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Abstract
In this study, some Baum-Katz’s type theorems for pairwise independent random elements
are extended to a metric space endowed with a convex combination operation. Our results
are considered in the cases of identically distributed and non-identically distributed random
elements. Some illustrative examples are provided to sharpen the results.
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1 Introduction

The concept of complete convergence for a sequence of random variables (r.v.’s) was intro-
duced by Hsu and Robbins [6]. A sequence {Xn, n � 1} of real-valued r.v.’s converges
completely to a constant θ if

∑∞
n=1 P(|Xn − θ | > ε) < ∞ for any ε > 0, and hence

it follows from Borel-Cantelli’s lemma that Xn → θ almost surely. Also in [6], Hsu and
Robbins proved that the sequence of arithmetic means of independent and identically dis-
tributed (i.i.d.) r.v.’s converges completely to the common expected value if their variance is
finite. This result has been considered and extended by many authors. A noteworthy result
was obtained by Katz [7] and Baum and Katz [2], that is:

Theorem 1.1 Let {X,Xn, n � 1} be a sequence of i.i.d. r.v.’s, and set Sn = ∑n
i=1 Xi . Given

p � 1 and 0 < r < 2. Then E|X|pr < ∞ if and only if
∑∞

n=1 np−2P(max1�k�n |Sk −
km| > εn1/r ) < ∞ for every ε > 0, where m = EX if pr � 1 and m = 0 if 0 < pr < 1.
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This result has been extensively studied for various classes of r.v.’s. Recently, Bai et al.
[1] considered a particular case of above Baum-Katz’s result when r = 1 and 1 � p < 2,
and in this situation, the condition of i.i.d. can be relaxed to be pairwise i.i.d. [1, Theorem
1.2]. Moreover, in Banach space setting, Bai et al. [1] also derived a similar result without
any geometric property of the underlying Banach space [1, Theorem 3.2].

Besides considering Baum-Katz’s type theorems for various classes of r.v.’s (e.g., pair-
wise i.i.d. r.v.’s in [1] or martingale, negatively associated r.v.’s, ρ∗-mixing r.v.’s in [8]),
many researchers have also extended them into more abstract spaces such as Hilbert spaces
[5] or Banach spaces [1]. Continuing this direction, we will discuss Baum-Katz’s type the-
orems in a convex combination space, which is the certain metric space introduced in 2006
by Terán and Molchanov [12]. Roughly speaking, a convex combination space is a metric
space endowed with a convex combination operation and the extension from linear spaces
to convex combination spaces is not trivial. Some very basic sets, such as singletons and
balls, may fail to be convex in this type of metric spaces. To illustrate this demonstration,
Terán and Molchanov [12] provided many interesting examples for convex combination
spaces, for example, the space of all cumulative distribution functions and the space of upper
semicontinuous functions with t-norm. Furthermore, the authors also proved several basic
properties of convex combination operation and used those to get the strong law of large
numbers for pairwise i.i.d. random elements [12, Theorem 5.1], which extended [4, Theo-
rem 1] of Etemadi. Since then, some limit theorems for random elements taking values in
convex combination space were considered and extended (see [9, 11, 12, 14]). On the other
hand, as shown recently in [13], it is fairly remarkable that although these spaces are not lin-
ear in general, they always contains a subspace which can be isometrically embedded into
a Banach space and this embedding preserves the convex combination operation.

In this study, we establish the complete convergence for maximum partial sums of a
sequence of random elements in a convex combination space, which gives us some new
variants of Baum-Katz’s type theorems. Notice that some usual techniques developed in
Banach space are no longer applicable here because we are dealing with problems in a
nonlinear space. For example, Lemma 2.2 in Section 2 is not necessary if one considers
the problems in Banach space. Moreover, an illustrative example will be given to show that
some conditions appearing in our results cannot be removed in general convex combination
space while they become trivial in Banach space. This paper is organized as follows: In
Section 2, we state and summarize some basic results about convex combination spaces,
discuss the notion of compactly uniform integrability in Cesàro sense and present some
auxiliary lemmas. Our main results regarding to Baum-Katz’s type theorems for pairwise
independent random elements taking values in convex combination space are established in
Section 3.

2 Preliminaries

Throughout this paper, (�,A, P ) is a complete probability space. For A ∈ A, the notation
I (A) (or IA) is the indicator function of A, the symbol C denotes a general positive constant
and it is probably not the same in each appearance.

For the reader’s convenience, we now present a short introduction to the work given
by Terán and Molchanov [12]. Let (X , d) be a metric space. Denote ‖x‖u := d(u, x) for
u, x ∈ X . Based on X , a convex combination operation is defined so that for all n � 1,
numbers λ1, . . . , λn > 0 that satisfy

∑n
i=1 λi = 1, and all u1, . . . , un ∈ X , this operation
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produces an element in X , which is denoted by [λ1, u1; . . . ; λn, un] or [λi, ui]ni=1. Assume
that [1, u] = u for every u ∈ X and the following properties are satisfied:
(CC.i) (Commutativity) [λi, ui]ni=1 = [λσ(i), uσ(i)]ni=1 for every permutation σ of
{1, . . . , n};
(CC.ii) (Associativity) [λi, ui]n+2

i=1 =
[

λ1,u1; . . . ;λn, un;λn+1+λn+2,
[

λn+j

λn+1+λn+2
, un+j

]2

j=1

]

;

(CC.iii) (Continuity) If u, v ∈ X and λ(k) → λ ∈ (0; 1) as k → ∞, then [λ(k), u; 1 −
λ(k), v] → [λ, u; 1 − λ, v];
(CC.iv) (Negative curvature) If u1, u2, v1, v2 ∈ X and λ ∈ (0, 1), then

d([λ, u1; 1 − λ, u2], [λ, v1; 1 − λ, v2]) � λd(u1, v1) + (1 − λ)d(u2, v2);
(CC.v) (Convexification) For each u ∈ X , there exists limn→∞[n−1, u]ni=1, which is
denoted by KXu (or Ku without any confusion), and K is called the convexification
operator.

