Vihn City, Nghe An, Province, Vietnam ^cFaculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City, Nghe An Province, Vietnam ^dFaculty of Chemistry, Vinh University, 182-Le Duan, Vinh City, Nghe An Province, Vietnam ^eKurt Kitzing Co., Hinterm Alten Schloss, Wallerstein, Germany

info@artandfragrance.de

Received: January 28th, 2016; Accepted: March 12th, 2016

The present study evaluates the chemical composition and olfactory description of the essential oils of *Asarum glabrum* Merr., *Calocedrus macrolepis* Kurz, *Cunninghamia lanceolata* (Lamb.) Hook. and *Glyptostrobus pensilis* (Stainton ex D.Don) K. Koch. The essential oils were obtained by hydrodistillation in a Clevenger-type apparatus and analyzed by GC-FID and GC-MS. Concerning their chemical composition, 66, 42, 57 and 21 volatile compounds were identified from dried leaves in the case of *Asarum glabrum* Merr. and wood for the other three, representing 98.7%, 67.2%, 92.0% and 87.5 % of the total composition, respectively. The main compounds of *Asarum glabrum* oil were safrole (38.1%), apiole (10.8%) and myristicin (8.0%); of *Calocedrus macrolepis* verbenone (9.3%), piperitone (8.6 %), α -terpineol (6.0%) and (*Z*)- β -terpineol (5.3%); of *Cunninghamia lanceolata* oil cedrol (26.3%), α -terpineol (24.1%) and camphor (7.0%); and of *Glyptostrobus pensilis* oil dihydro-eudesmol isomer (assumed) (18.3%), cedrol (16.4%), occidentalol (13.2%) and elemol (9.0%).

Keywords: Asarum glabrum, Calocedrus macrolepis, Cunninghamia lanceolata, Glyptostrobus pensilis, Vietnam, GC-FID/MS, Olfactory evaluation.

Vietnam is well known for its wealth of rare endemic flora and therefore many plants are liable to the Red Data Book of Vietnam and a Governmental decree [1]. This is applicable for *Asarum glabrum, Glyptostrobus pensilis* and *Calocedrus macrolepis*. Nevertheless, such plants produce essential oils (EO) with interesting compositions. Observing media information, more and more components of EOs are interesting for medicinal treatments or are base material and starters for pharmaceutically important drugs like star anise oil with (*E*)-anethole for the production of +(R)-Tamiflu® [2]. In consciousness of this fact and the knowledge that over 40% of pharmaceutical medications come from plants, the aim of this work was to analyze the EOs of these four species to obtain information on their volatile components [3].

A. glabrum Merr. (Aristolochiaceae), common local name in Vietnam is Hoa tiên, is a perennial herb 20 - 30 cm in height with purple when young, later green leaves. Hydrodistillation using a Clevenger-type apparatus resulted in 0.2%, v/w, oil yield. Analytical data by GC-MS are given in Table 1.

The oil is characterized by the presence of the phenylpropanoids safrole, apiole, myristicin and dillapiole; the quantities were 38.1%, 10.8%, 8.0% and 7.8%, respectively. Sesquiterpenes are the next group with around 24%, while monoterpenes are around 8%. The total composition consists of 74.5% phenylpropanoids, 7.9% sesquiterpene ethers, 4.2% sesquiterpenes, 3.5% monoterpene alcohols and 2.6% sesquiterpene alcohols. Two unknown components could not be assigned clearly. It is remarkable that apiole and dillapiole appear in the *Apiaceae* family, but were not found before in the *Aristolochiaceae* family.

C. macrolepsis Kurz, syn. *Libocedrus macrolepsus* (Kurz) Benth. & Hook. (Cupressaceae), is listed as vulnerable (B1 + 2b) in Vietnam.

The common local name is Bách xanh. The tree is straight-boled with a height up to 25 m and a diameter up to 0.8 m. The wood is used for construction, but also for incense and EO distillation [4]. Hydrodistillation using a Clevenger-type apparatus resulted in 0.3%, v/w, oil yield. Analytical data by GC-MS are given in Table 2.

