Essential Oil Compositions and Antimicrobial Activities of *Syzygium fluviatile* (Hemsl.) Merr. & L.M.Perry: A Comparative Study on Collection Regions

Natural Product Communications Volume 19(10): 1–11 © The Author(s) 2024 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1934578X241280876 journals.sagepub.com/home/npx

Do Ngoc Dai¹, Do Thi Xuyen², Le Thi Huong³, Nguyen Thi Hoang Anh³, Nguyen Xuan Ha⁴ and Ninh The Son^{5,6}

Abstract

Objective: Essential oils extracted from Syzygium species are known for various pharmacological purposes. Syzygium fluviatile (Hemsl.) Merr. & L.M.Perry is a flowering plant found in China and Vietnam. The current study aims to offer a comparison of chemical compositions in essential oils of S. fluviatile fruits and leaves, collected from five regions of Vietnam. The obtained oils were also taken into antimicrobial consideration, which was further aided by in silico approaches. Methods: Phytochemical analysis of essential oils was carried out using GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry) analysis. An antimicrobial assay was performed using broth micro-dilution for in vitro screening. In silico considerations are mainly based on docking studies and toxicity assessments using the AutoDock Vina v1.2.3 program and the ProTox 3.0 web server, respectively. Results: Hydro-distillation of S. fluviatile fresh fruits and leaves can lead to the production of yellow essential oil with yields of 0.21-0.32% v/w. In general, the obtained oils were dominated by monoterpene and sesquiterpene derivatives, as well as (E)-caryophyllene (8.40-47.12%) being the principal compound. The oil samples showed strong antimicrobial activity against the Gram (+) bacteria Enterococcus faecalis ATCC51299, Staphylococcus aureus ATCC29213, and Bacillus cereus ATCC11778, and the yeast Candida albicans ATCC 60193 with the MIC and IC₅₀ values 16-64 μ g/mL and 5.12-24.68 μ g/mL. Docking results indicated that (E)-caryophyllene exhibited binding affinities from -6.728 kcal/mol to -5.729 kcal/mol with important amino acid residues in the DNA gyrase, PBP3, and SAP2 targets. The toxicity profile of (E)-caryophyllene is also discussed. **Conclusion:** The isolation of (E)-caryophyllene from Vietnamese Syzygium essential oils as a purified compound is necessary. In vivo antimicrobial studies and molecular mechanisms of action are needed.

Keywords

Syzygium fluviatile, essential oil, antimicrobial activity, collection region, in silico approach

Received: May 8th, 2024; Accepted: August 16th, 2024.

Introduction

The genus *Syzygium* contains about 1800 species of flowering plants in the family Myrtaceae. Its native regions range from Asia to Africa, Madagascar, and the Pacific islands.¹ The fruits of some species can be eaten fresh or used in jelly and jam.¹ Specifically, *S. aromaticum*, also known as the clove, plays an important role in food chemistry, and pharmacological aspects.² Phytochemical studies on *Syzygium* plants resulted in the isolation and determination of various phytochemical classes, but terpenoids and phenolics are predominant.¹ *Syzygium* constituents are also known for their pharmacological values in the treatment of diseases, such as anticancer, antioxidant, anti-inflammatory, antimicrobial, antidiarrheal, and hepatoprotective activities.¹

In another aspect, *Syzygium* plants have been recognized as a good reservoir of essential oils, and monoterpenes, sesquiterpenes, and their derivatives are the main constituents.³ The

¹Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, Vinh City, Nghean, Vietnam

²Faculty of Biology, VNU University of Science, Thanh Xuan, Hanoi, Vietnam
³Faculty of Biology, College of Education, Vinh University, Vinh City, Nghean, Vietnam

⁴Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Caugiay, Hanoi, Vietnam

⁵Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Caugiay, Hanoi, Vietnam

⁶Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Caugiay, Hanoi, Vietnam

Corresponding Author:

Do Ngoc Dai, Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51 Ly Tu Trong, Vinh City 4300, Nghean, Vietnam. E-mail: daidn23@gmail.com

Ninh The Son, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Vietnam. Email: ntson@ich.vast.vn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).

obtained values of *Syzygium* essential oils in pharmacology are related to their actions to control bacteria, cancer, inflammation, insects, etc^{3–5} For instance, eugenol is recorded to account for 50% at least in the clove essential oil.⁴ Antioxidant and antibacterial activities of the essential oil of *S. cumini* leaves might be due to the abundance of α -pinene (32.32%), β -pinene (12.44%), and *trans*-caryophyllene (11.19%).⁶ The leaf essential oil of *S. myrtifolium* containing three main compounds δ -cadinol (29.53%), caryophyllene oxide (26.25%), and cyclocolorenone (7.7%) showed anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 macrophage cells via the inhibition of nitric oxide production.⁷

Syzygium fluviatile has been found only in China and Vietnam.⁸⁻¹⁰ Chromatographic separation indicated the presence of phlorogucinols and terpenoids in its twigs and leaves.^{8, 9} To date, there has been no report on identifying chemical compounds in the essential oils of this species. In this study, we first describe a chemical analysis of essential oils from its fruits and leaves, collected from five different locations in Vietnam. The obtained essential oils were also taken into consideration for their antimicrobial ability. Experimental results were further aided by *in silico* approaches.

Materials and Methods

Plant Materials

The fresh fruits and leaves have been collected from different regions of Vietnam. The yields of extraction, colors, voucher specimens, and coordinates are outlined in Table 1 and Fig. 1. All samples were collected in November 2021. The botanical identification was carried out by co-author Do Ngoc Dai, and the voucher specimens were deposited in the plant herbarium department of Nghe An University of Economics. The fresh material (2.0 kg, each sample) was subjected to hydro-distillation using a Clevenger-type apparatus for 3.0 h. The obtained essential oils were dried over Na₂SO₄ and maintained

in small sealed vials at 5 °C before further analysis. The yield (fresh weight/volume-w/v) was calculated by an arithmetic mean value in triplicate (Table 1).

The GC-FID/MS (gas Chromatography-Flame Ionization Detection/Mass Spectrometry) Analysis

Chemical constituents in essential oils were analyzed using the GC-FID/MS analysis.^{11–13} The GC-FID was performed on an Agilent Technologies HP 7890A Plus Gas chromatograph (USA) coupled with the FID detector, and HP5-MS column (column dimension of 30 m×0.25 mm and a film thickness of 0.25 μ m). The GC was run under a setting condition of the carrier gas He (flow rate of 1.0 mL/min), injector temperature (250 °C), and detector temperature (260 °C). The column rises from 55 °C (with 2.5 min hold isothermally) to 220 °C (held for 9 min) at 4 °C/min. Essential oil (1.0 μ L) was injected singly at a split ratio of 9:1. The inlet pressure was 6.0 kPa. Quantification was performed using an external standard approach utilizing calibration curves established by doing the GC analysis of sample chemicals.

Regarding the GC/MS analytical procedure, a mass spectrometer HP 5973 was interfaced with the GC using the HP5-MS column (30 m×0.25 mm, film thickness 0.25 μ m). Furthermore, the GC analytical parameters were the same as previously mentioned.^{11–13} An ionization voltage of 70 eV and an emission current of 40 mA were the operating conditions of the mass spectrometer. At a sampling rate of 1.0 scan/s, the mass spectra were obtained within a scan mass range of 40–450 amu. The GC-MS spectrum was used to identify chemical compounds in essential oils. This was also carried out by comparing their retention indices (RI) with homologous series of n-alkanes (C7-C30). Chemical structural identification has been matched with the W09N08 library, Adams book,¹⁴ and NIST Chemistry WebBook.¹⁵

Table 1. Plant Collection and Hydro-Distillation Details of Five Vietnamese S. fluviatile Samples.

Specimens	Parts	Yields (v/w)	Colors	Locations	Coordinates
SF-1	Fruits	0.21 ± 0.03	Yellow	Dakrong Natural Reserve	-16°61'28''N -106°89'38''E
SF-2	Leaves	0.26 ± 0.03	Yellow	Pu Hoat Natural Reserve	-265 m sea level -19°44'50''N -104°56'2''E
SF-3	Leaves	0.30 ± 0.01	Yellow	Vu Quang National Park	-432 m sea level -18°19'45''N -105°23'16''E
SF-4	Leaves	0.27 ± 0.03	Yellow	Pu Luong Natural Reserve	-55 m sea level -20°26'25''N -105°15'53''E -235 m sea level
SF-5	Leaves	0.32 ± 0.02	Yellow	Ke Go Natural Reserve	-18°7'22''N -105°56'45''E -39 m sea level

Figure 1. The collection regions of Syzygium fluviatile in Vietnam.

Antimicrobial Assay

Microbial strains used in this study consist of three Gram (+) bacteria *Enterococcus faecalis* ATCC51299, *Staphylococcus aurens* ATCC29213, and *Bacillus cereus* ATCC11778, three Gram (-) bacteria *Escherichia coli* ATCC8739, *Pseudomonas aeruginosa* ATCC9027, and *Salmonella enterica* ATCC10708, and one yeast *Candida albicans* ATCC 60193. They were obtained from the Institute of Marine Biochemistry, VAST, Hanoi, Vietnam. The Mueller-Hinton broth and Sabouraud dextrose broth were used as the mediums for bacteria and fungi, respectively. The experimental methods were identical to our previous publication (Supplemental material).¹⁶

Molecular Docking

The crystal structures of DNA gyrase B (PDB ID: 3G7B) and penicillin-binding protein 3 (PBP3, PDB ID: 3VSL) from *S. aureus*, and secreted aspartic proteinase (SAP2, PDB ID:

1EAG) from C. albicans were retrieved from the RCSB Protein Data Bank (https://www.rcsb.org/).^{17–19} The protein files were prepared using AutoDockTools software by adding missing polar hydrogen atoms, removing water molecules, and computing Kollman partial charges.^{20, 21} The chemical structure of (E)-caryophyllene was drawn using Marvin JS software, and energy optimized with MMFF94 s force field using Avogadro software. Subsequently, this compound and the selected proteins were prepared as the PDBQT files for docking program input using AutoDockTools. The grid box parameters were set based on the active site of the specific proteins under study: 3G7B (X = 50.613, Y = -3.651, Z = 19.927 and X x Y x Z = $24 \times 24 \times 24$), 3G7B (X = 50.905, Y = -31.733, Z = 25.613 and X x Y x Z = $24 \times 24 \times 24$, 1EAG (X = 41.899, Y = 25.601, Z = 11.368 and X x Y x Z = $24 \times 24 \times$ 24), and the exhaustiveness parameter was set to 400. All molecular docking processes were performed using AutoDock Vina v1.2.3, and molecular interaction analysis was performed using Discovery Studio Visualizer software.²²

Toxicological Profile

To evaluate the toxicity, the ProTox 3.0 web server (prediction of toxicity of chemicals) was utilized.²³ The chemical structure of (*E*)-caryophyllene was converted into SMILES format for input into this web server using OpenBabel software.²⁴ Then, the toxicity of this compound and the positive controls were elucidated, including the LD_{50} value, toxicity class, and organ toxicity (hepatotoxicity, neurotoxicity, nephrotoxicity, respiratory toxicity, and cardiotoxicity).

