



Taylor & Fran

Journal of Essential Oil Bearing Plants

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/teop20

# The leaf essential oils of *Meiogyne virgata* (Blume) Miq., M. vietnamica Jaikhamseub, T.A.Le & Chaowasku, and Orophea polycarpa A.DC.: Chemical composition, antimicrobial activity, molecular docking, and toxicity profiling

Do Ngoc Dai, Le Thi Huong, Vo Thi Dung, Nguyen Thi Tra, Nguyen Xuan Ha, Nguyen Dinh Luyen & Ninh The Son

To cite this article: Do Ngoc Dai, Le Thi Huong, Vo Thi Dung, Nguyen Thi Tra, Nguyen Xuan Ha, Nguyen Dinh Luyen & Ninh The Son (2024) The leaf essential oils of Meiogyne virgata (Blume) Miq., M. vietnamica Jaikhamseub, T.A.Le & Chaowasku, and Orophea polycarpa A.DC.: Chemical composition, antimicrobial activity, molecular docking, and toxicity profiling, Journal of Essential Oil Bearing Plants, 27:5, 1291-1301, DOI: 10.1080/0972060X.2024.2398675

To link to this article: https://doi.org/10.1080/0972060X.2024.2398675

|--|--|

View supplementary material 🖸

| đ | 1 | ( | h |
|---|---|---|---|
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

Published online: 22 Oct 2024.



Submit your article to this journal 🕑

Article views: 17



View related articles 🗹



Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=teop20



JOURNAL OF ESSENTIAL OIL BEARING PLANTS

# Taylor & Francis Taylor & Francis Group

## **Research Article**

# The leaf essential oils of *Meiogyne virgata* (Blume) Miq., *M. vietnamica* Jaikhamseub, T.A.Le & Chaowasku, and *Orophea polycarpa* A.DC.: Chemical composition, antimicrobial activity, molecular docking, and toxicity profiling

Do Ngoc Dai<sup>1</sup>, Le Thi Huong<sup>2</sup>, Vo Thi Dung<sup>1</sup>, Nguyen Thi Tra<sup>1</sup>, Nguyen Xuan Ha<sup>3</sup>, Nguyen Dinh Luyen<sup>3</sup> and Ninh The Son<sup>4,5\*</sup>

- <sup>1</sup> Faculty of Agriculture, Forestry and Fishery, Nghe An University of Economics, 51 Ly Tu Trong, Vinh, Nghean 46000, Vietnam
- <sup>2</sup> Faculty of Biology, College of Education, Vinh University, 182 Le Duan, Vinh, Nghean 46000, Vietnam
- <sup>3</sup> Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
- <sup>4</sup> Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
- <sup>5</sup> Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam

#### \*Corresponding Author

Ninh The Son ntson@ich.vast.vn yamantson@gmail.com

Received 17 May 2024 Revised 30 July 2024 Accepted 22 August 2024

## INTRODUCTION

The family *Annonaceae*, also known as the custard apple family or soursop family, contains about 108 accepted genera and 2400 flowering plants<sup>1</sup>. *Annonaceae* species are widely distributed in the tropics, and few species are found in temperate areas<sup>2</sup>. Almost all of the plants in this family are odoriferous, due to the appearance of essential

Abstract

The present study aims to describe the chemical composition of essential oils from three Vietnamese Annonaceae species, Meiogyne virgata, M. vietnamica, and Orophea polycarpa, and their antimicrobial activity. Essential oils were extracted by hydro-distillation. From the GC-FID/MS (gas chromatography-flame ionization detection and mass spectrometry) analysis, the leaf essential oil of M. virgata was reported to contain the major compound germacrene D (42.48%). Spathulenol (24.51%), bicyclogermacrene (18.58%), β-selinene (11.14%), and germacrene D (8.20%) can be seen as the main compound in *M. vietnamica* leaf essential oil. α-Phellandrene (39.35%), bicyclogermacrene (13.07%), β-phellandrene (10.87%), and limonene (8.27%) represented O. polycarpa leaf essential oil. Essential oil of M. virgata leaves exhibited strong antimicrobial activity against the Gram (+) bacterium Bacillus subtilis ATCC 5230, the Gram (-) bacterium Escherichia coli ATCC 8739, and the fungus Aspergillus niger ATCC 9587 with the same MIC value of 16 µg/mL. The docking method showed that germacrene D has the  $\Delta G_{\text{binding}}$  (binding affinity) values of -6.68, -5.265, and -5.602 kcal/mol with the proteins *E. coli* DNA gyrase, *B. subtilis* TasA, and A. niger PhyA, respectively. Alkyl and pi-alkyl interactions are the main contributors to the binding affinity between the studied proteins and ligands. Furthermore, germacrene D is predicted to have low toxicity and is not active against any of the considered organ targets.

#### Keywords

Meiogyne virgata, Meiogyne vietnamica, Orophea polycarpa, Essential oil, Antimicrobial.

> oils, which of several species have been used in the cosmetics and perfumery industries, and for medicinal purposes<sup>3</sup>. It should be noted that the primary chemical compounds in the fruits and seeds of *Annonaceae* plants are monoterpene hydrocarbons while sesquiterpene hydrocarbons are predominant in the leaves, and oxygenated sesquiterpenes are highly concentrated on the barks and roots<sup>4</sup>.