This oil is dominated by monoterpene alcohols (25.8%) and monoterpene ketones (26.7%), with a further 7.1% of monoterpene ethers and 2.3% of monoterpene esters. The main component was the monoterpene ketone verbenone (9.3%), followed by piperitone (8.6%), α -terpineol (6.0%) and *cis*-beta-terpineol (5.3%). There is only one sesquiterpene hydrocarbon, cadalene (0.4%). The terpineol family, with 13.5%, is responsible for the odor, together with carvacrol and thymol methylether.

C. lanceolata (Lamb.) Hook. (Cupressaceae) is a tree with pyramidal habitus with a height up to 50 m. The common local name in Vietnam is Sa mu dàu. The wood is used for house construction and production of coffins. This is because the wood is resistant to termites and rot [5]. Hydrodistillation using a Clevenger-type apparatus resulted in 0.2%, v/w, oil yield. Analytical data by GC-MS are given in Table 3.

The oil showed highest values for cedrol (26.3%), α -terpineol (24.1%), camphor (7.0%), borneol (4.3%) and *trans*-dihydro- α -terpineol (4.3%). In total, monoterpene alcohols (42.4%), sesquiterpene alcohols (32.5%), monoterpene ketones (9.3%) and sesquiterpene hydrocarbons (3.8%) were detected.

The found values are not in accordance with formerly published papers, especially for cedrol. Shie and Sumimoto [6] reported a value of 60.5% for cedrol in an EO that was hydrodistilled and then separated by a chromatographic method into 5 fractions. Su *et al.*

 Table 1: Composition (in %) of the EO from dried leaves of Asarum glabrum from Vietnam by GC-FID and GC-MS

N°	Compound	RI [#]	%
	Compound	943	0.01
1	α-Pinene	943	
2	Camphene		0.01
3	β-Pinene	988	0.06
4	Myrcene	993	0.01
5	α-Phellandrene	1011	0.01
6	<i>p</i> -Cymene	1032	0.01
7	Limonene	1037	0.08
8	1,8-Cineole	1041	0.2
9	(E)-Ocimene	1050	0.01
10	γ-Terpinene	1066	0.01
	<i>cis</i> -Linalool oxide	1079	0.02
11			
12	trans-Linalool oxide	1094	0.01
13	<i>p</i> -Cymenene	1097	0.02
14	Linalool	1102	1.3
15	α-Fenchol	1126	0.04
16	1,1-Diisobutoxypentane	1157	0.1
17	Camphor	1160	0.03
18	Borneol	1180	0.3
19	Terpinen-4-ol	1190	0.4
20	p-Cymen-8-ol	1194	0.06
21	α-Terpineol	1201	1.4
22	γ-Terpineol	1208	0.03
23	Myrtenal	1210	0.01
	5		
24	Citronellol	1230	0.02
25	Nerol	1234	0.02
26	Thymol methyl ether	1240	0.01
27	Isobornyl formate	1243	0.05
28	Linalyl acetate	1257	0.06
29	(<i>E</i>)-Anethole	1264	0.03
30	Bornyl acetate	1298	0.09
31	Safrol	1302	38.1
32	δ-Elemene	1354	0.04
33	Terpinyl acetate	1359	3.6
34	Eugenol	1368	0.3
35	Unknown 1	1378	0.6
36	Unknown 2	1391	1.0
37	a-Copaene	1397	0.07
38	Methyl eugenol + β-Elemene	1406	2.1
39	α-Santalene	1438	0.05
40	α-Cedrene	1443	0.06
41	(<i>E</i>)-β-Caryophyllene	1447	0.05
42	trans-a-Bergamotene	1451	0.5
43	trans-β-Farnesene	1461	0.3
44	Aromadendren	1467	0.08
45	Myristicin	1482	0.04
46	ar-Curcumene	1495	1.5
47	(<i>E</i>)-Methyl isoeugenol	1502	
			0.2
48	Sarisane	1509	3.6
49	β-Selinene	1513	0.5
50	α -Selinene + β -Curcumene	1522	0.9
51	Sesquicineole	1531	7.8
52	Myristicin	1535	8
53	δ-Cadinene	1543	0.2
54	Elemicin	1558	0.8
55	(E)-Nerolidol	1571	0.4
56	(Z)-Isoelemicin	1577	1.7
57	2,3,4,5 Tetramethoxyallylbenzene	1602	0.08
58	Spathulenol	1607	0.1
59	(Z)-Asarone	1622	0.01
60	Dillapiol	1640	7.8
61	Alismol	1654	0.2
62	α-Acorenol	1661	0.1
63	β-Acorenol	1678	0.02
64	α-Bisabolol oxide B	1681	0.07
65	(E)-Asarone	1685	1.1
66			
	5-epi-β-Bisabolol	1692	0.2
67	Apiole	1696	10.8
	α-Bisabolol	1701	1.5
68	a-Bisabolol	1701	110

 Table 2: Composition (in %) of the EO from the wood of Calocedrus macrolepis from Vietnam by GC-FID and GC-MS.