Statistical Analysis

Data are processed using Microsoft Excel and represented as Mean \pm SD (Standard Deviation). The difference was statistically meaningful with p < 0.05.

Results and Discussion

Phytochemical Analysis

Hydro-distillation of the fresh fruits (the sample SF-1), collected from Dakrong Natural Reserve, gave a yellow essential oil with a yield of 0.21 (v/w, based on the fresh material). The GC-FID/MS analysis of this sample resulted in the identification of 49 compounds, which represented 90.05% (Table 2). Sesquiterpene hydrocarbons and their oxygenated derivatives were predominant at 23.97 and 61.00%, respectively. On the other hand, monoterpene hydrocarbons and their oxygenated derivatives were found to reach less than 3.00%. Besides, nonterpenic compounds occurred in a minor amount of 0.16%. As shown in Table 2, the major compounds included *epi*-cedrol (26.53%), caryophyllene oxide (9.75%), (*E*)-caryophyllene (8.40%), and spathulenol (6.95%). Other compounds were identified with more than 1.00%, such as α -cadinol (3.69%), α -humulene (2.89%), *epi-\alpha*-cadinol (2.63%), and curzerenone (2.50%).

The sample SF-2 was collected from Pu Hoat Natural Reserve, and its yellow essential oil (0.26%, v/w) was extracted from the fresh leaves. A total of 48 compounds were identified, which accounted for 95.88%. The studied essential oil contained sesquiterpene hydrocarbons (58.01%), monoterpene hydrocarbons (24.4%), and oxygenated sesquiterpenes (10.71%). Oxygenated monoterpenes and non-terpenic compounds were present in trace percentages of 0.13 and 2.63%, respectively. The major compounds in this sample have encompassed (Z)- β -ocimene (16.23%), bicyclogermacrene (11.90%), (*E*)-caryophyllene (10.56%), δ -cadinene (6.98%), (E)- β -ocimene (5.03%). Some compounds possessed the percentages exceeding 1.00%, such as germacrene D (3.53%), δ-elemene (2.95%), α-humulene (2.70%), (E,E)-α-farnesene (2.43%), and *allo*-ocimene (2.05%).

Hydro-distillation of the fresh leaves (the sample SF-3) collected from Vu Quang National Park also resulted in a yellow essential oil with a yield of 0.30, v/w. By the GC-FID/MS analysis, 48 compounds were identified, which was calculated to be 97.20%. This essential oil was characterized by sesquiterpene hydrocarbons (67.37%) and monoterpene hydrocarbons (21.94%). The remaining classes encompassed oxygenated sesquiterpenes (7.26%), oxygenated diterpenes (0.32%), and non-terpenic compounds (0.31%). The principal compounds were identified as (*E*)-caryophyllene (31.67%), (*E*)- β -ocimene (20.22%), aromadendrene (5.85%), and α -copaene (5.28%). Other compounds of note were *cis*- β -elemene (3.24%), viridiflorene (3.21%), bicyclogermacrene (3.21%), δ -cadinene (2.81%), β -selinene (2.31%), germacrene D (1.99%), and cubeban-11-ol (1.10%).

Considering the sample SF-4 collected from Pu Luong Natural Reserve, its yellow essential oil was obtained with a yield of 0.27% v/w. 29 Identified compounds were tabulated in Table 2, which represented 92.54%. Phytochemical classes identified in this oil were sesquiterpene hydrocarbons (76.52%), monoterpene hydrocarbons (13.23%), and oxygenated sesquiterpenes (2.79%). (*E*)-Caryophyllene (45.49%), α -pinene (11.63%), and β -bisabolene (6.91%) could be the primary compounds, as well as various compounds possessed exceeding 1.00%, comprising α -selinene (3.31%), α -humulene (3.18%), selina-4(15),7(11)-diene (2.95%), β -selinene (2.77%), β -(*Z*)-farnesene (2.55%), caryophyllene oxide (2.44%), selina-3,7(11)-diene (1.94%), β -chamigrne (1.64%), and α -copaene (1.20%).

The extraction of the fresh leaves (the sample SF-5 collected from Ke Go Natural Reserve) also induced a yellow essential oil with the highest yield of 0.32%, v/w. There have been 36 identified compounds in the sample, which accounted for 96.12%. Similar to the SF-4, this sample was characterized by three phytochemical classes sesquiterpene hydrocarbons (78.66%), monoterpene hydrocarbons (16.01%), and oxygenated sesquiterpenes (1.45%), whereas oxygenated derivatives of monoterpenes and diterpenes

Rt	RI_E	RI_{L}	Constituents	SF-1	SF-2	SF-3	SF-4	SF-5	Identification
10.51	939	932	<i>a</i> -Pinene	0.99	0.50	-	11.63	13.76	RI and MS
11.89	985	974	β -Pinene	0.36	-	-	0.48	0.51	RI and MS
12.10	992	988	Myrcene	0.62	0.59	0.36	0.23	0.21	RI and MS
13.36	1029	1022	o-Cymene	0.54	-	-		-	RI and MS
13.51	1034	1024	Limonene	0.15	-	0.28	0.27	0.34	RI and MS
13.64	1038	1032	(Z) - β -Ocimene	0.18	16.23	0.91	0.45	0.78	RI and MS
14.03	1049	1044	(E) - β -Ocimene	-	5.03	20.22	0.17	0.30	RI and MS
15.57	1094	1086	Terpinolene	-	-	0.17	-	0.11	RI and MS
15.82	1101	1095	Linalool	1.30	0.13	-	-	-	RI and MS
16.44	1118	1122	<i>p</i> -Ethylanisol	-	1.80	-	-	-	RI and MS
16.87	1131	1128	allo-Ocimene	-	2.05	-	-	-	RI and MS
17.72	1155	1141	Camphor	0.13	-	-	-	-	RI and MS
17.82	1158	1154	4-Vinylanisol	-	0.26	-	-	-	RI and MS
19.21	1197	1186	α -Terpineol	0.76	-	-	-	-	RI and MS
24.35	1348	1335	δ -Elemene	-	2.95	0.37	-	-	RI and MS
24.74	1360	1345	α-Cubebene		0.35	0.13	-	-	RI and MS
25.70	1389	1374	α-Copaene	0.75	1.55	5.28	1.20	1.00	RI and MS
26.05	1400	1387	β -Bourbonene	-	-	0.49	-	-	RI and MS
26.15	1403	1389	αs - β -Elemene	0.73	1.63	3.24	-	-	RI and MS
26.86	1426	1409	α -cis-Bergamotene	-	-	-	0.55	-	RI and MS
26.86	1426	1410	α-Gurjunene	-	0.14	0.64	-	-	RI and MS
26.90	1427	1411	α -cis-Bergamotene	-	-	-	-	0.66	RI and MS
27.05	1432	1415	α-Cedrene	1.65	-	-	0.16	0.19	RI and MS
27.26	1439	1417	(E)-Caryophyllene	8.40	10.56	31.67	45.59	47.12	RI and MS
27.36	1442	1419	β -Cedrene	0.43	-	-	-	-	RI and MS
27.46	1445	1429	Guaia-6,9-diene	0.40	-	-	-	-	RI and MS
27.47	1445	1430	γ-Elemene	-	1.30	-	0.55	-	RI and MS
27.48	1445	1431	β -Gurjunene	-	-	0.39	-	-	RI and MS
27.83	1457	1439	Aromadendrene	0.54	0.56	5.85	-	-	RI and MS
27.96	1461	1440	β -(Z)-Farnesene	-	-	-	2.55	3.48	RI and MS
28.15	1467	1448	<i>cis</i> -Muurola-3,5-diene	-	0.76	-	-		RI and MS
28.24	1470	1450	β -(E)-Farnesene	-	-	-	-	0.15	RI and MS
28.31	1472	1452	α-Humulene	2.89	2.70	-	3.18	3.17	RI and MS
28.54	1479	1464	9-epi-(E)-Caryophyllene	1.09	1.68	0.60	-	-	RI and MS
28.59	1481	1469	β -Acoradiene	-	-	-	-	0.23	RI and MS
28.82	1488	1475	trans-Cadina-1(6),4-diene	-	1.17	0.26	-	-	RI and MS
28.83	1488	1476	γ-Curcumenne	-	-	-	-	0.27	RI and MS
28.87	1490	1476	β -Chamigrne	-	-	0.63	1.64	1.31	RI and MS
28.89	1490	1478	γ-Muurolene	0.63	0.64	0.63	-	-	RI and MS
28.91	1491	1481	<i>α</i> -Curcumene	-	-	-	0.44	-	RI and MS
29.01	1494	1483	α-Amorphene	0.88	1.52	0.54	-	-	RI and MS
29.15	1499	1484	Germacrene D	-	3.53	1.99	-	-	RI and MS
29.33	1504	1489	β -Selinene	0.15	0.80	2.31	2.77	2.53	RI and MS
29.43	1508	1490	β - <i>trans</i> -Guaiene	-	-	-	-	0.24	RI and MS
29.49	1510	1493	γ-Amorphene	0.11	-	-	-	-	RI and MS
29.52	1511	1495	trans-Muurola-4(14),5-diene	-	1.79	-	0.20	0.28	RI and MS
29.54	1512	1496	Viridiflorene	0.69	-	3.21	-	-	RI and MS
29.56	1512	1497	(E,E) - α -Farnesene	-	2.43	1.65	-	-	RI and MS
29.58	1513	1498	α-Selinene	-	-	-	3.31	2.85	RI and MS
29.59	1513	1500	α-Muurolene	1.09	-	-	-	-	RI and MS
29.66	1516	1500	Bicyclogermacrene	-	11.90	3.21	-	-	RI and MS
29.74	1518	1505	β -Bisabolene	-	-	-	6.91	8.25	RI and MS
29.81	1521	1509	β -Curcumene	-	_	-	0.14	0.32	RI and MS
29.84	1522	1511	δ -Amorphene	-	0.35	0.41	-	0.21	RI and MS
29.99	1527	1512	(Z) - γ -Bisabolene	-	-	-	-	0.15	RI and MS
30.08	1530	1513	γ-Cadinene	1.00	0.22	0.59	0.26	0.28	RI and MS
30.29	1537	1519	δ -Cadinene	1.06	6.98	2.81	0.97	1.06	RI and MS
30.33	1538	1520	$7-epi-\alpha$ -Selinene	-	-	-	-	0.85	RI and MS
			1						