> The genus *Meiogyne* contains about 33 species, and its distribution ranges from India and Indochina to Australia<sup>5</sup>. Studies on the

J. Essential Oil Bearing Plants 2024, 27, 1291-1301

© 2024 Har Krishan Bhalla & Sons

chemical compositions of Meiognye essential oils were only emphasized on Vietnamese species, to date. For instance, the essential oils of *M. monogyna* leaves and stems were characterized by bicyclogermacrene (38.1-49.3%),  $\beta$ -caryophyllene (15.0-16.8%), and linalool (6.6-8.0%)<sup>6</sup>. δ-Cadinene (36.6-49.3%) acted as the major compound in the leaf and stem essential oils of *M. hainanensis*<sup>6</sup>. The genus Orophea is native to Southeast Asia, consisting of about 60 species<sup>7</sup>. Phytochemical investigations on this genus were recorded on the isolations of secondary metabolites, but the results in essential oil compositions have not yet been carried out. The current research focuses on describing the chemical identification and antimicrobial effects of essential oils from the leaves of three Vietnamese Annonaceae species, M. virgata, M. vietnamica, and O. polycarpa. The obtained experiments have been further aided by in silico approach.

# MATERIALS AND METHODS Plant material

The fresh leaves of studied plants (*M. virgata* at 20°31'17"N and 105°4'58"E, *M. vietnamica* at 19°26'45"N and 104°54'30"E, and *O. polycarpa* at 19°23'41"N and 104°57'4"E) were collected from Pu Luong Nature Reserve, Thanh Hoa, Vietnam in December 2023. The voucher specimens DN-01, DN-02, and DN-03 were assigned to *M. virgata*, *M. vietnamica*, and *O. polycarpa*, respectively, and were deposited at Nghe An University of Economics.

#### Hydro-distillation procedure

The fresh leaves of each plant (2.0 kg) were cut into small pieces and hydrodistilled using a Clevengertype apparatus for 2.5 h. Before being utilized for analysis and the bioactive tests, the obtained essential oils were dried over Na<sub>2</sub>SO<sub>4</sub> and kept in a sealed glass vial at 5°C. The mean yield was calculated following the dried weight material, including DN-01, 0.23% v/w (dry weight); DN-02, 0.45% v/w; and DN-03, 0.36% v/w.

#### **GC-FID and GC-MS analyses**

The GC-FID analysis was carried out using a

Shimadzu GC2010 with the FID detector<sup>8-10</sup>. The HP5-MS column (30 x 0.25 mm, 0.25 m film thickness) was used. Operating conditions included: column temperature rising from 50 to 250°C at 4°C/min, and then held at 250°C for 4 min; the helium (99.999%) was used as a carrier gas with a 1.0 mL/min flow rate; injection volume, 0.1  $\mu$ L (split ratio of 1:20); and the injector and detector temperatures = 250 and 270°C, respectively. The relative percentage of each component in essential oil was obtained by the normalized peak area (%), and displayed as the mean of three replicates.

The GC-MS analysis was carried out by a Shimadzu GC2010. The column was an HP5-MS fused silica capillary one (30 m x 0.25 mm i.d. x 0.25 µm film thickness). The EI (electron ionization) mode happened at 70 eV. Helium was employed as a carrier gas at a flow rate of 1.0 mL/ min. The injection volume was 0.1 µL (split ratio of 1:20). Injector and ion-source temperatures were established at 250 and 270°C, respectively. The oven temperature program was the same as the one used for the GC. Mass spectra were taken at a scan interval of 0.5 s, in a mass range from 50 to 550 Da. Identification of constituents in essential oils was based on their RI (retention indices) on an HP-5MS capillary column, under the same operating conditions as those used in the GC-FID analysis, involving a homologous series of *n*-alkanes (C7-C30). Chemical structures were matched with the W09N08 library, Adams book<sup>11</sup>, and NIST Chemistry WebBook<sup>12</sup>.

#### Antimicrobial assay

The pathogenic ATCC (American Type Culture Collection) strains, consisting of three Gram (+) bacteria *Bacillus subtilis* ATCC 5230, *Staphylococcus aureus* ATCC 33591 and *Clostridium sporogenes* ATCC 7955, two Gram (-) bacteria *Escherichia coli* ATCC 8739 and *Pseudomonas aeruginosa* ATCC 27853, three fungi *Aspergillus brasiliensis* ATCC 9642, *A. niger* ATCC 9587 and *Fusarium oxysporum* ATCC 11739, and two yeasts *Candida albicans* ATCC 12354 and *Saccharomyces cerevisiae* ATCC 4078, have been used in this study. All pathogenic strains were cultured on Muller

Hilton Agar (MHA, Merck) plates for 24 h at 37°C. The protocol was identical to our previous publication (Supplementary data)<sup>13</sup>.

#### Molecular docking and toxicity prediction

In this study, the selected target proteins represent bacteria E. coli, B. subtilis, and the fungus A. niger. These protein structures were obtained from the RCSB PDB database with PDB ID codes 6F86, 5OF2, and 3K4Q, respectively<sup>14-17</sup>. They were then processed by removing water molecules, co-crystallized molecules, adding hydrogen, estimating Kollman charges, and converting the structure files to \*pdbqt format using AutoDockTools software. For ligand preparation, germacrene D was downloaded from the PubChem database in \*sdf format (3D Standard Data Format). Avogadro2 software was used to optimize the energy using the MMFF94s force field and to convert the \*sdf format to \*pdb format<sup>18</sup>. The structure of this compound was then imported into AutoDockTools v1.5.6 to prepare the ligand by adding Gasteiger charges. To perform docking, the grid box parameters were set based on the active site of the specific proteins under study: 6F86 (X = 62.4, Y = 28.2, Z = 64.7, and  $X \times Y \times Z = 24 \times 24 \times 24$ ), 5O2F (X = -11.0, Y = -1.9, Z = -23.2, and X x Y x Z = 30 x 30 x 30, 3K4Q (X = 27.8, Y)= -30.2, Z = 6.8, and  $X \times Y \times Z = 24 \times 24 \times 24$ 24), and the exhaustiveness parameter was set to 400. AutoDock Vina v1.2.3 was used for all molecular docking simulations, and Discovery Studio Visualizer software was used to represent the protein-ligand interactions<sup>19,20</sup>.