Then, a metric space endowed with a convex combination operation is referred to the
convex combination space (shortly, CC space). Notice that [λ1, u1; . . . ; λn, un] and the
shorthand [λi, ui]ni=1 have the same intuitive meaning as the more familiar λ1u1+· · ·+λnun

and
∑n

i=1 λiui , but X is not assumed to have any addition. By induction and (CC.ii), the
axiom (CC.iv) can be extended to convex combinations of n elements as follows: if ui, vi ∈
X , λi ∈ (0; 1) with ∑n

i=1 λi = 1, then d([λi, ui]ni=1, [λi, vi]ni=1) �
∑n

i=1 λid(ui, vi). The
following properties (2.1)–(2.6) are implied from (CC.i)–(CC.v) above, and their proofs
were given in [12]:
(2.1) For every u11, . . . , umn ∈ X and α1, . . . , αm, β1, . . . , βn > 0 with

∑m
i=1 αi =

∑n
j=1 βj = 1, we have [αi, [βj , uij ]nj=1]mi=1 = [αiβj , uij ]i=m,j=n

i=1,j=1 .
(2.2) The convex combination operation is jointly continuous in its 2n arguments.
(2.3) The convexification operator K is linear, that is K([λj , uj ]nj=1) = [λj ,Kuj ]nj=1.
(2.4) If u ∈ X and λ1, . . . , λn > 0 with

∑n
j=1 λj = 1, then K([λj , u]nj=1) = Ku =

[λj ,Ku]nj=1. Hence, K is an idempotent operator on X .
(2.5) For λ1, λ2, λ3 > 0 with λ1 + λ2 + λ3 = 1 and u, v ∈ X ,

[λ1, u; λ2,Kv; λ3, Kv] = [λ1u; (λ2 + λ3),Kv].
(2.6) The mapping K is non-expansive, that is d(Ku,Kv) � d(u, v).

Let λk ⊂ (0; 1), λk → 0 and u, v ∈ X . By (CC.iv) and property (2.4), we have

d([λk, Ku; 1−λk, Kv],Kv) = d([λk,Ku; 1−λk,Kv], [λk,Kv; 1−λk, Kv]) � λkd(Ku,Kv) → 0

as k → ∞. It follows [λk,Ku; 1 − λk,Kv] → Kv and this allows us to extend weights λi

from (0; 1) to [0; 1] for elements in K(X ), it means that we can define [λi, xi]i∈{i : λi�0} =
[λi, xi]i∈{i : λi>0}, where xi ∈ K(X ),

∑
i λi = 1.

Suppose that (X , d) is a metric space. A mapping X : � → X is called an X -valued
random element (or A-measurable) if X−1(B) ∈ A for all B ∈ B(X ), where B(X ) is the
Borel σ -algebra onX . When anX -valued random element X takes finite values, it is called
a simple random element.

The distribution PX of an X -valued random element X is defined by PX(B) =
P(X−1(B)), ∀B ∈ B(X ), and two X -valued random elements X, Y are said to be iden-
tically distributed if PX = PY . The collection of X -valued random elements {Xi, i ∈ I }
is said to be independent (resp. pairwise independent) if the collection of σ -algebras
{σ(Xi), i ∈ I } is independent (resp. pairwise independent), where σ(X) = {X−1(B), B ∈
B(X )}.
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In the sequel, we assume that (X , d) is a separable and complete CC space. According
to (CC.v), the set K(X ) is nonempty, and hence an element u0 ∈ K(X ) is fixed. Since
X is separable, there exists a countable dense subset {un, n � 1} of X . For each k � 1,
we define the mapping ϕk : X → X by setting ϕk(x) = umk(x), where mk(x) = min{i ∈
{0, . . . , k} : d(ui, x) = min0�j�k d(uj , x)}.

The expectation for an integrable X -valued random element is constructed via approx-
imation as follows. For a simple random element X = [I�i

, xi]ni=1, the expectation of X

is defined by EX = [P(�i), Kxi]ni=1. It is easy to prove that if X, Y are simple random
elements, then d(EX,EY) � Ed(X, Y ). A random element X : � → X is said to be inte-
grable if d(u,X) is an integrable real-valued random variable for some u ∈ X , and the
space of all integrable X -valued random elements is denoted by L1

X . Since X is separable
and complete, any integrableX -valued random element can be approximated by a sequence
of simple random elements. Namely, if X ∈ L1

X then X = limk→∞ ϕk(X), and the expecta-
tion of X is defined by EX := limk→∞ Eϕk(X). Based on the approximation, we can also
prove that d(EX,EY) � Ed(X, Y ) whenever X, Y ∈ L1

X .
A set A ⊂ X is said to be convex if [λi, ui]ni=1 ∈ A for all ui ∈ A and any positive

numbers λi that sum up to 1. The convex hull of A ⊂ X , denoted by coA, is the smallest
convex subset of X containing A, and coA denotes the closed convex hull of A. Let k(X )

denote the set of nonempty compact subsets of X . It follows from [12, Theorem 6.2] that if
X is a separable complete CC space, then the space k(X ) with the convex combination

[λi, Ai]ni=1 = {[λi, ui]ni=1 : ui ∈ Ai, for all i}
and the Hausdorff metric dH

dH (A,B) = max

{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)

}

is a separable complete CC space as well, where the convexification operator Kk(X ) is given
by

Kk(X )A = coKX (A) = co{KXu : u ∈ A}.
This is a nice feature of CC space. Based on this property, if a result holds in CC space, then
it can be uplifted to the space of nonempty compact subsets. Further details can be found in
[11–13].

