NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research

This Issue is Dedicated to
Professor Dr Wilhelm Fleischhacker On the Occasion of his 85th Birthday

Volume 11. Issue 10. Pages 1419-1630. 2016
ISSN 1934-578X (printed); ISSN 1555-9475 (online)
www.naturalproduct.us

EDITOR-IN-CHIEF

DR. PAWAN K AGRAWAL
Natural Product Inc.
7963, Anderson Park Lane
Westerville, Ohio 43081,USA
agrawal@naturalproduct.us

HONORARY EDITOR
PROFESSOR GERALD BLUNDEN
The School of Pharmacy \& Biomedical Sciences,
University of Portsmouth,
Portsmouth, POI 2DT U.K
axuf64@dsl.pipex.com

ADVISORY BOARD
Prof. Viqar Uddin Ahmad Karachi, Pakistan
Prof. Giovanni Appendino
Novara, Italy
Prof. Yoshinori Asakawa
Tokushima, Japan
Prof. Roberto G. S. Berlinck
São Carlos, Brazil
Prof. Anna R. Bilia
Florence, Italy
Prof. Josep Coll
Barcelona, Spain
Prof. Geoffrey Cordell
Chicago, IL, USA
Prof. Fatih Demirci
Eskişehir, Turkey
Prof. Francesco Epifano
Chieti Scalo, Italy
Prof. Ana Cristina Figueiredo
Lisbon, Portugal
Prof. Cristina Gracia-Viguera
Murcia, Spain
Dr. Christopher Gray
Saint John, NB, Canada
Prof. Dominique Guillaume
Reims, France
Prof. Duvvuru Gunasekar
Tirupati, India
Prof. Hisahiro Hagiwara
Niigata, Japan
Prof. Judith Hohmann
Szeged, Hungary
Prof. Tsukasa Iwashina
Tsukuba, Japan
Prof. Leopold Jirovetz
Vienna, Austria
Prof. Niel A. Koorbanally
Durban, South Africa
Prof. Chiaki Kuroda
Tokyo, Japan
Prof. Hartmut Laatsch
Gottingen, Germany
Prof. Marie Lacaille-Dubois
Dijon, France
Prof. Shoei-Sheng Lee
Taipei, Taiwan
Prof. Imre Mathe
Szeged, Hungary
Prof. M. Soledade C. Pedras
Saskatoon, Canada
Prof. Luc Pieters
Antwerp, Belgium
Prof. Peter Proksch Düsseldorf, Germany
Prof. Phila Raharivelomanana
Tahiti, French Polynesia
Prof. Luca Rastrelli
Fisciano, Italy
Prof. Stefano Serra
Milano, Italy
Dr. Bikram Singh
Palampur, India
Prof. John L. Sorensen
Manitoba, Canada
Prof. Johannes van Staden
Scottsville, South Africa
Prof. Valentin Stonik
Vladivostok, Russia
Prof. Ping-Jyun Sung
Pingtung, Taiwan
Prof. Winston F. Tinto
Barbados, West Indies
Prof. Sylvia Urban
Melbourne, Australia
Prof. Karen Valant-Vetschera
Vienna, Austria

Institute of Pharmaceutical Science
Faculty of Life Sciences \& Medicine
King's College London, Britannia House
7 Trinity Street, London SE1 1DB, UK
david.thurston@kcl.ac.uk

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national "fair use" laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2016 subscription price: US\$2,595 (Print, ISSN\# 1934-578X); US\$2,595 (Web edition, ISSN\# 1555-9475); US\$2,995 (Print + single site online); US\$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.

Analysis and Olfactory Description of Four Essential Oils from Vietnam

Erich Schmidt ${ }^{a^{*}}$, Le T. Huong ${ }^{\text {b }}$, Do N. Dai ${ }^{\text {c }}$, Tran D. Thang ${ }^{\text {d }}$, Juergen Wanner ${ }^{\text {c }}$ and Leopold Jirovetz ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
${ }^{\mathrm{b}}$ Faculty of Biology, Vinh University, 182-Le Duan, Vihn City, Nghe An, Province, Vietnam
${ }^{\text {c Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City, }}$ Nghe An Province, Vietnam
${ }^{\mathrm{d}}$ Faculty of Chemistry, Vinh University, 182-Le Duan, Vinh City, Nghe An Province, Vietnam
${ }^{\mathrm{e}}$ Kurt Kitzing Co., Hinterm Alten Schloss, Wallerstein, Germany
info@artandfragrance.de

Received: January 28 ${ }^{\text {th }}, \mathbf{2 0 1 6}$; Accepted: March $12{ }^{\text {th }}, 2016$