# **RESULTS AND DISCUSSION** Chemical analysis

Hydro-distillation of the fresh leaves of M. virgata resulted in a yellow oil with a yield of 0.23% v/w. By the GC-FID/MS analysis, a total of 41 compounds were identified, which accounted for 90.66% (Table 1 and Fig. S1). The obtained essential oil was dominated by sesquiterpene hydrocarbons (74.72%), followed by their oxygenated derivatives (11.9%) and nonterpenic compounds (4.04%). Germacrene D was the major compound with 42.48%. Several analogous compounds have possessed significant percentages, such as bicyclogermacrene (6.61%), spathulenol (6.03%),  $\alpha$ -copaene (4.19%),  $\beta$ -cubebene (4.18%),  $\delta$ -cadinene (2.40%), and  $\gamma$ -muurolene (2.02%). The major compound in this study, germacrene D, was absent in *M. virgata* leaf essential oil, collected from Bach Ma National Park, Thua Thien Hue, Vietnam<sup>21</sup>. It reflected a great role of geographic factors, time collection, and extraction methods.

M. vietnamica was recently described as a new species, which can be found in central Vietnam<sup>5</sup>. The current study provides first information regarding the chemical analysis of its essential oil. Hydro-distilled extraction of its fresh leaves gave a yellow essential oil (0.45% v/w yield). This sample was found to contain 21 identified compounds, which represented 87.82% (Table 1 and Fig. S2). The obtained essential oil was associated with the presence of two main chemical classes, sesquiterpene hydrocarbons (59.87%) and their oxygenated derivatives (27.95%). Spathulenol (24.51%), (18.58%), β-selinene bicyclogermacrene (11.14%), and germacrene D (8.20%) were the principal agents. Some other compounds also possessed remarkable percentages, such as (E)-caryophyllene (5.08%), cis- $\beta$ -elemene (4.05%), and aromadendrene (1.92%). Various compounds have been only found in M. virgata, but absent in *M. vietnamica*, and versus (Table 1). The percentage of germacrene D drastically decreased from M. virgata to M. vietnamica, but that of spathulenol and bicyclogermacrene was in contrast.  $\beta$ -Selinene was absent in *M. virgata*. Considering O. polycarpa, its leaf essential oil was recorded to consist of 31 identified compounds, which accounted for 98.16% (Table 2 and Fig. S3). The main chemical classes in this essential oil have included monoterpene hydrocarbons (70.66%), and sesquiterpene hydrocarbons (24.04%). In the meantime, their oxygenated derivatives and non-terpenic compounds have occurred occasionally with less than 3.00%.  $\alpha$ -Phellandrene (39.35%), bicyclogermacrene (13.07%), β-phellandrene (10.87%), and limonene (8.27%) were the primary compounds. The percentage of some