The notion of compactly uniform integrability in Cesàro sense for a collection of random
elements taking values in Banach spaces was discussed by many authors (see, e.g., [1, 3,
15]). We now introduce this notion in metric spaces, which is also naturally extended from
Banach spaces. Let r > 0, then a sequence {Xn, n � 1} of X -valued random elements is
said to be compactly uniformly r-th order integrable in Cesàro sense (Cesàro r-th CUI) if
there is a u ∈ X such that for every ε > 0, there exists a compact subset Kε (depending on
u) of X with

sup
n�1

(

n−1
n∑

i=1

E
(‖Xi‖r

uI (Xi /∈ Kε)
)
)

� ε.

When r = 1, we also use the terminology Cesàro compactly uniformly integrable or Cesàro
CUI for the sake of simplicity. The following proposition shows that the notion of Cesàro
r-th CUI does not depend on the selection of u.

Proposition 2.1 A sequence {Xn, n � 1} of X -valued random elements is Cesàro r-th
CUI with respect to some element u if and only if it is Cesàro r-th CUI with respect to any
element a ∈ X .
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Proof Suppose that {Xn, n � 1} is Cesàro r-th CUI with respect to u and let a be another
element of X . For ε > 0 and for each m ∈ N, there exists Kε,m ∈ k(X ) such that

n−1
n∑

i=1

E
(‖Xi‖r

uI (Xi /∈ Kε,m)
)
� ε

m2m
, ∀n � 1.

Let B(x, δ) denote the open ball with center x ∈ X and radius δ. We have

n−1
n∑

i=1

m−1P
(
Xi /∈

(
Kε,m ∪ B

(
u,m−1/r

)))

� n−1
n∑

i=1

E‖Xi‖r
uI

(
Xi /∈

(
Kε,n ∪ B

(
u,m−1/r

)))

� n−1
n∑

i=1

E‖Xi‖r
uI

(
Xi /∈ Kε,m

)
� ε

m2m
.

Therefore,

n−1
n∑

i=1

P
(
Xi /∈

(
Kε,m ∪ B

(
u,m−1/r

)))
� ε

2m
.

The compactness ofKε,m follows that it can be covered by a finite number of open balls with
equal radii m−1/r , and so is Kε,m ∪ B(u,m−1/r ). Set Kε = ∩m�1(Kε,m ∪ B(u,m−1/r )),
then Kε is totally bounded in X . Since X is complete, the closure clKε of Kε in X is
compact. Thus, we obtain

n−1
n∑

i=1

P (Xi /∈ clKε)

� n−1
n∑

i=1

P (Xi /∈ Kε) � n−1
n∑

i=1

P
(
Xi /∈ ∩m�1

(
Kε,m ∪ B

(
u,m−1/r

)))

� n−1
n∑

i=1

P
(
∪m�1

(
Xi /∈

(
Kε,m ∪ B

(
u,m−1/r

))))
�

∞∑

m=1

ε

2m
= ε.

Denote Kε = clKε ∪ Kε,1, then Kε ∈ k(X ). Hence for all n � 1,

n−1
n∑

i=1

E
(‖Xi‖r

aI (Xi /∈ Kε)
)

� Crn
−1

n∑

i=1

E(‖Xi‖r
uI (Xi /∈ Kε)) + Crd

r(u, a)

(

n−1
n∑

i=1

P(Xi /∈ Kε)

)

� Cr

(
ε/2 + dr(u, a)ε

)
.

By the arbitrariness of ε > 0, the proof is complete.

By Jensen’s inequality, it is easy to see that for 0 < r � p,
(

n−1
n∑

i=1

E‖Xi‖r
uI (Xi /∈ K)

)p/r

� n−1
n∑

i=1

E‖Xi‖p
uI (Xi /∈ K),

and this implies that if {Xn, n � 1} is Cesàro p-th CUI, then it is also Cesàro r-th CUI for
0 < r � p. Further details about CUI, the readers can refer to [15].
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Lemma 2.2 [9, Lemma 3.3] Let {ai, bi, 1 � i � n} ⊂ [0, 1] be a collection of nonnegative
constants with

∑n
i=1 ai = ∑n

i=1 bi = 1. Then d([ai,Kxi]ni=1, [bi,Kxi]ni=1) �
∑n

i=1 |ai −
bi |d(xi, u), where x1, . . . , xn, u ∈ X are arbitrary.

Notice that the inequality d([ai, xi]ni=1, [bi, xi]ni=1) �
∑n

i=1 |ai − bi |d(xi, u) does not
hold for x1, . . . , xn ∈ X in general as shown in [13, Example 1].

Lemma 2.3 [16, Lemma A.6] Let A1, . . . , An be events satisfying Var(
∑n

i=1 IAi
) �

α
∑n

i=1 P(Ai), where positive α does not depend on n. Then

(

1−P

(
n∪

i=1
Ai

))2 ∑n
i=1 P(Ai)

� αP
(∪n

i=1Ai

)
.

3 Baum-Katz’s Type Theorems for Pairwise IndependentX -Valued
Random Elements

Throughout this section,X is a complete and separable CC space and u0 is the fixed element
of K(X ) as mentioned in Section 2.