Abstract

The present study evaluates the chemical composition and olfactory description of the essential oils of Asarum glabrum Merr., Calocedrus macrolepis Kurz, Cunninghamia lanceolata (Lamb.) Hook. and Glyptostrobus pensilis (Stainton ex D.Don) K. Koch. The essential oils were obtained by hydrodistillation in a Clevenger-type apparatus and analyzed by GC-FID and GC-MS. Concerning their chemical composition, 66, 42, 57 and 21 volatile compounds were identified from dried leaves in the case of Asarum glabrum Merr. and wood for the other three, representing $98.7 \%, 67.2 \%, 92.0 \%$ and 87.5% of the total composition, respectively. The main compounds of Asarum glabrum oil were safrole (38.1%), apiole (10.8%) and myristicin (8.0%); of Calocedrus macrolepis verbenone (9.3%), piperitone (8.6%), α-terpineol (6.0%) and (Z) β-terpineol (5.3%); of Cunninghamia lanceolata oil cedrol (26.3%), α-terpineol (24.1%) and camphor (7.0%); and of Glyptostrobus pensilis oil dihydro-eudesmol isomer (assumed) (18.3%), cedrol (16.4%), occidentalol (13.2%) and elemol (9.0%).

Keywords: Asarum glabrum, Calocedrus macrolepis, Cunninghamia lanceolata, Glyptostrobus pensilis, Vietnam, GC-FID/MS, Olfactory evaluation.

Vietnam is well known for its wealth of rare endemic flora and therefore many plants are liable to the Red Data Book of Vietnam and a Governmental decree [1]. This is applicable for Asarum glabrum, Glyptostrobus pensilis and Calocedrus macrolepis. Nevertheless, such plants produce essential oils (EO) with interesting compositions. Observing media information, more and more components of EOs are interesting for medicinal treatments or are base material and starters for pharmaceutically important drugs like star anise oil with (E)-anethole for the production of $+(\mathrm{R})$ Tamiflu® [2]. In consciousness of this fact and the knowledge that over 40% of pharmaceutical medications come from plants, the aim of this work was to analyze the EOs of these four species to obtain information on their volatile components [3].
A. glabrum Merr. (Aristolochiaceae), common local name in Vietnam is Hoa tiên, is a perennial herb $20-30 \mathrm{~cm}$ in height with purple when young, later green leaves. Hydrodistillation using a Clevenger-type apparatus resulted in 0.2%, v / w, oil yield. Analytical data by GC-MS are given in Table 1.

The oil is characterized by the presence of the phenylpropanoids safrole, apiole, myristicin and dillapiole; the quantities were 38.1%, $10.8 \%, 8.0 \%$ and 7.8%, respectively. Sesquiterpenes are the next group with around 24%, while monoterpenes are around 8%. The total composition consists of 74.5% phenylpropanoids, 7.9% sesquiterpene ethers, 4.2% sesquiterpenes, 3.5% monoterpene alcohols and 2.6% sesquiterpene alcohols. Two unknown components could not be assigned clearly. It is remarkable that apiole and dillapiole appear in the Apiaceae family, but were not found before in the Aristolochiaceae family.
C. macrolepsis Kurz, syn. Libocedrus macrolepsus (Kurz) Benth. \& Hook. (Cupressaceae), is listed as vulnerable (B1 +2 b) in Vietnam.

The common local name is Bách xanh. The tree is straight-boled with a height up to 25 m and a diameter up to 0.8 m . The wood is used for construction, but also for incense and EO distillation [4]. Hydrodistillation using a Clevenger-type apparatus resulted in 0.3%, v / w, oil yield. Analytical data by GC-MS are given in Table 2.

This oil is dominated by monoterpene alcohols (25.8\%) and monoterpene ketones (26.7%), with a further 7.1% of monoterpene ethers and 2.3% of monoterpene esters. The main component was the monoterpene ketone verbenone (9.3%), followed by piperitone (8.6\%), α-terpineol (6.0\%) and cis-beta-terpineol (5.3\%). There is only one sesquiterpene hydrocarbon, cadalene (0.4%). The terpineol family, with 13.5%, is responsible for the odor, together with carvacrol and thymol methylether.
C. lanceolata (Lamb.) Hook. (Cupressaceae) is a tree with pyramidal habitus with a height up to 50 m . The common local name in Vietnam is Sa mu dầu. The wood is used for house construction and production of coffins. This is because the wood is resistant to termites and rot [5]. Hydrodistillation using a Clevenger-type apparatus resulted in 0.2%, v / w, oil yield. Analytical data by GC-MS are given in Table 3.

The oil showed highest values for cedrol (26.3\%), α-terpineol (24.1%), camphor (7.0\%), borneol (4.3%) and trans-dihydro- $\alpha-$ terpineol (4.3\%). In total, monoterpene alcohols (42.4\%), sesquiterpene alcohols (32.5%), monoterpene ketones (9.3%) and sesquiterpene hydrocarbons (3.8%) were detected.