(Continued)

Table 2. Continued

30.34 159 1521 <i>mau</i> -Cadinan-1,4-diene 0.89 0.18 R1 and MS 30.43 1542 1533 <i>mau</i> -Cadina-1,4-diene 0.89 0.18 R1 and MS 30.76 1553 1537 <i>a</i> -Cadinene 0.19 0.11 R1 and MS 30.70 1561 1545 Selina-3/(1)-diene 0.59 1.94 1.29 R1 and MS 31.00 1561 1547 Elemicin 0.16 R1 and MS 31.24 1560 1545 Elemicin 0.16 R1 and MS 31.30 1571 1560 Gernaccene B 0.44 R1 and MS 31.31 1575 Palustrof 0.26 0.22 R1 and MS 32.16 1000 <th>Rt</th> <th>RI_E</th> <th>RI_L</th> <th>Constituents</th> <th>SF-1</th> <th>SF-2</th> <th>SF-3</th> <th>SF-4</th> <th>SF-5</th> <th>Identification</th>	Rt	RI_E	RI_L	Constituents	SF-1	SF-2	SF-3	SF-4	SF-5	Identification
30.43 1542 1528 Zonarene 0.89 0.18 0.7 N <t< td=""><td>30.34</td><td>1539</td><td>1521</td><td>trans-Calamenene</td><td>0.90</td><td>-</td><td>-</td><td>-</td><td>-</td><td>RI and MS</td></t<>	30.34	1539	1521	trans-Calamenene	0.90	-	-	-	-	RI and MS
30.63 1548 1533 mane Cadinan-1,4-diene - 0.88 0.18 - - R1 and MS 30.76 1554 1530 Selina-4(15),7(1)-diene - - 2.95 2.19 R1 and MS 30.00 1561 1544 Selina-3,7(1)-diene - - - R1 and MS 31.00 1561 1547 Elemicin 0.16 - - - R1 and MS 31.00 1561 1547 Elemol - - - R1 and MS 31.30 1571 1562 Germacrene B 0.46 0.38 R1 and MS 31.51 1575 Spathulenol - - 0.25 0.22 R1 and MS 31.91 1592 1572 Carryophyllene aloohol - - 0.23 0.26 R1 and MS 31.11 1575 Spathulenol 6.05 1.61 0.80 2.24 R1 and MS 32.16 <td< td=""><td>30.43</td><td>1542</td><td>1528</td><td>Zonarene</td><td>-</td><td>0.89</td><td>0.18</td><td>0.55</td><td>-</td><td>RI and MS</td></td<>	30.43	1542	1528	Zonarene	-	0.89	0.18	0.55	-	RI and MS
30.76 1533 1537 <i>a</i> -Calacorene 0.19 - 0.11 - - R1 and MS 30.80 1560 1544 64:0a-1(15),7(11)-dicne 0.12 - - - - R1 and MS 31.00 1561 1545 Scina-4(15),7(11)-dicne - 0.16 - - - R1 and MS 31.00 1561 1547 Elemvian 0.16 - - - R1 and MS 31.24 1569 1548 Elemvian 0.26 0.60 0.38 - R1 and MS 31.30 1571 1580 1562 Germacrene B - 0.26 0.22 - - R1 and MS 31.81 1589 1567 Palostrol - 0.26 0.22 - R1 and MS 31.91 1572 Caryophyllene alcohol - 0.26 0.20 - R1 and MS 31.81 1589 S67 Palostrol - 0.26 1.01 - R1 and MS 32.16 1000 1585 Acconol <td>30.63</td> <td>1548</td> <td>1533</td> <td>trans-Cadina-1,4-diene</td> <td>-</td> <td>0.58</td> <td>0.18</td> <td>-</td> <td>-</td> <td>RI and MS</td>	30.63	1548	1533	trans-Cadina-1,4-diene	-	0.58	0.18	-	-	RI and MS
30.80 1554 15.30 Selina-4/(5)-7(11)-diene - - - - 2.95 2.19 R1 and MS 31.00 1561 1544 Selina-3,7(11)-diene - 0.59 - 1.94 1.29 R1 and MS 31.00 1561 1547 Elemicin 0.16 - - - R1 and MS 31.00 1571 1561 (E)-Neolidol 0.26 0.60 0.38 - - R1 and MS 31.30 1571 1562 Germacrene B 0.44 - 0.66 0.47 R1 and MS 31.51 1575 Germacrene B 0.27 - - 0.23 0.19 R1 and MS 31.51 1575 Spathulenol - 0.27 - 0.23 0.19 R1 and MS 31.81 1589 1567 Palustrol - 0.26 - - R1 and MS 32.18 1000 1575 Spathulenol - 0.27 - - R1 and MS 32.26 1040 1585 Acenol - 0.28 - - R1 and MS 32.18 1060 Garyophyllene oxide 9.75 1.610 0.82 <td>30.76</td> <td>1553</td> <td>1537</td> <td>α-Cadinene</td> <td>0.19</td> <td>-</td> <td>0.11</td> <td>-</td> <td>-</td> <td>RI and MS</td>	30.76	1553	1537	α-Cadinene	0.19	-	0.11	-	-	RI and MS
30.97 1500 1544 a-Calacorene 0.12 - - - - RI and MS 31.00 1561 1547 Skina-3,7(11)-diene - 0.59 - 1.94 1.29 RI and MS 31.24 1569 1548 Elemoid - - - - RI and MS 31.30 157 1550 (E)-Nerolidol 0.26 0.60 0.38 - - RI and MS 31.51 1580 1567 Palaxrol - 0.24 0.66 0.22 - - RI and MS 31.51 1580 1567 Palaxrol - - 0.26 0.20 - - RI and MS 31.26 1600 1577 Spathulenol 6.95 1.86 0.20 - - RI and MS 32.26 1604 1592 Viridifforol - - 0.79 - RI and MS 32.37 1616 1601 Cubeban-11-ol 0.39 0.76 1.10 - - RI and MS 3	30.80	1554	1530	Selina-4(15),7(11)-diene	-	-	-	2.95	2.19	RI and MS
31.00 1561 1545 Selfnas-37(11)-diene - 0.59 - 1.94 1.29 RI and MS 31.24 1569 1548 Elemoin - - - - RI and MS 31.30 1571 1561 (E)-Nerolidol 0.26 0.60 0.38 - - RI and MS 31.51 1578 1562 Germacrene B - 0.44 - 0.66 0.47 RI and MS 31.83 1589 1564 // Caryophyllene alcohol - - - 0.22 - RI and MS 31.19 1592 1572 Caryophyllene alcohol - 0.26 0.22 - RI and MS 32.16 1600 1575 Spahulenol 6.95 1.86 0.20 - RI and MS 32.18 1600 1585 Acenol - 0.75 1.10 0.7 RI and MS 32.27 1615 1600 Graujohyllene oxide 9.75 1.61 0.30 - - RI and MS 32.47 1615	30.97	1560	1544	α -Calacorene	0.12	-	-	-	-	RI and MS
31.00 1561 1547 Elemoin R1 and MS 31.24 1569 1548 Elemoi 0.60 0.38 R1 and MS 31.21 1571 1562 Germacrene B 0.44 0.66 0.47 R1 and MS 31.51 1580 1564 Pelastorol 0.26 0.22 R1 and MS 31.81 1589 1567 Palustorol 0.26 0.22 R1 and MS 32.16 1600 1577 Spathulenol 6.95 1.86 0.20 R1 and MS 32.26 1604 1592 Virdifforol R1 and MS 32.37 1615 1600 Couban-11-al 0.39 0.76 1.10 R1 and MS 32.81 1623 1603 Rosifoliol R1 and MS	31.00	1561	1545	Selina-3,7(11)-diene	-	0.59	-	1.94	1.29	RI and MS
31.24 1509 1548 Elemol - - - 0.11 R1 and MS 31.30 1571 1561 (E)-Nerolidol 0.26 0.64 - 0.66 0.47 R1 and MS 31.57 1580 1564 β-Calacorene B 0.27 - - - R1 and MS 31.31 1587 1572 Caryophyllene alcohol - 0.26 0.22 - - R1 and MS 31.41 1600 1577 Spathulenol 6.95 1.86 0.20 - - R1 and MS 32.16 1600 1587 Axenol - 0.28 - - R1 and MS 32.26 1604 1592 Viridiflorol 0.39 - - - R1 and MS 32.37 1615 1600 Gaujol 0.39 - - - R1 and MS 32.47 1612 1600 Guajol 0.39 0.76 1.10 0.20 - R1 and MS 32.79 1622 1608 Ledol - <	31.00	1561	1547	Elemicin	0.16	-	-	-	-	RI and MS
31.30 1571 1561 (F).Nerolidol 0.26 0.60 0.38 R1 and MS 31.57 1580 1562 Germarene B 0.44 0.60 0.47 R1 and MS 31.83 1589 1567 Palstrol 0.26 0.22 R1 and MS 31.83 1589 1567 Palstrol 0.26 0.22 R1 and MS 32.16 1600 1577 Spathulenol 0.28 R1 and MS 32.26 1604 1592 Viridifrool 0.28 R1 and MS 32.27 1615 1600 Guaid 0.39 1.6 R1 and MS 32.37 1616 1601 Guaid R1 and MS 32.43 162 1603 Roirolid R1 and MS 32.43 1616 1610 Guaid R1 and MS <t< td=""><td>31.24</td><td>1569</td><td>1548</td><td>Elemol</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.11</td><td>RI and MS</td></t<>	31.24	1569	1548	Elemol	-	-	-	-	0.11	RI and MS
31.51 1578 1562 Carmacrene B - 0.44 - 0.66 0.47 R1 and MS 31.57 1580 1564 β-Calacorene 0.27 - - - R1 and MS 31.91 1592 1572 Caryophyllene alcohol - 0.26 0.22 - - R1 and MS 31.91 1592 1572 Caryophyllene olcohol - 0.28 - - R1 and MS 32.16 1600 1585 Axenol - 0.28 - - R1 and MS 32.26 1604 1592 Viridiflorol - 0.28 - - R1 and MS 32.37 1615 1600 Gausiol 0.39 - - - R1 and MS 32.47 1615 1600 Gausiol - 0.13 0.32 - R1 and MS 32.79 1622 1603 Rosifoliol - 0.16 0.16 - R1 and MS 33.80 1632 1618 \$\p\elef-Cedrol 2.50 -	31.30	1571	1561	(E)-Nerolidol	0.26	0.60	0.38	-	-	RI and MS
31.57 1580 1564 β-clacorene 0.27 - - - - - R I and MS 31.83 1589 1567 Palustrol - 0.26 0.22 - - R I and MS 32.16 1600 1587 Spathulenol 6.95 1.86 0.20 - - R I and MS 32.16 1600 1587 Axenol - 0.28 - - R I and MS 32.26 1604 1592 Viridiflorol - - 0.79 - - R I and MS 32.37 1616 1600 Guaban-11-ol 0.39 0.76 1.10 - R I and MS 32.37 1623 1603 Rosifoliol - 0.16 0.16 - R I and MS 32.81 1623 1608 Ledol - 0.16 0.16 - R I and MS 33.06 1632 1618 <i>qbicchal</i> 1.52 - - R I and MS 33.11 1634 1619 Humulene epoxide II 1.52 </td <td>31.51</td> <td>1578</td> <td>1562</td> <td>Germacrene B</td> <td>-</td> <td>0.44</td> <td>-</td> <td>0.66</td> <td>0.47</td> <td>RI and MS</td>	31.51	1578	1562	Germacrene B	-	0.44	-	0.66	0.47	RI and MS
31.83 1589 1567 Palustrol - 0.26 0.22 - - R1 and MS 31.91 1592 1572 Caryophyllene alcohol - - - 0.23 0.19 R1 and MS 32.16 1600 1585 Axenol - 0.28 0.23 0.19 R1 and MS 32.26 1604 1592 Viridifiorol - - 0.28 - - R1 and MS 32.37 1615 1600 Gauoiol 0.39 - - - R1 and MS 32.53 1616 1601 Cubcan-11-ol 0.39 0.76 1.10 - R1 and MS 32.63 1616 1601 Cubcan-11-ol 0.39 0.76 1.10 - R1 and MS 32.81 1622 1603 Rosifoliol - 0.16 0.16 0.6 - R1 and MS 33.81 1632 1618 <i>qi</i> /cedrol 26.53 - - R1 and MS 33.81 1632 1618 <i>qi</i> /cedrol 1.52 <	31.57	1580	1564	β -Calacorene	0.27	-	-	-	-	RI and MS
31.91 1592 1572 Caryophyllene alcohol - - - 0.23 0.19 RI and MS 32.16 1600 1585 Axenol - 0.28 - - - RI and MS 32.26 1604 1592 Viridiflorol - 0.28 - - - RI and MS 32.26 1604 1592 Viridiflorol - 0.75 1.61 0.80 2.24 0.82 RI and MS 32.57 1615 1600 Guaiol 0.39 - - - - RI and MS 32.57 1622 1603 Rosifoliol - 0.39 0.76 1.10 - - RI and MS 32.81 1625 1608 Ledol - 0.16 0.16 - - RI and MS 33.11 1634 1619 Hirulene epoxide II 1.52 - - - RI and MS 33.62 1651 1630 r-/-Cubenol 1.31 - 0.16 - RI and MS 33.62	31.83	1589	1567	Palustrol	-	0.26	0.22	-	-	RI and MS
