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APPROXIMATION OF STOCHASTIC INTEGRALS WITH JUMPS VIA
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This article investigates discrete-time approximations of stochastic inte-
grals driven by semimartingales with jumps via weighted bounded mean os-
cillation (BMO) approach. This approach enables Lp-estimates, p ∈ (2,∞),
for the approximation error depending on the weight, and it allows a change
of the underlying measure which leaves the error estimates unchanged. To
take advantage of this approach, we propose a new approximation scheme
obtained from an adjustment for the Riemann approximation based on track-
ing jumps of the underlying semimartingale. We discuss a way to optimize the
approximation and also illustrate the sharpness of the obtained convergence
rates. When the small jump activity of the semimartingale behaves like an
α-stable process with α ∈ (1,2), our scheme achieves under a regular regime
the same convergence rate for the error as in Rosenbaum and Tankov [Ann.
Appl. Probab. 24 (2014) 1002–1048]. Moreover, our approach extends to the
case α ∈ (0,1] and to the Lp-setting which are not treated there. As an ap-
plication, we apply the methods in the special case where the semimartingale
is an exponential Lévy process to mean-variance hedging of European type
options.

1. Introduction.

1.1. The problem and main results. This article deals with discrete-time approximation
problems for stochastic integrals and studies the error process E = (Et )t∈[0,T ] defined by

Et :=
∫ t

0
ϑu− dSu −At,(1.1)

where the time horizon T ∈ (0,∞) is fixed, ϑ is an admissible integrand, S is a semimartin-
gale on a complete filtered probability space (�,F,P, (Ft )t∈[0,T ]) and A= (At )t∈[0,T ] is an
approximation scheme for the stochastic integral.

We will consider two approximation methods, where the second builds on the first one. For
the first method, the basic approximation method, we assume that A= ARm is the Riemann
approximation process of the above integral,

ARm
t (ϑ, τ ) :=

n∑
i=1

ϑti−1−(Sti∧t − Sti−1∧t )

for the deterministic time-net τn = {0 = t0 < t1 < · · · < tn = T }. We will study the corre-
sponding error ERm in L2, but locally in time in the sense that for any stopping time ρ with
values in [0, T ] we measure the error which accumulates within [ρ,T ]. The term locally in
time also includes that at the random time ρ we restrict our problem to all sets B ∈ Fρ of
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positive measure, which leads to the notion of bounded mean oscillation (there are two ab-
breviations for it used in this article, bmo and BMO, which express two different spaces).
Namely, we will work with weighted bmo-norms introduced in [16, 17] as we consider

EFρ
[∣∣ERm

T −ERm
ρ

∣∣2]≤ c2
(1.2)�

2
ρ a.s.,∀ρ.(1.2)

Here, EFρ stands for the conditional expectation with respect to Fρ , and the weight process
�= (�t)t∈[0,T ] will be specified later. Denote by ‖ERm‖bmo�

2 (P) the infimum of the c(1.2) > 0
such that (1.2) is satisfied. We assert in Proposition 3.6 that, under certain conditions, one has∥∥ERm∥∥

bmo�
2 (P) ≤ c

√‖τn‖θ ,
where θ ∈ (0,1] is related (but not only) to the growth property of the integrand ϑ by

sup
t∈[0,T )

(T − t)
1−θ

2 |ϑt |<∞ a.s.,(1.3)

and ‖τn‖θ denotes a nonlinear mesh size of τn related to θ . In Section 3.4 we discuss that τn

can be chosen such that ‖τn‖θ ≤ c/n, implying the approximation rate∥∥ERm∥∥
bmo�

2 (P) ≤ cn−
1
2 .

Roughly speaking, the faster the integrand grows as t ↑ T , the more the time-net should be
concentrated near T to compensate the growth.

If the semimartingale S has jumps, replacing Eρ by Eρ− in (1.2) leads to different norms,
the BMO�

2 (P)-norms. We will see in (1.9) and Proposition 2.5 that the BMO�
2 (P)-norm gives

us a way to achieve good distributional tail estimates for the error E such as polynomial or
exponential tail decay depending on the weight. Moreover, this approach allows us to switch
the underlying measure P to an equivalent measure Q, which is frequently encountered in
mathematical finance, provided the change of measure satisfies a reverse Hölder inequality,
so that the BMO�

2 (Q)-norm is equivalent to the BMO�
2 (P)-norm.

However, Example 3.7 below shows that if S has jumps, then the Riemann approxima-
tion error ERm does in general not converge to zero if measured in the BMO�

2 (P)-norm. The
reason for this fact is that the BMO�

2 (P)-norm is relatively strong so that deterministic dis-
cretization times are not suitable to deal with possibly large jumps of S, which is in contrast
to the case of no jump in [16]. To overcome this difficulty, we adapt and develop further
the idea exploiting a small-large jump decomposition of S, which is used in the context of
SDE discretization, see, for example, [10, 26–28], to our problem. This lets us design a new
approximation scheme based on an adjustment of the Riemann sum which approximates the
stochastic integral. This will be our second method, the jump-adapted approximation method,
see Definition 3.9.

Generally speaking, the jump-adapted approximation Aadap(ϑ, τ |ε, κ) is of the form

A
adap
t (ϑ, τ |ε, κ)=ARm

t (ϑ, τ )+Correctiont (ε, κ),

where the parameters ε > 0 and κ ≥ 0 in the correction term relate to the threshold for which
we decide which jumps of S are (relatively) large or small, and this threshold might contin-
uously shrink when the time t approaches T , see Definition 3.8. The time-net used in this
approximation method is a combination of the given deterministic time-net τ in the Riemann
sum and random times of carefully chosen large jumps of S. A consequence of Proposi-
tion 3.15 shows that the expected value of the cardinality of this combined time-net is, up to
a multiplicative constant, comparable to the cardinality of τ .

This new approximation scheme can be interpreted in the context of mathematical finance
as follows: Before trading, we arrange to use the Riemann approximation ARm(ϑ, τ ) associ-
ated with a trading strategy ϑ along with a preselected deterministic trading dates represented



APPROXIMATION OF STOCHASTIC INTEGRALS WITH JUMPS VIA WEIGHTED BMO 4597

by τ . During trading with that initial plan, as soon as the large jumps of S occur, we trade
additionally with the amount given in the correction term. So our point is that the decision
for additional (random) trading times is based on the jump sizes of the price process, which
can be observed, not on tracking jumps of the trading strategy that needs to be computed.

Denote by Eadap the error caused from the approximation with the jump-adapted scheme.
To formulate the result, we assume that S is given as the (strong) solution of

dSt = σ(St−)dZt,

with σ specified later, where Z is a square integrable semimartingale defined in Section 2.3.
Then Theorem 3.16 implies that, for suitably chosen time-nets and corrections, and for a
suitable weight �, it holds that ∥∥Eadap∥∥

BMO�
2 (P)
≤ cn−

1
2(1.4)

under the condition that the random measure πZ of the predictable semimartingale character-
istics of Z satisfies that πZ(dt,dz)= νt (dz)dt and that

sup
r∈(0,1)

∥∥∥∥(ω, t) 
→
∫
r<|z|≤1

zνt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

<∞,(1.5)

where λ is the Lebesgue measure, and one has

∥∥Eadap∥∥
BMO�

2 (P)
≤ c

⎧⎪⎪⎨⎪⎪⎩
n−

1
2α if α ∈ (1,2],

n−
1
2 (1+ logn) if α = 1,

n−
1
2 if α ∈ (0,1)

(1.6)

provided that

sup
r∈(0,1)

∥∥∥∥(ω, t) 
→ rα
∫
r<|z|≤1

νt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

<∞.(1.7)

Condition (1.5) aims to indicate a local symmetry of ν around the origin rather than the small
jump intensity of Z which is described by (1.7).

Since the integrator Z and structure conditions imposed on the approximated stochastic
integral to achieve (1.4) and (1.6) are quite general, those obtained convergence rates are in
general not the best possible. We will show in Section 3.3 that one can drastically improve
those convergence rates in the particular case when S is the Doléans–Dade exponential of a
pure jump process Z where Z has independent increments. Namely, Theorem 3.16 asserts
that, for the error Eadap as above and under certain structure conditions for the approximated
stochastic integral, one has

∥∥Eadap∥∥
BMO�

2 (P)
≤ c

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n−

1
α
(1− 1

2 (1−θ)(α−1)) if (1.7) holds for α ∈ (1,2],
n−1(1+ logn) if (1.7) holds for α = 1,

n−1 if (1.7) holds for α = 1 and (1.5) holds,

n−1 if (1.7) holds for α ∈ (0,1).

(1.8)

In the case α ∈ (1,2] in (1.8), the parameter θ ∈ (0,1] relates to the growth of ϑ mentioned in
(1.3), and the corresponding exponent satisfies 3

2α
− 1

2 < 1
α
(1− 1

2(1− θ)(α− 1))≤ 1
α

. Since
3

2α
− 1

2 ≥ 1
2α

for α ∈ (1,2], the rate obtained in (1.8) is better than that in (1.6).
We discuss a lower bound for the approximation errors in Proposition 3.18 and provide a

situation in Example 3.19 illustrating that the obtained convergence rates in (1.6) and in (1.8)
are sharp. Specifically, the obtained rates are optimal when α ∈ (0,2]\{1}, and are optimal
up to a log-factor when α = 1.
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Furthermore, Theorem 3.16 also reveals that, if the weight � is sufficiently regular, then
the estimates (1.4), (1.6) and (1.8) hold true for the Lp-norm, p ∈ (2,∞), in place of the

BMO�
2 (P)-norm. In addition, the measure P can be substituted by a suitable equivalent prob-

ability measure Q while keeping those estimates unchanged.
The parameter n in (1.4), (1.6) and (1.8) refers to certain moments of the cardinality of the

combined time-net used in the approximation. This cardinality represents in the context of
mathematical finance the number of transactions performed in trading, see Remark 3.17.

As an application, we choose S to be an exponential Lévy process and measure the dis-
cretization error for stochastic integrals where the integrands are mean-variance hedging
(MVH) strategies of European payoffs. To do this, we provide in Proposition 4.2 an explicit
representation of the MVH strategy for a European payoff for which we do not require any
regularity for payoff functions nor specific structures from the underlying Lévy process. This
result is, to the best of our knowledge, new in this generality and it might have an independent
interest.

Let us end this subsection by listing some examples taken from Corollary 4.7 showing con-
vergence rates for Eadap under the BMO�

2 (P)-norm in the exponential Lévy setting. Namely,
we let S = eX where X is a Lévy process without the Brownian part whose small jump in-
tensity behaves like an α-stable process with α ∈ (0,2), and let ϑ be the MVH strategy of a
payoff g(ST ). Then, for the European call/put option (or any Lipschitz g), the convergence

rate is of order: n−1 if α ∈ (0,1), n−1(1+ logn) if α = 1, and n− 1
α if α ∈ (1,2). For the binary

option (or any bounded g), the order of convergence rate is: n−1 if α ∈ (0,1), n−1(1+ logn)

if α = 1, and n− 1
α
[1− 1

α
(α−1)2]+δ (for any 0 < δ < 1

2(1− 1
α
)( 2

α
− 1)) if α ∈ (1,2). Moreover,

if EepXT <∞ for some p ∈ (2,∞), then measuring Eadap in Lp yields the same rates case-
wise as above. Last, our results are valid for some powered call/put options obtained from an
interpolation, in a sense, between the binary and the call/put option.

1.2. Literature overview. Besides its own mathematical interest and its application to nu-
merical methods, the approximation of a stochastic integral has a direct motivation in math-
ematical finance. Let us briefly discuss this for the Black–Scholes model. Assume that the
(discounted) price of a risky asset is modelled by a stochastic process S which solves the
SDE dSt = σ(St )dWt , where W is a standard Brownian motion and the function σ satisfies
a suitable condition. For a European type payoff g(ST ) satisfying an integrability condition,
it is known that g(ST )= Eg(ST )+ ∫ T

0 ∂yG(t, St )dSt , where G(t, y) := E(g(ST )|St = y) is
the option price function and (∂yG(t, St ))t∈[0,T ) is the so-called delta-hedging strategy. The
stochastic integral in the representation of g(ST ) above can be interpreted as the theoretical
hedging portfolio which is rebalanced continuously. However, it is not feasible in practice
because one can only readjust the portfolio finitely many times. This leads to a replacement
of the stochastic integral by a discretized version which causes the discretization error.

The error represented by the difference between a stochastic integral and its discretization
has been extensively analyzed in various contexts. It is usually studied in L2 for which one
can exploit the orthogonality to reduce the probabilistic setting to a “more deterministic”
setting where the corresponding quadratic variation is employed instead of the original error.
In the Wiener space, we refer, for example, to [13, 15, 22], where the error along with its
convergence rates was examined. The weak convergence of the error was treated in [18, 22].
When the driving process is a continuous semimartingale, the convergence in the L2-sense
was studied in [12], and in the almost sure sense it was considered in [21].

In this article, we allow the semimartingale to jump since many important processes used
in financial modelling are not continuous (see, e.g., [6, 32]), and the presence of jumps has
a significant effect on the hedging errors. Moreover, models with jumps typically correspond
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to incomplete markets. This means that beside the error resulting from the impossibility of
continuously rebalancing a portfolio, there is another hedging error due to the incompleteness
of the market. The latter problem was studied in many works (see an overview in [33] and the
references therein). The present article mainly focuses on the first type of hedging error. The
discretization error was studied within Lévy models in the weak convergence sense in [35],
in the L2-sense in [4, 14], and for a general jump model under the L2-setting in [30].

In general, the classical L2-approach for the error yields a second-order polynomial decay
for its distributional tail by Markov’s inequality. If higher-order decays are needed, then the
Lp-approach (2 < p <∞) is considered as a natural choice, and this direction has been
investigated for diffusions on the Wiener space in [19]. A remarkably different route given
in [16] is that one can study the error in weighted BMO spaces. The main benefit of the
weighted BMO-approach is a John–Nirenberg type inequality ([16], Corollary 1(ii)): If the
error process E belongs to BMO�

p (P) for some p ∈ (0,∞), where � is some weight function
specified in Definition 2.1, then there are constants c, d > 0 such that for any stopping time
ρ : �→[0, T ] and any α,β > 0,

P

(
sup

u∈[ρ,T ]
|Eu −Eρ−|> cαβ

∣∣∣∣Fρ

)
≤ e1−α + dP

(
sup

u∈[ρ,T ]
�u > β

∣∣∣∣Fρ

)
.(1.9)

Obviously, if � has a good distributional tail estimate, for example, if it has a polynomial
or exponential tail decay, then by adjusting α and β one can derive a tail estimate for E

accordingly. Especially, one can then derive Lp-estimates, p ∈ (2,∞), for the error. Some
other applications of weighted BMO in the context of BSDEs have been considered in [20].

1.3. Comparison to other works. Regarding models with jumps, let us first mention the
works done by Brodén and Tankov [4] and by Geiss, Geiss and Laukkarinen [14] which treat
the Riemann approximation of stochastic integrals driven by the stochastic exponential of a
Lévy process using deterministic discretization times. Although the approaches in [4] and
[14] are different, both arrive at a result saying that, if the approximated stochastic integral is
sufficiently regular, then the asymptotically optimal convergence rate of the error measured

in L2 is of order n− 1
2 when n→∞ (see [4], Corollary 3.1, and [14], Theorem 5), where n

is the cardinality of the used time-net. For this direction, we also achieve in Theorem 3.16(1)

the convergence rate of order n− 1
2 for the error under the bmo�

2 -norm, which then implies
the same rate under the L2-norm in our setting.

Later, Rosenbaum and Tankov [30] show that the convergence rate can be faster than n− 1
2

by using Riemann approximation associated with random discretization times. It is asserted in
[30], Remark 5, that, when the semimartingale integrand does not possess a continuous local
martingale part and if its small jump activity behaves like an α-stable process with α ∈ (1,2),

then the convergence rate measured in L2 is of order n− 1
α , which is also asymptotically

optimal in their setting. In our framework, under a regular regime when θ = 1, we derive

from (1.8) the rate n− 1
α under the weighted BMO-norm (which is stronger than the L2-norm

in models that are originally only considered in the L2-setting) when (1.7) holds for some
α ∈ (1,2]. This rate is optimal in our setting and is consistent with that in [30], Remark 5,
when n represents the expected number of transactions. Moreover, our results are valid for
α ∈ (0,1] which is not covered in [30].