The found values are not in accordance with formerly published papers, especially for cedrol. Shie and Sumimoto [6] reported a value of 60.5% for cedrol in an EO that was hydrodistilled and then separated by a chromatographic method into 5 fractions. Su et al.

Table 1: Composition (in \%) of the EO from dried leaves of Asarum glabrum from Vietnam by GC-FID and GC-MS

N°	Compound	RI ${ }^{\text {\# }}$	\%
1	α-Pinene	943	0.01
2	Camphene	959	0.01
3	β-Pinene	988	0.06
4	Myrcene	993	0.01
5	α-Phellandrene	1011	0.01
6	p-Cymene	1032	0.01
7	Limonene	1037	0.08
8	1,8-Cineole	1041	0.2
9	(E)-Ocimene	1050	0.01
10	γ-Terpinene	1066	0.01
11	cis-Linalool oxide	1079	0.02
12	trans-Linalool oxide	1094	0.01
13	p-Cymenene	1097	0.02
14	Linalool	1102	1.3
15	α-Fenchol	1126	0.04
16	1,1-Diisobutoxypentane	1157	0.1
17	Camphor	1160	0.03
18	Borneol	1180	0.3
19	Terpinen-4-ol	1190	0.4
20	p-Cymen-8-ol	1194	0.06
21	α-Terpineol	1201	1.4
22	γ-Terpineol	1208	0.03
23	Myrtenal	1210	0.01
24	Citronellol	1230	0.02
25	Nerol	1234	0.02
26	Thymol methyl ether	1240	0.01
27	Isobornyl formate	1243	0.05
28	Linalyl acetate	1257	0.06
29	(E)-Anethole	1264	0.03
30	Bornyl acetate	1298	0.09
31	Safrol	1302	38.1
32	δ-Elemene	1354	0.04
33	Terpinyl acetate	1359	3.6
34	Eugenol	1368	0.3
35	Unknown 1	1378	0.6
36	Unknown 2	1391	1.0
37	a-Copaene	1397	0.07
38	Methyl eugenol $+\beta$-Elemene	1406	2.1
39	α-Santalene	1438	0.05
40	α-Cedrene	1443	0.06
41	(E)- β-Caryophyllene	1447	0.05
42	trans- α-Bergamotene	1451	0.5
43	trans- β-Farnesene	1461	0.3
44	Aromadendren	1467	0.08
45	Myristicin	1482	0.04
46	ar-Curcumene	1495	1.5
47	(E)-Methyl isoeugenol	1502	0.2
48	Sarisane	1509	3.6
49	β-Selinene	1513	0.5
50	α-Selinene $+\beta$-Curcumene	1522	0.9
51	Sesquicineole	1531	7.8
52	Myristicin	1535	8
53	δ-Cadinene	1543	0.2
54	Elemicin	1558	0.8
55	(E)-Nerolidol	1571	0.4
56	(Z)-Isoelemicin	1577	1.7
57	2,3,4,5 Tetramethoxyallylbenzene	1602	0.08
58	Spathulenol	1607	0.1
59	(Z)-Asarone	1622	0.01
60	Dillapiol	1640	7.8
61	Alismol	1654	0.2
62	α-Acorenol	1661	0.1
63	β-Acorenol	1678	0.02
64	α-Bisabolol oxide B	1681	0.07
65	(E)-Asarone	1685	1.1
66	5-epi- β-Bisabolol	1692	0.2
67	Apiole	1696	10.8
68	α-Bisabolol	1701	1.5
	total		98.7

Table 2: Composition (in \%) of the EO from the wood of Calocedrus macrolepis from Vietnam by GC-FID and GC-MS.

N°	Compound	RI ${ }^{\text {\# }}$	\%
1	1-Methyl-cyclohexa-1,3-diene	771	0.03
2	α-Pinene	943	0.02
3	α-Fenchene	948	0.1
4	Camphene	957	0.05
5	α-Methylstyrene	988	0.2
6	2,3-Dehydro-1,8-cineole	998	0.1
7	2,6-Dimethyl-6-hepten-2-ol	1011	1.0
8	1,4-Cineole	1021	0.5
9	p-Cymene	1031	0.5
10	Limonene	1037	0.1
11	1.8-Cineole	1041	0.7
12	m-Cymenene	1089	0.07
13	2-Phenyl-2-propanol	1092	2.1
14	p-Cymenene	1097	0.2
15	trans-Sabinene hydrate	1111	0.3
16	α-Fenchocamphorone	1118	1.6
17	trans-p-Menth-2-en-1-ol	1127	1.5
18	α-Fenchol	1131	1.5
19	Terpineol-1	1143	1.8
20	cis-beta-Terpineol	1154	5.3
21	Camphor	1159	3.7
22	Pinocamphone + trans-beta-Terpineol	1174	4.8
23	δ-Terpineol	1178	0.4
24	p-Methylacetophenone + (iso)Pinocampheol	1182	1.4
25	p-Cymen-8-ol	1187	0.2
26	p-Cymen-9-ol	1189	1.0
27	a-Terpineol	1201	6.0
28	2- α-Hydroxy-1,8-cineole	1219	0.8
29	Verbenone	1224	9.3
30	3- α-Hydroxy-1,8-cineole	1234	3.1
31	Thymol methyl ether	1250	2.8
32	cis-Myrtanol	1258	0.1
33	Piperitone	1268	8.6
34	Phellandral	1291	0.3
35	Thymol	1296	0.2
36	Methyl myrtenate	1302	0.7
37	Carvacrol	1307	1.8
38	Carvone	1313	0.4
39	Methyl thujate	1335	1.6
40	1,3-Dimethoxy-5-(1-methylethyl)-benzene	1376	1.2
41	Carvone hydrate	1440	0.8
42	Cadalene total	1702	$\begin{gathered} 0.4 \\ 67.2 \end{gathered}$