N°	Compound	RI [#]	%
1	1-Methyl-cyclohexa-1,3-diene	771	0.03
2	α-Pinene	943	0.02
3	α-Fenchene	948	0.1
4	Camphene	957	0.05
5	α-Methylstyrene	988	0.2
6	2,3-Dehydro-1,8-cineole	998	0.1
7	2,6-Dimethyl-6-hepten-2-ol	1011	1.0
8	1,4-Cineole	1021	0.5
9	<i>p</i> -Cymene	1031	0.5
10	Limonene	1037	0.1
11	1.8-Cineole	1041	0.7
12	<i>m</i> -Cymenene	1089	0.07
13	2-Phenyl-2-propanol	1092	2.1
14	<i>p</i> -Cymenene	1097	0.2
15	trans-Sabinene hydrate	1111	0.3
16	α-Fenchocamphorone	1118	1.6
17	trans-p-Menth-2-en-1-ol	1127	1.5
18	α-Fenchol	1131	1.5
19	Terpineol-1	1143	1.8
20	cis-beta-Terpineol	1154	5.3
21	Camphor	1159	3.7
22	Pinocamphone + trans-beta-Terpineol	1174	4.8
23	δ-Terpineol	1178	0.4
24	p-Methylacetophenone + (iso)Pinocampheol	1182	1.4
25	p-Cymen-8-ol	1187	0.2
26	p-Cymen-9-ol	1189	1.0
27	a-Terpineol	1201	6.0
28	2-α-Hydroxy-1,8-cineole	1219	0.8
29	Verbenone	1224	9.3
30	3-α-Hydroxy-1,8-cineole	1234	3.1
31	Thymol methyl ether	1250	2.8
32	<i>cis</i> -Myrtanol	1258	0.1
33	Piperitone	1268	8.6
34	Phellandral	1291	0.3
35	Thymol	1296	0.2
36	Methyl myrtenate	1302	0.7
37	Carvacrol	1307	1.8
38	Carvone Mathed thuists	1313	0.4
39	Methyl thujate	1335	1.6
40	1,3-Dimethoxy-5-(1-methylethyl)-benzene	1376	1.2
41	Carvone hydrate Cadalene	1440	0.8
42	total	1702	0.4 67.2
	ioiai		07.2

published a value for cedrol of 58.3%, but for *C. lanceolata* var. *konishii* [7]. Wang *et al.* only found 4.9% of cedrol [8].

G. pensilis (Stainton ex D. Don) K. Koch (Cupressaceae) is listed in group I of the "Rare and Precious Flora and Fauna" in Vietnam. The common local name in Vietnam is Thủy tùng. The tree possesses a pyramidal crown; the smallest branches are usually deciduous, reaching a height of 20 m. The wood was previously used for construction and craftwork and is described as water resistant [9]. Hydrodistillation using a Clevenger-type apparatus resulted in 0.3%, v/w, oil yield. Analytical data by GC-MS are given in Table 4.

This oil is dominated by a high amount of sesquiterpenoids and lacks monoterpenes. Sesquiterpene alcohols (76.8%), sesquiterpene hydrocarbons (9.7%) and sesquiterpene epoxides (0.9%) were detected. The highest values were for dihydro-eudesmol isomer (18.3%), cedrol (16.4%), occidentalol (13.2%), elemol (8.9%) and α -cedrene (6.1%). All these compounds are responsible for this woody and fine odor.