|    | Table 1. Essential oil c | omposit         | ions (%)                     | in the l      | leaves of <i>M</i> . | virgata and M. vi | ietnamica      |
|----|--------------------------|-----------------|------------------------------|---------------|----------------------|-------------------|----------------|
| No | Constituents             | <sup>a</sup> Rt | <sup>b</sup> RI <sub>E</sub> | ۳ <b>RI</b> L | M. virgata           | M. vietnamica     | Identification |
| 1  | 2-Butylfuran             | 8.29            | 885                          | 890           | 0.35                 | -                 | RI and MS      |
| 2  | Safrole                  | 21.93           | 1298                         | 1285          | 1.95                 | -                 | RI and MS      |
| 3  | δ-Elemene                | 23.58           | 1347                         | 1335          | 0.12                 | 0.28              | RI and MS      |
| 4  | α-Cubebene               | 23.99           | 1360                         | 1345          | 1.25                 | 0.60              | RI and MS      |
| 5  | Cyclosativene            | 24.69           | 1381                         | 1363          | 1.96                 | -                 | RI and MS      |
| 6  | α-Copaene                | 24.95           | 1389                         | 1374          | 4.19                 | 1.79              | RI and MS      |
| 7  | β-Bourbonene             | 25.29           | 1399                         | 1387          | 1.22                 | 1.42              | RI and MS      |
| 8  | β-Cubebene               | 25.37           | 1402                         | 1391          | 4.18                 | 1.42              | RI and MS      |
| 9  | <i>cis</i> -β-Elemene    | 25.41           | 1403                         | 1395          | -                    | 4.05              | RI and MS      |
| 10 | Ylanga-2,4(15)-diene     | 25.93           | 1419                         | 1405          | 0.15                 | -                 | RI and MS      |
| 11 | α-Gurjunene              | 26.09           | 1424                         | 1408          | -                    | 0.75              | RI and MS      |
| 12 | β-Ylangene               | 26.40           | 1434                         | 1416          | 0.47                 | -                 | RI and MS      |
| 13 | (E)-Caryophyllene        | 26.45           | 1436                         | 1417          | 1.59                 | 5.08              | RI and MS      |
| 14 | β-Gurjunene              | 26.71           | 1444                         | 1431          | 0.99                 | 1.37              | RI and MS      |
| 15 | Aromadendrene            | 27.07           | 1456                         | 1439          | 0.27                 | 1.92              | RI and MS      |
| 16 | cis-Muurola-3,5-diene    | 27.38           | 1465                         | 1448          | 0.15                 | -                 | RI and MS      |
| 17 | α-Humulene               | 27.53           | 1470                         | 1452          | 0.52                 | 0.79              | RI and MS      |
| 18 | 9-epi-( <i>E</i> )-      | 27.77           | 1478                         | 1464          | -                    | 0.30              | RI and MS      |
|    | Caryophyllene            |                 |                              |               |                      |                   |                |
| 19 | cis-Muurola-4(14),5-     | 27.80           | 1479                         | 1465          | 0.24                 | -                 | RI and MS      |
|    | diene                    |                 |                              |               |                      |                   |                |
| 20 | trans-Cadina-1(6),4-     | 28.08           | 1488                         | 1475          | 0.27                 | -                 | RI and MS      |
|    | diene                    |                 |                              |               |                      |                   |                |
| 21 | γ-Muurolene              | 28.18           | 1491                         | 1478          | 2.02                 | 1.57              | RI and MS      |
| 22 | Germacrene D             | 28.47           | 1500                         | 1484          | 42.48                | 8.20              | RI and MS      |
| 23 | β-Selinene               | 26.61           | 1505                         | 1489          | -                    | 11.14             | RI and MS      |
| 24 | Asaricin                 | 28.68           | 1507                         | 1495          | 1.74                 | -                 | RI and MS      |
| 25 | trans-Muurola-4(14),5-   | 28.78           | 1510                         | 1497          | 1.33                 | -                 | RI and MS      |
|    | diene                    |                 |                              |               |                      |                   |                |
| 26 | Bicyclogermacrene        | 28.88           | 1514                         | 1500          | 6.61                 | 18.58             | RI and MS      |
| 27 | δ-Amorphene              | 29.09           | 1521                         | 1511          | 0.18                 | -                 | RI and MS      |
| 28 | γ-Cadinene               | 29.35           | 1529                         | 1513          | 0.83                 | 0.23              | RI and MS      |
| 29 | δ-Cadinene               | 29.56           | 1536                         | 1522          | 2.40                 | 0.38              | RI and MS      |
| 30 | Zonarene                 | 29.69           | 1541                         | 1528          | 0.44                 | -                 | RI and MS      |
| 31 | trans-Cadina-1,4-diene   | 29.88           | 1547                         | 1533          | 0.19                 | -                 | RI and MS      |
| 32 | α-Cadinene               | 30.03           | 1552                         | 1537          | 0.21                 | -                 | RI and MS      |
| 33 | α-Calacorene             | 30.24           | 1559                         | 1544          | 0.24                 | -                 | RI and MS      |
| 34 | Salviadienol             | 30.55           | 1570                         | 1549          | 0.35                 | -                 | RI and MS      |
| 35 | Germacrene B             | 30.75           | 1576                         | 1559          | 0.22                 | -                 | RI and MS      |
| 37 | Mintoxide                | 31.05           | 1586                         | 1570          | 0.34                 | 1.56              | RI and MS      |
| 38 | Spathulenol              | 31.38           | 1597                         | 1577          | 6.03                 | 24.51             | RI and MS      |
| 39 | Caryophyllene oxide      | 31.57           | 1604                         | 1589          | 1.35                 | 1.88              | RI and MS      |

| Do Ngoc Dai et al. / | J. Essent. Oil-Bear. Plants 27 | (5) 2024 pp 1291 - 1301 |
|----------------------|--------------------------------|-------------------------|
| J                    |                                |                         |

| Table | e 1 <i>cont</i> .           |                 |                              |                  |            |               |                |
|-------|-----------------------------|-----------------|------------------------------|------------------|------------|---------------|----------------|
| No    | Constituents                | <sup>a</sup> Rt | <sup>b</sup> RI <sub>E</sub> | ۴RI <sub>L</sub> | M. virgata | M. vietnamica | Identification |
| 40    | Salvial-4(14)-en-1-one      | 31.85           | 1614                         | 1599             | 0.84       | -             | RI and MS      |
| 41    | 1-epi-Cubenol               | 32.77           | 1646                         | 1638             | 0.69       | -             | RI and MS      |
| 42    | <i>epi-</i> α-Cadinol       | 33.11           | 1658                         | 1645             | 0.87       | -             | RI and MS      |
| 43    | <i>epi</i> -α-Muurolol      | 33.16           | 1660                         | 1650             | 0.73       | -             | RI and MS      |
| 44    | α-Muurolol                  | 33.25           | 1663                         | 1651             | 0.34       | -             | RI and MS      |
| 45    | α-Cadinol                   | 33.53           | 1673                         | 1652             | 0.36       | -             | RI and MS      |
| Tota  | 1                           |                 |                              |                  | 90.66      | 87.82         |                |
| Sesc  | uiterpene hydrocarbons      |                 |                              |                  | 74.72      | 59.87         |                |
| Oxy   | genated sesquiterpenes      |                 |                              |                  | 11.9       | 27.95         |                |
| Non   | -terpenic compounds         |                 |                              |                  | 4.04       | -             |                |
| The l | MS spectrum of each compoun | d was base      | ed on the                    | EI-MS m          | ode        |               |                |