published a value for cedrol of 58.3%, but for C. lanceolata var. konishii [7]. Wang et al. only found 4.9% of cedrol [8].
G. pensilis (Stainton ex D. Don) K. Koch (Cupressaceae) is listed in group I of the "Rare and Precious Flora and Fauna" in Vietnam. The common local name in Vietnam is Thủy tùng. The tree possesses a pyramidal crown; the smallest branches are usually deciduous, reaching a height of 20 m . The wood was previously used for construction and craftwork and is described as water resistant [9]. Hydrodistillation using a Clevenger-type apparatus resulted in 0.3%, v/w, oil yield. Analytical data by GC-MS are given in Table 4.

This oil is dominated by a high amount of sesquiterpenoids and lacks monoterpenes. Sesquiterpene alcohols (76.8\%), sesquiterpene hydrocarbons (9.7%) and sesquiterpene epoxides (0.9%) were detected. The highest values were for dihydro-eudesmol isomer (18.3%), cedrol (16.4%), occidentalol (13.2%), elemol (8.9%) and α-cedrene (6.1%). All these compounds are responsible for this woody and fine odor.

Experimental

Plant material: Leaves of A. glabrum were collected in Hưong Sơn District, Hà Tĩnh Province; wood of C. macrolepis in Pu Mát

Table 3: Composition (in \%) of the EO from the wood of Cunninghamia lanceolata from Vietnam by GC-FID and GC-MS.

N°	Compound	RI ${ }^{\text {\# }}$	\%
1	Tricyclene	930	tr
2	α-Pinene	941	0.3
3	α-Fenchene	955	0.04
4	Camphene	958	0.2
5	Sabinene	980	0.01
6	2,3-Dehydro-1,8-cineole	996	0.04
7	1,4-Cineole	1020	0.03
8	p-Cymene	1030	0.05
9	Limonene	1035	0.1
10	1,8-Cineole	1039	0.1
11	Fenchone	1097	2.0
12	α-Fenchol	1124	2.2
13	cis-Linalool oxide pyranoid	1136	0.1
14	Terpineol-1	1141	0.08
15	trans-Dihydro- α-terpineol	1153	4.3
16	Camphor	1158	7.0
17	Camphene hydrate	1163	0.3
18	Isoborneol	1171	1.0
19	p-Mentha-1,5-dien-8-ol	1175	0.1
20	Borneol	1179	5.2
21	Terpinen-4-ol	1188	0.4
22	p-Cymen-8-ol	1192	1.1
23	α-Terpineol	1201	24.1
24	2- α-Hydroxy-1,8-cineol	1218	0.4
25	Verbenone	1222	0.04
26	Citronellol	1225	0.02
27	Fenchyl acetate	1228	0.05
28	3- α-Hydroxy-1,8-cineol	1233	0.9
29	Bornyl formate	1242	0.03
30	Piperitone	1266	0.3
31	cis-Myrtanol	1274	0.07
32	Methyl myrtenate	1306	0.5
33	6-Vinyl-2,2,6-trimethyl-2H-tetrahydropyran-3-ol	1314	1.0
34	Terpinyl acetate	1357	0.1
35	trans-p-Menth-6-en-2,8-diol	1390	1.
36	trans-p-Menth-6-en-2,8-diol isomer	1393	0.6
37	Carvone hydrate	1439	1.1
38	α-Cedrene	1441	2.7
39	α-Cedrene	1451	0.7
40	Thujopsene	1459	0.1
41	ar-Curcumene	1494	0.07
42	Cuparene	1532	0.2
43	Elemol	1569	0.1
44	Longicamphenilone	1599	0.08
45	α-Cedrene epoxide	1611	0.07
46	Caryophyllene oxide	1615	0.1
47	Widdrol	1635	2.8
48	Cedrol	1640	26.3
49	epi-Cedrol	1654	0.8
50	γ-Eudesmol	1659	0.3
51	τ-Muurol $+\tau$-cadinol	1667	0.5
52	δ-Cadinol	1670	0.3
53	α-Cadinol	1680	1.0
54	Acorenone	1691	0.2
55	α-Bisabolol	1700	0.5
56	Junicedranone	1712	0.1
57	Cedryl acetate	1801	0.4
	total		92.0