Experimental

Plant material: Leaves of *A. glabrum* were collected in Hurong Son District, Hà Tĩnh Province; wood of *C. macrolepis* in Pu Mát

Table 3: Composition (in %) of the EO from the wood of *Cunninghamia lanceolata* from Vietnam by GC-FID and GC-MS.

	by GC-FID and GC-MS.	#	
N°	Compound	RI [#]	%
1	Tricyclene	930	tr
2	α-Pinene	941	0.3
3	α-Fenchene	955	0.04
4	Camphene	958	0.2
5	Sabinene	980	0.01
6	2,3-Dehydro-1,8-cineole	996	0.04
7	1,4-Cineole	1020	0.03
8	<i>p</i> -Cymene	1030	0.05
9	Limonene	1035	0.1
10	1,8-Cineole	1039	0.1
11	Fenchone	1097	2.0
12	α-Fenchol	1124	2.2
13	<i>cis</i> -Linalool oxide pyranoid	1136	0.1
13	1.5		
	Terpineol-1	1141	0.08
15	trans-Dihydro-a-terpineol	1153	4.3
16	Camphor	1158	7.0
17	Camphene hydrate	1163	0.3
18	Isoborneol	1171	1.0
19	p-Mentha-1,5-dien-8-ol	1175	0.1
20	Borneol	1179	5.2
21	Terpinen-4-ol	1188	0.4
	p-Cymen-8-ol		
22	1 5	1192	1.1
23	α-Terpineol	1201	24.1
24	2-α-Hydroxy-1,8-cineol	1218	0.4
25	Verbenone	1222	0.04
26	Citronellol	1225	0.02
27	Fenchyl acetate	1228	0.05
28	3-α-Hydroxy-1,8-cineol	1233	0.9
29	Bornyl formate	1242	0.03
	•		
30	Piperitone	1266	0.3
31	cis-Myrtanol	1274	0.07
32	Methyl myrtenate	1306	0.5
33	6-Vinyl-2,2,6-trimethyl-2H-tetrahydropyran-3-ol	1314	1.0
34	Terpinyl acetate	1357	0.1
35	trans-p-Menth-6-en-2,8-diol	1390	1.
36	trans-p-Menth-6-en-2,8-diol isomer	1393	0.6
37	Carvone hydrate	1439	1.1
	•		
38	α-Cedrene	1441	2.7
39	α-Cedrene	1451	0.7
40	Thujopsene	1459	0.1
41	ar-Curcumene	1494	0.07
42	Cuparene	1532	0.2
43	Elemol	1569	0.1
44	Longicamphenilone	1599	0.08
45	α-Cedrene epoxide	1611	0.07
	Caryophyllene oxide		
46	5 1 5	1615	0.1
47	Widdrol	1635	2.8
48	Cedrol	1640	26.3
49	epi-Cedrol	1654	0.8
50	γ-Eudesmol	1659	0.3
51	τ -Muurol + τ -cadinol	1667	0.5
52	δ-Cadinol	1670	0.3
52	α-Cadinol	1680	1.0
54	Acorenone	1691	0.2
55	α-Bisabolol	1700	0.5
56	Junicedranone	1712	0.1
57	Cedryl acetate	1801	0.4
	total		92.0

Tr = trace (< 0.01)

National Park, Nghe An Province; wood of *C. lanceolata* from Pu Hoat Nature reservation, Nghe An Province; and wood of *G. pensilis* from DarLac Province. Collection was in May 2013. Botanical identification was performed by Dr Do N. Dai. Voucher specimens DND 912, DND 914, DND 915 and DND 916, respectively were deposited at the Botany Museum, Vinh University, Vietnam.

EO distillation and analysis: Leaves of A. glabrum were dried at room temperature (22°C). Wood samples of C. macrolepsis, C.

 Table 4: Composition (in %) of the EO from the wood of. *Glyptostrobus pensilis* from Vietnam by GC-FID and GC-MS.