32.16 1600 1577 Spathulenol 6.95 1.86 0.20 - - RI and MS 32.18 1600 1585 Axenol - 0.28 - - - RI and MS 32.26 1607 1598 Caryophyllenc oxide 9.75 1.61 0.80 2.24 0.82 RI and MS 32.37 1616 1600 Cuaiol 0.39 - - - - RI and MS 32.63 1616 1601 Cubesha-11-ol 0.39 0.76 1.10 - - RI and MS 32.63 1616 1605 Curzerenone 2.50 0.76 1.10 - - RI and MS 32.89 1622 1608 Ledol - 0.16 0.16 - - RI and MS 33.11 1631 1625 5-Guaiene-11-ol - - 0.63 - - RI and MS 33.62 1647 1627 1-\$\$\$\$\$-\$\$Cadinol 1.31 - 0.16 - RI and MS 33.62	31.91	1592	1572	Caryophyllene alcohol	-	-	-	0.23	0.19	RI and MS
32.18 1600 1585 Åxenol - 0.28 - - - RI and MS 32.26 1604 1592 Viridifforol - - 0.79 - - RI and MS 32.37 1615 1600 Guaiol 0.39 - - - RI and MS 32.57 1615 1600 Guaiol 0.39 - - - RI and MS 32.79 1625 1605 Curzerenone 2.50 - - RI and MS 32.81 1625 1608 Ledol - 0.16 0.16 - - RI and MS 33.06 1632 1618 <i>qpi</i> /cdrol 2.53 - - RI and MS 33.11 1634 1619 Humulene epoxide II 1.52 - - 0.63 - - RI and MS 33.50 1643 1625 5-Guaiene-11-ol - - RI and MS 33.54 1659 1638 <i>qpi</i> /ar-Muurolol 1.71 1.31 - 0.16 - </td <td>32.16</td> <td>1600</td> <td>1577</td> <td>Spathulenol</td> <td>6.95</td> <td>1.86</td> <td>0.20</td> <td>-</td> <td>-</td> <td>RI and MS</td>	32.16	1600	1577	Spathulenol	6.95	1.86	0.20	-	-	RI and MS
32.26 1604 1592 Viridifiorol - - 0.79 - - RI and MS 32.37 1607 1598 Caryophyllenc oxide 9.75 1.61 0.80 2.24 0.82 RI and MS 32.57 1616 1601 Cubeban-11-ol 0.39 0.76 1.10 - - RI and MS 32.63 1616 1601 Cubeban-11-ol 0.39 0.76 1.10 - - RI and MS 32.89 1622 1608 Ledol - 0.16 0.16 - RI and MS 33.06 1632 1618 <i>epi</i> -Cedrol 26.53 - - - RI and MS 33.38 1643 1625 5-Guaiene-11-ol - - 0.63 - RI and MS 33.50 1647 1627 1- <i>epi</i> -Cubenol 0.73 1.43 0.17 - RI and MS 33.84 1659 1638 <i>epi</i> -Cadnol 2.63 0.97 0.37 0.32 0.22 RI and MS 33.84 1661 <	32.18	1600	1585	Axenol	-	0.28	-	-	-	RI and MS
32.3716071598Caryophyllene oxide9.751.610.802.240.82RI and MS32.5716151600Guaiol0.39RI and MS32.5316161601Cubeban-11-ol0.390.761.10RI and MS32.7916221603Rosifoliol-0.130.32RI and MS32.8116231605Curzerenore2.50RI and MS33.8416321618\$	32.26	1604	1592	Viridiflorol	-	-	0.79	-	-	RI and MS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.37	1607	1598	Caryophyllene oxide	9.75	1.61	0.80	2.24	0.82	RI and MS
32.6316161601Cubeban-11-ol0.390.761.10RI and MS32.7916221603Rosifoliol-0.130.32RI and MS32.8116231608Curzerenone2.50RI and MS32.8916221618epi-Cedrol26.53RI and MS33.0616321618epi-Cedrol26.53RI and MS33.38164316255-Guaiene-11-ol0.63RI and MS33.50164716271-epi-Cubenol0.731.430.17RI and MS33.6416591630p-Eudesmol1.31-0.16RI and MS33.8416591638epi-ar-Cadinol2.630.970.370.320.22RI and MS33.8916611640epi-ar-Muurolol1.171.250.24RI and MS34.3216741652ar-Cadinol3.690.880.65RI and MS34.3216741665(Z)-Heptadec-8-ene-0.57RI and MS34.4516801665(Z)-Heptadec-8-ene-0.57RI and MS34.701689167214-Hydroxy-0-epi-(E)-caryophyllen0.48RI and MS34.71 <td>32.57</td> <td>1615</td> <td>1600</td> <td>Guaiol</td> <td>0.39</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>RI and MS</td>	32.57	1615	1600	Guaiol	0.39	-	-	-	-	RI and MS
32.7916221603Rosifoliol-0.130.32RI and MS32.8116231605Curzerenone2.50RI and MS32.8916251608Ledol-0.160.16-RI and MS33.0616321618\$	32.63	1616	1601	Cubeban-11-ol	0.39	0.76	1.10	-	-	RI and MS
32.8116231605Curzerenone2.50NI and MS32.8916251608Ledol-0.160.16RI and MS33.0616321618epi-Cedrol26.53RI and MS33.1116341619Humulene epoxide II1.52RI and MS33.38164316255-Guaicne-11-ol0.63RI and MS33.50164716271-epi-Cubenol0.731.430.17RI and MS33.5416591638epi-ac-Cadinol2.630.970.370.320.22RI and MS33.8416591638epi-ac-Anuurolol1.780.520.31RI and MS33.8416611644ac-Muurolol1.171.250.24-RI and MS34.3216741658me-Intermedeol0.79RI and MS34.3416771660ci-Calamenen-10-ol0.55RI and MS34.4516801665(Z)-Heptadec-8-ene-0.57RI and MS34.5916861668 <i>murc</i> -Calamenen-10-ol0.44RI and MS34.5916861685 <i>murc</i> -Calamenen-10-ol0.44RI and MS34.591686 <td>32.79</td> <td>1622</td> <td>1603</td> <td>Rosifoliol</td> <td>-</td> <td>0.13</td> <td>0.32</td> <td>-</td> <td>-</td> <td>RI and MS</td>	32.79	1622	1603	Rosifoliol	-	0.13	0.32	-	-	RI and MS
32.8916251608Ledol-0.160.16RI and MS33.0616321618\$\eta\cert{Cedol}26.53RI and MS33.1116341619Humulene epoxide II1.52RI and MS33.38164316255.Coulaene-11-ol-0.731.430.17-RI and MS33.50164716271-\$\eta\cubenol0.731.430.17RI and MS33.6216511630\$\eta\cubenol2.630.970.370.320.22RI and MS33.8416591638\$\eta\cubenol1.780.520.31RI and MS33.9716641644\$\eta\cubenol1.771.250.24RI and MS34.2616741652\$\eta\cubenol1.771.250.24RI and MS34.3216761658\$\eta\cubenol3.690.880.65RI and MS34.3416771660\$\eta\cubenol0.77RI and MS34.4516801665\$(Z)-Heptadec-8-ene-0.57RI and MS34.4516801668\$\eta\cubenol0.44RI and MS34.4516801668\$\eta\cubenol0.41RI and MS34.45<	32.81	1623	1605	Curzerenone	2.50	-	-	-	-	RI and MS
33.06 1632 1618 ϕi Cedrol 26.53 - - - - RI and MS 33.11 1634 1619 Humulen epoxide II 1.52 - - - - RI and MS 33.38 1643 1625 5-Guaiene-11-ol - 0.63 - - RI and MS 33.50 1647 1627 1- $\phi i i Cubenol$ 0.73 1.43 0.17 - RI and MS 33.62 1651 1630 p -Eudesmol 1.31 - 0.16 - - RI and MS 33.84 1659 1638 $\phi i a$ -Muurolol 1.78 0.52 0.31 - RI and MS 33.97 1664 1644 a -Muurolol 3.69 0.88 0.65 - RI and MS 34.26 1674 1658 neo-Intermedeol 0.57 - - RI and MS 34.45 1680 1665 (Z)-Heptadec-8-ene - 0.57 - - RI and MS 34.45 1680 1685 a-Bisabolol 0.44 <td>32.89</td> <td>1625</td> <td>1608</td> <td>Ledol</td> <td>-</td> <td>0.16</td> <td>0.16</td> <td>-</td> <td>-</td> <td>RI and MS</td>	32.89	1625	1608	Ledol	-	0.16	0.16	-	-	RI and MS
33.11 1634 1619 Humulene epoxide II 1.52 - - - - - - - - - - - - RI and MS 33.38 1643 1625 5-Guaiene-11-ol - - 1.43 0.17 - - RI and MS 33.62 1651 1630 γ -Eudesmol 1.31 - 0.16 - - RI and MS 33.84 1659 1638 epica-Cadinol 2.63 0.97 0.37 0.32 0.22 RI and MS 33.84 1661 1640 epica-Muurolol 1.78 0.52 0.31 - - RI and MS 34.26 1674 1652 α -Cadinol 3.69 0.88 0.65 - - RI and MS 34.32 1676 1658 men-Intermedeol - - 0.79 - RI and MS 34.45 1680 1665 (Z)-Heptadec-8-ene - 0.57 - - RI and MS 34.59 1686 1668 man-Calamenen-1	33.06	1632	1618	epi-Cedrol	26.53	-	-	-	-	RI and MS
33.38 1643 1625 5-Guaiene-11-ol - - 0.63 - - RI and MS 33.50 1647 1627 1- $q\dot{p}$ -Cubenol 0.73 1.43 0.17 - - RI and MS 33.62 1651 1630 γ -Eudesmol 1.31 - 0.16 - - RI and MS 33.84 1659 1638 $e pira$ -Cadinol 2.63 0.97 0.37 0.32 0.22 RI and MS 33.89 1661 1640 $e pira$ -Muurolol 1.78 0.52 0.31 - - RI and MS 34.26 1674 1652 a -Cadinol 3.69 0.88 0.65 - - RI and MS 34.32 1676 1658 ne -Intermedeol - - 0.79 - - RI and MS 34.45 1680 1665 (Z)-Heptadec-8-ene - 0.57 - - - RI and MS 34.45 1680 1668 tram-Calamenen-10-ol 0.44 - - RI and MS	33.11	1634	1619	Humulene epoxide II	1.52	-	-	-	-	RI and MS
33.50 1647 1627 1- $\phi\dot{\rho}$:Cubenol 0.73 1.43 0.17 - - RI and MS 33.62 1651 1630 γ -Eudesmol 1.31 - 0.16 - - RI and MS 33.84 1659 1638 $\phi\dot{\rho}a$ -Cadinol 2.63 0.97 0.37 0.32 0.22 RI and MS 33.89 1661 1640 $\phi\dot{\rho}a$ -Muurolol 1.78 0.52 0.31 - - RI and MS 33.97 1664 1644 a -Muurolol 1.77 1.25 0.24 - - RI and MS 34.26 1674 1652 a -Cadinol 3.69 0.88 0.65 - - RI and MS 34.32 1676 1658 neo -Intermedeol - - 0.79 - - RI and MS 34.45 1680 1665 (Z)-Heptadec-8-ene - - - RI and MS 34.70 1689 1665 t -Hydroxy-0- $epir-(E)-caryophyllene 0.44 - - RI and MS 34.70$	33.38	1643	1625	5-Guaiene-11-ol	-	-	0.63	-	-	RI and MS
33.62 1651 1630 γ -Éudesmol 1.31 - 0.16 - - RI and MS 33.84 1659 1638 $epi:a$ -Cadinol 2.63 0.97 0.37 0.32 0.22 RI and MS 33.89 1661 1640 $epi:a$ -Muurolol 1.78 0.52 0.31 - - RI and MS 33.97 1664 1644 a -Muurolol 1.17 1.25 0.24 - - RI and MS 34.26 1674 1652 a -Cadinol 3.69 0.88 0.65 - - RI and MS 34.32 1676 1658 mo -Intermedeol - - 0.79 - RI and MS 34.34 1680 1665 (Z)-Heptadec-8-ene - 0.57 - - RI and MS 34.45 1680 1665 trans-Calamenen-10-ol 0.44 - - RI and MS 34.70 1689 1672 14-Hydroxy-9-epi-epi-(E)-caryophyllene 0.48 - - - RI and MS 35.13 1705<	33.50	1647	1627	1-epi-Cubenol	0.73	1.43	0.17	-	-	RI and MS