We stress that our jump-adapted scheme is different from that in [30]. The authors in [30]
use Riemann approximation schemes along with random times and the employed time-nets
are the hitting times which are obtained by continuously tracking jumps of the integrand
(which represents the trading strategy). Differently from that, time-nets in our method are a
combination of preselected deterministic time-nets and random times obtained by continu-
ously tracking jumps of the integrator (which represents the price process). In general, the
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computational cost of our method is less expensive than that in [30]. This can be argued in
a situation when many options with different strategies are hedged at the same time with
respect to a risky asset.

Other contributions of this work are, thanks to features of the (weighted) BMO-approach
as aforementioned, to provide a situation that one can deduce Lp-estimates, p ∈ (2,∞), for
the approximation error which are, to the best of our knowledge, still missing in the literature
for models with jumps. Moreover, as a benefit to applications in mathematical finance, our
results allow a change of the underlying measure which leaves the error estimates unchanged
if the change of measure satisfies a reverse Hölder inequality, see Proposition 2.5.

1.4. Structure of the article. Some standard notions and notation are contained in Sec-
tion 2. The main results are provided in Section 3 and their proofs are given in Section 5.
In Section 4, we give some applications of those main results in exponential Lévy models.
The regularity of weight processes used in this article is shown in Appendix B. Appendix C
provides some gradient type estimates for a Lévy semigroup on Hölder spaces, which are
used to verify the results in Section 4.

2. Preliminaries.

2.1. Notation and conventions.

General notation. Denote N := {0,1,2, . . .}, R+ := (0,∞) and R0 :=R\{0}. For a, b ∈
R, we set a ∨ b :=max{a, b} and a ∧ b :=min{a, b}. For A, B ≥ 0 and c ≥ 1, the notation
A∼c B stands for A/c ≤ B ≤ cA. The notation log indicates the logarithm to the base 2 and
log+ x := log(x ∨ 1). Subindexing a symbol by a label means the place where that symbol
appears (e.g., c(2.1) refers to the relation (2.1)).

The Lebesgue measure on the Borel σ -algebra B(R) is denoted by λ, and we also write
dx instead of λ(dx) for simplicity. For p ∈ [1,∞] and A ∈ B(R), the notation Lp(A) means
the space of all p-order integrable Borel functions on A with respect to λ, where the essential
supremum is taken when p =∞.

Let ξ be a random variable defined on a probability space (�,F,P). The push-forward
measure of P with respect to ξ is denoted by Pξ . If ξ is integrable (nonnegative), then the
(generalized) conditional expectation of ξ given a sub-σ -algebra G ⊆F is denoted by EG[ξ ].
We also agree on the notation Lp(P) := Lp(�,F,P).

Notation for stochastic processes. Let T ∈ (0,∞) be fixed and (�,F,P) a complete
probability space equipped with a right continuous filtration F= (Ft )t∈[0,T ]. Assume that F0
is generated by P-null sets only. Because of the conditions imposed on F, we may assume
that every martingale adapted to this filtration is càdlàg (right-continuous with left limits).
For I= [0, T ] or I= [0, T ), we use the following notation:

• For two processes X = (Xt)t∈I, Y = (Yt )t∈I, by writing X = Y we mean that Xt = Yt for
all t ∈ I a.s., and similarly when the relation “=” is replaced by some standard relations
such as “≥”, “≤”, etc.
• For a càdlàg process X = (Xt)t∈I, we define the process X− = (Xt−)t∈I by setting X0− :=

X0 and Xt− := lim0<s↑t Xs for t ∈ I\{0}. In addition, set �X :=X−X−.
• CL(I) denotes the family of all càdlàg and F-adapted processes X = (Xt)t∈I.
• CL0(I) (resp. CL+(I)) consists of all X ∈ CL(I) with X0 = 0 a.s. (resp. X ≥ 0).
• Let M = (Mt)t∈I and N = (Nt )t∈I be L2(P)-martingales adapted to F. The predictable

quadratic covariation of M and N is denoted by 〈M,N〉. If M =N , then we simply write
〈M〉 instead of 〈M,M〉.
• For p ∈ [1,∞] and X ∈ CL([0, T ]), we denote ‖X‖Sp(P) := ‖ supt∈[0,T ] |Xt |‖Lp(P).
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2.2. Weighted bounded mean oscillation and regular weight. We recall the notions of
weighted bounded mean oscillation and the space SMp(P) of regular weight processes (the
abbreviation SM indicates the property resembling a supermartingale). Let S([0, T ]) be the
family of all stopping times ρ : �→[0, T ], and set inf∅ :=∞.

DEFINITION 2.1 ([16, 17]). For p ∈ (0,∞), Y ∈ CL0([0, T ]) and � ∈ CL+([0, T ]), let

‖Y‖BMO�
p (P) := inf

{
c ≥ 0 : EFρ

[|YT − Yρ−|p]≤ cp�p
ρ a.s.,∀ρ ∈ S([0, T ])},

‖Y‖bmo�
p (P) := inf

{
c ≥ 0 : EFρ

[|YT − Yρ |p]≤ cp�p
ρ a.s.,∀ρ ∈ S([0, T ])},

‖�‖SMp(P) := inf
{
c ≥ 0 : EFρ

[
sup

ρ≤t≤T

�
p
t

]
≤ cp�p

ρ a.s.,∀ρ ∈ S([0, T ])
}
.

For � ∈ {BMO�
p (P),bmo�

p (P)}, if ‖Y‖� <∞ (resp. ‖�‖SMp(P) <∞), then we write Y ∈ �

(resp. � ∈ SMp(P)). In the nonweighted case, that is, �≡ 1, we drop � and simply use the
notation BMOp(P) or bmop(P).

REMARK 2.2. According to [17], Propositions A.4 and A.1, the definitions of ‖ ·‖bmo�
p (P)

and ‖ · ‖SMp(P) can be simplified by using deterministic times a ∈ [0, T ] instead of stopping
times ρ, that is,

‖Y‖bmo�
p (P) = inf

{
c ≥ 0 : EFa

[|YT − Ya|p]≤ cp�p
a a.s.,∀a ∈ [0, T ]},

‖�‖SMp(P) = inf
{
c ≥ 0 : EFa

[
sup

a≤t≤T

�
p
t

]
≤ cp�p

a a.s.,∀a ∈ [0, T ]
}
.

The theory of classical nonweighted BMO/bmo-martingales can be found in [9], Chapter
VII, or [29], Chapter IV, and they were used later in different contexts (see, e.g., [5, 8]). The
notion of weighted BMO space above was introduced and discussed in [16] where it was
developed for general càdlàg processes which are not necessarily martingales.

It is clear that if Y ∈ CL0([0, T ]) is continuous, then ‖Y‖bmo�
p (P) = ‖Y‖BMO�

p (P). If Y has

jumps, then the relation between weighted BMO and weighted bmo is as follows.

LEMMA 2.3 ([17], Propositions A.5 and A.3). If � ∈ SMp(P) for some p ∈ (0,∞),
then there is a constant c= c(p,‖�‖SMp(P)) > 0 such that for all Y ∈ CL0([0, T ]),

‖Y‖BMO�
p (P) ∼c ‖Y‖bmo�

p (P) + |�Y |�,

where |�Y |� := inf{c ≥ 0 : |�Yt | ≤ c�t for all t ∈ [0, T ] a.s.}.

DEFINITION 2.4 ([16]). Let Q be an equivalent probability measure to P so that U :=
dQ/dP > 0. Then Q ∈RHs(P) for some s ∈ (1,∞) if U ∈ Ls(P) and if there is a constant
c(2.1) > 0 such that U satisfies the following reverse Hölder inequality:

EFρ
[
Us]≤ cs

(2.1)
(
EFρ [U ])s a.s.,∀ρ ∈ S([0, T ]),(2.1)

where the conditional expectation EFρ is computed under P.

We recall some features of weighted BMO which play a key role in application.

PROPOSITION 2.5 ([16, 17]). Let p,q ∈ (0,∞) and � ∈ CL+([0, T ]).
(1) There is a constant c1 = c1(p, q) > 0 such that ‖ · ‖Sp(P) ≤ c1‖�‖Sp(P)‖ · ‖BMO�

q (P).
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(2) If � ∈ SMp(P), then for any r ∈ (0,p] a constant c2 = c2(r,p,‖�‖SMp(P)) > 0
exists such that ‖ · ‖BMO�

p (P) ∼c2 ‖ · ‖BMO�
r (P).

(3) If Q ∈RHs(P) for some s ∈ (1,∞) and � ∈ SMp(Q), then there is a constant c3 =
c(s,p,Q,�) > 0 such that ‖ · ‖BMO�

p (Q) ≤ c3‖ · ‖BMO�
p (P).

PROOF. Items (1) and (2) are due to [17], Proposition A.6. For Item (3), we apply [16],
combine Corollary 1(i) with Theorem 3, to the weight �+ ε > 0 and then let ε ↓ 0. �

2.3. The class of approximated stochastic integrals. Throughout this article, the assump-
tions for the stochastic integral in (1.1) are the following.

[S] The process S ∈ CL([0, T ]) is a strong solution of the SDE1

dSt = σ(St−)dZt, S0 ∈RS,(2.2)

where σ : RS → (0,∞) is a Lipschitz function on an open set RS ⊆ R with St (ω),

St−(ω) ∈RS for all (ω, t) ∈�× [0, T ]. We denote

|σ |Lip := sup
x,y∈RS,x �=y

∣∣∣∣σ(y)− σ(x)

y − x

∣∣∣∣ <∞.

[Z] The process Z ∈ CL([0, T ]) is an L2(P)-semimartingale on (�,F,P, (Ft )t∈[0,T ]) with
the representation

Zt = Z0 +Zc
t +

∫ t

0

∫
R0

z(NZ − πZ)(du,dz)+
∫ t

0
bZ
u du, t ∈ [0, T ],(2.3)

where Z0 ∈ R, bZ is a progressively measurable process, Zc is a pathwise continuous
L2(P)-martingale with Zc

0 = 0, NZ is the jump random measure2 of Z and πZ is the
predictable compensator3 of NZ . Assumptions on Z are the following:

(Z1) For all ω ∈�,

πZ(ω,dt,dz)= νt (ω,dz)dt,(2.4)

where the transition kernel4 νt (ω, ·) is a Lévy measure, that is, a Borel measure on B(R)

satisfying νt (ω, {0}) := 0 and
∫
R(z2 ∧ 1)νt (ω,dz) <∞.

(Z2) There is a progressively measurable process aZ such that d〈Zc〉t = |aZ
t |2 dt and

aZ
(2.5) :=

∥∥aZ
∥∥
L∞(�×[0,T ],P⊗λ) <∞.(2.5)

(Z3) The processes bZ and jZ , where jZ
t := (

∫
R z2νt (dz))1/2, satisfy that

bZ
(2.6) :=

∥∥∥∥bZ
∥∥
L2([0,T ],λ)

∥∥
L∞(P) <∞, jZ

(2.6) :=
∥∥jZ

∥∥
L∞(�×[0,T ],P⊗λ) <∞.(2.6)

[I] The process ϑ belongs to the family A(S) of admissible integrands, where

A(S) :=
{
ϑ ∈ CL([0, T )) : E

∫ T

0
ϑ2

t−σ(St−)2 dt <∞ and �ϑt = 0 a.s.,∀t ∈ [0, T )

}
.

1See, for example, [29], Chapter V, Section 3, for the existence and uniqueness of S.
2NZ((s, t] ×B) := #{u ∈ (s, t] :�Zu ∈ B} and NZ({0} ×B) := 0 for 0≤ s < t ≤ T , B ∈ B(R0).
3πZ is such that: (i) for any ω ∈�, πZ(ω, ·) is a measure on B([0, T ] ×R) with πZ(ω, {0} ×R)= 0; (ii) for

any P ⊗ B(R)-measurable and nonnegative f , the process
∫ ·
0

∫
R

f (u, z)πZ(du,dz) is P-measurable satisfying

E
∫ T
0

∫
R

f (u, z)NZ(du,dz) = E
∫ T
0

∫
R

f (u, z)πZ(du,dz), where P is the predictable σ -algebra on � × [0, T ]
(see [25], Chapter II, Section 1, for more details).

4In the sense of [25], Chapter II, Theorem 1.8.
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REMARK 2.6.

(1) By a standard stopping argument and Gronwall’s lemma, (2.2) implies that S is an
L2(P)-semimartingale and

E

∫ T

0
σ(Su)

2 du= E

∫ T

0
σ(Su−)2 du <∞.

(2) For each t ∈ [0, T ], it follows from (2.4) that NZ({t} × R0) = 0 a.s., which verifies
�Zt = 0 a.s., and hence, �St = 0 a.s. In other words, Z and S have no fixed-time disconti-
nuity. Since admissible integrands ϑ in applications are often functionals of the integrator S,
it is technically convenient to assume that �ϑt = 0 a.s.

3. Approximation via weighted bounded mean oscillation approach. To examine the
discrete-time approximation problem in weighted bmo or weighted BMO, further structure
of the integrand is required. We begin with the following assumption which is an adaptation
of [17], Assumption 5.1.

ASSUMPTION 3.1. Assume for a ϑ ∈A(S) that there exists a random measure

ϒ : �×B((0, T ))→[0,∞]
such that ϒ(ω, (0, t]) <∞ for all (ω, t) ∈�× (0, T ) and there is a constant c(3.1) > 0 such
that for any 0≤ a < b < T , a.s.,

EFa

[∫
(a,b]
|ϑt − ϑa|2σ(St )

2 dt

]
≤ c2

(3.1)E
Fa

[∫
(a,b]

(b− t)ϒ(·,dt)

]
.(3.1)

The left-hand side of (3.1) appears as the one-step conditional L2-approximation error.
This error is assumed to be controlled from above by a conditional integral with respect to an
appropriate random measure ϒ , where ϒ might have some singularity at the terminal time
T . This structure condition allows us to derive the multi-step approximation from the one-
step approximation. Apparently, the measure ϒ looks artificial, however, it origins from the
diffusion setting on the Wiener space. We briefly explain this in Example 3.2 below.

EXAMPLE 3.2 (Diffusion setting). We recall the setting from [13] (see also [17]): Let
σ̂ : R→ R be bounded, infx∈R σ̂ (x) > 0 and infinitely differentiable with bounded deriva-
tives. Let σ(x) := xσ̂ (lnx), which is Lipschitz on (0,∞), and consider the SDE

dSt = σ(St )dWt, S0 = ex0 > 0,

where W is a standard Brownian motion. Then one has St = eXt , where dXt = σ̂ (Xt )dWt −
1
2 σ̂ (Xt )

2 dt , X0 = x0 ∈ R. For any Borel function g : (0,∞)→ R with polynomial growth,

Itô’s formula asserts g(ST )= Eg(ST )+ ∫ T
0 ∂yG(t, St )dSt with G(t, y) := E(g(ST )|St = y).

Then [15], Corollary 3.3, verifies that Assumption 3.1 is satisfied for

ϑt := ∂yG(t, St ), ϒ(ω,dt) := ∣∣(σ 2∂2
yG

)
(t, St (ω))

∣∣2 dt.

In this case, since ϒ is related to the second derivative, it describes some kind of curvature
of the stochastic integral.

We now provide in Example 3.3 another formula for ϒ which is used later in the exponen-
tial Lévy setting in Section 4.
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EXAMPLE 3.3. Assume for ϑ ∈A(S) that ϑσ(S) has the representation

ϑtσ (St )=Mt + Vt , t ∈ [0, T ),

where M = (Mt)t∈[0,T ) is an L2(P)-martingale, Vt = ∫ t
0 vu du for a progressively measurable

v with
∫ t

0 v2
u(ω)du <∞ for all (ω, t) ∈�× [0, T ). Then Assumption 3.1 is satisfied for

ϒ(ω,dt) := d〈M〉t (ω)+ |σ |2LipM
2
t (ω)dt + v2

t (ω)dt + |σ |2Lip

(∫ t

0
v2
u(ω)du

)
dt.

The proof for this assertion is provided in the Supplementary Material [37], subsection D.2.

The key assumption which enables to derive the approximation results is as follows.