N°	Compound	RI [#]	%
1	α-Duprezianane	1411	0.2
2	Sibirene	1425	0.1
3	α-Cedrene	1442	6.1
4	β-Cedrene	1452	1.7
5	4,5-α,α-Eudesmane	1512	0.8
6	Cuparene	1533	0.8
7	Dihydro-eudesmol isomer (assumed)	1540	18.3
8	Elemol	1569	8.9
9	Occidentalol	1571	13.2
10	Caryophyllene alcohol	1602	0.7
11	α-Cedrene epoxide	1611	0.4
12	Caryophyllene oxide	1616	0.5
13	Widdrol	1635	4.0
14	Cedrol	1640	16.4
15	6-epi-Cubenol	1655	2.5
16	γ-Eudesmol	1660	1.5
17	β-Eudesmol	1682	2.9
18	Dihydro-eudesmol	1692	5.7
19	Khusiol	1721	1.0
20	Occidol	1864	0.6
21	Manool	2093	1.1
	total		87.5

Table 5: Odor descriptions of the EOs of A. glabrum, C. macrolepis, C. lanceolata and G. pensilis.

Asarum glabrum leaves	herbal, aromatic, somewhat spicy, celery connotation, later
	balsamic slightly woody.
Calocedrus macrolepsis	Fresh, cedar like, warm woody, herbal touch, later soft balsamic
wood	with little woody-smoky connotation.
Cunninghamia lanceolata	Soft woody, slightly terpeny top with fresh and green
wood	connotation, later soft woody, fine cedar note.
Glyptostrobus pensilis	Tender warm woody notes reminding of cedar and cypress, later
wood	balsamic with slight burning note

lanceolata and G. pensilis were crushed and ground. The EOs were hydrodistilled for 3 h at normal pressure according to the Vietnamese Pharmacopoeia [10]. The obtained oil was stored under refrigeration until sent for analysis.

GC-FID and GC-MS analyses were simultaneously performed on a Thermo Fisher Scientific Trace GC Ultra using a MS-FID splitter consisting of a quartz Y-splitter and a 20 cm × 0.1 mm ID fused silica restrictor column as an inlet to the GC-MS interface and a 1 m \times 0.25 mm deactivated fused silica column serving as a transfer line to the FID detector. The split/splitless injector was heated at 230°C and connected to a 50 m \times 0.25 mm \times 1.0 μ m SE-52 capillary column (made and tested for deactivation and separation efficiency in our lab). The FID detector operated at 250°C. EO (0.1 µL) was injected with a 0.5 µL plunger-in-needle syringe at a split ratio of 1:100 using a TriPlus RSH Autosampler. For substance identification, a Thermo Fisher Scientific ISO Mass Spectrometer was used with GC-MS interface heating at 250°C, ion source 230°C, EI mode at 70 eV, filament 50 µA, scan range 40-500 amu. The following temperature program was used: 60°C for 1 min, heating to 230°C at a rate of 3°C/min, and 230°C for 12.3 min. The carrier gas was helium 5.0 with a constant flow rate of 1.5 mL/min.

Thermo Xcalibur 2.2 software was used for identifying the compounds by correlating mass spectra to databases of NIST 08 (National Institute of Standards and Technology, Gaithersburg, Maryland), Wiley Registry of Mass Spectral Data 8th Edition (Wiley, Hoboken, New Jersey), Adams [11], MassFinder terpenoids library (Hochmuth, Hamburg, Germany) and our own library. Retention indices determined according to [12,13]. Quantification was performed using normalized peak area calculations of the FID chromatogram without – by first approximation – relative FID response factors. All analyses were made in triplicate and the media value was used.

Olfactory evaluation: For olfactory evaluation, one droplet of each EO sample was applied onto commercially available paper blotters.

Each sample was examined by a trained professional perfumer and two aroma-chemists over 90 min to control odor progression.