33.84 1659 1638 $epi\alpha$ -Cadinol 2.63 0.97 0.37 0.32 0.22 RI and MS 33.89 1661 1640 $epi\alpha$ -Muurolol 1.78 0.52 0.31 - - RI and MS 33.97 1664 1644 α -Muurolol 1.17 1.25 0.24 - - RI and MS 34.26 1674 1652 α -Cadinol 3.69 0.88 0.65 - - RI and MS 34.32 1676 1658 neo -Intermedeol - - 0.79 - - RI and MS 34.34 1677 1660 cis -Calamenen-10-ol 0.55 - - - RI and MS 34.45 1680 1665 (Z)-Heptadec-8-ene - 0.57 - - RI and MS 34.59 1686 1668 trans-Calamenen-10-ol 0.44 - - RI and MS 34.70 1689 1672 14-Hydroxy-9- $epir(E)$ -caryophyllene 0.48 - - - RI and MS 34.70 16	33.62	1651	1630	γ-Eudesmol	1.31	-	0.16	-	-	RI and MS
33.8916611640 $e^{jr}a$ -Muurolol1.780.520.31RI and MS33.9716641644 a -Muurolol1.171.250.24RI and MS34.2616741652 a -Cadinol3.690.880.65RI and MS34.3216761658me-Intermedeol0.79RI and MS34.3416771660 cir -Calamenen-10-ol0.55RI and MS34.4516801665(Z)-Heptadec-8-ene-0.57RI and MS34.5916861668trans-Calamenen-10-ol0.44RI and MS34.701689167214-Hydroxy-9- ejr -(E)-caryophyllene0.48RI and MS34.8816961685 a -Bisabolol0.41RI and MS35.1317051722(Z,E)-FarnesolRI and MS37.1617801759Benzyl benzoate0.31RI and MS45.3821172119Phytol0.32RI and MS7otal2.9758.0167.3776.5278.66Nonoterpene hydrocarbons2.39758.0167.3776.5278.66	33.84	1659	1638	<i>epi-α</i> -Cadinol	2.63	0.97	0.37	0.32	0.22	RI and MS
33.9716641644 α -Muurolol1.171.250.24RI and MS34.2616741652 α -Cadinol3.690.880.65RI and MS34.3216761658neo-Intermedeol0.79RI and MS34.3416771660 cis -Calamenen-10-ol0.55RI and MS34.4516801665(Z)-Heptadec-8-ene-0.57RI and MS34.5916861668trans-Calamenen-10-ol0.44RI and MS34.701689167214-Hydroxy-9-epi-(E)-caryophyllene0.48RI and MS35.1317051722(Z,E)-FarnesolRI and MS35.1317051722(Z,E)-FarnesolRI and MS37.1617801759Benzyl benzoate0.31RI and MS45.3821172119Phytol0.32RI and MSOxygenated monoterpeneMorocarbons23.9758.0167.3776.5278.66Oxygenated diterpenes-0.162.630.31Non-terpenic compounds0.22Non-terpenic compounds0.320.31	33.89	1661	1640	epi-a-Muurolol	1.78	0.52	0.31	-	-	RI and MS
34.26 1674 1652 α -Cadinol 3.69 0.88 0.65 - - RI and MS 34.32 1676 1658 neo-Intermedeol - - 0.79 - - RI and MS 34.34 1677 1660 cir-Calamenen-10-ol 0.55 - - - RI and MS 34.45 1680 1665 (Z)-Heptadec-8-ene - 0.57 - - RI and MS 34.70 1689 1672 14-Hydroxy-9-epi-(E)-caryophyllene 0.44 - - RI and MS 34.88 1696 1685 α -Bisabol 0.41 - - - RI and MS 35.13 1705 1722 (Z,E)-Farnesol - - - RI and MS 37.16 1780 1759 Benzyl benzoate - - 0.31 - - RI and MS 37.16 1780 1759 Benzyl benzoate - 0.32 - RI and MS Oxygenated monoterpenes L 0.05 95.88 97.20 92.54	33.97	1664	1644	α -Muurolol	1.17	1.25	0.24	-	-	RI and MS
34.3216761658neo-Intermedeol0.79RI and MS34.3416771660cix-Calamenen-10-ol0.55RI and MS34.4516801665(Z)-Heptadec-8-ene-0.57RI and MS34.5916861668trans-Calamenen-10-ol0.44RI and MS34.701689167214-Hydroxy-9-epi-(E)-caryophyllene0.48RI and MS34.8816961685a-Bisabolol0.41RI and MS35.1317051722(Z,E)-Farnesol0.41RI and MS35.1317051722(Z,E)-FarnesolRI and MS35.1317051722(Z,E)-Farnesol0.31RI and MS35.1317051722(Z,E)-Farnesol0.32RI and MS35.1317051722(Z,E)-Farnesol0.32RI and MS35.1317051722(Z,E)-Farnesol0.32RI and MS35.1317051729Benzyl benzoate0.32RI and MS35.1317052119Phytol5.3821172119Phytol2.397	34.26	1674	1652	α -Cadinol	3.69	0.88	0.65	-	-	RI and MS
34.3416771660cis-Calamenen-10-ol0.55RI and MS34.4516801665(Z)-Heptadec-8-ene-0.57RI and MS34.5916861668trans-Calamenen-10-ol0.44RI and MS34.701689167214-Hydroxy-9-epi-(E)-caryophyllene0.48RI and MS34.8816961685a-Bisabolol0.41RI and MS35.1317051722(Z,E)-Farnesol0.31RI and MS37.1617801759Benzyl benzoate0.31RI and MS45.3821172119Phytol0.32RI and MS57.04119Phytol0.32-RI and MS67.04RI and MS57.1617801759Benzyl benzoate0.32RI and MS67.372119Phytol-2.8424.421.9413.2316.01Cysgenated monoterpenes23.9758.0167.3776.5278.66<	34.32	1676	1658	neo-Intermedeol	-	-	0.79	-	-	RI and MS
34.45 1680 1665 (Z) -Heptadec-8-ene- 0.57 RI and MS 34.59 1686 1668 trans-Calamenen-10-ol 0.44 RI and MS 34.70 1689 1672 14 -Hydroxy-9-epi- (E) -caryophyllene 0.48 RI and MS 34.88 1696 1685 α -Bisabolol 0.41 RI and MS 35.13 1705 1722 (Z,E) -Farnesol0.22RI and MS 37.16 1780 1759 Benzyl benzoate0.31RI and MS 45.38 2117 2119 Phytol0.32RI and MSTotal0.32RI and MSOxygenated monoterpenehydroxarbons2.8424.421.9413.2316.01Oxygenated sequiterpene-23.97 58.01 67.37 76.52 78.66 Oxygenated diterpenes0.32Non-terpenic compounds0.32	34.34	1677	1660	cis-Calamenen-10-ol	0.55	-	-	-	-	RI and MS
34.59 1686 1668 $trans$ -Calamenen-10-ol 0.44 $ RI$ and MS 34.70 1689 1672 14 -Hydroxy-9-epi-(E)-caryophyllene 0.48 $ RI$ and MS 34.88 1696 1685 α -Bisabolol 0.41 $ RI$ and MS 35.13 1705 1722 (Z,E) -Farnesol $ 0.22$ RI and MS 37.16 1780 1759 Benzyl benzoate $ 0.31$ $ RI$ and MS 45.38 2117 2119 Phytol $ 0.32$ $ RI$ and MSTotal $ 2109$ $0.595.88$ 97.20 92.54 96.12 $-$ Monoterpene hydrocarbons 2.84 24.4 21.94 13.23 16.01 Oxygenated monoterpenes 23.97 58.01 67.37 76.52 78.66 Oxygenated diterpenes $ -$ Non-terpenic compounds 0.16 2.63 0.31 $ -$	34.45	1680	1665	(Z)-Heptadec-8-ene	-	0.57	-	-	-	RI and MS
34.70 1689 1672 14 -Hydroxy-9- epi -(E)-caryophyllene 0.48 $ -$ RI and MS 34.88 1696 1685 α -Bisabolol 0.41 $ -$ RI and MS 35.13 1705 1722 (Z,E) -Farnesol $ 0.22$ RI and MS 37.16 1780 1759 Benzyl benzoate $ 0.31$ $ -$ RI and MS 45.38 2117 2119 Phytol $ 0.32$ $ -$ RI and MS Total $ 2119$ Phytol $ 0.32$ $ -$ RI and MS Oxygenated monoterpene hydrocarbons 2.84 24.4 21.94 13.23 16.01 Oxygenated sequiterpene hydrocarbons 23.97 58.01 67.37 76.52 78.66 Oxygenated diterpenes $ -$ Non-terpenic compounds 0.16	34.59	1686	1668	trans-Calamenen-10-ol	0.44		-	-	-	RI and MS
34.8816961685 α -Bisabolol0.41RI and MS35.1317051722 (Z,E) -Farnesol0.22RI and MS37.1617801759Benzyl benzoate0.31RI and MS45.3821172119Phytol0.32RI and MSTotal90.0595.8897.2092.5496.12Monoterpene hydrocarbons2.8424.421.9413.2316.01Oxygenated monoterpenes2.190.13Sesquiterpene hydrocarbons23.9758.0167.3776.5278.66Oxygenated diterpenes0.32Non-terpenic compounds0.162.630.31	34.70	1689	1672	14-Hydroxy-9-epi-(E)-caryophyllene	0.48	-	-	-	-	RI and MS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.88	1696	1685	α-Bisabolol	0.41	-	-	-	-	RI and MS
37.16 1780 1759 Benzyl benzoate - - 0.31 - - RI and MS 45.38 2117 2119 Phytol - 0.32 - - RI and MS Total 90.05 95.88 97.20 92.54 96.12 Monoterpene hydrocarbons 2.84 24.4 21.94 13.23 16.01 Oxygenated monoterpenes 2.19 0.13 - - - Sesquiterpene hydrocarbons 23.97 58.01 67.37 76.52 78.66 Oxygenated diterpenes 61.00 10.71 7.26 2.79 1.45 Oxygenated diterpenes - - 0.32 - - Non-terpenic compounds 0.16 2.63 0.31 - -	35.13	1705	1722	(Z,E)-Farnesol	-	-	-	-	0.22	RI and MS
45.38 2117 2119 Phytol - - 0.32 - - RI and MS Total 90.05 95.88 97.20 92.54 96.12 Monoterpene hydrocarbons 2.84 24.4 21.94 13.23 16.01 Oxygenated monoterpenes 2.19 0.13 - - - Sesquiterpene hydrocarbons 23.97 58.01 67.37 76.52 78.66 Oxygenated diterpenes 61.00 10.71 7.26 2.79 1.45 Oxygenated diterpenes - - 0.32 - - Non-terpenic compounds 0.16 2.63 0.31 - -	37.16	1780	1759	Benzyl benzoate	-	-	0.31	-	-	RI and MS
Total90.0595.8897.2092.5496.12Monoterpene hydrocarbons2.8424.421.9413.2316.01Oxygenated monoterpenes2.190.13Sesquiterpene hydrocarbons23.9758.0167.3776.5278.66Oxygenated sesquiterpenes61.0010.717.262.791.45Oxygenated diterpenes0.32Non-terpenic compounds0.162.630.31	45.38	2117	2119	Phytol	-	-	0.32	-	-	RI and MS
Monoterpene hydrocarbons 2.84 24.4 21.94 13.23 16.01 Oxygenated monoterpenes 2.19 0.13 - - - Sesquiterpene hydrocarbons 23.97 58.01 67.37 76.52 78.66 Oxygenated sesquiterpenes 61.00 10.71 7.26 2.79 1.45 Oxygenated diterpenes - - 0.32 - - Non-terpenic compounds 0.16 2.63 0.31 - -	Total			2	90.05	95.88	97.20	92.54	96.12	
Oxygenated monoterpenes 2.19 0.13 - - - Sesquiterpene hydrocarbons 23.97 58.01 67.37 76.52 78.66 Oxygenated sesquiterpenes 61.00 10.71 7.26 2.79 1.45 Oxygenated diterpenes - - 0.32 - - Non-terpenic compounds 0.16 2.63 0.31 - -	Monote	rpene hydr	ocarbons		2.84	24.4	21.94	13.23	16.01	
Sesquiterpene hydroarbons 23.97 58.01 67.37 76.52 78.66 Oxygenated sesquiterpenes 61.00 10.71 7.26 2.79 1.45 Oxygenated diterpenes - - 0.32 - - Non-terpenic compounds 0.16 2.63 0.31 - -	Oxygen	ated mono	terpenes		2.19	0.13	-	-	-	
Oxygenated sesquiterpenes 61.00 10.71 7.26 2.79 1.45 Oxygenated diterpenes - - 0.32 - - Non-terpenic compounds 0.16 2.63 0.31 - -	Sesquite	rpene hydr	ocarbons		23.97	58.01	67.37	76.52	78.66	
Oxygenated diterpenes-0.32-Non-terpenic compounds0.162.630.31-	Oxygen	ated sesqui	terpenes		61.00	10.71	7.26	2.79	1.45	
Non-terpenic compounds 0.16 2.63 0.31	Oxygen	ated diterp	enes		-	-	0.32	-	-	
	Non-ter	penic com	pounds		0.16	2.63	0.31	-	-	