|    | Table 2. Essential oil compositions (%) in the leaves of O. polycarpa |                 |                              |               |              |                |  |  |
|----|-----------------------------------------------------------------------|-----------------|------------------------------|---------------|--------------|----------------|--|--|
| No | Constituents                                                          | <sup>a</sup> Rt | <sup>b</sup> RI <sub>E</sub> | ۳ <b>RI</b> L | O. polycarpa | Identification |  |  |
| 1  | α-Thujene                                                             | 9.53            | 930                          | 924           | 0.24         | RI and MS      |  |  |
| 2  | α-Pinene                                                              | 9.79            | 939                          | 932           | 2.64         | RI and MS      |  |  |
| 3  | Sabinene                                                              | 10.98           | 978                          | 969           | 0.85         | RI and MS      |  |  |
| 4  | β-Pinene                                                              | 11.15           | 984                          | 974           | 0.31         | RI and MS      |  |  |
| 5  | 6-Methylhept-5-en-2-one                                               | 11.25           | 988                          | 987           | 0.50         | RI and MS      |  |  |
| 6  | Myrcene                                                               | 11.40           | 992                          | 988           | 2.28         | RI and MS      |  |  |
| 7  | α-Phellandrene                                                        | 12.02           | 1012                         | 1002          | 39.35        | RI and MS      |  |  |
| 8  | 3-δ-Carene                                                            | 12.19           | 1016                         | 1008          | 0.15         | RI and MS      |  |  |
| 9  | o-Cymene                                                              | 12.65           | 1030                         | 1022          | 4.57         | RI and MS      |  |  |
| 10 | Limonene                                                              | 12.81           | 1035                         | 1024          | 8.27         | RI and MS      |  |  |
| 11 | β-Phellandrene                                                        | 12.87           | 1036                         | 1025          | 10.87        | RI and MS      |  |  |
| 12 | $(E)$ - $\beta$ -Ocimene                                              | 13.31           | 1049                         | 1044          | 1.13         | RI and MS      |  |  |
| 13 | Perillene                                                             | 15.68           | 1118                         | 1110          | 0.14         | RI and MS      |  |  |
| 14 | δ-Elemene                                                             | 23.58           | 1347                         | 1335          | 0.44         | RI and MS      |  |  |
| 15 | α-Copaene                                                             | 24.93           | 1388                         | 1374          | 0.24         | RI and MS      |  |  |
| 16 | Bourbon-7-ene                                                         | 25.11           | 1394                         | 1384          | 0.19         | RI and MS      |  |  |
| 17 | <i>cis</i> -β-Elemene                                                 | 25.40           | 1403                         | 1389          | 0.71         | RI and MS      |  |  |
| 18 | (E)-Caryophyllene                                                     | 26.45           | 1436                         | 1417          | 3.77         | RI and MS      |  |  |
| 19 | Guaia-6,9-diene                                                       | 27.08           | 1456                         | 1447          | 0.60         | RI and MS      |  |  |
| 20 | α-Humulene                                                            | 27.54           | 1471                         | 1469          | 2.49         | RI and MS      |  |  |
| 21 | Germacrene D                                                          | 28.37           | 1497                         | 1487          | 1.24         | RI and MS      |  |  |
| 22 | β-Selinene                                                            | 28.56           | 1503                         | 1491          | 0.33         | RI and MS      |  |  |
| 23 | Bicyclogermacrene                                                     | 28.89           | 1514                         | 1503          | 13.07        | RI and MS      |  |  |
| 24 | β-Bisabolene                                                          | 28.98           | 1517                         | 1508          | 0.82         | RI and MS      |  |  |
| 25 | δ-Cadinene                                                            | 29.55           | 1536                         | 1530          | 0.14         | RI and MS      |  |  |
| 26 | (E)-Nerolidol                                                         | 30.56           | 1570                         | 1561          | 0.14         | RI and MS      |  |  |
| 27 | Dendrolasin                                                           | 30.95           | 1583                         | 1574          | 0.28         | RI and MS      |  |  |

| Do Nooc Dai et al. | <sup>/</sup> J. Essent. Oil-Bear. | Plants 27 (5) 2024 | 1 pp 1291 - 1301 |
|--------------------|-----------------------------------|--------------------|------------------|
| J                  |                                   | (-) -              |                  |

| Table | 2 <i>cont</i> .                        |                 |                              |               |              |                |
|-------|----------------------------------------|-----------------|------------------------------|---------------|--------------|----------------|
| No    | Constituents                           | <sup>a</sup> Rt | <sup>b</sup> RI <sub>E</sub> | ۲ <b>RI</b> L | 0. polycarpa | Identification |
| 28    | Spathulenol                            | 31.36           | 1597                         | 1579          | 1.68         | RI and MS      |
| 29    | Cubeban-11-ol                          | 31.82           | 1613                         | 1599          | 0.18         | RI and MS      |
| 30    | <i>epi-α</i> -Cadinol                  | 33.09           | 1658                         | 1648          | 0.32         | RI and MS      |
| 31    | α-Muurolol                             | 33.24           | 1663                         | 1659          | 0.22         | RI and MS      |
| Tota  | 1                                      |                 |                              |               | 98.16        |                |
| Mon   | oterpene hydrocarbons (Sr. no. 1-7,    | , 9, 10)        |                              |               | 70.66        |                |
| Oxy   | genated monoterpenes (Sr. no. 8, 11    | -22)            |                              |               | 0.14         |                |
| Sesq  | uiterpene hydrocarbons (Sr. no. 23-    | -26)            |                              |               | 24.04        |                |
| Oxy   | genated sesquiterpenes                 |                 |                              |               | 2.82         |                |
| Non   | -terpenic compounds                    |                 |                              |               | 0.50         |                |
| The N | AS spectrum of each compound was based | on the EI-N     | IS mode                      |               |              |                |

other compounds exceeds 1.00%, consisting of *o*-cymene (4.57%), (*E*)-caryophyllene (3.77%),  $\alpha$ -pinene (2.64%),  $\alpha$ -humulene (2.49%), myrcene (2.28%), spathulenol (1.68%), germacrene D (1.24%), and (*E*)- $\beta$ -ocimene (1.13%). To date, this is the first time that essential oils of the genus *Orophea* have been studied.