References

- [1] Dang N T, RED DATA BOOK 2004 OF VIETNAM. (2004), Vietnam Academy of Science and Technology
- [2] Goodman PS. (2005) Star rises in fight against birdfFlu. *The Washington Post*, http://www.washingtonpost.com/wpdyn/content/article/2005/11/17/AR2005111701855.html
- [3] Grifo F, Newman D, Fairfield AS: (1997) The origins of prescription drugs. Biodiversity and human health. Edited by: Grifo F, Rosenthal J., Washington, DC: Island Press, 131-163
- [4] Hiep NTH, Loc PK, Luu NDT, Thomas PI, Farjon A, Averyanov L, Regalado J Jr. (2004) Vietnam Conifers. CONSERVATION STATUS REVIEW, Fauna & Flora International, Vietnam Programme, 49-50.
- [5] Hiep NTH, Loc PK, Luu NDT, Thomas PI, Farjon A, Averyanov L, Regalado J Jr. (2004) Vietnam Conifers, CONSERVATION STATUS REVIEW, Fauna & Flora International, Vietnam Programme, 53-54.
- [6] Shieh JC, Sumimoto M. (**1992**) Identification of the volatile components in the leaves and wood of *Cunninghamia lanceolata*. International Information System for the Agricultural Science and Technology, **36**, 301-310
- [7] Su YC, Hsu KP, Wang El, Ho CL. (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Natural Product Communications, 7, 1245-1247.
- [8] Wang SY, Wang YS, Tseng YH, Lin CT, Liu CP. (2006) Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung, 60, 528–532.
- [9] Hiep NTH, Loc PK, Luu NDT, Thomas PI, Farjon A, Averyanov L, Regalado J Jr. (2004) Vietnam Conifers, CONSERVATION STATUS REVIEW, Fauna & Flora International, Vietnam Programme, 60-61.
- [10] Vietnamese Pharmacopoeia (1997). Medical Publishing House, Hanoi, Vietnam
- [11] Robert P. Adams (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed., Allured Publishing Corp., Carol Stream, Illinois, USA.
- [12] Van den Dool H, Kratz PD. (**1963**) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. *Journal of Chromatography*, **11**, 463-471.
- [13] Gas Chromatographic Retention Data, National Institute of Standards and Technology. http://webbook.nist.gov/chemistry/gc-ri/ (retrieved 2013-04-15).

Natural Product Communications Vol. 11 (10) 2016 Published online (www.naturalproduct.us)