Rt: Retention time, RI_E : Retention indices relative to *n*-alkanes (C_7 - C_{30}) on HP-5 MS column, RI_L : Retention indices from Adams book¹⁴ and the NIST standard database,¹⁵ bold: major compound with greater than 5.00%.

and non-terpenic compounds were absent. The main compounds still included (*E*)-caryophyllene (47.12%), α -pinene (13.76%), and β -bisabolene (8.25%). Other significant compounds were also recorded, such as β -(*Z*)-farnesene (3.48%), α -humulene (3.17%), α -selinene (2.85%), β -selinene (2.53%), selina-4(15),7(11)-diene (2.19%), β -chamigrne (1.31%), selina-3,7(11)-diene (1.29%), δ -Cadinene (1.06%), and α -copaene (1.00%).

In general, essential oils derived from Vietnamese S. fluviatile were associated with the presence of monoterpene hydrocarbons, sesquiterpene hydrocarbons, and oxygenated sesquiterpenes. The contents of sesquiterpene hydrocarbons

are found to be increased from sample SF-1 to sample SF-5, but their oxygenated derivatives are in contrast. Monoterpene hydrocarbons are abundant in the leaf essential oil but are present much less in the fruit essential oil. Various compounds were only found in one sample (Table 2). (E)-Caryophyllene is likely to be a characteristic compound in Vietnamese S. fluviatile essential oils, in which it reaches the highest percentage in the SF-5 and the lowest proportion in the SF-1. epi-Cedrol, caryophyllene oxide, and spathulenol naturally occur as the main compounds of the fruit essential oil, but they are insignificant or absent in the leaf essential oil. Among essential oils from the leaves, the major compound (E)- β -ocimene (5.03-20.22%) is present in the high contents of the SF-2 and SF-3, but it is not remarkable in the remaining samples. α -Pinene (11.63-13.76%) and β -bisabolene (6.91-8.25%) are found to be characteristic compounds of the SF-4 and SF-5, but they are less important in other samples. Although (Z)- β -ocimene, bicyclogermacrene, and δ -cadinene might be classified as the main agents in the SF-2, they are not remarkable in the remaining samples. Similarly, α -copaene and aromadendrene are characteristic compounds in the SF-3, but they are present in trace amounts or were absent in the remaining studied samples.