$\mathrm{Tr}=\operatorname{trace}(<0.01)$
National Park, Nghe An Province; wood of C. lanceolata from Pu Hoat Nature reservation, Nghe An Province; and wood of G. pensilis from DarLac Province. Collection was in May 2013. Botanical identification was performed by Dr Do N. Dai. Voucher specimens DND 912, DND 914, DND 915 and DND 916, respectively were deposited at the Botany Museum, Vinh University, Vietnam.

EO distillation and analysis: Leaves of A. glabrum were dried at room temperature $\left(22^{\circ} \mathrm{C}\right)$. Wood samples of C. macrolepsis, C.

Table 4: Composition (in \%) of the EO from the wood of. Glyptostrobus pensilis from Vietnam by GC-FID and GC-MS.

\mathbf{N}°	Compound	$\mathbf{R I}^{\boldsymbol{\#}}$	$\mathbf{\%}$
$\mathbf{1}$	α-Duprezianane	1411	0.2
$\mathbf{2}$	Sibirene	1425	0.1
$\mathbf{3}$	α-Cedrene	1442	6.1
$\mathbf{4}$	β-Cedrene	1452	1.7
$\mathbf{5}$	$4,5-\alpha, \alpha$-Eudesmane	1512	0.8
$\mathbf{6}$	Cuparene	1533	0.8
$\mathbf{7}$	Dihydro-eudesmol isomer (assumed)	1540	18.3
$\mathbf{8}$	Elemol	1569	8.9
$\mathbf{9}$	Occidentalol	1571	13.2
$\mathbf{1 0}$	Caryophyllene alcohol	1602	0.7
$\mathbf{1 1}$	α-Cedrene epoxide	1611	0.4
$\mathbf{1 2}$	Caryophyllene oxide	1616	0.5
$\mathbf{1 3}$	Widdrol	1635	4.0
$\mathbf{1 4}$	Cedrol	1640	16.4
$\mathbf{1 5}$	6-epi-Cubenol	1655	2.5
$\mathbf{1 6}$	γ-Eudesmol	1660	1.5
$\mathbf{1 7}$	β-Eudesmol	1682	2.9
$\mathbf{1 8}$	Dihydro-eudesmol	1692	5.7
$\mathbf{1 9}$	Khusiol	1721	1.0
$\mathbf{2 0}$	Occidol	1864	0.6
$\mathbf{2 1}$	Manool	2093	1.1
	total		87.5

Table 5: Odor descriptions of the EOs of A. glabrum, C. macrolepis, C. lanceolata and G. pensilis.

Asarum glabrum leaves	herbal, aromatic, somewhat spicy, celery connotation, later balsamic slightly woody.
Calocedrus macrolepsis	Fresh, cedar like, warm woody, herbal touch, later soft balsamic
wood	with little woody-smoky connotation.
Cunninghamia lanceolata	Soft woody, slightly terpeny top with fresh and green connotation, later soft woody, fine cedar note.
wood	Tender warm woody notes reminding of cedar and cypress, later Glyptostrobus pensilis wood

lanceolata and G. pensilis were crushed and ground. The EOs were hydrodistilled for 3 h at normal pressure according to the Vietnamese Pharmacopoeia [10]. The obtained oil was stored under refrigeration until sent for analysis.

GC-FID and GC-MS analyses were simultaneously performed on a Thermo Fisher Scientific Trace GC Ultra using a MS-FID splitter consisting of a quartz Y-splitter and a $20 \mathrm{~cm} \times 0.1 \mathrm{~mm}$ ID fused silica restrictor column as an inlet to the GC-MS interface and a 1 m $\times 0.25 \mathrm{~mm}$ deactivated fused silica column serving as a transfer line to the FID detector. The split/splitless injector was heated at $230^{\circ} \mathrm{C}$ and connected to a $50 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 1.0 \mu \mathrm{~m}$ SE- 52 capillary column (made and tested for deactivation and separation efficiency in our lab). The FID detector operated at $250^{\circ} \mathrm{C}$. EO $(0.1 \mu \mathrm{~L})$ was injected with a $0.5 \mu \mathrm{~L}$ plunger-in-needle syringe at a split ratio of 1:100 using a TriPlus RSH Autosampler. For substance identification, a Thermo Fisher Scientific ISQ Mass Spectrometer was used with GC-MS interface heating at $250^{\circ} \mathrm{C}$, ion source $230^{\circ} \mathrm{C}$, EI mode at 70 eV , filament $50 \mu \mathrm{~A}$, scan range $40-500 \mathrm{amu}$. The following temperature program was used: $60^{\circ} \mathrm{C}$ for 1 min , heating to $230^{\circ} \mathrm{C}$ at a rate of $3^{\circ} \mathrm{C} / \mathrm{min}$, and $230^{\circ} \mathrm{C}$ for 12.3 min . The carrier gas was helium 5.0 with a constant flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$.