In the first theorem, we establish a similar result to [1, Theorem 1.2] in CC space. How-
ever, the version in CC space has a significant difference compared to the corresponding
version in Banach space that is condition (3.1) below. It becomes trivial when one considers
in Banach space with usual convex combination operation; moreover, we also show imme-
diately after the proof that it cannot be removed in general CC space, even when considered
random elements are independent.

Theorem 3.1 Let 1 � p < 2, a ∈ K(X ) and let {X,Xn, n � 1} be a sequence of pairwise
i.i.d. X -valued random elements. Then EX = a and E‖X‖p

a < ∞ if and only if
Edp(X,KX) < ∞ (3.1)

and
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, a

)
> nε

)

< ∞ for all ε > 0. (3.2)

Proof Necessity: If EX = a and E‖X‖p
a < ∞, then

Edp(X,KX) � 2p−1(E‖X‖p
a + E‖KX‖p

a )

= 2p−1(E‖X‖p
a + Edp(KX,Ka)) � 2pE‖X‖p

a < ∞.

We now prove that (3.2) holds.

Step 1 Assume that X is simple with values x1, x2, . . . , xm on non-null sets �1, �2, . . . ,

�m respectively. Since {X,Xn, n � 1} is identically distributed, each Xn also takes values
x1, . . . , xm a.s. For each j = 1, . . . , m, set

Z
j
n(ω) =

n∑

i=1

I (Xi = xj )(ω) = card{i ∈ [1, n] : Xi(ω) = xj },

Tn(ω) = {j : 1 � j � m,Z
j
n(ω) > 0}, n � 1.

Then {Zj
n(ω)}∞n=1 is a non-decreasing sequence for each j and each ω. By (CC.i) and

property (2.1),

[k−1, Xi]ki=1 =
[

k−1Z
j
k ,

[
(Z

j
k )−1, xj

]Z
j
k

i=1

]

j∈Tk

a.s.
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Therefore,

d
(
[k−1, Xi]ki=1, EX

)
= d

⎛

⎝

[

k−1Z
j
k ,

[
(Z

j
k )−1, xj

]Z
j
k

i=1

]

j∈Tk

,
[
P(�j ),Kxj

]m
j=1

⎞

⎠

� d

⎛

⎝

[

k−1Z
j
k ,

[
(Z

j
k )−1, xj

]Z
j
k

i=1

]

j∈Tk

,
[
k−1Z

j
k ,Kxj

]

j∈Tk

⎞

⎠

+d

([
k−1Z

j
k ,Kxj

]

j∈Tk

,
[
P(�j ),Kxj

]m
j=1

)

�
∑

j∈Tk

k−1Z
j
k d

(
[
(Z

j
k )−1, xj

]Z
j
k

i=1
,Kxj

)

+
m∑

j=1

∣
∣
∣k−1Z

j
k − P(�j )

∣
∣
∣ ‖Kxj‖u0 (by (CC.iv) and Lemma 2.2)

�
∑

j∈Tk

k−1Z
j
k d

(
[
(Z

j
k )−1, xj

]Z
j
k

i=1
,Kxj

)

+ M

m∑

j=1

∣
∣
∣k−1Z

j
k − P(�j )

∣
∣
∣ ,

where M := max1�j�m ‖xj‖u0 . It implies

n−1 max
1�k�n

kd
(
[k−1, Xi]ki=1, EX

)
� max

1�k�n

∑

j∈Tk

Z
j
k

n
d

(
[
(Z

j
k )−1, xj

]Z
j
k

i=1
,Kxj

)

+M

m∑

j=1

n−1 max
1�k�n

∣
∣
∣Z

j
k − kP (�j )

∣
∣
∣

:= (I1) + (I2).

Next, we show that (I1) < ε/2 for all ω ∈ � when n is sufficiently large. Indeed, by the
definition of the operator K ,

lim
n→∞ d([n−1, xj ]ni=1,Kxj ) = 0

for each j = 1, . . . , m. Thus, there exists n0(ε,m) ∈ N such that for all n � n0(ε,m) and
for all j = 1, . . . , m,

d([n−1, xj ]ni=1,Kxj ) <
ε

2m
. (3.3)

Denote

N(ε,m) = max
1�j�m

max
1�k<n0(ε,m)

d
(
[k−1, xj ]ki=1,Kxj

)

and let n(ε, m) be the smallest integer number such that n(ε,m) � 2ε−1mN(ε,m)n0(ε, m).
Now, for any n � n(ε,m) and for each k = 1, . . . , n, each ω ∈ �:
If Z

j
k (ω) � n0(ε,m), then it follows from (3.3) and n−1Z

j
k (ω) � n−1Z

j
n(ω) � 1 that

Z
j
k (ω)

n
d

(
[
(Z

j
k (ω))−1, xj

]Z
j
k (ω)

i=1
,Kxj

)

<
ε

2m
.
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If 0 < Z
j
k (ω) < n0(ε,m), then

Z
j
k (ω)

n
d

(
[
(Z

j
k (ω))−1, xj

]Z
j
k (ω)

i=1
,Kxj

)

<
n0(ε, m)

n(ε,m)
N(ε,m) � ε

2m
.

Hence, for n � n(ε, m)

Z
j
k (ω)

n
d

(
[
(Z

j
k (ω))−1, xj

]Z
j
k (ω)

i=1
,Kxj

)

� ε

2m
.

This implies that

(I1) = max
1�k�n

∑

j∈Tk

Z
j
k

n
d

(
[
(Z

j
k )−1, xj

]Z
j
k

i=1
,Kxj

)

� max
1�k�n

∑

j∈Tk

ε

2m
� max

1�k�n

m∑

j=1

ε

2m
= ε

2

for all n � n(ε, m). Therefore,
∑∞

n=1 np−2P((I1) > ε/2) < ∞.
For (I2), we have

P((I2) > ε/2) �
m∑

j=1

P

(

n−1 max
1�k�n

∣
∣
∣Z

j
k − kP (�j )

∣
∣
∣ >

ε

2Mm

)

.