ASSUMPTION 3.4. Let θ ∈ (0,1]. Assume that Assumption 3.1 is satisfied, and there are
processes �,� ∈ CL+([0, T ]), where � is a.s. nondecreasing with �σ(S) ≤ �, such that
the following two conditions hold:

(a) (Growth condition) There is a constant c(3.2) > 0 such that

|ϑa| ≤ c(3.2)(T − a)
θ−1

2 �a a.s.,∀a ∈ [0, T ).(3.2)

(b) (Curvature condition) There is a constant c(3.3) > 0 such that

EFa

[∫
(a,T )

(T − t)1−θϒ(·,dt)

]
≤ c2

(3.3)�
2
a a.s.,∀a ∈ [0, T ).(3.3)

Here, the constants c(3.2) and c(3.3) may depend on θ .

The parameter θ in (3.2) describes the growth (pathwise and relatively to �) of ϑ and
the integrand (T − t)1−θ in (3.3) is employed to compensate the singularity of ϒ when the
time variable approaches T . Hence, the bigger θ is, the less singular at T of both ϑ and ϒ

get, which leads the approximated stochastic integral to be more regular. In particular, for the
Black–Scholes model with the delta-hedging strategy ϑ , that is, σ(x) = x in Example 3.2,
the parameter θ can be interpreted as the fractional smoothness of the payoff in the sense of
[13, 19] where θ = 1 corresponds to the smoothness of order 1. Thus, in this article we will
refer to the situation when Assumption 3.4 holds for θ = 1 as regular regime. It is also clear
that if Assumption 3.4 is satisfied for a θ ∈ (0,1], then it also holds for any θ ′ ∈ (0, θ) with
the same � and � and with a suitable change for c(3.2) and c(3.3).

Various specifications of Assumption 3.4 in the Brownian setting or in the Lévy setting are
provided in [17]. In Section 4 below, we consider Assumption 3.4 in the exponential Lévy
setting which extends [17].

3.1. The basic method: Riemann approximation.

DEFINITION 3.5.

(1) Let Tdet be the family of all deterministic time-nets τ = (ti)
n
i=0 on [0, T ] with 0= t0 <

t1 < · · · < tn = T , n ≥ 1. The mesh size of τ = (ti)
n
i=0 ∈ Tdet is measured with respect to a

parameter θ ∈ (0,1] by

‖τ‖θ := max
i=1,...,n

ti − ti−1

(T − ti−1)1−θ
.
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(2) For ϑ ∈A(S), τ = (ti)
n
i=0 ∈ Tdet and t ∈ [0, T ], we define

ARm
t (ϑ, τ ) :=

n∑
i=1

ϑti−1−(Sti∧t − Sti−1∧t ), ERm
t (ϑ, τ ) :=

∫ t

0
ϑu− dSu −ARm

t (ϑ, τ ).

The following is based on [17], Theorem 5.3, and its proof is presented in Section 5.1.

PROPOSITION 3.6. Let Assumption 3.4 hold for some θ ∈ (0,1]. Then there exists a
constant c(3.4) > 0 such that for any τ ∈ Tdet,∥∥ERm(ϑ, τ )

∥∥
bmo�

2 (P) ≤ c(3.4)
√‖τ‖θ .(3.4)

In particular, if S is continuous then ‖ERm(ϑ, τ )‖BMO�
2 (P) ≤ c(3.4)

√‖τ‖θ for any τ ∈ Tdet.

3.2. The jump-adapted approximation: General results. In Proposition 3.6, the continu-
ity of S is crucial to derive the conclusion for ERm(ϑ, τ ) under the BMO�

2 (P)-norm. If S has
jumps, then that result may fail as shown in the following example.

EXAMPLE 3.7. In the notation of Section 2.3, we let Z = J̃ , where J̃t := Jt − rt is
a compensated Poisson process with intensity r > 0. Choose σ ≡ 1 so that S = Z. Let
f : (0, T ] × N→ R be a Borel function with ‖f ‖∞ := sup(t,k)∈(0,T ]×N |f (t, k)| <∞ and
ε := inft∈(0,T ] |f (t,0)|> 0. Assume that

δ := ε− rT ‖f ‖∞ > 0.

Let ρ1 := inf{t > 0 :�Jt = 1} ∧ T and ρ2 := inf{t > ρ1 :�Jt = 1} ∧ T . Let ϑ0 ∈ R and
define ϑt = ϑ0 + ∫

(0,t∧ρ2] f (s, Js−)dJ̃s , t ∈ (0, T ]. It is not difficult to check that ϑ ∈A(S)

is a martingale with ‖ϑT ‖L∞(P) <∞. Then Assumption 3.1 is satisfied with the selection
ϒ(·,dt) := d〈ϑ〉t as showed in Example 3.3 (with V ≡ 0). In addition, it is straightforward
to check that Assumption 3.4 holds true for �≡�≡ 1 and for θ = 1.

Take τ = (ti)
n
i=0 ∈ Tdet arbitrarily. On the set {0 < ρ1 < ρ2 < t1} we have

∣∣�ERm
ρ2

(ϑ, τ )
∣∣= n∑

i=1

|ϑρ2− − ϑti−1−|1(ti−1,ti ](ρ2)|�Jρ2 | = |ϑρ2− − ϑ0|

=
∣∣∣∣f (ρ1, Jρ1−)− r

∫
(0,ρ2)

f (s, Js−)ds

∣∣∣∣≥ ∣∣f (ρ1,0)
∣∣− rT ‖f ‖∞

≥ δ.

Since P(0 < ρ1 < ρ2 < t1) > 0, it implies that infτ∈Tdet ‖�ERm
ρ2

(ϑ, τ )‖L∞(P) ≥ δ. Due to
Lemma 2.3, we obtain infτ∈Tdet ‖ERm(ϑ, τ )‖BMOp(P) > 0 for any p ∈ (0,∞).

Therefore, in order to exploit benefits of the weighted BMO approach, we introduce a new
approximation scheme based on an adjustment of the classical Riemann approximation. The
time-net for this scheme is obtained by combining a given deterministic time-net, which is
used in the Riemann sum of the stochastic integral, and a suitable sequence of random times
which captures the (relative) large jumps of the driving process. With this scheme, we not
only can utilize the features of weighted BMO, but can also control the cardinality of the
combined time-nets.

Let us begin with the random times. Due to the assumptions imposed on S in Section 2.3,
one has σ(S−) > 0 and

�S = σ(S−)�Z(3.5)
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from which we can see that jumps of S can be determined from knowing jumps of Z. How-
ever, if we would use S to model the stock price process, then it is more realistic to track the
jumps of S rather than of Z. Therefore, we define the random times ρ(ε, κ)= (ρi(ε, κ))i≥0
based on tracking the jumps of S as follows (recall that inf∅ :=∞).

DEFINITION 3.8. For ε > 0 and κ ≥ 0, let ρ0(ε, κ) := 0 and

ρi(ε, κ) := inf
{
T ≥ t > ρi−1(ε, κ) : |�St |> σ(St−)ε(T − t)κ

}∧ T , i ≥ 1,(3.6)

N(3.7)(ε, κ) := inf
{
i ≥ 1 : ρi(ε, κ)= T

}
.(3.7)

The quantity ε(T − t)κ in (3.6) is the level at time t from which we decide which jumps
of S are (relatively) large, and moreover, for κ > 0, this level continuously shrinks when t

approaches the terminal time T . Hence, κ describes the jump size decay rate. The idea for
using the decay function (T − t)κ is to compensate the growth of integrands. By specializing
T = 1 and letting t = 0, the parameter ε can be interpreted as the initial jump size threshold.

DEFINITION 3.9 (Jump-adapted approximation). Let ε > 0, κ ∈ [0, 1
2) and τ ∈ Tdet.

(1) Let τ � ρ(ε, κ) be the (random) discretization times of [0, T ] by combining τ with
ρ(ε, κ) and re-ordering their time-knots.

(2) For τ = (ti)
n
i=0 and t ∈ [0, T ], we set ϑτ

t :=
∑n

i=1 ϑti−1−1(ti−1,ti ](t) and define

A
adap
t (ϑ, τ |ε, κ) :=ARm

t (ϑ, τ )+ ∑
ρi(ε,κ)∈[0,t]∩[0,T )

(
ϑρi(ε,κ)− − ϑτ

ρi(ε,κ)

)
�Sρi(ε,κ),

E
adap
t (ϑ, τ |ε, κ) :=

∫ t

0
ϑu− dSu −A

adap
t (ϑ, τ |ε, κ),

(3.8)

where ARm(ϑ, τ ) is given in Definition 3.5.

As verified later in Section 5.2, each ρi(ε, κ) is a stopping time. Moreover, the sum on the
right-hand side of (3.8) is a finite sum a.s. as a consequence of Lemma 5.3 below. Hence,
by adjusting this sum on a set of probability zero, we may assume that Aadap(ϑ, τ |ε, κ) ∈
CL0([0, T ]). Besides, we also restrict the sum over the stopping times taking values in [0, T )

instead of [0, T ] because of two technical reasons. First, ϑ does not necessarily have the left-
limit at T , and second, since �ST = 0 a.s. as mentioned in Remark 2.6, any value of the form
a�ST (a ∈R) added to the correction term does not affect the approximation.

To obtain the desired results we need to consider a dominant process � ≥ max{�,�−}
because in the calculations handling the jump part of the error we end up with �− which is
not càdlàg and therefore is not a suitable candidate for a weight process. A prototype for � is

�t :=�t + sup
s∈[0,t]

max{0,−��s}, t ∈ [0, T ].(3.9)

For � in (3.9), one has � ∈ CL+([0, T ]) with max{�,�−} ≤�, and �≡� if � is contin-
uous. Moreover, Proposition B.1(2) shows that � ∈ SMp(P) implies � ∈ SMp(P).

THEOREM 3.10. Let Assumption 3.4 hold for some θ ∈ (0,1] and denote κ := 1−θ
2 .

Assume �≥max{�,�−} and � ∈ SM2(P).

(1) If there is some α ∈ (0,2] such that

c(3.10) := sup
r∈(0,1)

∥∥∥∥(ω, t) 
→ rα
∫
r<|z|≤1

νt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

<∞,(3.10)
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then a constant c(3.11) > 0 exists such that for all τ ∈ Tdet, ε > 0,∥∥Eadap(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≤ c(3.11) max

{
ε,

√‖τ‖θ , h(ε)
√‖τ‖θ}

,(3.11)

where h(ε)= ε1−α if α ∈ (1,2], h(ε)= log+(1/ε) if α = 1, and h(ε)= 1 if α ∈ (0,1).
(2) If

c(3.12) := sup
r∈(0,1)

∥∥∥∥(ω, t) 
→
∫
r<|z|≤1

zνt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

<∞,(3.12)

then a constant c(3.13) > 0 exists such that for all τ ∈ Tdet, ε > 0,∥∥Eadap(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≤ c(3.13) max

{
ε,

√‖τ‖θ}
.(3.13)

We postpone the proof of Theorem 3.10 to Section 5.2.1. Minimizing the right-hand side
of (3.11) and (3.13) over ε > 0 leads us to the following corollary.

COROLLARY 3.11. Let Assumption 3.4 hold for some θ ∈ (0,1] and denote κ := 1−θ
2 .

Assume �≥max{�,�−} and � ∈ SM2(P).

(1) If (3.10) is satisfied for some α ∈ (0,2], then there exists a constant c′ > 0 independent

of τ such that, for ε(θ, τ,α) := ‖τ‖
1
2 ( 1

α
∧1)

θ , one has

∥∥Eadap(ϑ, τ |ε(θ, τ,α), κ)
∥∥

BMO�
2 (P)
≤ c′

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α
√‖τ‖θ if α ∈ (1,2],[
1+ 1

2
log+

(
1

‖τ‖θ
)]√‖τ‖θ if α = 1,√‖τ‖θ if α ∈ (0,1).

(2) If (3.12) is satisfied, then
∥∥Eadap(

ϑ, τ
∣∣√‖τ‖θ , κ)∥∥

BMO�
2 (P)
≤ c(3.13)

√‖τ‖θ .

REMARK 3.12.

(1) The assumption jZ
(2.6) <∞ means that∥∥∥∥(ω, t) 
→

∫
R

z2νt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

<∞,(3.14)

which implies that (3.10) automatically holds for α = 2 in our context.
(2) It is easy to check that condition (3.12) holds true if the following finite variation

property is satisfied:∥∥∥∥(ω, t) 
→
∫
|z|≤1
|z|νt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

<∞,(3.15)

or if the local symmetry property is satisfied: there is an r0 ∈ (0,1) such that the measure
νt (ω, ·) is symmetric on (−r0, r0) for P⊗ λ-a.e. (ω, t) ∈�× [0, T ].

(3) If (3.10) is satisfied for some α ∈ (0,1), then (3.15), and hence, (3.12) hold true. This
assertion can be deduced from applying Lemma 5.4 (ω, t)-wise with α < γ = 1.

3.3. A pure-jump model with faster convergence rates. We investigate in this part the ef-
fect of small jumps of the underlying process Z on the convergence rate of the approximation
error resulting from the jump-adapted scheme.
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ASSUMPTION 3.13. In Section 2.3, we assume that:

(a) Zc ≡ 0, bZ ≡ 0, that is, Z is a purely discontinuous martingale,
(b) the family of Lévy measures (νt )t∈[0,T ] does not depend on ω,
(c) σ(x)= x, that is, S is the Doléans–Dade exponential of Z,

and assume in addition for some ϑ ∈A(S) that:

(d) ϑS = (ϑtSt )t∈[0,T ) has the semimartingale representation

ϑtSt =Mt + Vt , t ∈ [0, T ),

where M = (Mt)t∈[0,T ) is an L2(P)-martingale and Vt = ∫ t
0 vu du for a progressively mea-

surable v with
∫ t

0 v2
u(ω)du <∞ for (ω, t) ∈�× [0, T ).

(e) Assumption 3.4 holds for some θ ∈ (0,1], � ∈ CL+([0, T ]), nondecreasing � ∈
CL+([0, T ]) with �S ≤�, and for

ϒ(·,dt)= d〈M〉t +M2
t dt + v2

t dt +
(∫ t

0
v2
u du

)
dt, t ∈ [0, T ).

Let us shortly discuss conditions in Assumption 3.13. According to [25], Chapter II, The-
orem 4.15, condition (b) implies that Z has independent increments. Typical examples for
Z are time-inhomogeneous Lévy processes, and especially, Lévy processes. This condition
is necessary for our technique exploiting the orthogonality of martingale increments which
appear in the approximation error with the integrand given in (d). Condition (c) is merely a
convenient condition and it can be extended to more general context with an appropriate mod-
ification for weight processes. We use here σ(x)= x to make the proof more transparent and
reduce unnecessary technicalities, and moreover, this is a classical case in application. Con-
dition (d) is the semimartingale decomposition of ϑS, and this can be easily verified if one
knows the semimartingale representation of ϑ . Condition (e) enables to obtain convergence
rates for the approximation error, and this structure of ϒ is discussed in Example 3.3. We
will show in Proposition 4.6 below that Assumption 3.13 is fully satisfied in the exponential
Lévy model when ϑ is the mean-variance hedging strategy of a European type option.

The conditions for small jump behavior of the underlying process Z are adapted respec-
tively from (3.10) and (3.12) to the current setting as follows:

sup
r∈(0,1)

∥∥∥∥t 
→ rα
∫
r<|z|≤1

νt (dz)

∥∥∥∥
L∞([0,T ],λ)

<∞ for some α ∈ (0,2],(3.16)

sup
r∈(0,1)

∥∥∥∥t 
→
∫
r<|z|≤1

zνt (dz)

∥∥∥∥
L∞([0,T ],λ)

<∞.(3.17)

It is easy to check that the condition
∥∥t 
→ ∫

|z|≤1 |z|νt (dz)
∥∥
L∞([0,T ],λ) <∞ implies both

(3.16) (for α = 1) and (3.17).