Thermo Xcalibur 2.2 software was used for identifying the compounds by correlating mass spectra to databases of NIST 08 (National Institute of Standards and Technology, Gaithersburg, Maryland), Wiley Registry of Mass Spectral Data 8th Edition (Wiley, Hoboken, New Jersey), Adams [11], MassFinder terpenoids library (Hochmuth, Hamburg, Germany) and our own library. Retention indices determined according to [12,13]. Quantification was performed using normalized peak area calculations of the FID chromatogram without - by first approximation - relative FID response factors. All analyses were made in triplicate and the media value was used.

Olfactory evaluation: For olfactory evaluation, one droplet of each EO sample was applied onto commercially available paper blotters.

Each sample was examined by a trained professional perfumer and two aroma-chemists over 90 min to control odor progression.

References

[1] Dang N T, RED DATA BOOK 2004 OF VIETNAM. (2004), Vietnam Academy of Science and Technology
[2] Goodman PS. (2005) Star rises in fight against birdfFlu. The Washington Post, http://www.washingtonpost.com/wpdyn/content/article/2005/11/17/AR2005111701855.html
[3] Grifo F, Newman D, Fairfield AS: (1997) The origins of prescription drugs. Biodiversity and human health. Edited by: Grifo F, Rosenthal J., Washington, DC: Island Press, 131-163
[4] Hiep NTH, Loc PK, Luu NDT, Thomas PI, Farjon A, Averyanov L, Regalado J Jr. (2004) Vietnam Conifers. CONSERVATION STATUS REVIEW, Fauna \& Flora International, Vietnam Programme, 49-50.
[5] Hiep NTH, Loc PK, Luu NDT, Thomas PI, Farjon A, Averyanov L, Regalado J Jr. (2004) Vietnam Conifers, CONSERVATION STATUS REVIEW, Fauna \& Flora International, Vietnam Programme, 53-54.
[6] Shieh JC, Sumimoto M. (1992) Identification of the volatile components in the leaves and wood of Cunninghamia lanceolata. International Information System for the Agricultural Science and Technology, 36, 301-310
[7] Su YC, Hsu KP, Wang El, Ho CL. (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Natural Product Communications, 7, 1245-1247.
[8] Wang SY, Wang YS, Tseng YH, Lin CT, Liu CP. (2006) Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung, 60, 528-532.
[9] Hiep NTH, Loc PK, Luu NDT, Thomas PI, Farjon A, Averyanov L, Regalado J Jr. (2004) Vietnam Conifers, CONSERVATION STATUS REVIEW, Fauna \& Flora International, Vietnam Programme, 60-61.
[10] Vietnamese Pharmacopoeia (1997). Medical Publishing House, Hanoi, Vietnam
[11] Robert P. Adams (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed., Allured Publishing Corp., Carol Stream, Illinois, USA.
[12] Van den Dool H, Kratz PD. (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography, 11, 463-471.
[13] Gas Chromatographic Retention Data, National Institute of Standards and Technology. http://webbook.nist.gov/chemistry/gc-ri/ (retrieved 2013-0415).
Altitude Variation in the Composition of Essential Oils, Fatty Acid Methyl Esters, and Antimicrobial Activities of Two Subspecies of Primula vulgaris Grown in Turkey
Nurettin Yaylı, Gonca Tosun, Büşra Yaylı, Zeynep Gündoğan, Kamil Coşkunçelebi and Şengül Alpay Karaoğlu 1505
Chemical Composition of Fruit Essential Oil of Endemic Malabaila pastinacifolia Nurhayat Tabanca 1511
Exploitation of Artemisia arborescens as a Renewable Source of Chamazulene: Seasonal Variation and Distillation Conditions Evangelos C. Michelakis, Epameinondas Evergetis, Sofia D. Koulocheri, and Serkos A. Haroutounian 1513
Chemical Composition and Bio-efficacy of Essential Oils from Italian Aromatic Plants: Mentha suaveolens, Coridothymus capitatus, Origanum hirtum and Rosmarinus officinalis