Altitude Variation in the Composition of Essential Oils, Fatty Acid Methyl Esters, and Antimicrobial Activities of Two Subspecies of <i>Primula vulgaris</i> Grown in Turkey Nurettin Yaylı, Gonca Tosun, Büşra Yaylı, Zeynep Gündoğan, Kamil Coşkunçelebi and Şengül Alpay Karaoğlu	1505
Chemical Composition of Fruit Essential Oil of Endemic Malabaila pastinacifolia Nurhayat Tabanca	1511
Exploitation of <i>Artemisia arborescens</i> as a Renewable Source of Chamazulene: Seasonal Variation and Distillation Conditions Evangelos C. Michelakis, Epameinondas Evergetis, Sofia D. Koulocheri, and Serkos A. Haroutounian	1513
Chemical Composition and Bio-efficacy of Essential Oils from Italian Aromatic Plants: <i>Mentha suaveolens</i> , <i>Coridothymus capitatus</i> , <i>Origanum hirtum</i> and <i>Rosmarinus officinalis</i> Antonella Spagnoletti, Alessandra Guerrini, Massimo Tacchini, Vittorio Vinciguerra, Claudia Leone, Immacolata Maresca, Giovanna Simonetti, Gianni Sacchetti and Letizia Angiolella	1517
Essential Oil Composition of <i>Helichrysum conglobatum</i> from Cyprus Kaan Polatoğlu, Betül Demirci, İhsan Çalış and Kemal Hüsnü Can Başer	1521
Chemical Profiles and Anti-inflammatory Activity of the Essential Oils from Seseli gummiferum and Seseli corymbosum	
subsp. corymbosum Alev Tosun, Jaemoo Chun, Igor Jerković, Zvonimir Marijanović, Maurizio A. Fenu, Sena S. Aslan, Carlo I. G. Tuberoso and Yeong S. Kim	1523
Chemical Characterization of the Volatiles of Leaves and Flowers from Cultivated <i>Malva sylvestris</i> var. <i>mauritiana</i> and their Antimicrobial Activity Against the Aetiological Agents of the European and American Foulbrood of Honeybees (<i>Apis mellifera</i>) Roberto Cecotti, Patrizia Bergomi, Emanuele Carpana and Aldo Tava	1527
Essential Oil Composition of <i>Pimpinella cypria</i> and its Insecticidal, Cytotoxic, and Antimicrobial Activity Nurhayat Tabanca, Ayse Nalbantsoy, Ulrich R. Bernier, Natasha M. Agramonte, Abbas Ali, Andrew Y. Li, Husniye Tansel Yalcin, Salih Gucel and Betul Demirci	1531
Chemical Composition and Biting Deterrent Activity of Essential Oil of <i>Tagetes patula</i> (Marigold) against <i>Aedes aegypti</i> Abbas Ali, Nurhayat Tabanca, Elham Amin, Betul Demirci and Ikhlas A. Khan	1535
Larvicidal Activity of Essential Oil Constituents Against Malaria Vector, Anopheles gambiae (Diptera: Culicidae) Tamires Cardoso Lima, Eliningaya J. Kweka, Chrian M. Marciale and Damião Pergentino de Sousa	1539
Preparative Capillary GC for Characterization of Five <i>Dracocephalum</i> Essential Oils from Mongolia, and their Mosquito Larvicidal Activity Gülmira Özek, Nurhayat Tabanca, Mohammed M. Radwan, Sanduin Shatar, Altaa Altantsetseg, Dumaajav Baatar, Kemal H.C. Başer, James J. Becnel and Temel Özek	1541
Effect of Thyme Essential Oil Supplementation on Thymol Content in Blood Plasma, Liver, Kidney and Muscle in Broiler Chickens Vladimíra Ocel'ová, Remigius Chizzola, Jana Pisarčíková, Johannes Novak, Oksana Ivanišinová, Štefan Faix and Iveta Plachá	1545
Analysis and Olfactory Description of Four Essential Oils from Vietnam Erich Schmidt, Le T. Huong, Do N. Dai, Tran D. Thang, Juergen Wanner and Leopold Jirovetz	1551
Effects of a Pleasant Natural Odor on Mood: No Influence of Age Sandra T. Glass and Eva Heuberger	1555
A Pilot Study on the Physiological Effects of Three Essential Oils in Humans Martina Höferl, Christina Hütter and Gerhard Buchbauer	1561
Influence of Essential Ginger Oil on Human Psychophysiology after Inhalation and Dermal Application Iris Stappen, Anna-Sofie Hoelzl, Olivera Randjelovic and Juergen Wanner	1565
<u>Accounts/Reviews</u>	
Natural Sesquiterpene Lactones as Potential Trypanocidal Therapeutic Agents: A Review Liliana V. Muschietti and Jerónimo L. Ulloa	1569
Natural Triterpenoids for the Treatment of Diabetes Mellitus: A Review Han Lyu, Jian Chen and Wei-lin Li	1579
The Biological Activity of Alkaloids from the Amaryllidaceae: From Cholinesterases Inhibition to Anticancer Activity Klára Habartová, Lucie Cahlíková, Martina Řezáčová and Radim Havelek	1587
Chemical and Biological Study of Cladosporin, an Antimicrobial Inhibitor: A Review Xiaoning Wang, David E Wedge and Stephen J Cutler	1595
An Interesting Tour of New Research Results on Umami and Umami Compounds Sabine Greisinger, Stefan Jovanovski and Gerhard Buchbauer	1601
Biological Properties of Some Volatile Phenylpropanoids Radmila Ilijeva and Gerhard Buchbauer	1619