THEOREM 3.14. Let Assumption 3.13 hold for some θ ∈ (0,1] and let κ := 1−θ
2 . Assume

�≥max{�,�−} and � ∈ SM2(P). If (3.16) is satisfied for some α ∈ (0,2], then there is a
c > 0 such that for all τ ∈ Tdet, ε > 0,∥∥Eadap(ϑ, τ |ε, κ)

∥∥
BMO�

2 (P)

≤ c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{
ε, ε1− α

2
√‖τ‖θ ,‖τ‖θ + ε1−α‖τ‖1−κ(α−1)

θ

}
if α ∈ (1,2],

max
{
ε,
√

ε
√‖τ‖θ ,[

1+ log+
(

1

ε

)
+ log+

(
1

‖τ‖θ
)]
‖τ‖θ

}
if α = 1,

max
{
ε,
√

ε
√‖τ‖θ ,‖τ‖θ}

if α = 1

and (3.17) holds,

max
{
ε,
√

ε
√‖τ‖θ ,‖τ‖θ}

if α ∈ (0,1).
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In particular, minimizing the right-hand side over ε > 0 yields another constant c′ > 0 such
that for all τ ∈ Tdet,∥∥Eadap(ϑ, τ |ε(θ, τ,α), κ)

∥∥
BMO�

2 (P)

≤ c′

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

‖τ‖
1
α
(1−κ(α−1))

θ if α ∈ (1,2],[
1+ log+

(
1

‖τ‖θ
)]
‖τ‖θ if α = 1,

‖τ‖θ if α = 1 and (3.17) holds,

‖τ‖θ if α ∈ (0,1),

where ε(θ, τ,α) := ‖τ‖
1
α
(1−κ(α−1))

θ if α ∈ [1,2], and ε(θ, τ,α) := ‖τ‖θ if α ∈ (0,1).

The proof will be provided later in Section 5.2.2.

3.4. Adapted time-nets and approximation accuracy. We discuss in this part how to im-
prove the approximation accuracy by using suitable time-nets.

3.4.1. Adapted time-net. The conclusions in Proposition 3.6, Corollary 3.11 and Theo-
rem 3.14 assert that the errors measured in bmo�

2 (P) or in BMO�
2 (P) are, up to multiplicative

constants, upper bounded by ‖τ‖rθ with r ∈ [14 ,1]. Assume τn ∈ Tdet with #τn = n+ 1, where
n ≥ 1 represents in the context of stochastic finance the number of transactions in trading.
If one uses the equidistant nets τn = (T i/n)ni=0, then ‖τn‖θ = T θ/nθ , and thus θ ∈ (0,1]
describes the convergence rate in this situation.

In order to accelerate the convergence rate we need to employ other suitable time-nets.
First, it is straightforward to check that ‖τn‖θ ≥ T θ/n for any τn ∈ Tdet with #τn = n+ 1.
Next, minimizing ‖τn‖θ over τn ∈ Tdet with #τn = n+ 1 leads us to the following adapted
time-nets, which were used (at least) in [13, 14, 16, 18, 19]: For θ ∈ (0,1] and n ≥ 1, the
adapted time-net τ θ

n = (tθi,n)
n
i=0 is defined by

tθi,n := T
(
1− (1− i/n)1/θ )

, i = 0,1, . . . , n.

Obviously, the equidistant time-net corresponds to θ = 1. By a computation, it holds that

T θ/n≤ ∥∥τ θ
n

∥∥
θ ≤ T θ/(θn).(3.18)

3.4.2. Cardinality of the combined time-net. The time-net used in Theorems 3.10 and
3.14 is τ � ρ(ε, κ) for κ = 1−θ

2 . Due to the randomness, a simple way to quantify the cardi-
nality of this combined time-net is to evaluate its expected cardinality, that is, E[#τ �ρ(ε, κ)]
(see, e.g., [11] or [30], equation (10) with β = 0). Thus, we provide in the next result an es-
timate for certain moments of the cardinality. Since we aim to apply Proposition 2.5(3) later,
changes of the underlying measure are also taken into account.

PROPOSITION 3.15. Let q ∈ [1,2], r ∈ [2,∞] with q
2 + 1

r
= 1. Assume a probability

measure Q absolutely continuous with respect to P with dQ/dP ∈Lr(P). If (3.10) holds for
some α ∈ (0,2], then for any κ ∈ [0, 1

2) and (εn)n≥1 ⊂ (0,∞) with infn≥1
α
√

nεn > 0, there
exists a constant c(3.19) ≥ 1 such that for any n≥ 1, any τn ∈ Tdet with #τn = n+ 1 one has

‖#τn � ρ(εn, κ)‖Lq(Q) ∼c(3.19) n.(3.19)

Plugging the adapted time-nets τ θ
n into previous results, we derive the following.
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THEOREM 3.16. Let Assumption 3.4 hold true for some θ ∈ (0,1] and let κ := 1−θ
2 .

(1) One has supn≥1
√

n
∥∥ERm(

ϑ, τ θ
n

)∥∥
bmo�

2 (P)<∞.

(2) Assume �≥max{�,�−} and � ∈ SM2(P).

(a) If (3.10) holds for some α ∈ (0,2], then

sup
n≥1

R(n)
∥∥Eadap(

ϑ, τ θ
n

∣∣εn, κ
)∥∥

BMO�
2 (P)

<∞,

where R(n)= 1/εn = 2α
√

n if α ∈ (1,2], R(n)=√n/(1+ logn) and εn =√1/n if α = 1,
and R(n)= 1/εn =√n if α ∈ (0,1).

(b) If (3.12) holds, then for R(n)= 1/εn =√n one has

sup
n≥1

R(n)
∥∥Eadap(

ϑ, τ θ
n

∣∣εn, κ
)∥∥

BMO�
2 (P)

<∞.

(3) Assume Assumption 3.13 and � ≥ max{�,�−} with � ∈ SM2(P). If (3.16) holds for
some α ∈ (0,2], then

sup
n≥1

R(n)
∥∥Eadap(

ϑ, τ θ
n

∣∣εn, κ
)∥∥

BMO�
2 (P)

<∞,

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(n)= 1/εn = n

1
α
(1−κ(α−1)) if α ∈ (1,2],

R(n)= n/(1+ logn), εn = 1/n if α = 1,

R(n)= 1/εn = n if α = 1 and (3.17) holds,

R(n)= 1/εn = n if α ∈ (0,1).

(4) If in addition � ∈ SMp(P) for some p > 2, then the conclusions in Items (2)–(3) hold

case-wise for the BMO�
p (P)-norm and, consequently, for the Sp(P)-norm, in place of the

BMO�
2 (P)-norm.

(5) If in addition Q ∈RHs(P) for some s ∈ (1,∞) and � ∈ SM2(Q), then the conclusions
in Items (2)–(3) hold case-wise for the BMO�

2 (Q)-norm in place of the BMO�
2 (P)-norm.

PROOF. Item (1) (resp. (2), (3)) follows from Proposition 3.6 (resp. Theorem 3.10, The-
orem 3.14) and (3.18). Items (4)–(5) are due to Proposition 2.5. �

REMARK 3.17. In Theorem 3.16, the convergence rate of the jump-adapted approxima-
tion errors is R(n)−1 as n→∞. However, it is necessary to quantify the convergence rate in
terms of expected cardinality of the used discretization times, which is τ θ

n � ρ(εn, κ). It turns
out that the rates remain unchanged as shown below.

(1) For Items (2a), (3) and (4), applying Proposition 3.15 with q = 2, r =∞ and Q= P

we find that ‖#τn�ρ(εn, κ)‖L2(P) ∼c(3.19) n. Consequently, ‖#τn�ρ(εn, κ)‖Lu(P) ∼c(3.19) n for
any u ∈ [1,2]. Hence, there exists a constant c ≥ 1 not depending on n such that

R(n)∼c R
(∥∥#τ θ

n � ρ(εn, κ)
∥∥
Lu(P)

)
, ∀u ∈ [1,2](3.20)

for R and (εn)n≥1 given case-wise as above.
(2) For Item (2b), we apply Proposition 3.15 with q = 2, r =∞, Q= P and α = 2 (with

keeping (3.14) in mind) to obtain (3.20).
(3) For Item (5), if s ∈ [2,∞), then we choose r = s, q = s̃ := 2(1− 1

s
) ∈ [1,2) in Propo-

sition 3.15 to get a constant c′ ≥ 1 not depending on n such that

R(n)∼c′ R
(∥∥#τ θ

n � ρ(εn, κ)
∥∥
Ls̃(Q)

)
.
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3.5. A lower bound for jump-adapted approximation errors. This subsection provides
a situation where one achieves the sharp convergence rates in Theorem 3.16. Namely, we
illustrate in Example 3.19 below that the obtained rates in Theorem 3.16(2) and (3) are sharp
if α ∈ (0,2]\{1}, and are sharp up to a log-factor if α = 1. We begin with the following result.

PROPOSITION 3.18. Let κ := 1−θ
2 ∈ [0, 1

2). Under the setting of Section 2.3, we assume
a process 0 < � ∈ SM2(P), constants ε0 > 0 and c(3.21) > 0 such that for any ε ∈ (0, ε0)

and τ = (ti)
n
i=0 ∈ Tdet with ‖τ‖1 ≤ T/2 there exist an i∗ ∈ {1, . . . , n}, real numbers 0 < r∗ <

r̂∗ ≤ T κ and a stopping time ρ∗ : �→[0, T ) such that

P(E(3.21)) := P

(
{ρ∗ ∈ (ti∗−1, ti∗]} ∩

{
σ(Sρ∗−)

�ρ∗
|ϑρ∗− − ϑti∗−1−| ≥

c(3.21)

r∗

}

∩ {|�Zρ∗ | ∈ (εr∗, εr̂∗)
}∩ {

r̂∗ ≤ (T − ρ∗)κ
})

> 0.

(3.21)

Then, a constant c(3.22) > 0 exists such that for any ε ∈ (0, ε0) and τ ∈ Tdet with ‖τ‖1 ≤ T/2,∥∥Eadap(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≥ c(3.22)ε.(3.22)

PROOF. We employ the notation from the proof of Theorem 3.10. One first notices that{|�Zρ∗ | ∈ (εr∗, εr̂∗)
}∩ {

r̂∗ ≤ (T − ρ∗)κ
}= {∣∣�Zε,1

ρ∗
∣∣ ∈ (εr∗, εr̂∗)

}∩ {
r̂∗ ≤ (T − ρ∗)κ

}
,

and that �Eadap(ϑ, τ |ε, κ)=�ES(ϑ, τ |ε, κ) by (5.10). We then apply Lemma 2.3 to obtain
a constant c� > 0 depending on ‖�‖SM2(P) such that for any ε ∈ (0, ε0) and τ ∈ Tdet, a.s.,∥∥Eadap(ϑ, τ |ε, κ)

∥∥
BMO�

2 (P)
≥ c�

∣∣�Eadap(ϑ, τ |ε, κ)
∣∣
� = c�

∣∣�ES(ϑ, τ |ε, κ)
∣∣
�

= c� sup
t∈[0,T )

n∑
i=1

[
σ(St−)

�t

|ϑt− − ϑti−1−|
∣∣�Z

ε,1
t

∣∣]1(ti−1,ti ](t)

≥ c� sup
t∈(ti∗−1,ti∗ ]∩(0,T )

[
σ(St−)

�t

|ϑt− − ϑti∗−1−|
∣∣�Z

ε,1
t

∣∣]

≥ c�

σ(Sρ∗−)

�ρ∗
|ϑρ∗− − ϑti∗−1−|

∣∣�Zε,1
ρ∗

∣∣1(ti∗−1,ti∗ ](ρ∗).

Thus, a.s., ∥∥Eadap(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≥ c�

c(3.21)

r∗
εr∗1E(3.21) = c�c(3.21)ε1E(3.21) .

Since P(E(3.21)) > 0 by assumption, we get (3.22) with c(3.22) = c�c(3.21). �

Remark that condition (3.21) describes the high fluctuation of ϑ along any time net τ ∈ Tdet
which is captured by the stopping time ρ∗.

EXAMPLE 3.19. Set T = 1. Let X be a square integrable Lévy process given by

Xt = γ̂ t +
∫ t

0

∫
R0

xÑ(ds,dx), t ∈ [0,1],

for some γ̂ ∈ R, where N is the Poisson random measure of X with Lévy measure ν, and
Ñ(ds,dx) :=N(ds,dx)− dsν(dx) (see, e.g., [1], Theorem 2.4.16). Set S := eX and assume
that:
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• ∫
|x|>1 e2xν(dx) <∞, (0,1)⊂ supp(ν), and there is a constant c(3.23) ∈ (0,1] with

(−∞, ln c(3.23))∩ supp(ν)=∅,(3.23)

where supp(ν) denotes the support of ν.
• ϑt = φ(t, St ), where φ : [0,1)× (0,∞) is jointly continuous, such that E

∫ T
0 ϑ2

t S2
t dt <∞

and that constants T0 ∈ (0,1), K > 0 exist such that y 
→ φ(t, y) is continuously differen-
tiable for all t ∈ (0, T0] and

inf
(t,y)∈(0,T0]×[1,e(5K+11)/2]

∣∣∂yφ(t, y)
∣∣≥ c(3.24) > 0.(3.24)

Condition (3.24) is analogous to and slightly weaker than that in [30], Proposition 4.
A simple example for (3.24) is φ(t, y)= y, and then the approximated integral becomes∫ T

0
St− dSt .

• The weight processes are �(η)t := supu≤t (S
η−1
u ) and �(η) :=�(η)S for some η ∈ [0,1].

Then the assumptions of Proposition 3.18 are satisfied for σ(x)= x, Z := L(S) the stochastic
logarithm of S, and for

� := �(η)

c(3.23)
, ε0 := 1, c(3.21) := 1

2κ12
c(3.23)c(3.24)e

−(1−η)(K
2 +1)−1K,

i∗ := 1, r̂∗ = 3r∗ := 2−κ , ρ∗ := ρKε̃
given in (5.30) with ε̃ = ln(1+ εr∗).

(3.25)

We will verify this assertion later in Section 5.2.4.

REMARK 3.20. Let us give some comments on Example 3.19.

(1) To validate Assumption 3.13, we need to additionally assume the following conditions,
which are feasible because of Proposition 4.6:

• S is an L2(P)-martingale.
• There are constants θ ∈ (0,1] and c > 0 such that∣∣φ(t, St )

∣∣≤ c(1− t)
θ−1

2 �(η)t a.s.,∀t ∈ [0,1).

We may even assume that ϑS is an L2(P)-martingale to simplify Assumption 3.13.
(2) The selection � :=�(η)/c(3.23) in (3.25) satisfies the condition for the weight process in

Theorems 3.10, 3.14 and 3.16. Indeed, since e�X ≥ c(3.23) and �(η) is nondecreasing,
one has

�(η)t− =�(η)t−St− =�(η)t−Ste
−�Xt ≤�(η)t (St/c(3.23))=�(η)t/c(3.23).

Since c(3.23) ∈ (0,1], it implies that �≥max{�(η),�(η)−}.
(3) When the assumptions of Theorem 3.16(2) or (3) are fulfilled, then the convergence rate

of the approximation error is given by (εn) (up to a log-factor for the case α = 1). Then
we apply Proposition 3.18 with the choice ε = εn to find that, for sufficiently large n, the
obtained convergence rates in Theorem 3.16(2) or (3) are optimal if α ∈ (0,2]\{1}, and
are optimal up to a log-factor if α = 1.

4. Applications to exponential Lévy models. We provide examples for Assumptions
3.4 and 3.13 in the exponential Lévy setting so that the main results can be applied. As an
important step to obtain them, we establish in Proposition 4.2 an explicit form for the mean-
variance hedging strategy of a general European type option, and this formula might also
have an independent interest.
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4.1. Lévy process. Let X = (Xt)t∈[0,T ] be a one-dimensional Lévy process on (�,F,P),
that is, X0 = 0, X has independent and stationary increments and X has càdlàg paths. Let
FX = (FX

t )t∈[0,T ] be the augmented natural filtration of X, and assume that F = FX
T . Ac-

cording to the Lévy–Khintchine formula (see, e.g., [31], Theorem 8.1), there is a character-
istic triplet (γ, σ, ν), where γ ∈R, coefficient of Brownian component σ ≥ 0, Lévy measure
ν : B(R)→[0,∞] (i.e., ν({0}) := 0 and

∫
R(x2 ∧ 1)ν(dx) <∞), such that the characteristic

exponent ψ of X defined by EeiuXt = e−tψ(u) is of the form

ψ(u)=−iγ u+ σ 2u2

2
−

∫
R

(
eiux − 1− iux1{|x|≤1}

)
ν(dx), u ∈R.