Antonella Spagnoletti, Alessandra Guerrini, Massimo Tacchini, Vittorio Vinciguerra, Claudia Leone, Immacolata Maresca, Giovanna Simonetti, Gianni Sacchetti and Letizia Angiolella 1517
Essential Oil Composition of Helichrysum conglobatum from Cyprus
Kaan Polatoğlu, Betül Demirci, İhsan Çalış and Kemal Hüsnü Can Başer 1521
Chemical Profiles and Anti-inflammatory Activity of the Essential Oils from Seseli gummiferum and Seseli corymbosum subsp. corymbosum
Alev Tosun, Jaemoo Chun, Igor Jerković, Zvonimir Marijanović, Maurizio A. Fenu, Sena S. Aslan, Carlo I. G. Tuberoso and Yeong S. Kim 1523Chemical Characterization of the Volatiles of Leaves and Flowers from Cultivated Malva sylvestris var. mauritiana and theirAntimicrobial Activity Against the Aetiological Agents of the European and American Foulbrood of Honeybees (Apis mellifera)Roberto Cecotti, Patrizia Bergomi, Emanuele Carpana and Aldo Tava1527
Essential Oil Composition of Pimpinella cypria and its Insecticidal, Cytotoxic, and Antimicrobial Activity
Nurhayat Tabanca, Ayse Nalbantsoy, Ulrich R. Bernier, Natasha M. Agramonte, Abbas Ali, Andrew Y. Li, Husniye Tansel Yalcin, Salih Gucel and Betul Demirci 1531
Chemical Composition and Biting Deterrent Activity of Essential Oil of Tagetes patula (Marigold) against Aedes aegypti Abbas Ali, Nurhayat Tabanca, Elham Amin, Betul Demirci and Ikhlas A. Khan 1535
Larvicidal Activity of Essential Oil Constituents Against Malaria Vector, Anopheles gambiae (Diptera: Culicidae) Tamires Cardoso Lima, Eliningaya J. Kweka, Chrian M. Marciale and Damião Pergentino de Sousa 1539
Preparative Capillary GC for Characterization of Five Dracocephalum Essential Oils from Mongolia, and their Mosquito Larvicidal Activity
Gülmira Özek, Nurhayat Tabanca, Mohammed M. Radwan, Sanduin Shatar, Altaa Altantsetseg, Dumaajav Baatar, Kemal H.C. Başer, James J. Becnel and Temel Özek 1541
Effect of Thyme Essential Oil Supplementation on Thymol Content in Blood Plasma, Liver, Kidney and Muscle in Broiler Chickens Vladimíra Ocel’ová, Remigius Chizzola, Jana Pisarčíková, Johannes Novak, Oksana Ivanišinová, Štefan Faix and Iveta Plachá 1545
Analysis and Olfactory Description of Four Essential Oils from Vietnam Erich Schmidt, Le T. Huong, Do N. Dai, Tran D. Thang, Juergen Wanner and Leopold Jirovetz 1551
Effects of a Pleasant Natural Odor on Mood: No Influence of Age Sandra T. Glass and Eva Heuberger 1555
A Pilot Study on the Physiological Effects of Three Essential Oils in Humans Martina Höferl, Christina Hütter and Gerhard Buchbauer 1561
Influence of Essential Ginger Oil on Human Psychophysiology after Inhalation and Dermal Application Iris Stappen, Anna-Sofie Hoelzl, Olivera Randjelovic and Juergen Wanner 1565
Accounts/Reviews
Natural Sesquiterpene Lactones as Potential Trypanocidal Therapeutic Agents: A Review Liliana V. Muschietti and Jerónimo L. Ulloa 1569
Natural Triterpenoids for the Treatment of Diabetes Mellitus: A Review Han Lyu, Jian Chen and Wei-lin Li 1579
The Biological Activity of Alkaloids from the Amaryllidaceae: From Cholinesterases Inhibition to Anticancer Activity Klára Habartová, Lucie Cahlíková, Martina Rezáčová and Radim Havelek 1587
Chemical and Biological Study of Cladosporin, an Antimicrobial Inhibitor: A Review Xiaoning Wang, David E Wedge and Stephen J Cutler 1595
An Interesting Tour of New Research Results on Umami and Umami Compounds
Sabine Greisinger, Stefan Jovanovski and Gerhard Buchbauer 1601
Biological Properties of Some Volatile PhenylpropanoidsRadmila Ilijeva and Gerhard Buchbauer1619