For each j = 1, . . . , m, applying [1, Theorem 1.2] for sequence {I (X = xj ), I (Xn =
xj ), n � 1} of pairwise i.i.d. and uniformly bounded r.v.’s to get

∞∑

n=1

np−2P

(

n−1 max
1�k�n

∣
∣
∣Z

j
k − kP (�j )

∣
∣
∣ >

ε

2Mm

)

< ∞.

Combining above arguments,

∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, EX

)
> nε

)

�
∞∑

n=1

np−2P((I1) > ε/2) +
∞∑

n=1

np−2P((I2) > ε/2)

�
∞∑

n=1

np−2P((I1) > ε/2)+
m∑

j=1

∞∑

n=1

np−2P

(

n−1 max
1�k�n

∣
∣
∣Z

j
k − kP (�j )

∣
∣
∣>

ε

2Mm

)

< ∞,

which means that (3.2) holds for this case.

Step 2 Let us consider the general case when X ∈ L1
X . For ε > 0 arbitrarily,

[12, Proposition 4.1] implies that there exists a natural number h large enough such
that Ed(ϕh(X),X) � ε/6, where the function ϕh was mentioned in Section 2. Then
{ϕh(X), ϕh(Xn), n � 1} is a collection of pairwise i.i.d. and simple random elements with
common expectation Eϕh(X) := b. Moreover,

E‖ϕh(X)‖p
b � 2p−1(E‖ϕh(X)‖p

u0 + dp(u0, b)) � 22p−1E‖X‖p
u0 + 2p−1dp(u0, b) < ∞.

It follows from the first case that
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, ϕh(Xi)]ki=1, Eϕh(X)

)
> nε/3

)

< ∞.
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Similarly, {d(X, ϕh(X)), d(Xn, ϕh(Xn)), n � 1} is also a collection of pairwise i.i.d. real-
valued r.v.’s satisfying

Edp(X, ϕh(X)) � 2p−1(E‖X‖p
u0 + E‖ϕh(X)‖p

u0) � CE‖X‖p
u0 < ∞.

As a corollary of [1, Theorem 1.2],

∞∑

n=1

np−2P

(∣
∣
∣
∣
∣

n∑

i=1

(d(Xi, ϕh(Xi)) − Ed(Xi, ϕh(Xi)))

∣
∣
∣
∣
∣
> nε/6

)

< ∞.

By the triangle inequality,

∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, EX

)
> nε

)

�
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, [k−1, ϕh(Xi)]ki=1

)
> nε/3

)

+
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, ϕh(Xi)]ki=1, [k−1, Eϕh(Xi)]ki=1

)
> nε/3

)

+
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Eϕh(Xi)]ki=1, EX

)
> nε/3

)

�
∞∑

n=1

np−2P

(∣
∣
∣
∣
∣

n∑

i=1

(d(Xi, ϕh(Xi)) − Ed(Xi, ϕh(Xi)))

∣
∣
∣
∣
∣
> nε/6

)

+
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, ϕh(Xi)]ki=1, [k−1, Eϕh(Xi)]ki=1

)
> nε/3

)

+
∞∑

n=1

np−2P(d(EX,Eϕh(X)) > ε/3)

< ∞,

and this completes the necessity part.

Sufficiency: Suppose that Edp(X,KX) < ∞ and (3.2) holds for some a ∈ K(X ). By
the triangle inequality,

‖KXn‖a

� d(KXn, [n−1, Xi]ni=1) + d([n−1, Xi]ni=1, a)

= d

([
n−1

n
,KXn; 1

n
,KXn

]

,

[
n−1

n
,

[
1

n−1
, Xi

]n−1

i=1
; 1
n

,Xn

])

+ d([n−1, Xi]ni=1, a)

� n − 1

n
d([(n − 1)−1, Xi]n−1

i=1 , KXn) + 1

n
d(Xn, KXn) + d([n−1, Xi]ni=1, a)

� n−1

n
d([(n−1)−1, Xi]n−1

i=1 , a) + n−1

n
‖KXn‖a + 1

n
d(Xn, KXn)+d([n−1, Xi]ni=1, a).

This is equivalent to

‖KXn‖a � d(Xn, KXn) + (n − 1)d([(n − 1)−1, Xi]n−1
i=1 , a) + nd([n−1, Xi]ni=1, a).
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Thus
max

1�k�n
‖KXk‖a � max

1�k�n
d(Xk,KXk) + 2 max

1�k�n
kd([k−1, Xi]ki=1, a).

On the other hand, for any α > 0, it follows from Edp(X,KX) < ∞ that
∞∑

n=1

np−2P

(

max
1�k�n

d(Xk,KXk) > nα

)

�
∞∑

n=1

np−2
n∑

k=1

P(d(Xk,KXk) > nα)

=
∞∑

n=1

np−1P(d(X,KX) > nα) � CEdp(X,KX) < ∞.

Therefore, combining with (3.2) we obtain
∞∑

n=1

np−2P

(

max
1�k�n

‖KXk‖a > nβ

)

�
∞∑

n=1

np−2P

(

max
1�k�n

d(Xk,KXk) > nβ/3

)

+
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, a

)
> nβ/3

)

< ∞

for every β > 0. It follows

P

(

max
1�k�n

‖KXk‖a > n

)

→ 0 as n → ∞,

and hence P(max1�k�n ‖KXk‖a > n) � 1
2 for all n � N0. Applying Lemma 2.3 for

sequence {(‖KXk‖a > n), 1 � k � n, n � 1} of pairwise independent events with α = 1,
we have that for every n � N0,

n∑

k=1

P(‖KXk‖a > n)�
P
(
max1�k�n ‖KXk‖a >n

)

(
1−P

(
max1�k�n ‖KXk‖a >n

))2 � 4P

(

max
1�k�n

‖KXk‖a > n

)

.