#### **Antimicrobial activity**

Three studied essential oils have been subjected to antimicrobial assay, and the results are outlined in Table 3. M. virgata leaf essential oil strongly inhibited the Gram (+) bacterium B. subtilis with the MIC value of 16  $\mu$ g/mL, as compared with that of M. vietnamica (MIC 32  $\mu$ g/mL), and the standard streptomycin (MIC 4  $\mu$ g/mL). Both two *Meiognye* essential oils showed the same MIC values of 128 and 256  $\mu$ g/mL against the Gram (+) bacteria C. sporogenes and S. aureus, respectively. The leaf essential oil of M. virgata with the MIC values of 16-32  $\mu$ g/mL was better than the leaf essential oil of M. vietnamica (MIC 64-128 µg/ mL) in antimicrobial assay against the Gram (-) bacteria E. coli and P. aeruginosa.

In the case of fungi, again, *M. virgata* leaf essential oil was strongly active against the fungus *A. niger* with a MIC value of 16  $\mu$ g/mL, in comparison with that of *M. vietnamica* (MIC 32  $\mu$ g/mL), and the standard nystatin (MIC 8  $\mu$ g/mL). Both two *Meiognye* samples showed the same MIC values of 128 and 256

 $\mu$ g/mL against the fungus *A. brasiliensis* and *C. albicans*, respectively, but they failed to control two analogous strains *F. oxysporum* and *S. cerevisiae* (MIC > 512 µg/mL). *O. polycarpa* leaf essential oil exhibited antibacterial activity against the Gram (+) bacterium *B. subtilis* with a MIC value of 256 µg/mL, but did not show inhibitory activity against the remaining pathogenic strains (Table 2).

#### Docking results and toxicity profiles

It is assumed that the antimicrobial activity of the essential oil of M. virgata leaves is due to the great role of its major compound, germacrene D. Hence, in this section, the evaluations of the affinities and interaction modes between germacrene D and the essential proteins DNA gyrase, TasA, and PhyA of E. coli, B. subtilis, and A. niger, respectively, were performed. The proteins used as molecular targets are essential for the metabolism of these microorganisms and were used as targets for natural and synthetic products against these pathogens<sup>14-17</sup>. Before the docking process, a successful redocking process was conducted to verify the docking protocol by calculating the RMSD value between the native ligand and the re-docked ligand (Fig. S4). As a result, the RMSD value of the co-crystallized ligand in the representative protein 6F86 was 1.61771 Å < 2 Å, indicating the high reliability of the protocol<sup>22</sup>. The binding affinity ( $\Delta G_{\text{binding}}$ )

1297

|                   |                 | Table      | 3. Antimicrobial act | ivity of the studied | l essential oils   |              |          |
|-------------------|-----------------|------------|----------------------|----------------------|--------------------|--------------|----------|
| Minuchiol         |                 |            | Minimu               | m inhibitory conc    | centration (MIC: n | ng/mL)       |          |
| <b>WIICFODIAL</b> |                 | M. virgata | M. vietnamica        | O. polycarpa         | Streptomycin       | Tetracycline | Nystatin |
| Gram (+)          | B. subtilis     | 16         | 32                   | 256                  | 4                  |              |          |
|                   | C. sporogenes   | 128        | 256                  | >512                 | 8                  |              |          |
|                   | S. aureus       | 128        | 256                  | >512                 | 8                  |              |          |
| Gram (–)          | E. coli         | 16         | 128                  | >512                 |                    | 4            |          |
|                   | P. aeruginosa   | 32         | 64                   | >512                 |                    | 4            |          |
| Fungi             | A. niger        | 16         | 32                   | >512                 |                    |              | 8        |
|                   | A. brasiliensis | 128        | 128                  | >512                 |                    |              | 8        |
|                   | F. oxysporum    | >512       | >512                 | >512                 |                    |              | 8        |
| Yeasts            | C. albicans     | 256        | 256                  | >512                 |                    |              | 4        |
|                   | S. cerevisiae   | >512       | >512                 | >512                 |                    |              | 8        |

and amino acid interactions of the compound germacrene D and reference inhibitors with the selected bacterial and fungal target proteins are presented in Table 4. The  $\Delta G_{\text{binding}}$  of germacrene D with the proteins DNA gyrase, TasA, and PhyA were -6.68, -5.265, and -5.602 kcal/mol, respectively. In comparison, the control compound streptomycin exhibited binding affinities with DNA gyrase and TasA of -6.871 and -5.733 kcal/mol, respectively, and cycloheximide had a  $\Delta G_{\text{binding}}$  value of -6.277 kcal/mol with PhyA (Fig. S5). The docked structure was analyzed for the interactions of the germacrene D compound with the amino acid residues of the studied proteins as observed in Fig. 1-3. Specifically, germacrene D formed alkyl interactions with the residues Ile94, Ile78, Val167, and Ala47 of the DNA gyrase protein. Notably, Ile94 and Ile78 are considered important amino acids for this protein. For the TasA protein, germacrene D established alkyl and pi-alkyl interactions with Phe70, Ala53, Val55, Leu66, and Lys68 residues. Additionally, these interactions were formed with the residues Lys278, Lys277, His282, Ala201, and Phe195 of the PhyA protein. Furthermore, a toxicological feature of germacrene D was predicted using the ProTox 3.0 web server (Table 5). The result showed that the LD<sub>50</sub> value of this compound was 5300 mg/ kg, which was higher than that of streptomycin  $(LD_{50} = 500 \text{ mg/kg})$  and cycloheximide (2 mg/kg). This is classified as toxicity class 5 according to the Globally Harmonized System classification<sup>23</sup>. It showed that germacrene D has low oral toxicity. In addition, the toxicity of this compound to the organ was considered. Interestingly, germacrene D was inactive against all considered targets, including hepatotoxicity, neurotoxicity, nephro-toxicity, respiratory toxicity, and cardiotoxicity, with calculated probability (p) values of 0.8, 0.51, 0.89, 0.71, and 0.71, respectively. This indicates that germacrene D is estimated to have no toxic effects on the targets, with notable predicted p-values greater than 0.5. Therefore, this potential compound needs to be verified and further tested in the future.