The current research is broadly consistent with the results obtained previously. Monoterpenes, sesquiterpenes, and their oxygenated derivatives are now available in the essential oils of various Vietnamese *Syzygium* species. (*E*)-Caryophyllene reached up to 18.21–64.53% in the leaf essential oils of *S. boisanum, S. corticosum,* and *S. lineatum,* which were also collected from Vu Quang National Park, Pu Hoat Nature Reserve, and Ke Go Nature Reserve, respectively.^{25–27} Besides eugenol,

Table 3. Antimicrobial Activity of the Studied Essential Oils.

(*E*)-caryophyllene was found to account for 23.87% of Java-Indonesian clove leaf oil.²⁸ Eugenol (51.51%) and (*E*)-caryophyllene (36.20%) were the main compounds of essential oil from different brands of Oman *S. caryophyllatum*.²⁹ The hydro-distilled extraction of *S. guineese* leaves, collected from Benin, induced an essential oil containing (*E*)-caryophyllene (20.1%).³⁰ Essential oil from *S. kanarense* aerial parts, which were gathered from India, was dominated by sesquiterpene hydrocarbons (49.5%).³¹ Hence, it can be concluded that *Syzygium* plants could be a good source of monoterpenes and sesquiterpenes, especially eugenol and (*E*)-caryophyllene.

Antimicrobial Activity

Five essential oils were further subjected to antimicrobial examination. As shown in Table 3, all tested samples showed activity against the Gram (+) bacteria B. cereus, S. aureus, and E. faecalis with the MIC and IC₅₀ values of 16-64 µg/mL and 5.12–24.04 µg/mL, when streptomycin was used as a positive control with the MIC and IC₅₀ values of 32 µg/mL and 20.45-50.34 µg/mL. Especially, all five samples were able to compare the positive control in the inhibitory treatment of the bacterium S. aureus (Table 3). However, S. fluviatile essential oils were inactive against the Gram (-) bacteria E. coli, P. aeruginosa, and S. enterica. It can be explained that the cell wall of the Gram (+) bacteria has a thick and porous peptidoglycan layer, allowing the substances to pass through easily, while this layer in the Gram (-) bacteria is significantly decreased and is further prevented by a second outer membrane.^{11, 16, 32} Both tested samples also demonstrated anti-candidal activity against the yeast C. albicans with the MIC and IC50 values of 16 µg/mL and

				Minimum	inhibitory co	oncentration ((MIC: μg/mL)	
Microbial str	ains	SP-1	SP-2	SP-3	SP-4	SP-5	Streptomycin	Cycloheximide
Gram (+)	B. cereus	64	64	64	64	64	32	
	S. aureus	16	16	16	16	32	32	
	E. faecalis	32	32	32	32	32	32	
Gram (-)	E. coli	-	-	-	-	-	256	
	P. aeruginosa	-	-	-	-	-	64	
	S. enterica	-	-	-	-	-	256	
Yeast	C. albicans	16	16	16	16	16		32
Microbial str	ains			Half maxim	al inhibitory	concentratio	n (IC ₅₀ : µg/mL)	
Gram (+)	B. cereus	22.35	23.38	24.04	23.17	24.68	20.45	
	S. aureus	6.21	5.82	5.67	5.12	5.85	45.24	
	E. faecalis	11.22	10.68	11.03	10.15	11.15	50.34	
Gram (-)	E. coli	-	-	-	-	-	9.45	
	P. aeruginosa	-	-	-	-	-	41.46	
	S. enterica	-	-	-	-	-	45.67	
Yeast	C. albicans	5.96	5.34	6.02	5.86	6.12		10.46

"-": Inactive.

Compounds	Target Proteins	Binding affinity (ΔG , kcal/mol)	Alkyl and pi-alkyl interactions
(E)-Caryophyllene	DNA gyrase (PDB ID: 3G7B)	-6.728	Ile175, Ile102, and Ile86
., , , , , ,	Penicillin-binding protein (PDB ID: 3VSL)	-5.729	Tyr430, His447, and Pro661
	Secreted aspartic proteinase (PDB ID: 1EAG)	-6.127	Val12, Ile119, Ile123, and Ile30
Cycloheximide	DNA gyrase (PDB ID: 3G7B)	-6.748	Ile522
	Penicillin-binding protein (PDB ID: 3VSL)	-6.935	Pro87, and Ile102
	Secreted aspartic proteinase (PDB ID: 1EAG)	-7.176	Leu216, and Ile305
Streptomycin	DNA gyrase (PDB ID: 3G7B)	-7.363	-
	Penicillin-binding protein (PDB ID: 3VSL)	-7.725	-
	Secreted aspartic proteinase (PDB ID: 1EAG)	-7.464	Tyr84, Ile119, and Ile123

Table 4. The Binding Affinity of major Compound (E)-Caryophyllene and their Potential Molecular Interactions with Amino Acid Residues of Target Proteins.

5.34–6.12 μ g/mL, which were better than those of the standard cycloheximide (MIC and IC₅₀ values of 32 μ g/mL and 10.46 μ g/mL).

Essential oils from *Syzygium* species seem to have potential effects on antimicrobial treatments. The leaf essential oils of four Vietnamese *Syzygium* species *S. formosum*, *S. syzygioides*, *S. megacarpum*, and *S. chantaranothaianum* were associated with the MIC values of 16–128 μ g/mL against the Gram (+) bacteria *S. aureus* and *B. cereus*, and Gram (–) bacterium *P. aeruginosa*.³² Essential oil from Indonesian *S. aromaticum* showed resistance to ESBL (extended-spectrum β -lactamase-producing bacteria)-producing *E. coli* and *K. pneumoniae* isolates.³³ The leaf essential oil collected from Malaysian *S. dyerianum* reduced the biofilm of *C. albicans* and *S. mutans* by 20.11% and 32.10%, respectively.³⁴

Molecular Docking Study

In this section, a molecular docking approach was applied to consider interactions between the major compound of *S. fluviatile* essential oil, (*E*)-caryophyllene, with the main targets DNA gyrase and PBP3 from *S. aureus* and SAP2 from *C. albicans.* Docking protocols were validated before conducting the results shown in Fig. S1 with the calculated RMSD value using the DockRMSD program as 1.564 Å, which is less than 2 Å indicating a high reliability of prediction.³⁵ Subsequently, the compounds were docked with the selected proteins using this protocol, and the corresponding binding affinities were determined as shown in Table 4. The interaction energies were compared in terms of binding modes, and molecular interactions with the positive controls streptomycin and cycloheximide.

In the docking study regarding the binding position of DNA gyrase, (*E*)-caryophyllene exhibited a binding affinity of -6.728 kcal/mol, which is close to the reference compound cycloheximide at -6.748 kcal/mol, and showed a slight difference in binding affinity compared to streptomycin at -0.635 kcal/mol. The molecular interaction pattern of (*E*)-caryophyllene indicated alkyl and pi-alkyl interactions with three residues Ile175, Ile102, and Ile86 as depicted in Fig. 2. It is noteworthy that Ile175 and Ile86 were two important amino acids in the active site of DNA gyrase.¹⁷

For the binding ability to PBP3, (E)-caryophyllene exhibited a good binding affinity of -5.729 kcal/mol, compared to those of cycloheximide (-6.935 kcal/mol) and streptomycin (-7.725 kcal/mol). The interaction pattern is similar to the DNA gyrase, in which (E)-caryophyllene formed interactions with three amino acid residues Tyr430, His447, and Pro661 (Fig. 2). Moreover, the residue His447 was considered an important amino acid in the active site of PBP3.¹⁸

Considering the antifungal potential on the SAP2 target of (E)-caryophyllene, it showed a binding affinity of -6.127 kcal/mol, compared to those of cycloheximide (-7.176 kcal/mol) and streptomycin (-7.464 kcal/mol). (E)-Caryophyllene also interacted with residues Val12, Ile119, Ile123, and Ile30 (Fig. 2). Among these residues, Ile119 was considered an important amino acid in the active site of SAP2.¹⁹

Toxicological Prediction

Predicting the toxicity of compounds is considered one of the crucial steps in drug discovery.³⁶ In this study, (E)-caryophyllene was predicted through the ProTox 3.0 web server and compared with streptomycin and cycloheximide. The predicted results are presented in detail in Table 5. It can be observed that the LD₅₀ value of (E)-caryophyllene was predicted to be 10.6 and 2650 times higher than those of streptomycin and cycloheximide, respectively. Based on the Globally Harmonized System classification, (E)-caryophyllene with a toxicity class of less than 5 is considered to have low toxicity and less impact when ingested, while the two control compounds are highly toxic and pose a danger. Additionally, the prediction accuracy and average similarity of (E)-caryophyllene are good with values of 70.97 and 98.96%, respectively (Table 5).

Organ toxicity assessment was performed considering the inactive and active targets, including hepatotoxicity, neurotoxicity, nephrotoxicity, respiratory toxicity, and cardiotoxicity. It noted that (*E*)-caryophyllene showed inactivity for all surveyed targets. Among these, the probability (p) value of (*E*)-caryophyllene with nephrotoxicity was the highest (p = 0.92), indicating a high accuracy prediction, followed by cardiotoxicity (p = 0.81), hepatotoxicity (p = 0.80), respiratory

Figure 2. 2D and 3D interactions of (E)-caryophyllene with the amino acid residues in the active-site gorge of the studied proteins.

toxicity (p=0.63), and neurotoxicity (p=0.51). Overall, (*E*)-caryophyllene exhibited low toxicity and did not show organ toxicity. Therefore, further biological testing studies are needed to clarify the prediction results.