Hence

E‖KX‖p
a � C

∞∑

n=1

np−1P(‖KX‖a > n) = C

∞∑

n=1

np−2
n∑

k=1

P(‖KXk‖a > n)

� C

∞∑

n=1

np−2P

(

max
1�k�n

‖KXk‖a > n

)

< ∞

and E‖X‖p
a � 2p−1(Edp(X,KX) + E‖KX‖p

a ) < ∞. This implies the existence of EX,
then applying the necessity part

∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, EX

)
> nε

)

< ∞. (3.4)

Combining (3.2) with (3.4), we obtain EX = a.

Remark 3.2 If X is a separable Banach space with usual convex combination [λi, xi]ni=1 =∑n
i=1 λixi , then the condition (3.1) is trivial due to KX = X. However, in general CC

space, the condition (3.1) cannot be removed as shown in the example below:
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Example 3.3 Let p, r be real numbers such that 1 < r < p < 2, r(r − 1) �= 1 and
r2 > p. Assume that (X , ‖.‖) is a Rademacher type r Banach space and denote by d the
metric associated with its norm ‖.‖. An operation r [., .] is defined based on X as follows:
r [λi, xi]ni=1 = ∑n

i=1 λr
i xi . As shown in [12, Example 5], r [., .] is the convex combination

operation (r-th power combination) and the corresponding convexification operator Kru =
0 for all u ∈ X . Assume that {X,Xn, n � 1} is a collection of i.i.d. X -valued random
elements satisfying E‖X‖r < ∞ but E‖X‖p = ∞. Now we show that the condition (3.2)
holds while (3.1) does not. It follows from KrX = 0 that Edp(X,KrX) = E‖X‖p = ∞,
thus (3.1) fails. Since E‖X‖ � 1 + E‖X‖r < ∞, there exists the expectation of X with
respect to r [., .], denoted by ErX, and a := ErX = 0. Now for ε > 0, applying the Hájek-
Rényi inequality for the collection {X,Xn, n � 1} of i.i.d. X -valued random elements with
EX = 0 as in [10],

∞∑

n=1

np−2P

(

max
1�k�n

kd(r [k−1, Xi ]ki=1, a)>nε

)

=
∞∑

n=1

np−2P

(

max
1�k�n

1

kr−1

∥
∥
∥
∥
∥

k∑

i=1

Xi

∥
∥
∥
∥
∥
>nε

)

�
∞∑

n=1

np−2 · C

nrεr

n∑

k=1

E‖Xi‖r

kr(r−1)
= CE‖X‖r

∞∑

n=1

np−r−2
n∑

k=1

1

kr(r−1)

� CE‖X‖r

∞∑

n=1

np−r−2 · 1

nr(r−1)−1
= CE‖X‖r

∞∑

n=1

1

nr2−p+1
< ∞,

which means that (3.2) holds.

Remark 3.4 (a) Since the condition (3.2) implies d([n−1, Xi]ni=1, a) → 0 a.s. as n → ∞,
we immediately obtain the strong law of large numbers for {X,Xn, n � 1} of pairwise i.i.d.
random elements in CC space from the condition X ∈ L1

X . Therefore, [12, Theorem 5.1] is
a particular case of Theorem 3.1.
(b) Notice that some arguments in the proof of Theorem 3.1 can be also obtained by com-
bining the embedding theorem [13, Theorem 3.3] and corresponding results in Banach
space. However, this embedding is not too straightforward since its proof requires several
intermediate results, while the proof of Theorem 3.1 presented above is more direct.

Using the similar technique as in Theorem 3.1 and applying Theorem 1.1 with r = 1, we
obtain the following result for the case of i.i.d. random elements:

Theorem 3.5 Let p � 1, a ∈ K(X ) and let {X,Xn, n � 1} be a sequence of i.i.d.X -valued
random elements. Then EX = a and E‖X‖p

a < ∞ if and only if

Edp(X,KX) < ∞

and
∞∑

n=1

np−2P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, a

)
> nε

)

< ∞ for all ε > 0.

Next, we establish some results on complete convergence and Lr -convergence for non-
identically distributed random elements.

Proposition 3.6 Let {Xn, n � 1} be a sequence of pairwise independent X -valued random
elements. If there is a compact subset K of X such that P(Xn ∈ K) = 1 for all n, then the
following statements hold:
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(i)
∞∑

n=1

n−1P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, [k−1, EXi]ki=1

)
> nε

)

< ∞ for every ε > 0.

(ii) Edr
(
[n−1, Xi]ni=1, [n−1, EXi]ni=1

)
→ 0 as n → ∞ for r � 1.

Proof For ε > 0, by the compactness of K, there exists {c1, c2, . . . , cm} ⊂ K such that

K ⊂
m⋃

j=1

B(cj , ε/4), where B(cj , r) = {x ∈ X : d(x, cj ) < r}.

For n � 1, define a sequence of X -valued random elements as follows:

Yn(ω) =
⎧
⎨

⎩

c0 := u0 if Xn(ω) /∈ K
c1 if Xn(ω) ∈ B(c1, ε/4) ∩ K
cj if Xn(ω) ∈ B(cj , ε/4) ∩ {∪j−1

t=1 B(ct , ε/4)}c ∩ K, j = 2, . . . , m.