| Do Ngoc Dai et al. | / J. Essent. Oil-B | ear. Plants 27 (5) | 2024 pp 1291 - 1301 |
|--------------------|--------------------|--------------------|---------------------|
|                    |                    | (-)                |                     |

| Table 4       | 4. The obtained docking results | of germacrene D  | with the studied proteins         |
|---------------|---------------------------------|------------------|-----------------------------------|
| Compounds     | Target Proteins                 | Binding affinity | Alkyl and pi-alkyl interactions   |
|               |                                 | (ΔG, kcal/mol)   |                                   |
| Germacrene D  | DNA gyrase (PDB ID: 6F86)       | -6.68            | Ile94, Ile78, Val167, Ala47       |
|               | TasA (PDB ID: 5OF2)             | -5.265           | Phe70, Ala53, Val55, Leu66, Lys68 |
|               | Phytase (PDB ID: 3K4Q)          | -5.602           | Lys278, Lys277, His282,           |
|               |                                 |                  | Ala201, and Phe195                |
| Cycloheximide | Phytase (PDB ID: 3K4Q)          | -6.277           | -                                 |
| Streptomycin  | DNA gyrase (PDB ID: 6F86)       | -6.871           | -                                 |
|               | TasA (PDB ID: 50F2)             | -5.733           | Lys201                            |



Figure 1. 2D and 3D interactions of germacrene D with the amino acid residues of the *E. coli* DNA gyrase protein (PDB ID: 6F86)



Figure 2. 2D and 3D interactions of germacrene D with the amino acid residues of the *B. subtilis* TasA protein (PDB ID: 50F2)

# **CONCLUSION**

The current research provides a chemical analysis of three Annonaceae essential oils, collected from Vietnam. Generally, monoterpene hydrocarbons, sesquiterpene hydrocarbons, and their oxygenated derivatives are the main chemical classes. *M. virgata* leaf essential oil was

rich in germacrene D, whereas *M. vietnamica* leaf essential oil was dominated by spathulenol, bicyclogermacrene,  $\beta$ -selinene, and germacrene D. Meanwhile, the leaf essential oil of *O. polycarpa* was characterized by  $\alpha$ -phellandrene, bicyclogermacrene,  $\beta$ -phellandrene, and limonene. *Meiognye* essential oil showed good

| GI<br>Interactions<br>an der Waals |                   | BIJ<br>BIJ<br>BIJ<br>BIJ<br>BIJ<br>BIJ<br>BIJ<br>BIJ<br>BIJ<br>BIJ |                                |                         | HIS282              | PHE15              |                           |                                | PHE19               |
|------------------------------------|-------------------|--------------------------------------------------------------------|--------------------------------|-------------------------|---------------------|--------------------|---------------------------|--------------------------------|---------------------|
| c angur                            |                   | Tabl                                                               | or germacren<br>le 5. The oral | toxicity of g           | ermacrene D al      | nd the positive    | mger ruya pio<br>controls |                                | ()<br>14()          |
|                                    | Predicted         | Predicted                                                          |                                |                         |                     |                    | <b>Organ</b> toxicity     |                                |                     |
| Compounds                          | $LD_{s0}$ (mg/kg) | Toxicity<br>Class                                                  | rrealculon<br>accuracy         | Average -<br>similarity | Hepato-<br>toxicity | Neuro-<br>toxicity | Nephro-<br>toxicity       | <b>Respiratory</b><br>toxicity | Cardio-<br>toxicity |
| Germacrene D                       | 5300              | 5                                                                  | 70.97%                         | 80.77%                  | Inactive            | Inactive           | Inactive                  | Inactive                       | Inactive            |
|                                    |                   |                                                                    |                                |                         | (p = 0.80)          | (p = 0.51)         | (p = 0.89)                | (p = 0.71)                     | (p = 0.71)          |
| Streptomycin                       | 500               | 3                                                                  | 70.54%                         | 69.26%                  | Inactive            | Active             | Active                    | Active                         | Inactive            |
|                                    |                   |                                                                    |                                |                         | (p = 0.95)          | (p = 0.79)         | (p = 0.72)                | (p = 0.68)                     | (p = 0.80)          |
| Cyclohexamide                      | 7                 | 1                                                                  | 100%                           | 100%                    | Inactive            | Inactive           | Active                    | Active                         | Inactive            |
|                                    |                   |                                                                    |                                |                         | (p = 0.79)          | (p = 0.52)         | (p = 0.55)                | (p = 0.62)                     | (p = 0.61)          |

1299

antimicrobial activity, especially *M. virgata* leaf essential oil, which strongly controlled the growth of *B. subtilis, E. coli,* and *A. niger* with the same MIC value of 16  $\mu$ g/mL. By the molecular docking approach, germacrene D showed effective binding capabilities compared to two positive controls, and did not show toxicity towards the considered organ targets.

# FUNDING

No funding

# **COMPETING INTERESTS**

No potential conflict of interest was reported by the authors.

# DATA AVAILABILITY STATEMENT

Data available on request from the corresponding author.

# SUPPLEMENTARY DATA

Figures S1 to S5 are given as supplementary data.