Natural Product Communications 2016

Volume 11, Number 10

Contents

<u>Editorial</u>	i
<u>Greeting Message</u> Herbert Ipser and Erich Leitner Wolfgang Kubelka and Helmut Viernstein	iii v
Preface Ernst Urban	vii
Nurhayat Tabanca, Iris Stappen and Gerhard Buchbauer	x
Original Paper BIO-	
Analgesic Activity of Novel GABA Esters after Transdermal Delivery Mariia Nesterkina and Iryna Kravchenko	1419
11-Hydroxy-2,4-cycloeudesmane from the Leaf Oil of <i>Juglans regia</i> and Evaluation of its Larvicidal Activity Ayşegül Köroğlu, Ayşe Baldemir, Gülmira Özek, Erdal Bedir, Nurhayat Tabanca, Abbas Ali, Ikhlas A. Khan, Kemal Hüsnü Can Başer and Temel Özek	1421
Insecticidal Pregnane Glycosides from the Root Barks of <i>Periploca sepium</i> Renfeng Li, Ximei Zhao, Baojun Shi, Shaopeng Wei, Jiwen Zhang, Wenjun Wu and Zhaonong Hu	1425
Synthesis and Antimicrobial Activity of Calycanthaceous Alkaloid Analogues Shaojun Zheng, Longbo Li, Yu Wang, Rui Zhu, Hogjin Bai and Jiwen Zhang	1429
Apigenin Suppresses Angiogenesis by Inhibiting Tube Formation and Inducing Apoptosis Hyun Ju Kim and Mok-Ryeon Ahn BIODIVE	RSIT1433
A Novel Genistein Prodrug: Design, Synthesis and Bioactivity on Mouse RAW264.7 Macrophages Burkhard Kloesch, Silvia Loebsch, Jenny Breitenbach, Katrin Goldhahn, Norbert Handler, Philipp Schreppel and Thomas Erker	1437
Cytotoxic Effects of Resveratrol, Rutin and Rosmarinic Acid on ARH–77 Human (Multiple Myeloma) Cell Line Zerrin Canturk, Miris Dikmen, Oge Artagan, Mustafa Guclu Ozarda and Nilgun Ozturk	1441
Evaluation of Antioxidant Interactions of Combined Model Systems of Phenolics in the Presence of Sugars Mirela Kopjar, Ante Lončarić, Mateja Mikulinjak, Žaklina Šrajbek, Mihaela Šrajbek and Anita Pichler	1445
HPLC Fingerprint Combined with Quantitation of Phenolic Compounds and Chemometrics as an Efficient Strategy for Quality Consistency Evaluation of Sambucus nigra Berries Agnieszka Viapiana and Marek Wesolowski	1449
In vitro Antioxidant and Antimicrobial Effects of Ceratostigma plumbaginoides Hosam O. Elansary, Kowiyou Yessoufou, Eman A. Mahmoud and Krystyna Skalicka-Woźniak	1455
Enzyme-hydrolyzed Fruit of Jurinea mollis: a Rich Source of (-)-(8R,8'R)-Arctigenin Rita Könye, Ágnes Evelin Ress, Anna Sólyomváry, Gergő Tóth, András Darcsi, Balázs Komjáti, Péter Horváth, Béla Noszál, Ibolya Molnár-Perl, Szabolcs Béni and Imre Boldizsár	HESIS 1459
Aroma Profile of Galangal Composed of Cinnamic Acid Derivatives and Their Structure-Odor Relationships Toshio Hasegawa, Momohiro Hashimoto, Takashi Fujihara and Hideo Yamada	1463
Natural and Synthetic Furanones with Anticancer Activity Alessio Cimmino, Patrizia Scafato, Veronique Mathieu, Aude Ingels, Wanda D'Amico, Laura Pisani, Lucia Maddau, Stefano Superchi, Robert Kiss and Antonio Evidente	1471
Structural Features for Furan-Derived Fruity and Meaty Aroma Impressions Bettina Wailzer, Johanna Klocker, Peter Wolschann and Gerhard Buchbauer	1475
Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases Alessio Cimmino, Tamara Cinelli, Marco Evidente, Marco Masi, Laura Mugnai, Marcondes A. Silva, Sami J. Michereff, Giuseppe Surico and Antonio Evidente	1481
Identification and <i>in vitro</i> Evaluation of Lipids from Sclerotia of <i>Lignosus rhinocerotis</i> for Antioxidant and Anti-neuroinflammatory Activities Neeranjini Nallathamby, Lee Guan Serm, Jegadeesh Raman, Sri Nurestri Abd Malek, Sharmili Vidyadaran, Murali Naidu, Umah Rani Kuppusamy and Vikineswary Sabaratnam	1485
Plant Genomic DNA Extraction for Selected Herbs and Sequencing their Internal Transcribed Spacer Regions Amplified by Specific Primers Farah Izana Abdullah, Lee Suan Chua, Zaidah Rahmat, Azman Abd Samad and Alina Wagiran	1491
Effect of Angelica acutiloba Extract on Blood flow Regulation in Stroke-prone Spontaneously Hypertensive Rats Hiroko Negishi, Sari Sugahama, Ayaka Kawakami, Junna Kondo, Yuriko Nishigaki, Masato Yoshikawa, Taketeru Ueyama and Katsumi Ikeda	1497
Pharmacophore Models Derived From Molecular Dynamics Simulations of Protein-Ligand Complexes: A Case Study Marcus Wieder, Ugo Perricone, Thomas Seidel and Thierry Langer	1497

Continued inside backcover