It is obvious that the sequence {Yn, n � 1} is also pairwise independent. By the triangle
inequality,

d
(
[n−1, Xi]ni=1, [n−1, EXi]ni=1

)

� d
(
[n−1, Xi]ni=1, [n−1, Yi]ni=1

)
+ d

(
[n−1, Yi]ni=1, [n−1,KYi]ni=1

)

+d
(
[n−1, KYi]ni=1, [n−1, EYi]ni=1

)
+ d

(
[n−1, EYi]ni=1, [n−1, EXi]ni=1

)

:= An + Bn + Cn + Dn.

Modifying the proof of [14, Proposition 3.1], we obtain ess supω∈�An(ω) � ε/4,
ess supω∈�Dn(ω) � ε/4 for all n. Using the same arguments as in the proof of (I1) in The-
orem 3.1 (necessity part) to get ess supω∈�Bn(ω) � ε/4 for n large enough. For Cn, by
property (2.1) and Lemma 2.2, we have

Cn = d
(
[n−1, KYi]ni=1, [n−1, EYi]ni=1

)

= d
(
[n−1, [I (Yi = cj ),Kcj ]mj=0]ni=1, [n−1, [P(Yi = cj ),Kcj ]mj=0]ni=1

)

�
m∑

j=0

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
I (Yi = cj ) − P(Yi = cj )

)
∣
∣
∣
∣
∣
‖cj‖u0

� M

m∑

j=1

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
I (Yi = cj ) − P(Yi = cj )

)
∣
∣
∣
∣
∣
,

where M := max1�j�m ‖cj‖u0 .
For conclusion (i): Notice that

{
I (Yn = cj ) − P(Yn = cj ), n � 1

}
is a sequence of pair-

wise independent and uniformly bounded r.v.’s. It follows from [1, Theorem 1.1] that

∞∑

n=1

n−1P

(

max
1�k�n

∣
∣
∣
∣
∣

k∑

i=1

(
I (Yk = cj ) − P(Yk = cj )

)
∣
∣
∣
∣
∣
> nε/4Mm

)

< ∞.
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Thus,
∞∑

n=1

n−1P

(

max
1�k�n

kCk > nε/4

)

�
∞∑

n=1

n−1P

⎛

⎝
m∑

j=1

max
1�k�n

∣
∣
∣
∣
∣

k∑

i=1

(
I (Yk = cj ) − P(Yk = cj )

)
∣
∣
∣
∣
∣
> nε/4M

⎞

⎠

�
m∑

j=1

∞∑

n=1

n−1P

(

max
1�k�n

∣
∣
∣
∣
∣

k∑

i=1

(
I (Yk = cj ) − P(Yk = cj )

)
∣
∣
∣
∣
∣
> nε/4Mm

)

< ∞.

Combining the parts above, we have the desired result.
For conclusion (ii): By Jensen’s inequality and for n large enough,

Edr
(
[n−1, Xi]ni=1, [n−1, EXi]ni=1

)

� 4r−1

⎛

⎝3(ε/4)r + Mrmr−1
m∑

j=1

E

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
I (Yi = cj ) − P(Yi = cj )

)
∣
∣
∣
∣
∣

r
⎞

⎠

� 3εr/4 + 4r−1Mrmr−1
m∑

j=1

2r−1E

∣
∣
∣
∣
∣

1

n

n∑

i=1

(
I (Yi = cj ) − P(Yi = cj )

)
∣
∣
∣
∣
∣

� 3εr/4 + C

m∑

j=1

1

n

⎛

⎝E

∣
∣
∣
∣
∣

n∑

i=1

(
I (Yi = cj ) − P(Yi = cj )

)
∣
∣
∣
∣
∣

2
⎞

⎠

1/2

� 3εr/4 + Cn−1/2.

Letting n → ∞ and by the arbitrariness of ε > 0, we derive the desired conclusion.

Theorem 3.7 Let {Xn, n � 1} be a sequence of pairwise independent X -valued random
elements.
(a) If {Xn, n � 1} is Cesàro CUI and

∑∞
n=1 n−pE‖Xn‖p

u < ∞ for some p ∈ [1, 2], some
u ∈ X , then

∞∑

n=1

n−1P

(

max
1�k�n

kd
(
[k−1, Xi]ki=1, [k−1, EXi]ki=1

)
> nε

)

< ∞

for all ε > 0. In particular, d([n−1, Xi]ni=1, [n−1, EXi]ni=1) → 0 a.s. as n → ∞.
(b) If {Xn, n � 1} is Cesàro r-th CUI (r � 1), then Edr

([n−1, Xi]ni=1, [n−1, EXi]ni=1

) →
0 as n → ∞.

Proof Given ε > 0. By Cesàro r-th CUI assumption (with r = 1 in the case (a)), there
exists a compact subset K := Kε,u of X satisfying

n−1
n∑

i=1

E(‖Xi‖r
uI (Xi /∈ K)) � ε/4 for all n.

For each n � 1, we define a sequence of X -valued random elements by setting

Yn(ω) =
{

Xn(ω) if Xn(ω) ∈ K
u if Xn(ω) /∈ K.
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It is obvious that the sequence {Yn, n � 1} is also pairwise independent. By the triangle
inequality,

d
(
[n−1, Xi]ni=1, [n−1, EXi]ni=1

)
� d

(
[n−1, Xi]ni=1, [n−1, Yi]ni=1

)

+d
(
[n−1, Yi]ni=1, [n−1, EYi]ni=1

)

+d
(
[n−1, EYi]ni=1, [n−1, EXi]ni=1

)

:= Qn + Rn + Sn.