#### Reference

- Chatrou, L.W., Pirie, M.D., Erjens, R.H.J., Couvreur, T.L.P., Neubig, K.M., Abbott, J.R., Mols J.B., Maas, P.J.M., Sunders, R.M.K. and Chase, M.W. (2012). A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot. J. Linn. 169(1): 5-40.
- Cascaes, M.M., Carneiro, O.D., Nascimento, L.D.D., Barbosa de Moraes, A.A., Santana de Oliveira, M.S., Cruz, J.N., Pinheiro Guilhon, G.M.S. and Aguiar Andrade, E.H.D. (2021). Essential oils from Annonaceae species from Brazil: A systematic review of their phytochemistry, and biological activities. Int. J. Mol. Sci. 22(22): 12140.
- Hop, N.Q. and Son, N.T. (2022). Botanical description, traditional uses, phytochemistry, and pharmacology of the genus *Artabotrys*: A review. Chem. Biodiver. 19(11): e202200725.
- Rodrigues, A.C.B.C., Bomfim, L.M., Neves, S.P., Menezes, L.R.A., Dias, R.B., Soares, M.B.P., Prata, A.P.N., Rocha, C.A.G., Costa, E.V. and Bezerra, D.P. (2015). Antitumor properties of the essential oil from the leaves

of *Duguetia gardneriana*. Planta Med. 81: 798-803.

- Jaikhamseub, T., Le, T.A., Damthongdee, A., Thanh Huong, T.T.T., Kutznetsov, A.N., Kuznetsova, S.P., Nuraliev and M.S., Chaowasku, T. (2022). Two new species of *Meiognye* (Annoaceae) from Vietnam, based on molecular phylogeny and morphology. Ann. Bot. Fennici. 59: 219-231.
- Thang, T.D., Hung, N.H., Dung, D.M., Dai, D.N. and Ogunwande, I.A. (2015). Volatile terpenes from essential oils of selected medicinal plants grown in Vietnam forest reserves. J. Herbs Species Med. Pl. 21: 426-437.
- Lan, W.J., Wang, J., Guo, Y.Q. and Yin, S. (2012). Oropheayunnol, an Unusual 22,23-epoxy apotirucallane triterpenoid from *Orophea yunnanensis*. Nat. Prod. Commun. 7: 495-496.
- Huan, D.Q., Luyen, N.D., Ha, N.X., Dai, D.N., Hop, N.Q., Huong, D.T.L. and Son, N.T. (2024). The leaf oils of *Beilschmiedia tonkinensis* (Lecomte) Ridl. and *Lindera gracilipes* H. W. Li: chemical composition, cytotoxicity, antimicrobial activity, and docking study. Nat. Prod. Commun. 19: 1-10.
- Do, N.D., Huong, L.T., Le, N.V., Dung, V.T. and Son, N.T. (2023). Essential oils of *Piper pendulispicum* C. DC. and *Piper hymenophyllum* Miq.: chemical composition and anti-microbial activity. J. Essent. Oil Bear. Pl. 26: 403-410.
- Son, N.T., Anh, L.T., Thuy, D.T.T., Luyen, N.D., Tuyen, T.T., Huan, D.Q. and Hop, N.Q. (2023). Compositions and antimicrobial activity of essential oils from *Artabotrys chitkokoi*. Chem. Nat. Compd. 59: 1189-1192.
- Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream IL, Allured Publ Corp, 4<sup>th</sup> edn.
- Linstrom, P.J. and Mallard, W.G. (2023). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899. (retrieved May 15, 2023).
- Le, T.H., Sam, N.L., Giang, C.N., Dai, D.N., Pham, T.V., Luyen, N.D., Setzer, W.N. and Son, N.T. (2023). Essential oils of two *Zingiber* plants *Zingiber eberhardtii* Gagnep. and *Zingiber skornickovae* N.S. Lý: Chemical profiles and antimicrobial effects. J. Essent. Oil Bear. Pl. 26(3): 761-768.
- 14. Zechiedrich, E.L. and Cozzarelli, N.R. (1995).

Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in *Escherichia coli*. Genes Dev. 9(22): 2859-2869.

- Gellert, M., Mizuuchi, K., O'Dea, M.H. and Nash, H.A. (1976). DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. 73(11): 3872-3876.
- Diehl, A., Roske, Y., Ball, L., Chowdhury, A., Hiller, M., Molière, N. and Oschkinat, H. (2018). Structural changes of TasA in biofilm formation of *Bacillus subtilis*. Proc. Natl. Acad. Sci. 115(13): 3237-3242.
- 17. Oakley, A.J. (2010). The structure of *Aspergillus niger* phytase PhyA in complex with a phytate mimetic. Biochem. Biophys. Res. Commun. 397(4): 745-749.
- Halgren, T.A. (1999). MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20(7): 720-729.
- Trott, O. and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2): 455-461.

- Eberhardt, J., Santos-Martins, D., Tillack, A.F. and Forli, S. (2021). AutoDock Vina 1.2.
  0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 61(8): 3891-3898.
- Dai, D.N., Huong, L.T., Hung, N.H., Thang, T.D. and Ogunwande, I.A. (2014). Chemical compositions of essential oils of selected medicinal plants from Thua Thien Hue Province, Vietnam. J. Herbs Species Med. Plants. 20(3): 269-281.
- Pham, T.V., Ha, N.X., Luyen, N.D., Xuan, T.H., Quoc, T.L., Hung, N.H. and The, S.N. (2023). Chemical composition, mosquito larvicidal and antimicrobial activities, and molecular docking study of essential oils of *Cinnamomum melastomaceum*, *Neolitsea buisanensis* and *Uvaria microcarpa* from Vietnam. Chem. Biodiver. 20(9): e202300652.
- Boatman, R., Kelsey, J. and Ball, N. (2014). Acute toxicity classification for ethylene glycol mono-*n*-butyl ether under the Globally Harmonized System. Regul. Toxicol. Pharmacol. 68(1): 41-50.