4.2. Mean-variance hedging (MVH). Assume that the underlying price process is mod-
elled by the exponential S = eX . Since models with jumps correspond to incomplete markets
in general, there is no optimal hedging strategy which replicates a payoff at maturity and elim-
inates risks completely. This leads to consider certain strategies that minimize some types of
risk. Here, we use quadratic hedging which is a common approach, see [33]. To simplify
the quadratic hedging problem, we consider the martingale market. Applications of results in
Section 3 for Lévy markets under the semimartingale setting are studied in [36].

ASSUMPTION 4.1. S = eX is an L2(P)-martingale and is not a.s. constant.

Under Assumption 4.1, any ξ ∈ L2(P) admits the Galtchouk–Kunita–Watanabe (GKW)
decomposition

ξ = Eξ +
∫ T

0
θ

ξ
t dSt +L

ξ
T ,(4.1)

where θξ is predictable with E
∫ T

0 |θξ
t |2S2

t− dt <∞, Lξ = (L
ξ
t )t∈[0,T ] is an L2(P)-martingale

with zero mean and satisfies 〈S,Lξ 〉 = 0. The integrand θξ is called the MVH strategy for ξ ,
which is unique in L2(�×[0, T ],P⊗λ). The reader is referred to [33] for further discussion.

Our aim is to apply the approximation results obtained in Section 3 for the stochastic
integral term in (4.1), which can be interpreted in mathematical finance as the hedgeable part
of ξ . To do that, one of our main tasks is to find a representation of θξ which is convenient
for verifying assumptions in Section 3. This issue is handled in Section 4.3 in which we focus
on the European type options ξ = g(ST ).

4.3. Explicit MVH strategy. In the literature, there are several methods to determine
an explicit form for the MVH strategy of a European type option g(ST ). Let us mention
some typical approaches for which the martingale representation of g(ST ) plays the key role.
A classical method is by using directly Itô’s formula (e.g., [7, 24]) which requires a certain
smoothness of (t, y) 
→ Eg(yST−t ). Another idea is based on Fourier analysis to separate the
payoff function g and the underlying process S (e.g., [4, 23, 34]). To do that, some regularity
for g and S is assumed. As a third method, one can use Malliavin calculus to determine the
MVH strategy (e.g., [2]), however the payoff g(ST ) is assumed to be differentiable in the
Malliavin sense so that the Clark–Ocone formula is applicable.

To the best of our knowledge, Proposition 4.2 below is new and it provides an explicit
formula for the MVH strategy of g(ST ) without requiring any regularity from the payoff
function g nor any specific structure of the underlying process S. Recall that σ and ν are the
coefficient of the Brownian component and the Lévy measure of X respectively.

PROPOSITION 4.2. Assume Assumption 4.1. For a Borel function g : R+ → R with
g(ST ) ∈ L2(P), there exists a ϑg ∈ CL([0, T )) such that the following assertions hold:
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(1) ϑ
g
− is a MVH strategy of g(ST );

(2) ϑgS is an L2(P)-martingale and ϑ
g
t = ϑ

g
t− a.s. for each t ∈ [0, T );

(3) For any t ∈ (0, T ), one has, a.s.,

ϑ
g
t = 1

c2
(4.2)

[
σ 2∂yG(t, St )+

∫
R

G(t, exSt )−G(t, St )

St

(
ex − 1

)
ν(dx)

]
,(4.2)

where c2
(4.2) := σ 2 + ∫

R(ex − 1)2ν(dx) and G(t, ·) : R+→R is as follows:

(a) If σ > 0, then we choose G(t, y) := Eg(yST−t );
(b) If σ = 0, then we choose G(t, ·) such that it is Borel measurable and G(t, St )=

EFt [g(ST )] a.s., and we set ∂yG(t, ·) := 0 by convention.

PROOF. The proof is given in the Supplementary Material [37], Section E, by exploiting
Malliavin calculus. �

Assumption 4.1 ensures that c(4.2) ∈ (0,∞). For the case (3a), the function G(t, ·) has
derivatives of all orders on R+ due to the presence of the Gaussian component of X, see
[17], Theorem 9.13. Formula (4.2) was also established in [7], Section 4,5 and in [34], Propo-
sition 7,6 under some extra conditions for g and S. A similar formula of (4.2) in a general
setting can be found in [24], Theorem 2.4.7

4.4. Growth of the MVH strategy and weight regularity. We investigate the growth in
time of ϑg obtained in (4.2) pathwise and relatively to a weight process for Hölder continuous
or bounded functions g. This growth property is examined in connection to the small jump
behavior of the underlying Lévy process.

DEFINITION 4.3.

(1) (Hölder spaces) Let ∅ �= U ⊆ R be an open interval and let η ∈ [0,1]. For a Borel
function f : U→R, we define

|f |C0,η(U) := inf
{
c ∈ [0,∞) : ∣∣f (x)− f (y)

∣∣≤ c|x − y|η for all x, y ∈U,x �= y
}
,

and let f ∈ C0,η(U) if |f |C0,η(U) <∞. It is clear that, on U , the space C0,1(U) consists of
all Lipschitz functions, C0,η(U) contains all η-Hölder continuous functions for η ∈ (0,1),
and C0,0(U) consists of all bounded (not necessarily continuous) Borel functions.

(2) (α-stable-like Lévy measures) For a Lévy measure ν and for some α ∈ (0,2], we let

ν ∈U S (α) ⇔ sup
r∈(0,1)

rα
∫
r<|x|≤1

ν(dx) <∞,

and let ν ∈S (α) for some α ∈ (0,2) if ν = ν1 + ν2, where ν1, ν2 are Lévy measures with

ν1(dx)= k(x)

|x|α+1 1{x �=0} dx and ν2 ∈U S (α),

where 0 < lim infx→0 k(x)≤ lim supx→0 k(x) <∞, and the function x 
→ k(x)/|x|α is non-
decreasing on (−∞,0) and is nonincreasing on (0,∞).

5[7], Section 4, equation (4.1), assumes either that the function g is Lipschitz or that g has certain growth and
small jumps of X behave like α-stable processes.

6[34], Proposition 7, assumes that the payoff function g, after multiplying with an exponential damping factor,
is of finite variation and belongs to L1(R). In addition, the characteristic exponent of X is required to satisfy a
certain integrability.

7[24], Theorem 2.4, establishes a similar representation in a more general setting than the Lévy setting. How-

ever, one needs to assume that (t, y) 
→ Ptg(y) is a C1,2-function so that Itô’s formula is applicable. Here Pt is
the semigroup associated with X.



APPROXIMATION OF STOCHASTIC INTEGRALS WITH JUMPS VIA WEIGHTED BMO 4615

REMARK 4.4 (see also [36], Lemma B.1). Let ν be a Lévy measure and α ∈ (0,2).

(1) If ν ∈S (α), then ν ∈U S (α) and α is equal to the Blumenthal–Getoor index of ν,
that is, α = inf{q ∈ [0,2] : ∫|x|≤1 |x|qν(dx) <∞}, see [3].

(2) One has ν ∈S (α) if ν has a density p(x) := ν(dx)/dx satisfying

0 < lim inf|x|→0
|x|1+αp(x)≤ lim sup

|x|→0
|x|1+αp(x) <∞.

EXAMPLE 4.5. We provide typical examples in mathematical finance using C0,η(U)-
payoff functions and α-stable-like processes.

(1) Let K > 0. The binary payoff g0(x) := 1(K,∞)(x) belongs to C0,0(R+) obviously, the
call payoff g1(x) := (x−K)+ is contained in C0,1(R+), and for η ∈ (0,1), the powered call
payoff (see, e.g., [23]) gη(x) := ((x −K)+)η belongs to C0,η(R+).

(2) The CGMY process (see [32], Section 5.3.9) with parameters C,G,M > 0 and Y ∈
(0,2) has the Lévy measure

νCGMY(dx)= C
eGx1{x<0} + e−Mx1{x>0}

|x|1+Y
1{x �=0} dx

which belongs to S (Y ) due to Remark 4.4(2).
The normal inverse Gaussian (NIG) process (see [32], Section 5.3.8) has the Lévy density

pNIG(x) := νNIG(dx)/dx that satisfies

0 < lim inf|x|→0
x2pNIG(x)≤ lim sup

|x|→0
x2pNIG(x) <∞.

Hence, Remark 4.4(2) verifies that νNIG ∈S (1).

Before stating the main result of this part, let us introduce the relevant weight processes.
For η ∈ [0,1], define processes �(η),�(η) ∈ CL+([0, T ]) by setting

�(η)t := sup
u∈[0,t]

(
Sη−1

u

)
and �(η)t :=�(η)tSt .(4.3)

Proposition 4.6 below verifies Assumptions 3.4 and 3.13 in the exponential Lévy setting, and
its proof is given later in Section 5.3.

PROPOSITION 4.6. Assume Assumption 4.1. Let η ∈ [0,1] and g ∈C0,η(R+).

(1) (Weight regularity) One has �(η) ∈ SM2(P).
(2) (MVH strategy growth) There is a constant c(4.4) > 0 such that, for ϑg given in (4.2),∣∣ϑg

t

∣∣≤ c(4.4)U(t)S
η−1
t a.s.,∀t ∈ [0, T ),(4.4)

where the function U(t) is provided in Table 1.
(3) Denote M := ϑgS. Then Assumption 3.4 holds true for

ϑ = ϑg, ϒ(·,dt)= d〈M〉t +M2
t dt, �=�(η), �=�(η)

and for θ provided in Table 1 accordingly. In particular, if σ = 0 (i.e., X does not have a
Brownian component), then Assumption 3.13 is satisfied.

Eventually, let us turn to the approximation problem in the exponential Lévy setting. Al-
though results in Section 3 are stated in terms of the characteristic of Z (the integrator of the
SDE (5.32)), the result below are formulated for the characteristic of the log price process X

which is slightly more convenient to verify in practice. Based on the relation between X and
Z in Appendix A, we can easily translate conditions imposed on X to Z and vice versa.
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TABLE 1
Conclusions for U(t) and θ

σ and η Small jump condition for X Function U(t) Values of θ

A1 σ > 0
η ∈ [0,1]

U(t)= (T − t)
η−1

2 θ = 1 if η= 1,
∀θ ∈ (0, η) if η ∈ (0,1)

A2 σ = 0
η ∈ [0,1]

∫
|x|≤1 |x|1+ην(dx) <∞ U(t)= 1 θ = 1

A3 σ = 0
η ∈ [0,1)

ν ∈S (α)

for some α ∈ [1+ η,2)

U(t)= (T − t)
1+η
α
−1

if α ∈ (1+ η,2),
U(t)=max{1, log 1

T−t
}

if α = 1+ η

∀θ ∈ (
0,

2(1+η)
α − 1

)

TABLE 2
Convergence rate R(n)−1 and jump size threshold εn

Interplay between g and X Values of θ R(n) and εn

B1 σ = 0 and
ν ∈U S (α) for some
(η,α) ∈ ([0,1)× (0,1+η))

∪({1} × (0,2])

θ = 1 R(n)= 1/εn = α
√

n if α ∈ (1,2],
R(n)= n/(1+ logn), εn = 1/n

if α = 1,
R(n)= 1/εn = n if α ∈ (0,1)

B2 σ = 0 and
ν ∈S (α) for some
(η,α) ∈ [0,1)× [1+ η,2)

∀θ ∈ (
0,

2(1+η)
α − 1

)
R(n)= 1/εn = n

1
α
(1− 1

2 (1−θ)(α−1))

if (η,α) �= (0,1),
R(n)= n/(1+ logn), εn = 1/n

if (η,α)= (0,1)

B3 σ > 0 and η= 1 θ = 1 R(n)= 1/εn =√n

B4 σ > 0, η ∈ (0,1) and
ν ∈U S (α)

for some α ∈ (0,2]

∀θ ∈ (0, η) R(n)= 1/εn =√n if α ∈ (0, 3−θ
2−θ
],

R(n)= 1/εn = n
1
α
(1− 1

2 (1−θ)(α−1))

if α ∈ ( 3−θ
2−θ

,2]

COROLLARY 4.7. Assume Assumption 4.1 and let η ∈ [0,1], g ∈C0,η(R+).

(1) For ϑg given in (4.2), �(η) in (4.3) and �(η) in (3.9), one has

sup
n≥1

R(n)
∥∥Eadap(

ϑg, τ θ
n

∣∣ εn, κ
)∥∥

BMO�(η)
2 (P)

<∞,(4.5)

where κ = 1−θ
2 , and θ , R(n), εn are provided in Table 2.

(2) If
∫
|x|>1 epxν(dx) <∞ for some p > 2, then (4.5) holds for the BMO�(η)

p (P)-norm

and, consequently, for the Sp(P)-norm, in place of the BMO�(η)
2 (P)-norm.

According to Proposition 3.15 with q = 2, r = ∞, Q = P, the parameter n in (4.5) is
comparable to the L2(P)-norm of the cardinality of the combined time-nets τ θ

n � ρ(εn, κ)

used in the approximation.

5. Proofs of results in Section 3 and Section 4.4.

5.1. Proofs of results in Section 3.1. We need the following auxiliary result.
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LEMMA 5.1. There are constants c(5.1), c(5.2) > 0 such that for any 0≤ a < b ≤ T , a.s.,

EFa

[∫ b

a
σ (St )

2 dt

]
≤ c2

(5.1)(b− a)σ (Sa)
2,(5.1)

EFa

[∫ b

a

∣∣σ(St )− σ(Sa)
∣∣2 dt

]
≤ c2

(5.2)(b− a)2σ(Sa)
2.(5.2)

PROOF. See the Supplementary Material [37], subsection D.1. �

Proof of Proposition 3.6. For ϑ ∈ A(S) and τ = (ti)
n
i=0 ∈ Tdet, we define the process

〈ϑ, τ 〉, which is adapted, has continuous and nondecreasing paths on [0, T ], by

〈ϑ, τ 〉t :=
n∑

i=1

∫ ti∧t

ti−1∧t
|ϑu − ϑti−1 |2σ(Su)

2 du.(5.3)

For a ∈ [0, T ), applying conditional Itô’s isometry and Hölder’s inequality yields, a.s.,

EFa
[∣∣ERm

T (ϑ, τ )−ERm
a (ϑ, τ )

∣∣2]
≤ 3EFa

[∫ T

a

∣∣∣∣ϑu− −
n∑

i=1

ϑti−1−1(ti−1,ti ](u)

∣∣∣∣2σ(Su−)2

×
(∣∣aZ

u

∣∣2 + ∣∣jZ
u

∣∣2 + ∫ T

a

∣∣bZ
r

∣∣2 dr

)
du

]
≤ 3

(∣∣aZ
(2.5)

∣∣2 + ∣∣jZ
(2.6)

∣∣2 + ∣∣bZ
(2.6)

∣∣2)
×EFa

[∫ T

a

∣∣∣∣ϑu− −
n∑

i=1

ϑti−1−1(ti−1,ti ](u)

∣∣∣∣2σ(Su−)2 du

]

= 3
(∣∣aZ

(2.5)
∣∣2 + ∣∣jZ

(2.6)
∣∣2 + ∣∣bZ

(2.6)
∣∣2)

EFa
[〈ϑ, τ 〉T − 〈ϑ, τ 〉a]

,

(5.4)

where the equality comes from the fact that the number of discontinuities of a càdlàg function
is at most countable and ϑ ∈A(S) has no fixed-time discontinuity. Recall from Remark 2.2
that one can use deterministic times instead of stopping times in the definition of ‖ · ‖bmo�

2 (P).
Therefore, Proposition 3.6 is a direct consequence of (5.4) and the following lemma.

LEMMA 5.2. Let Assumption 3.4 hold for some θ ∈ (0,1]. Then there exists a constant
c(5.5) > 0 such that for any τ ∈ Tdet and any a ∈ [0, T ), a.s.,

EFa
[〈ϑ, τ 〉T − 〈ϑ, τ 〉a]≤ c2

(5.5)‖τ‖θ�2
a.(5.5)

Consequently, ‖〈ϑ, τ 〉‖
BMO�2

1 (P)
≤ c2

(5.5)‖τ‖θ .