Let us bound three parts above as follows:
For Qn: We have

Qn � 1

n

n∑

i=1

d (Xi, Yi) = 1

n

n∑

i=1

‖Xi‖uI (Xi /∈ K).

For Rn: It is clear that {Yn, n � 1} is a sequence of pairwise independent X -valued random
elements and Yn ∈ K ∪ {u} for all n. Applying Proposition 3.6, we get that

∞∑

n=1

n−1P

(

max
1�k�n

kRk > nε/4

)

< ∞ and E(Rn)
r → 0 as n → ∞.

For Sn: Since {Xn, n � 1} is Cesàro r-th CUI (r � 1), Jensen’s inequality yields

(Sn)
r �

(
1

n

n∑

i=1

Ed(Yi, Xi)

)r

=
(
1

n

n∑

i=1

E (‖Xi‖uI (Xi /∈ K))

)r

� 1

n

n∑

i=1

E
(‖Xi‖r

uI (Xi /∈ K)
)
� ε/4.

Proof of part (a). It is sufficient to show
∑∞

n=1 n−1P(max1�k�n kQk > nε/2) < ∞.
Indeed,

∞∑

n=1

n−1P

(

max
1�k�n

kQk > nε/2

)

�
∞∑

n=1

n−1P

(
n∑

i=1

‖Xi‖uI (Xi /∈ K) > nε/2

)

�
∞∑

n=1

n−1P

(∣
∣
∣
∣
∣

n∑

i=1

(‖Xi‖uI (Xi /∈ K) − E (‖Xi‖uI (Xi /∈ K)))

∣
∣
∣
∣
∣
> nε/4

)

< ∞,

where the last quantity is finite by applying [1, Lemma 2.1] for sequence {‖Xn‖uI (Xn /∈
K), n � 1}.
Proof of part (b). By using Jensen’s inequality again,

Edr
(
[n−1, Xi]ni=1, [n−1, EXi]ni=1

)
� 3r−1(E(Qn)

r + E(Rn)
r + E(Sn)

r )

� 3r−1

(
1

n

n∑

i=1

E‖Xi‖r
uI (Xi /∈ K) + E(Rn)

r + ε/4

)

= 3r−1ε/2 + o(1) as n → ∞.

By the arbitrariness of ε > 0, we obtain the conclusion (b).

Remark 3.8 In Theorem 3.7, conclusion (a) extends [1, Theorem 3.1] to CC space and
conclusion (b) extends [3, Theorem 1.2] to CC space.
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As mentioned in Section 2, (k(X ), dH ) is a separable and complete CC space. Let
Ek(X )X denote the expectation of an integrable random element X in (k(X ), dH ). By
applying Theorem 3.1 and Theorem 3.7, we obtain immediately the following corollaries:

Corollary 3.9 Let 1 � p < 2, A ∈ Kk(X )(k(X )) and let {X,Xn, n � 1} be a sequence of
pairwise i.i.d. k(X )-valued random elements. Then Ek(X )X = A and Ed

p
H (X,A) < ∞ if

and only if

Ed
p
H (X,Kk(X )X) < ∞

and
∞∑

n=1

np−2P

(

max
1�k�n

kdH

(
[k−1, Xi]ki=1, A

)
> nε

)

< ∞ for all ε > 0.

Corollary 3.10 Let {Xn, n � 1} be a sequence of pairwise independent k(X )-valued ran-
dom elements.
(a) If {Xn, n � 1} is Cesàro CUI and

∑∞
n=1 n−pEd

p
H (Xn,U) < ∞ for some p ∈ [1, 2],

some U ∈ k(X ), then for all ε > 0

∞∑

n=1

n−1P

(

max
1�k�n

k dH

(
[k−1, Xi]ki=1, [k−1, Ek(X )Xi]ki=1

)
> nε

)

< ∞.

In particular, dH ([n−1, Xi]ni=1, [n−1, Ek(X )Xi]ni=1) → 0 a.s. as n → ∞.
(b) If {Xn, n � 1} is Cesàro r-th CUI (r � 1), then

Edr
H

(
[n−1, Xi]ni=1, [n−1, Ek(X )Xi]ni=1

)
→ 0 as n → ∞.
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10. Shixin, G.: The Hàjek-Rènyi inequality for Banach space valued martingales and the p smoothness of
Banach spaces. Statist. Probab. Lett. 32(3), 245–248 (1997)

11. Terán, P.: Algebraic, metric and probabilistic properties of convex combinations based on the t-normed
extension principle: the strong law of large numbers. Fuzzy Sets Syst. 223, 1–25 (2013)

12. Terán, P., Molchanov, I.: The law of large numbers in a metric space with a convex combination
operation. J. Theoret. Probab. 19(4), 875–898 (2006)

13. Thuan, N.T.: Approach for a metric space with a convex combination operation and applications. J. Math.
Anal. Appl. 435(1), 440–460 (2016)

14. Thuan, N.T., Quang, N.V., Nguyen, P.T.: Complete convergence for arrays of rowwise independent of
random variables and fuzzy random variables in convex combination spaces. Fuzzy Sets Syst. 250, 52–68
(2014)

15. Wang, X.C., Bhaskara Rao, M.: Some results on the convergence of weighted sums of random elements
in separable Banach spaces. Studia Math. 86(2), 131–153 (1987)

16. Zhang, L.X., Wen, J.W.: Strong laws for sums of B-valued mixing random fields. Chinese Ann. Math.
Chinese Series 20, 205–216 (2001)

N. T. Thuan, N. V. Quang570


	Baum-Katz's Type Theorems for Pairwise Independent Random...
	Abstract
	Abstract
	Introduction
	Preliminaries
	Baum-Katz's Type Theorems for Pairwise Independent X-Valued Random Elements
	References