Conclusions

The current research first provides a phytochemical analysis of essential oils from *S. fluviatile*, collected from five different regions of Vietnam. It was noted that the collection location

is responsible for the difference in the chemical results. In general, monoterpene hydrocarbons, oxygenated sesquiterpenes, and especially sesquiterpene hydrocarbons were the main phytochemical constituents. (*E*)-caryophyllene appeared as the main compound in the fruits and leaves. All studied samples showed remarkable results in antimicrobial activity against the Gram (+) bacteria *B. cereus, S. aureus*, and *E. faecalis*, and the yeast *C. albicans*. From an *in silico* approach, (*E*)-caryophyllene indicates good binding capability with the protein targets DNA gyrase, PBP3, and SAP2. Additionally,

							Organ toxicity		
Compounds	Predicted LD ₅₀ (mg/kg)	Predicted Toxicity Class	Prediction accuracy	Average similarity	Hepatotoxicity	Neurotoxicity	Nephrotoxicity	Respiratory toxicity	Cardiotoxicity
(E)-Caryophyllene Streptomycin Cycloheximide *p: probability.	5300 500 2	1 O O	70.97% 70.54% 100%	86.96% 69.26% 100%	Inactive $(p = 0.80)$ Inactive $(p = 0.95)$ Inactive $(p = 0.79)$	Inactive $(p = 0.51)$ Active $(p = 0.79)$ Inactive $(p = 0.52)$	Inactive $(p = 0.92)$ Active $(p = 0.72)$ Active $(p = 0.55)$	Inactive $(p = 0.63)$ Active $(p = 0.68)$ Active $(p = 0.62)$	Inactive $(p = 0.81)$ Inactive $(p = 0.80)$ Inactive $(p = 0.61)$

Table 5. The Oral Toxicity Prediction of (E)-Caryophyllene and the Positive Controls.

alkyl and pi-alkyl interactions significantly contribute to its binding affinity. Toxicological calculation suggests that (E)-caryophyllene is not toxic to organs.

Acknowledgments

The authors are grateful to the boards of directors of Dakrong Nature Reserve, Pu Hoat Nature Reserve, Pu Luong Natural Reserve, Ke Go Natural Reserve, and Vu Quang National Park, for allowing sample collection.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Do Ngoc Dai D https://orcid.org/0000-0002-7741-9454 Ninh The Son D https://orcid.org/0000-0002-7374-5914 Nguyen Xuan Ha D https://orcid.org/0000-0002-8779-256X

Supplemental Material

Figs. S1-S7

References

- Neshar Uddin ABM, Hossain F, Ali Reza ASM, Nasrin MS, Khushid Alam AHM. Traditional uses, pharmacological activities, and phytochemical constituents of the genus *Syzygium*: a review. *Food Sci Nutr.* 2022;10(6):1789-1819.
- Cortes-Rojas DF, Fernandes De Souza CR, Pereira Oliveira W. Clove (Syzygium aromaticum): a precious spice. Asia Pac J Trop Biomed. 2014;4(2):90-96.
- Kadir NHA, Salleh WMNHW, Ghani NA. A systematic review on essential oils and biological activities of the genus Syzygium (Myrtaceae). *Rivistal Ital Sostanze Gr.* 2022;99(2):165-178.
- Haro-Gonzalez JN, Castillo-Herrera GA, Martinez-Velazques M, Espinosa-Andrews H. Clove essential oil (*Syzygium aromaticum* L. Myrtaceae): extraction, chemical composition, food applications, and essential bioactivity for human health. *Molecules*. 2021;26(21):6387.
- Shafi PM, Rosamma MK, Jamil K, Reddy PS. Antibacterial activity of *Syzygium cumini* and *Syzygium travancoricum* leaf essential oils. *Fitoterapia*. 2022;73(5):414-416. doi:10.1016/S0367-326X(02) 00131-4
- Mohamed AA, Ali SI, El-Baz FK. Antioxidant and antibacterial activities of crude extracts and essential oils of *Syzygium cumini* leaves. *Plos ONE*. 2013;8(4):E60269.
- Jena S, Ray A, Sahoo A, et al. Chemical composition and biological activities of leaf essential oil of *Syzygium myrtifolium* from Eastern India. J Essent Oil Bear Pl. 2021;24(3):582-595.

- Zhang D, Hu Y, Wang L, et al. Diterpenoids and sesquiterpenoids from Syzygium fluviatile. Rec Nat Prod. 2020;14(3):190-195.
- Zhang DL, Hu YK, Wang L, He YB, Yang J, Zhao Y. Phloroglucinol derivatives with α-glucosidase inhibitory activities from *Syzygium fluviatile*. J Asian Nat Prod Res. 2023;25(12):1168-1174.
- Hoan HV, Hieu NT, Hai DV, et al. A new occurrence species Myrtaceae of the flora of Vietnam from Bac Huong Hoa natural reserve, Quang Tri province. *Vietnam J Agric Rural Develop*. 2021;18(2):130-134.
- Huong LT, Hung NH, Linh NN, et al. Essential oils of five Syzygium species growing wild in Vietnam: chemical compositions and antimicrobial and mosquito larvicidal potentials. *Molecules*. 2023;28(22):7505.
- Huan DQ, Luyen ND, Ha NX, et al. The leaf oils of *Beilschmiedia* tonkinensis (Lecomte) Ridl. and Lindera gracilipes H. W. Li: chemical composition, cytotoxicity, antimicrobial activity, and docking study. Nat Prod Commun. 2024;19(1):1-10.
- Huong LT, Son NT, Sam LN, et al. Chemical compositions and antimicrobial activity of essential oils from the leaves of 4 Vietnamese Zingiberaceae species. *Nat Prod Commun.* 2023;17(11):1-6.
- Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th edn. Allured Publ. Corp.; 2007.
- Search for species data by chemical name. https:// webbook.nist.gov/chemistry/name-ser. Accessed March 26, 2024.
- Huong LT, Son NT, Sam NL, et al. Essential oils of the ginger plants *Meistera caudata* and *Conamomum vietnamense*: chemical compositions, antimicrobial, and mosquito larvicidal activities. Z *Naturfor C.* 2023;78(9-10):337-344.
- Ronkin SM, Badia M, Bellon S, et al. Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase. *Bioorg Med Chem Lett.* 2010;20(9):2828-2831.
- Yoshida H, Kawai F, Obayashi E, et al. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant *Staphylococcus aureus* in the Apo and cefotaxime-bound forms. J Mol Biol. 2012;423(3):351-364.
- Cutfield SM, Dodson EJ, Anderson BF. The crystal structure of a major secreted aspartic proteinase from *Candida albicans* in complexes with two inhibitors. *Structure*. 1995;3(11):1261-1271.
- Tra NT, Ha NX, Tuyen NV. Essential oils of *Alpinia vietnamica* rhizomes and leaves: chemical composition, cytotoxicity, α-glucosidase inhibition, and molecular docking approach. *Nat Prod Commun.* 2023;18(10):1-12.
- Pham TV, Cuong LH, Ha TTH, et al. Essential oils of the leaves of *Epaltes australis* Less. and *Lindera myrrha* (Lour.) Merr.: chemical composition, antimicrobial, anti-inflammatory, tyrosinase inhibitory, and molecular docking studies. *Chem Biodiver*. 2023;20(12): e202301192.
- Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.
- Banerjee P, Kemmler E, Dunkel M, Preissner R. Protox 3.0: a web server for the prediction of toxicity of chemicals. *Nucleic Acids Res.* 2024;22(W1):gkae303.

- O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3(3):1-14. doi:10.1186/1758-2946-3-33
- Huong LT, Chung NT, Duc DX, Dai DN, Hai PT, Son NT. Essential oil of *Syzygium boisianum* (Gagnep.) Merr. & L.M.Perry: chemical compositions, antimicrobial activity, and molecular docking. *Vietnam J Chem.* 2023;61(3):333-338.
- Huong LT, Phu HV, Giang LD, Chau DTM, Ogunwande IA. Antimicrobial activity and constituents of essential oils from the leaves of *Syzygium szemaoense* Merrill & L.M. Perry and *Syzygium corticosum* (Lour.) Merr. & L.M. Perry grown in Vietnam. J Essent Oil Bearing Pl. 2022;25(6):1289-1300.
- Khanh TH, Ban PH. Analysis of essential oils from leaf of Syzygium hancei Merr. & Perry, Syzygium caryophyllatum (L.) Alston and Syzygium lineatum (DC.) Merr. & Perry from Vietnam. J Essent Oil Bearing Pl. 2020;23(3):548-558.
- Alighiri D. Isolation and antifungal activity of caryophyllene from clove leaf oil (*Syzygium aromaticum* L.) on mahogany leaf composites. *Sci Commun Pharm J.* 2022;1(1):1-6.
- Hossain MA, Al-Hashmi RA, Weli AM, Al-Riyami Q, Al-Sabahib JN. Constituents of the essential oil from different brands of *Syzigium caryophyllatum* L by gas chromatography-mass spectrometry. *Asian Pac J Trop Biomed.* 2012;2(3):S1446-S1449.
- Noudobessi JP, Yedomonhan P, Sohounhloue DCK, Chalchat JC, Figueredo G. Chemical composition of essential oil of Syzygium guineense (Willd.) DC. var. guineense (Myrtaceae) from Benin. Rec Nat Prod. 2008;2(2):33-38.
- Joshi RK, Shenoy HS, Marati R. Chemical composition of the essential oil of Syzygium kanarense: an endemic and rediscovered species from the Western Ghats, India. *Nat Prod Commun.* 2017;12(12):1943-1944.
- 32. Huong LT, Phu HV, Hung NH, et al. Chemical compositions, and antimicrobial and mosquito Larvicidal activities of essential oils from four Syzygium Species Syzygium formosum (Wall.) Masam., S. syzygioides (Miq.) Merr. & L.M. Perry, S. megacarpum (Craib) Rathakr. & N.C. Nair, and S. chantaranothaianum W.K. Soh & J. Parn. J Essent Res. 2024;36(3):214-221.
- Ginting EV, Retnaningrum E, Widiash DA. Antibacterial activity of clove (*Syzygium aromaticum*) and cinnamon (*Cinnamonum burmannii*) essential oil against extended-spectrum β-lactamase-producing bacteria. *Vet World*. 2021;14(8):2206-2211. doi:10.14202/vetworld. 2021.2206-2211
- Mohd Rahim FA, Hakimi Wan Salleh WM, Hafiz Armi M, Siddiq Salihu A. Chemical composition, antifungal, antibiofilm, and molecular docking studies of *Syzygium dyerianum* essential oil. *Z. Naturforsch.* 2024;79(7-8):179-186.
- 35. Pham VT, Cuong LH, Ha TTH, et al. Essential oils of the leaves of *Epaltes australis* less. and *Lindera myrrha* (Lour.) Merr.: chemical composition, antimicrobial, anti-inflammatory, tyrosinase inhibitory, and molecular docking studies. *Chem Biodiver*. 2023;20(12):e202301192.
- Cronin MT. Prediction of drug toxicity. Il Farmaco. 2001; 56(1-2):149-151.