PROOF. See the Supplementary Material [37], subsection D.3. �

5.2. Proofs of results in Sections 3.2 to 3.4. Let ε > 0, κ ≥ 0 and recall ρ(ε, κ) =
(ρi(ε, κ))i≥0 in Definition 3.8. Due to (3.5) and the assumption σ(S−) > 0, it holds that

|�S|> σ(S−)ε(T − ·)κ ⇔ |�Z|> ε(T − ·)κ .

Hence, we derive from (3.6) the relations

ρi(ε, κ)= inf
{
T ≥ t > ρi−1(ε, κ) : |�Zt |> ε(T − t)κ

}∧ T , i ≥ 1.(5.6)
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Since Z is càdlàg and the underlying filtration satisfies the usual conditions (right continuity
and completeness), it implies that ρi(ε, κ) are stopping times satisfying ρi−1(ε, κ) < ρi(ε, κ)

for 1≤ i ≤N(3.7)(ε, κ).
For a nonnegative Borel function f defined on R, we denote∥∥f (z) � ν

∥∥
L∞(P⊗λ) :=

∥∥∥∥(ω, t) 
→
∫
R

f (z)νt (ω,dz)

∥∥∥∥
L∞(�×[0,T ],P⊗λ)

∈ [0,∞].

Then, condition (3.14) is rewritten as∥∥z2 � ν
∥∥
L∞(P⊗λ) <∞.(5.7)

LEMMA 5.3. Let ε > 0, κ ≥ 0 be real numbers. Then, for any α ∈ [0, 1
κ
), one has∥∥N(3.7)(ε, κ)

∥∥
L2(P) ≤ 1+√c(5.8) + c(5.8),(5.8)

where c(5.8) := T ‖1{|z|>1} � ν‖L∞(P⊗λ) + ε−α supr∈(0,1) ‖rα1{r<|z|≤1} � ν‖L∞(P⊗λ)
T 1−ακ

1−ακ
.

PROOF. We may assume that c(5.8) <∞, otherwise (5.8) is trivial.
Step 1. We show that A := ∫ T

0
∫
R 1{|z|>ε(T−t)κ }πZ(dt,dz)≤ c(5.8) a.s. Indeed, one has

A=
∫ T

0

∫
R

1{|z|>1∨(ε(T−t)κ )}πZ(dt,dz)+
∫ T

0

∫
R

1{1≥|z|>ε(T−t)κ }πZ(dt,dz),

where the first term on the right-hand side is upper bounded by T ‖1{|z|>1} � ν‖L∞(P⊗λ) a.s.
Let us denote

c(5.9) := sup
r∈(0,1)

∥∥rα1{r<|z|≤1} � ν
∥∥
L∞(P⊗λ) <∞.(5.9)

By a standard approximation argument using a countable dense set of (0,1), we infer that∫
r<|z|≤1

νt (ω,dz)≤ c(5.9)r
−α ∀r ∈ (0,1),

for P ⊗ λ-a.e. (ω, t) ∈ � × [0, T ]. For the second term in the decomposition of A, using
Fubini’s theorem we get that, a.s.,∫ T

0

∫
R

1{1≥|z|>ε(T−t)κ }πZ(dt,dz)

=
∫
{(t,z)∈[0,T ]×R : ε(T−t)κ<|z|≤1}

νt (dz)dt

≤ c(5.9)ε
−α

∫ T

0
(T − t)−ακ dt = c(5.9)ε

−α T 1−ακ

1− ακ
.

Step 2. Combining Step 1 with [25], Chapter II, Proposition 1.28, allows us to write, a.s.,∫ T

0

∫
R

1{|z|>ε(T−t)κ }NZ(dt,dz)=
∫ T

0

∫
R

1{|z|>ε(T−t)κ }
[
(NZ − πZ)(dt,dz)+ πZ(dt,dz)

]
.

Since N(3.7)(ε, κ)≤ 1+ ∫ T
0

∫
R 1{|z|>ε(T−t)κ }NZ(dt,dz) by (5.6), we have

∥∥N(3.7)(ε, κ)
∥∥
L2(P) ≤ 1+

∥∥∥∥∫ T

0

∫
R

1{|z|>ε(T−t)κ }NZ(dt,dz)

∥∥∥∥
L2(P)

≤ 1+
∥∥∥∥∫ T

0

∫
R

1{|z|>ε(T−t)κ }(NZ − πZ)(dt,dz)

∥∥∥∥
L2(P)
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+
∥∥∥∥∫ T

0

∫
R

1{|z|>ε(T−t)κ }πZ(dt,dz)

∥∥∥∥
L2(P)

= 1+
∥∥∥∥∫ T

0

∫
R

1{|z|>ε(T−t)κ }πZ(dt,dz)

∥∥∥∥ 1
2

L1(P)

+
∥∥∥∥∫ T

0

∫
R

1{|z|>ε(T−t)κ }πZ(dt,dz)

∥∥∥∥
L2(P)

≤ 1+√c(5.8) + c(5.8),

where one uses [25], Chapter II, Theorem 1.33(a), to derive the equality. �

LEMMA 5.4. Let α ∈ [0,∞). Assume that μ is a Borel measure on [−1,1] with μ({0})=
0. If supr∈(0,1) r

α
∫
r<|x|≤1 μ(dx)≤ cμ,α <∞, then for γ > α one has∫
|x|≤r
|x|γ μ(dx)≤ cμ,α2γ

1− 2α−γ
rγ−α for any r ∈ (0,1],

and for 0 < γ ≤ α one has

∫
r<|x|≤1

|x|γ μ(dx)≤
⎧⎪⎨⎪⎩

cμ,α2α(1− log r) if γ = α,

cμ,α22α−γ

2α−γ − 1
rγ−α if γ ∈ (0, α)

for all r ∈ (0,1].

PROOF. The proof is analogous to [17], Lemma 9.20, and is provided in the Supplemen-
tary Material [37], subsection D.4. �

5.2.1. Proof of Theorem 3.10. Recall κ = 1−θ
2 ∈ [0, 1

2).
Step 1. We handle the correction term in (3.8) and the corresponding error. For ε > 0,

E

∫ T

0

∫
R
|z|1{|z|>ε(T−t)κ }νt (dz)dt ≤ ε−1E

∫ T

0
(T − t)−κ

∫
R

z2νt (dz)dt

≤ ε−1 T 1−κ

1− κ

∥∥z2 � ν
∥∥
L∞(P⊗λ) <∞,

where the finiteness holds due to (5.7). This allows us to decompose∫ ·

0

∫
R0

z(NZ − πZ)(du,dz)= Zε,1 +Zε,2 − γ ε,

where

Zε,1 :=
∫ ·

0

∫
R0

z1{|z|≤ε(T−u)κ }(NZ − πZ)(du,dz),

Zε,2 :=
∫ ·

0

∫
R

z1{|z|>ε(T−u)κ }NZ(du,dz),

γ ε :=
∫ ·

0

∫
R

z1{|z|>ε(T−u)κ }νu(dz)du.

Recall ϑτ in Definition 3.9. Since (5.7) holds in our context, applying Lemma 5.3 with α = 2
yields N(3.7)(ε, κ) <∞ a.s. Hence, outside a set of probability zero, we have that, for all
t ∈ [0, T ],∑

ρi(ε,κ)∈[0,t]∩[0,T )

(
ϑρi(ε,κ)− − ϑτ

ρi(ε,κ)

)
�Sρi(ε,κ) =

∫
[0,t]∩[0,T )

(
ϑu− − ϑτ

u

)
σ(Su−)dZε,2

u .
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By the representation of Z in (2.3), one can decompose

dSt = σ(St−)dZt = σ(St−)

(
dZc

t + bZ
t dt +

∫
R0

z(NZ − πZ)(dt,dz)

)
= σ(St−)

(
dZc

t + bZ
t dt + dZ

ε,1
t + dZ

ε,2
t − dγ ε

t

)
.

We get from the arguments above, together with the fact �Z
ε,2
T =�ZT = 0 a.s., that

Eadap(ϑ, τ |ε, κ)=
∫ ·

0

(
ϑu− − ϑτ

u

)
dSu −

∑
ρi(ε,κ)∈[0,·]∩[0,T )

(
ϑρi(ε,κ)− − ϑτ

ρi(ε,κ)

)
�Sρi(ε,κ)

=
∫ ·

0

(
ϑu− − ϑτ

u

)
σ(Su−)

(
dZc

u + bZ
u du+ dZε,1

u + dZε,2
u − dγ ε

u

)
−

∫ ·

0

(
ϑu− − ϑτ

u

)
σ(Su−)dZε,2

u

=EC(ϑ, τ |ε, κ)+ES(ϑ, τ |ε, κ)−ED(ϑ, τ |ε, κ),

(5.10)

where the “continuous part”, “small jump part” and “drift part” are given by

EC(ϑ, τ |ε, κ) :=
∫ ·

0

(
ϑu− − ϑτ

u

)
σ(Su−)

(
dZc

u + bZ
u du

)
,

ES(ϑ, τ |ε, κ) :=
∫ ·

0

(
ϑu− − ϑτ

u

)
σ(Su−)dZε,1

u ,

ED(ϑ, τ |ε, κ) :=
∫ ·

0

(
ϑu− − ϑτ

u

)
σ(Su−)

∫
R

z1{|z|>ε(T−u)κ }νu(dz)du.

The triangle inequality applied to (5.10) gives∥∥Eadap(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≤ ∑

i∈{S,C,D}

∥∥Ei(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)

.(5.11)

Step 2. We preliminary investigate the right-hand side of (5.11).
Step 2.1. Consider EC(ϑ, τ |ε, κ). We apply the conditional Itô isometry for the martingale

component and apply the Cauchy–Schwarz inequality for the finite variation component of
EC(ϑ, τ |ε, κ) to derive that, for a ∈ [0, T ), a.s.,√

EFa
[∣∣EC

T (ϑ, τ |ε, κ)−EC
a (ϑ, τ |ε, κ)

∣∣2]
≤

√
EFa

[∫ T

a

∣∣ϑu− − ϑτ
u

∣∣2σ(Su−)2 d
〈
Zc

〉
u

]

+
√
EFa

[∫ T

a

∣∣ϑu− − ϑτ
u

∣∣2σ(Su−)2 du

∫ T

a

∣∣bZ
u

∣∣2 du

]
≤ (

aZ
(2.5) + bZ

(2.6)
)√

EFa
[〈ϑ, τ 〉T − 〈ϑ, τ 〉a]

≤ (
aZ

(2.5) + bZ
(2.6)

)
c(5.5)

√‖τ‖θ�a

≤ (
aZ

(2.5) + bZ
(2.6)

)
c(5.5)

√‖τ‖θ �a,

where 〈ϑ, τ 〉 is given in (5.3), and where we use the fact that a càdlàg function has at most
countably many discontinuities for the second inequality. Since EC(ϑ, τ |ε, κ) has continuous
paths, it implies that∥∥EC(ϑ, τ |ε, κ)

∥∥
BMO�

2 (P)
= ∥∥EC(ϑ, τ |ε, κ)

∥∥
bmo�

2 (P)

≤ c(5.5)
(
aZ

(2.5) + bZ
(2.6)

)√‖τ‖θ .(5.12)
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Step 2.2. Consider ES(ϑ, τ |ε, κ). Since � ∈ SM2(P) by assumption, Lemma 2.3 shows∥∥ES(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
∼c(5.13)

∥∥ES(ϑ, τ |ε, κ)
∥∥

bmo�
2 (P)
+ ∣∣�ES(ϑ, τ |ε, κ)

∣∣
�.(5.13)

Recall that � is nondecreasing by assumption. Since ϑ , σ(S) and � are càdlàg on [0, T ),
one can find an �0 with P(�0)= 1 such that for ω ∈�0 we have

|ϑt − ϑs |σ(St )≤ 2c(3.2)(T − t)−κ�t ∀0≤ s < t < T .

Due to (2.4), one has πZ(ω, {t} ×R0)= 0 for any (ω, t) ∈�× [0, T ]. Then it holds that∣∣�Z
ε,1
t

∣∣= ∣∣∣∣∫
R0

z1{|z|≤ε(T−t)κ }NZ

({t},dz
)− ∫

R0

z1{|z|≤ε(T−t)κ }πZ

({t},dz
)∣∣∣∣≤ ε(T − t)κ

for all t ∈ [0, T ] a.s. Moreover, since �ES(ϑ, τ |ε, κ)= (ϑ− − ϑτ )σ (S−)�Zε,1, there is an
�1 with P(�1) = 1 (with keeping �Z

ε,1
T = 0 a.s. in mind) such that for all (ω, t) ∈ �1 ×

[0, T ],∣∣�ES
t (ϑ, τ |ε, κ)

∣∣= ∣∣(ϑt− − ϑτ
t

)
σ(St−)�Z

ε,1
t

∣∣≤ 2c(3.2)(T − t)−κ�t−ε(T − t)κ

= 2c(3.2)ε�t− ≤ 2c(3.2)ε�t .

According to the definition of | · |� given in Lemma 2.3, one then gets∣∣�ES(ϑ, τ |ε, κ)
∣∣
� ≤ 2c(3.2)ε.(5.14)

Let us continue with ‖ES(ϑ, τ |ε, κ)‖
bmo�

2 (P)
. For a ∈ [0, T ), we have, a.s.,

EFa
[∣∣ES

T (ϑ, τ |ε, κ)−ES
a (ϑ, τ |ε, κ)

∣∣2]
= EFa

[∫ T

a

∣∣ϑu− − ϑτ
u

∣∣2σ(Su−)2
∫
R

1{|z|≤ε(T−u)κ }z2νu(dz)du

]

≤ ∥∥1{|z|≤εT κ }z2 � ν
∥∥
L∞(P⊗λ)E

Fa

[∫ T

a

∣∣ϑu− − ϑτ
u

∣∣2σ(Su−)2 du

]
= ∥∥1{|z|≤εT κ }z2 � ν

∥∥
L∞(P⊗λ)E

Fa
[〈ϑ, τ 〉T − 〈ϑ, τ 〉a]

≤ ∥∥1{|z|≤εT κ }z2 � ν
∥∥
L∞(P⊗λ)c

2
(5.5)‖τ‖θ�2

a.

(5.15)

Combing (5.14) and (5.15) with (5.13) we obtain for c(5.16) := c(5.13)((2c(3.2))∨ c(5.5)) that∥∥ES(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≤ c(5.16)

(
ε+

√∥∥1{|z|≤εT κ }z2 � ν
∥∥
L∞(P⊗λ)

√‖τ‖θ )
.(5.16)

Step 2.3. Consider ED(ϑ, τ |ε, κ). Since ED(ϑ, τ |ε, κ) is continuous, it holds that∥∥ED(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
= ∥∥ED(ϑ, τ |ε, κ)

∥∥
bmo�

2 (P)
.

Then, for any a ∈ [0, T ), we use the Cauchy–Schwarz inequality to get, a.s.,

EFa
[∣∣ED

T (ϑ, τ |ε, κ)−ED
a (ϑ, τ |ε, κ)

∣∣2]
≤ EFa

[(∫ T

a

∣∣∣∣∫
R

z1{|z|>ε(T−u)κ }νu(dz)

∣∣∣∣2 du

)(∫ T

a

∣∣ϑu− − ϑτ
u

∣∣2σ(Su−)2 du

)]
=: EFa [I(5.17)II(5.17)].

(5.17)

(1) We now exploit the condition (3.10). By a standard approximation argument using a
countable dense set of (0,1), we get that, for P⊗ λ-a.e. (ω,u) ∈�× [0, T ],∫

r<|z|≤1
νu(ω,dz)≤ c(3.10)r

−α ∀r ∈ (0,1).(5.18)



4622 NGUYEN TRAN THUAN

Let us first examine the right-hand side of (5.16). For any (ω,u) ∈ � × [0, T ] such that
(5.18) is satisfied and that

∫
R z2νu(ω,dz) ≤ ‖z2 � ν‖L∞(P⊗λ) <∞, there exists a c(5.19) > 0

independent of ω, u, ε such that∫
|z|≤εT κ

z2νu(ω,dz)≤ c(5.19)
((

εT κ)∧ 1
)2−α

.(5.19)

Indeed, if α < 2 then we apply Lemma 5.4 with μ(·)= νu(ω, ·) and γ = 2 > α to get (5.19).
If α = 2 or if εT κ > 1, then (5.19) obviously holds. Thus,∥∥1{|z|≤εT κ }z2 � ν

∥∥
L∞(P⊗λ) ≤ c(5.19)

((
εT κ)∧ 1

)2−α ≤ c(5.19)
(
1+ T κ)2−α

(ε ∧ 1)2−α.