Natural Product Communications 2016

Volume 11, Number 10

Contents

Editorial i
Greeting Message
Herbert Ipser and Erich Leitner iii
Wolfgang Kubelka and Helmut Viernstein v
Preface
Ernst Urban
Nurhayat Tabanca, Iris Stappen and Gerhard Buchbauer vii
Original Paper
Analgesic Activity of Novel GABA Esters after Transdermal Delivery Mariia Nesterkina and Iryna Kravchenko 1419
11-Hydroxy-2,4-cycloeudesmane from the Leaf Oil of Juglans regia and Evaluation of its Larvicidal Activity
11-Hydroxy-2,4-cycloeudesmane from the Leaf Oil of Juglans regia and Evaluation of its Larvicidal Activity
Ayşegül Köroğlu, Ayşe Baldemir, Gülmira Özek, Erdal Bedir, Nurhayat Tabanca, Abbas Ali, Ikhlas A. Khan, Kemal Hüsnü Can Başer and Temel Özek 1421
Insecticidal Pregnane Glycosides from the Root Barks of Periploca sepium
Renfeng Li, Ximei Zhao, Baojun Shi, Shaopeng Wei, Jiwen Zhang, Wenjun Wu and Zhaonong Hu 1425
Synthesis and Antimicrobial Activity of Calycanthaceous Alkaloid Analogues 1429
Apigenin Suppresses Angiogenesis by Inhibiting Tube Formation and Inducing Apoptosis Hyun Ju Kim and Mok-Ryeon Ahn 1433
A Novel Genistein Prodrug: Design, Synthesis and Bioactivity on Mouse RAW264.7 Macrophages Burkhard Kloesch, Silvia Loebsch, Jenny Breitenbach, Katrin Goldhahn, Norbert Handler, Philipp Schreppel and Thomas Erker 1437
Cytotoxic Effects of Resveratrol, Rutin and Rosmarinic Acid on ARH-77 Human (Multiple Myeloma) Cell Line Zerrin Canturk, Miris Dikmen, Oge Artagan, Mustafa Guclu Ozarda and Nilgun Ozturk 1441
Evaluation of Antioxidant Interactions of Combined Model Systems of Phenolics in the Presence of Sugars Mirela Kopjar, Ante Lončarić, Mateja Mikulinjak, Žaklina Šrajbek, Mihaela Šrajbek and Anita Pichler 1445
HPLC Fingerprint Combined with Quantitation of Phenolic Compounds and Chemometrics as an Efficient Strategy for Quality Consistency Evaluation of Sambucus nigra Berries Agnieszka Viapiana and Marek Wesolowski 1449
In vitro Antioxidant and Antimicrobial Effects of Ceratostigma plumbaginoides
Hosam O. Elansary, Kowiyou Yessoufou, Eman A. Mahmoud and Krystyna Skalicka-Woźniak 1455
Enzyme-hydrolyzed Fruit of Jurinea mollis: a Rich Source of (-)-(8R,8'R)-Arctigenin
Rita Könye, Agnes Evelin Ress, Anna Sólyomváry, Gergő Tóth, András Darcsi, Balázs Komjáti, Péter Horváth, Béla Noszál, Ibolya Molnár-Perl, Szabolcs Béni and Imre Boldizsár 1459
Aroma Profile of Galangal Composed of Cinnamic Acid Derivatives and Their Structure-Odor Relationships Toshio Hasegawa, Momohiro Hashimoto, Takashi Fujihara and Hideo Yamada 1463
Natural and Synthetic Furanones with Anticancer Activity
Alessio Cimmino, Patrizia Scafato, Veronique Mathieu, Aude Ingels, Wanda D’Amico, Laura Pisani, Lucia Maddau,Stefano Superchi, Robert Kiss and Antonio Evidente1471
Structural Features for Furan-Derived Fruity and Meaty Aroma Impressions Bettina Wailzer, Johanna Klocker, Peter Wolschann and Gerhard Buchbauer 1475
Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases
Alessio Cimmino, Tamara Cinelli, Marco Evidente, Marco Masi, Laura Mugnai, Marcondes A. Silva, Sami J. Michereff, Giuseppe Surico and Antonio Evidente 1481
Identification and in vitro Evaluation of Lipids from Sclerotia of Lignosus rhinocerotis for Antioxidant and Anti-neuroinflammatory Activities
Neeranjini Nallathamby, Lee Guan Serm, Jegadeesh Raman, Sri Nurestri Abd Malek, Sharmili Vidyadaran, Murali Naidu, Umah Rani Kuppusamy and Vikineswary Sabaratnam 1485
Plant Genomic DNA Extraction for Selected Herbs and Sequencing their Internal Transcribed Spacer Regions Amplified by Specific Primers
Farah Izana Abdullah, Lee Suan Chua, Zaidah Rahmat, Azman Abd Samad and Alina Wagiran 1491Effect of Angelica acutiloba Extract on Blood flow Regulation in Stroke-prone Spontaneously Hypertensive RatsHiroko Negishi, Sari Sugahama, Ayaka Kawakami, Junna Kondo, Yuriko Nishigaki, Masato Yoshikawa, Taketeru Ueyama andKatsumi Ikeda1497
Pharmacophore Models Derived From Molecular Dynamics Simulations of Protein-Ligand Complexes: A Case Study Marcus Wieder, Ugo Perricone, Thomas Seidel and Thierry Langer 1499