Then it follows from (5.16) that∥∥ES(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≤ c(5.20)

(
ε+ (ε ∧ 1)1− α

2
√‖τ‖θ )

(5.20)

for some constant c(5.20) > 0 independent of ε and τ .
We continue with I(5.17) and II(5.17). Let (ω,u) ∈�× [0, T ] such that 0 < ε(T − u)κ ≤ 1

and (5.18) holds. We first apply Lemma 5.4 and then use Fubini’s theorem to get that, a.s.,√∫ T

0

∣∣∣∣∫
ε(T−u)κ<|z|≤1

|z|νu(dz)

∣∣∣∣2 du

≤ 2c(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
T

1− 2α−1 if α ∈ (0,1),

√
T

(
log+

(
1

ε

)
+ 1

)
+ κ

√∫ T

0
log2(T − u)du if α = 1,

[
22α−2

2α−1 − 1

√∫ T

0
(T − u)2κ(1−α) du

]
ε1−α if α ∈ (1,2]

≤ 2c(3.10)cα,κ,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if α ∈ (0,1),

log+
(

1

ε

)
+ 1 if α = 1,

ε1−α if α ∈ (1,2]
for some constant cα,κ,T > 0 depending at most on α, κ , T , and where one notices that
2κ(1− α)+ 1 > 0. For the first factor I(5.17), the triangle inequality gives, a.s.,

√
I(5.17) ≤

√∫ T

a

∣∣∣∣∫|z|>1∨(ε(T−u)κ )
zνu(dz)

∣∣∣∣2 du+
√∫ T

a

∣∣∣∣∫
ε(T−u)κ<|z|≤1

zνu(dz)

∣∣∣∣2 du

≤√T
∥∥1{|z|>1}|z| � ν

∥∥
L∞(P⊗λ) +

√∫ T

0

∣∣∣∣∫
ε(T−u)κ<|z|≤1

zνu(dz)

∣∣∣∣2 du

≤ c(5.21)
(
1+ h(ε)

)
(5.21)

for some constant c(5.21) = c(5.21)(α, κ, T , ν) > 0 and for

h(ε)= 1 if α ∈ (0,1), h(ε)= log+
(

1

ε

)
if α = 1, h(ε)= ε1−α if α ∈ (1,2].

For the second factor II(5.17), we apply Lemma 5.2 to obtain, a.s.,

EFa [II(5.17)] = EFa
[〈ϑ, τ 〉T − 〈ϑ, τ 〉a]≤ c2

(5.5)‖τ‖θ�2
a ≤ c2

(5.5)‖τ‖θ�2
a.
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Hence, ∥∥ED(ϑ, τ |ε, κ)
∥∥

BMO�
2 (P)
≤ c(5.5)c(5.21)

(
1+ h(ε)

)√‖τ‖θ .(5.22)

Eventually, we plug (5.12), (5.20) and (5.22) into (5.11) to derive (3.11).
(2) If (3.12) holds, then I(5.17) ≤ 2T (‖1{|z|>1}|z| � ν‖2L∞(P⊗λ) + c2

(3.12))=: c2
(5.23). Hence,∥∥ED(ϑ, τ |ε, κ)

∥∥
BMO�

2 (P)
≤ c(5.23)c(5.5)

√‖τ‖θ .(5.23)

Combining (5.12), (5.20) and (5.23) with (5.11) yields (3.13). �

5.2.2. Proof of Theorem 3.14. Recall κ = 1−θ
2 ∈ [0, 1

2). Let τ = (ti)
n
i=0 ∈ Tdet and ε > 0.

For u ∈ [0, T ), we define

Dε,κ(u) :=
∫
|z|>ε(T−u)κ

zνu(dz).

The conclusion for Eadap(ϑ, τ |ε, κ) is shown by using again (5.11), where the estimate for
the “small jump part” ES(ϑ, τ |ε, κ) is taken from (5.20). Here, we focus on improving the
estimate for the “drift part” ED(ϑ, τ |ε, κ).

Step 1. We show that there is a constant c(5.24) > 0 independent of τ and ε such that

D(5.24) := sup
i=1,...,n

sup
r∈(ti−1,ti ]∩[0,T )

[
1

(T − r)κ

∫ ti

r

∣∣Dε,κ(u)
∣∣ du

]

≤ c(5.24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖τ‖θ if (3.17) holds,[
1+ log+

(
1

ε

)
+ log+

(
1

‖τ‖θ
)]
‖τ‖θ if (3.16) holds with α = 1,

‖τ‖θ + ε1−α‖τ‖1−κ(α−1)
θ if (3.16) holds with α ∈ (1,2].

(5.24)

Indeed, since ‖z2 � ν‖L∞([0,T ],λ) = ‖u 
→ ∫
R z2νu(dz)‖L∞([0,T ],λ) <∞ by assumption, we

first get ∣∣Dε,κ(u)
∣∣≤ ∫

|z|>1
z2νu(dz)+

∫
1≥|z|>ε(T−u)κ

|z|νu(dz)

and then apply Lemma 5.4 to obtain a c(5.25) > 0 not depending on ε such that, for λ-a.e.
u ∈ [0, T ),

∣∣Dε,κ(u)
∣∣≤ c(5.25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (3.17) holds,

1+ log+
(

1

ε

)
+ log+

(
1

T − u

)
if (3.16) holds with α = 1,

1+ ε1−α(T − u)κ(1−α) if (3.16) holds with α ∈ (1,2].
(5.25)

Case 1. If (3.17) holds, then (5.25) immediately implies

D(5.24) ≤ c(5.25) sup
i=1,...,n

sup
r∈(ti−1,ti ]∩[0,T )

[
ti − r

(T − r)2κ
(T − r)κ

]
≤ c(5.25)T

κ‖τ‖θ .

Case 2. (3.16) holds with α = 1. For r ∈ [ti−1, ti), i = 1, . . . , n, one has∫ ti

r
log+

(
1

T − u

)
du≤ (ti − r) log+

(
1

ti − r

)
+ (ti − r) log e,

where we first integrate by parts the left-hand side and then use the inequality

b log+
(

1

b

)
− a log+

(
1

a

)
≤ (b− a) log+

(
1

b− a

)
, 0 < a < b.
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Since x 
→ x log+( 1
x
) is nondecreasing on (0, 1

e ] and 0 < 1
eT θ

ti−r

(T−r)1−θ ≤ ‖τ‖θeT θ ≤ 1
e for any

r ∈ [ti−1, ti), we get

1

(T − r)κ

∫ ti

r
log+

(
1

T − u

)
du

≤ 1

eT θ

ti − r

(T − r)2κ

[
log+

(
eT θ (T − r)2κ

ti − r

)
+ log+

(
1

eT θ(T − r)2κ

)
+ log e

]
eT θ (T − r)κ

≤ T κ‖τ‖θ log+
(

eT θ

‖τ‖θ
)
+ ‖τ‖θ sup

r∈[0,T )

[
(T − r)κ log+

(
1

eT θ(T − r)2κ

)]
+ ‖τ‖θT κ log e

≤ cT ,θ‖τ‖θ
(

1+ log+
(

1

‖τ‖θ
))

for some constant cT ,θ > 0 depending at most on T , θ . Hence,

D(5.24) ≤ c(5.25)

[
T κ

(
1+ log+

(
1

ε

))
+ cT ,θ

(
1+ log+

(
1

‖τ‖θ
))]
‖τ‖θ .

Case 3. (3.16) holds with α ∈ (1,2]. Again, using (5.25) and keeping 1
2 < 1− κ(α − 1)≤ 1

in mind we get that, for any r ∈ (ti−1, ti] ∩ [0, T ) and any i = 1, . . . , n,

1

(T − r)κ

∫ ti

r

∣∣Dε,κ(u)
∣∣ du

≤ c(5.25)

(T − r)κ

[
(ti − r)+ ε1−α

∫ ti

r
(T − u)κ(1−α) du

]

= c(5.25)

[
ti − r

(T − r)κ
+ ε1−α

1− κ(α− 1)

(T − r)1−κ(α−1) − (T − ti)
1−κ(α−1)

(T − r)κ

]

≤ c(5.25)

[
ti − r

(T − r)κ
+ ε1−α

1− κ(α− 1)

(ti − r)1−κ(α−1)

(T − r)κ

]

= c(5.25)

[
ti − r

(T − r)2κ
(T − r)κ + ε1−α

1− κ(α− 1)

[
ti − r

(T − r)2κ

]1−κ(α−1)

× (T − r)2κ(1−κ(α−1))−κ

]

≤ c(5.25)

[
‖τ‖θT κ + ε1−α

1− κ(α− 1)
‖τ‖1−κ(α−1)

θ T 2κ(1−κ(α−1))−κ

]
,

where one uses 2κ(1− κ(α− 1))− κ ≥ 0 for the last inequality. Thus, the assertion follows.
Step 2. We examine the “drift part” ED(ϑ, τ |ε, κ). We let a ∈ [tk−1, tk), k ∈ [1, n], and set

si := a ∨ ti , i = k− 1, . . . , n. Denote

D(5.26) := sup
i=k,...,n

sup
r∈(si−1,si ]∩[0,T )

[
1

(T − r)κ

∫ si

r

∣∣Dε,κ(u)
∣∣ du

]
.(5.26)
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Recall from Assumption 3.13 that ϑS =M + V where Vt := ∫ t
0 vu du. Then one has, a.s.,

1

4
EFa

[∣∣ED
T (ϑ, τ |ε, κ)−ED

a (ϑ, τ |ε, κ)
∣∣2]

= 1

4
EFa

[∣∣∣∣∣(ϑa − ϑtk−1)

∫ tk

a
SuDε,κ(u)du

+
n∑

i=k

∫ si

si−1

(ϑu − ϑsi−1)SuDε,κ(u)du

∣∣∣∣∣
2]

≤ EFa

[∣∣∣∣(ϑa − ϑtk−1)

∫ tk

a
SuDε,κ(u)du

∣∣∣∣2]

+EFa

[∣∣∣∣∣
n∑

i=k

∫ si

si−1

(Mu −Msi−1)Dε,κ(u)du

∣∣∣∣∣
2]

+EFa

[∣∣∣∣∣
n∑

i=k

∫ si

si−1

(Vu − Vsi−1)Dε,κ(u)du

∣∣∣∣∣
2]

+EFa

[∣∣∣∣∣
n∑

i=k

ϑsi−1

∫ si

si−1

(Su − Ssi−1)Dε,κ(u)du

∣∣∣∣∣
2]

=: I(5.27) + II(5.27) + III(5.27) + IV(5.27).

(5.27)

For I(5.27), we make use of the growth property of ϑ and the monotonicity of � to get, a.s.,

I(5.27) ≤ 4c2
(3.2)(T − a)θ−1�2

a

[∫ tk

a

∣∣Dε,κ(u)
∣∣ du

]2
EFa

[
sup

u∈[a,tk]
S2

u

]
≤ 4D2

(5.26)c
2
(3.2)E

Fa

[
sup

u∈[a,tk]
�2

uS
2
u

]
≤ 4D2

(5.26)c
2
(3.2)E

Fa

[
sup

u∈[a,tk]
�

2
u

]
≤ 4D2

(5.26)c
2
(3.2)‖�‖2SM2(P)�

2
a.

For II(5.27), using the orthogonality of martingale increments we find that the mixed terms in
the square expansion vanish under the conditional expectation. Then, applying the stochastic
Fubini theorem and the conditional Itô isometry we obtain, a.s.,

II(5.27) =
n∑

i=k

EFa

[∣∣∣∣∫
(si−1,si ]∩(0,T )

(Mu −Msi−1)Dε,κ(u)du

∣∣∣∣2]

=
n∑

i=k

EFa

[∣∣∣∣∫
(si−1,si ]∩(0,T )

(∫
[r,si ]

Dε,κ(u)du

)
dMr

∣∣∣∣2]

=
n∑

i=k

EFa

[∫
(si−1,si ]∩(0,T )

∣∣∣∣∫[r,si ]Dε,κ(u)du

∣∣∣∣2 d〈M〉r
]

≤ sup
i=k,...,n

sup
r∈(si−1,si ]∩[0,T )

[
1

(T − r)1−θ

∣∣∣∣∫[r,si ]Dε,κ(u)du

∣∣∣∣2]

×EFa

[∫
(a,T )

(T − u)1−θ d〈M〉u
]

≤D2
(5.26)E

Fa

[∫
(a,T )

(T − u)1−θϒ(·,du)

]
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≤D2
(5.26)c

2
(3.3)�

2
a.

For III(5.27), we use Fubini’s theorem and Hölder’s inequality to obtain, a.s.,

III(5.27) ≤ EFa

[∣∣∣∣∣
n∑

i=k

∫
(si−1,si ]∩(0,T )

(∫ u

si−1

|vr |dr

)
|Dε,κ(u)|du

∣∣∣∣∣
2]

≤D2
(5.26)E

Fa

[∣∣∣∣∫
(a,T )

(T − r)
1−θ

2 |vr |dr

∣∣∣∣2]

≤D2
(5.26)(T − a)EFa

[∫
(a,T )

(T − r)1−θv2
r dr

]

≤D2
(5.26)TEFa

[∫
(a,T )

(T − r)1−θϒ(·,dr)

]
≤D2

(5.26)T c2
(3.3)�

2
a.

For IV(5.27), we also exploit the martingale property of S, the monotonicity of �, and follow
the same argument as for II(5.27) to get, a.s.,

IV(5.27) =
n∑

i=k

EFa

[∣∣∣∣ϑsi−1

∫ si

si−1

(Su − Ssi−1)Dε,κ(u)du

∣∣∣∣2]

=
n∑

i=k

EFa

[
ϑ2

si−1

∫
(si−1,si ]

∣∣∣∣∫[r,si ]Dε,κ(u)du

∣∣∣∣2 d〈S〉r
]

≤D2
(5.26)

n∑
i=k

EFa

[
ϑ2

si−1

∫
(si−1,si ]

(T − r)1−θ d〈S〉r
]

≤D2
(5.26)

∥∥z2 � ν
∥∥
L∞([0,T ],λ)

n∑
i=k

EFa

[
(T − si−1)

1−θϑ2
si−1

E
Fsi−1

[∫ si

si−1

S2
r dr

]]

≤D2
(5.26)

∥∥z2 � ν
∥∥
L∞([0,T ],λ)c

2
(3.2)

n∑
i=k

EFa

[∫ si

si−1

�2
r S

2
r dr

]

≤D2
(5.26)

∥∥z2 � ν
∥∥
L∞([0,T ],λ)c

2
(3.2)(T − a)‖�‖2SM2(P)�

2
a,

where in order to obtain the second inequality we employ the assumption that dSt = St− dZt

and d〈Z〉t = ∫
R z2νt (dz)dt with ‖z2 � ν‖L∞([0,T ],λ) <∞.

Eventually, plugging the estimates for I(5.27)–IV(5.27) into (5.27), and using the fact that
D(5.26) ≤D(5.24), we derive a constant c(5.28) > 0 independent of τ and ε such that∥∥ED(ϑ, τ |ε, κ)

∥∥
BMO�

2 (P)

≤ c(5.28)D(5.26)

≤ c(5.28)c(5.24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖τ‖θ if (3.17) holds,[
1+ log+

(
1

ε

)
+ log+

(
1

‖τ‖θ
)]
‖τ‖θ if (3.16) holds with α = 1,

‖τ‖θ + ε1−α‖τ‖1−κ(α−1)
θ if (3.16) holds with α ∈ (1,2].

(5.28)

Step 3. Combining (5.28) and (5.20) with (5.11) yields the conclusion, where we remark
that the condition (3.16) with α ∈ (0,1) implies (3.17) due to Lemma 5.4 (with γ = 1). �
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5.2.3. Proof of Proposition 3.15. We first consider the particular case when Q= P, r =
∞ and q = 2. By Definition 3.9(1),

n+ 1= #τn ≤ #τn � ρ(εn, κ)≤ n+ 1+N(3.7)(εn, κ),

and hence,

n+ 1≤ ∥∥#τn � ρ(εn, κ)
∥∥
L2(P) ≤ n+ 1+ ∥∥N(3.7)(εn, κ)

∥∥
L2(P).

Since infn≥1
α
√

nεn > 0 by assumption, we derive from (5.8) that

c(5.8) = T ‖1{|z|>1} � ν‖L∞(P⊗λ) + ε−α
n sup

r∈(0,1)

∥∥rα1{r<|z|≤1} � ν
∥∥
L∞(P⊗λ)

T 1−ακ

1− ακ
≤ cn

for some constant c > 0 independent of n. Using (5.8) gives the desired conclusion.
We next assume a probability measure Q� P with dQ/dP ∈ Lr(P). Since 1

2/q
+ 1

r
= 1,

applying Hölder’s inequality yields∥∥#τn � ρ(εn, κ)
∥∥
Lq(Q) ≤

∥∥#τn � ρ(εn, κ)
∥∥
L2(P)‖dQ/dP‖1/q

Lr(P),

and hence, (3.19) follows. �

5.2.4. Verification of the assertion in Example 3.19. We proceed in three steps.
Step 1. Set Xt := inf0≤s≤t Xs . We first prove that for any 0 < ε̃ < 1

2 there exist a δ̂ε̃,K :=
δ(ε̃,K, ν, γ̂ ) > 0 and a stopping time ρ := ρ(ε̃,K) such that for any 0 < δ < δ̂ε̃,K the event

E
δ,ε̃,K
ρ,�Xρ,Xρ−,Xρ

:=
{
ρ ∈ (0, δ],�Xρ ∈ (ε̃,2ε̃),

K

2
≤Xρ− ≤ 5K

2
+ 11

2
,Xρ ≥−

K

2
− 1

}
has positive probability. Indeed, for 0 < ε̃ < 1

2 , we set γ̂ (ε̃) := γ̂ − ∫
ε̃<x<2ε̃ xν(dx) and

X
(ε̃)
t := t γ̂ (ε̃) +

∫ t

0

∫
ε̃<x<2ε̃

xN(ds,dx), t ∈ [0,1].

Since (0,1)⊂ supp(ν) by assumption, it implies that ν((ε̃,2ε̃)) ∈ (0,∞), and X(ε̃) is hence
a Poisson process with drift. Denote

X̂
(ε̃)
t :=Xt −X

(ε̃)
t =

∫ t

0

∫
R0\(ε̃,2ε̃)

xÑ(ds,dx), t ∈ [0,1].

Remark that X(ε̃) and X̂(ε̃) are independent Lévy processes. Let δ̂
ε̃,K
(5.29) > 0 be such that

δ̂
ε̃,K
(5.29)

∣∣γ̂ (ε̃)
∣∣≤ 1 and δ̂

ε̃,K
(5.29) ≤

K2

16

(∫
R

x2ν(dx)

)−1
.(5.29)

We seek the desired stopping time ρ among jumping times of X(ε̃). For any δ ∈ (0, δ̂
ε̃,K
(5.29)),

since X =X(ε̃) + X̂(ε̃) and X ≥X(ε̃) + X̂
(ε̃)

, and notice that the event{
ρ ∈ (0, δ],�Xρ ∈ (ε̃,2ε̃)

}= {
ρ ∈ (0, δ],�X(ε̃)

ρ ∈ (ε̃,2ε̃)
}

is independent of X̂(ε̃), we get

P
(
E

δ,ε̃,K
ρ,�Xρ,Xρ−,Xρ

)
≥ P

({
ρ ∈ (0, δ],�X(ε̃)

ρ ∈ (ε̃,2ε̃),K ≤X
(ε̃)
ρ− ≤ 2K + 11

2
,X(ε̃)

ρ ≥−1
}
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∩
{
−K

2
≤ X̂

(ε̃)
ρ− ≤

K

2
, X̂

(ε̃)

ρ ≥−
K

2

})
≥ P

(
ρ ∈ (0, δ],�X(ε̃)

ρ ∈ (ε̃,2ε̃),K ≤X
(ε̃)
ρ− ≤ 2K + 11

2
,X(ε̃)

ρ ≥−1, sup
0≤t≤δ

∣∣X̂(ε̃)
t

∣∣≤ K

2

)

= P

(
ρ ∈ (0, δ],�X(ε̃)

ρ ∈ (ε̃,2ε̃),K ≤X
(ε̃)
ρ− ≤ 2K + 11

2
,X(ε̃)

ρ ≥−1
)

× P

(
sup

0≤t≤δ

∣∣X̂(ε̃)
t

∣∣≤ K

2

)

= P

(
ρ ∈ (0, δ],�X(ε̃)

ρ ∈ (ε̃,2ε̃),K ≤X
(ε̃)
ρ− ≤ 2K + 11

2

)
P

(
sup

0≤t≤δ

∣∣X̂(ε̃)
t

∣∣≤ K

2

)
,

where we use the fact that X
(ε̃)
t ≥ t γ̂ (ε̃) ≥−δ̂

ε̃,K
(5.29)|γ̂ (ε̃)| ≥ −1 for all t ∈ (0, δ̂

ε̃,K
(5.29)] a.s. to get

the last equality. For the second factor, applying Doob’s maximal inequality yields

P

(
sup

0≤t≤δ

∣∣X̂(ε̃)
t

∣∣≤ K

2

)
≥ 1− 16

K2E
∣∣X̂(ε̃)

δ

∣∣2 = 1− 16δ

K2

∫
R\(ε̃,2ε̃)

x2ν(dx) > 0

for any 0 < δ < δ̂
ε̃,K
(5.29). Therefore, it remains to show the existence of a stopping time ρ with

P

(
ρ ∈ (0, δ],�X(ε̃)

ρ ∈ (ε̃,2ε̃),K ≤X
(ε̃)
ρ− ≤ 2K + 11

2

)
> 0 ∀δ ∈ (

0, δ̂
ε̃,K
(5.29)

)
.

Let Kε̃ ∈N be such that

ε̃(Kε̃ − 2)≥K + 1 and ε̃(Kε̃ − 3) < K + 1.

We define ρ to be the Kε̃-th jump time of X(ε̃),

ρ := ρKε̃
.(5.30)

Then it is clear that �X
(ε̃)
ρKε̃
∈ (ε̃,2ε̃). On the set {ρKε̃

≤ δ} of positive probability one has

X
(ε̃)
ρKε̃
− ≥X(ε̃)

ρKε̃
− 2ε̃ ≥−δ̂

ε̃,K
(5.29)

∣∣γ̂ (ε̃)
∣∣+ ε̃Kε̃ − 2ε̃ ≥K,

X
(ε̃)
ρKε̃
− ≤X(ε̃)

ρKε̃
− ε̃ ≤ δ̂

ε̃,K
(5.29)

∣∣γ̂ (ε̃)
∣∣+ 2ε̃Kε̃ − ε̃ ≤ 1+ 2K + 2+ 5ε̃ ≤ 2K + 11

2
,

which then verifies the assertion.
Step 2. Condition (3.23) is equivalent to e�X ≥ c(3.23). Let δ̂

ε̃,K
(5.31) be such that

0 < δ̂
ε̃,K
(5.31) ≤ T0 ∧ δ̂

ε̃,K
(5.29) and sup

0≤t≤δ̂
ε̃,K
(5.31)

∣∣φ(t,1)− φ(0,1)
∣∣≤ 1

4
c(3.24)K.(5.31)

For ρ = ρKε̃
in (5.30) and for any 0 < δ < δ̂

ε̃,K
(5.31), on the set E

δ,ε̃,K
ρ,�Xρ,Xρ−,Xρ

we have

Sρ−
�ρ

∣∣φ(ρ,Sρ−)− φ(0,1)
∣∣

= c(3.23)Sρ−
�(η)ρSρ

∣∣φ(ρ,Sρ−)− φ(0,1)
∣∣

= c(3.23)

�(η)ρe�Xρ

∣∣φ(ρ,Sρ−)− φ(ρ,1)+ φ(ρ,1)− φ(0,1)
∣∣
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≥ c(3.23)e
(1−η)Xρ−1∣∣∣∣φ(ρ,Sρ−)− φ(ρ,1)

∣∣− ∣∣φ(ρ,1)− φ(0,1)
∣∣∣∣

≥ c(3.23)e
(1−η)Xρ−1

[
c(3.24)

∣∣eXρ− − 1
∣∣− sup

0≤t≤δ

∣∣φ(t,1)− φ(0,1)
∣∣]

≥ c(3.23)e
(1−η)Xρ−1

[
c(3.24)Xρ− − sup

0≤t≤δ

∣∣φ(t,1)− φ(0,1)
∣∣]

≥ 1

4
c(3.23)c(3.24)Ke(1−η)Xρ−1 ≥ 1

4
c(3.23)c(3.24)e

−(1−η)(K
2 +1)−1K,

where we use �(η)ρ = supu≤ρ e(η−1)Xu ≤ e−(1−η)Xρ and �Xρ < 2ε̃ < 1 to obtain the first
estimate.

Step 3. It is straightforward to check that conditions in Section 2.3 are satisfied, where we
exploit the relation between the Lévy measures of X and of Z given in Appendix A to obtain
the square integrability of Z, which verifies [Z]. We now use parameters in (3.25). For any
ε ∈ (0,1), since �Z = e�X − 1 and 0 < εr∗ < 2−κ/3≤ 1/3, one has

εr∗ < |�Z|< ε3r∗ ⇐ εr∗ < e�X − 1 < ε3r∗ ⇐ ln(1+ εr∗) < �X < 2 ln(1+ εr∗).

Then, for ε̃ := ln(1 + εr∗) ∈ (0, 1
2), τ = (ti)

n
i=0 ∈ Tdet with ‖τ‖1 ≤ 1/2, and 0 < δ < t1 ∧

δ̂
ε̃,K
(5.31), it follows from Step 2 that

E(3.21) ⊇E
δ,ε̃,K
ρ∗,�Xρ∗ ,Xρ∗−,Xρ∗

.

According to Step 1, we infer that P(E(3.21)) > 0. Eventually, the weight � ∈ SM2(P) be-
cause of the assumption

∫
|x|>1 e2xν(dx) <∞ and Proposition B.2.

5.3. Proofs of results in Section 4.4.

5.3.1. Proof of Proposition 4.6. Note that Assumption 4.1 implies
∫
|x|>1 e2xν(dx) <∞.

Since g has at most linear growth at infinity, one has g(ST ) ∈ L2(P).
(1) follows from Proposition B.2.
(2) We let � := ν in (C.1) and obtain from (4.2) that

ϑ
g
t = c−2

(4.2)Γν(T − t, St ) a.s.,∀t ∈ (0, T ).

Let us examine cases in Table 1. Using Proposition C.1(1) and (2) yields A1 and A2 respec-
tively. For A3, since ν ∈S (α), Remark 4.4(1) asserts that supr∈(0,1) r

α
∫
r<|x|≤1 ν(dx) <∞.

Applying Proposition C.1(3) with β = α yields∣∣ϑg
t

∣∣≤ c−2
(4.2)c(C.2)U(t)S

η−1
t a.s.,∀t ∈ (0, T ).

The respective estimate for
∣∣ϑg

0

∣∣ can be easily deduced by using the right continuity of ϑg , U

and S.
(3) The SDE for S = eX is

dSt = St− dZt, S0 = 1,(5.32)

where Z is another Lévy process under P. Under Assumption 4.1, it is known that Z is also
an L2(P)-martingale with zero mean (see, e.g., [6], Proposition 8.20). Hence, conditions [S]
and [Z] in Section 2.3 are fulfilled. Moreover, ϑg ∈A(S) due to Proposition 4.2(1, 2).

Let us now verify Assumption 3.4. Since M = ϑgS is an L2(P)-martingale by Proposi-
tion 4.2(2), Assumption 3.1 holds because of Example 3.3 (with V ≡ 0). Thanks to (4.4),
the growth condition (3.2) is satisfied for θ given in Table 1 case-wise. We now only need
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to check the curvature condition (3.3). If U ≡ 1 (in A1 with η= 1 and in A2), then the mar-
tingale M is closed in L2(P) by MT := L2(P)- limt↑T Mt due to (4.4) and �(η) ∈ SM2(P).
Then, for θ = 1 and for any a ∈ [0, T ), one has, a.s.,

EFa

[∫
(a,T )

ϒ(·,dt)

]
= EFa

[∫
(a,T )

d〈M〉t +
∫
(a,T )

M2
t dt

]
≤ EFa

[
|MT −Ma|2 + c2

(4.4)(T − a) sup
t∈(a,T )

�(η)2
t

]
≤ c2

(4.4)(T + 1)
∥∥�(η)

∥∥2
SM2(P)�(η)2

a.

For remaining cases, we set θ̂ := η in A1 for η ∈ (0,1), and set θ̂ := 2(1+η)
α
− 1 ∈ (0,1] in

A3. Then, for any θ ∈ (0, θ̂ ), using the function U in Table 1 we get

(T − t)1−θM2
t ≤ c2

(4.4)(T − t)1−θU(t)2�(η)2
t → 0 a.s. as t ↑ T .

Thus, for any a ∈ [0, T ), a.s.,

EFa

[∫
(a,T )

(T − t)1−θM2
t dt

]
≤ c(5.33)c

2
(4.4)

∥∥�(η)
∥∥2
SM2(P)�(η)2

a(5.33)

for some constant c(5.33) > 0 depending at most on θ̂ , θ , T . Integrating by parts and applying
conditional Itô’s isometry yield, a.s.,

EFa

[∫
(a,T )

(T − t)1−θ d〈M〉t
]

= EFa

[
lim

a<b↑T

∫
(a,b]

(T − t)1−θ d〈M〉t
]

= EFa

[
lim

a<b↑T

[
(T − b)1−θ |Mb −Ma|2 + (1− θ)

∫
(a,b]

(T − t)−θ |Mt −Ma|2 dt

]]

≤ (1− θ)EFa

[∫
(a,T )

(T − t)−θM2
t dt

]
≤ c(5.34)c

2
(4.4)

∥∥�(η)
∥∥2
SM2(P)�(η)2

a

(5.34)

for some c(5.34) = c(5.34)(θ̂ , θ, T ) > 0. Combining (5.33) with (5.34) yields the desired con-
clusion.

For the particular case σ = 0, it is easy to check that Assumption 3.13 holds true. �

5.3.2. Proof of Corollary 4.7. Let νZ denote the Lévy measure of Z (which appears in
the SDE (5.32)) under P. By the relation between the Lévy measures of Z and of X given in
Appendix A, some simple calculations yield that, for any α ∈ [0,2],

sup
r∈(0,1)

rα
∫
r<|z|≤1

νZ(dz) <∞ ⇔ sup
r∈(0,1)

rα
∫
r<|x|≤1

ν(dx) <∞.

(1) Since
∫
|x|>1 e2xν(dx) <∞ by Assumption 4.1, we get from Proposition B.2 that �(η)

belongs to SM2(P). Let us examine each case in Table 2.
For B1, the given range of (η,α) yields to

∫
|x|≤1 |x|1+ην(dx) <∞. We use Proposi-

tion 4.6(3), case A2 in Table 1, to obtain θ = 1. Then, applying Theorem 3.16(3) gives the
corresponding R(n) and εn.

For B2, we note that S (α) ⊂U S (α). Using Proposition 4.6(3), case A3 in Table 1, to
get the range of θ , and then applying Theorem 3.16(3) we get the conclusions for R(n) and
εn.



APPROXIMATION OF STOCHASTIC INTEGRALS WITH JUMPS VIA WEIGHTED BMO 4631

For B3, we first get θ = 1 due to Table 1, case A1. We decompose Eadap into three com-
ponents EC, ES and ED as in (5.10). For the “continuous part” EC, (5.12) yields

sup
n≥1

√
n

∥∥∥EC
(
ϑg, τ 1

n

∣∣∣ √
1/n,0

)∥∥∥
BMO�(1)

2 (P)
<∞.

For the “small jump part” ES and the “drift part” ED, we apply (5.20) and (5.28) with α = 2
respectively to obtain

sup
n≥1

√
n

(∥∥∥ES
(
ϑg, τ 1

n

∣∣∣ √
1/n,0

)∥∥∥
BMO�(1)

2 (P)
+

∥∥∥ED
(
ϑg, τ 1

n

∣∣∣ √
1/n,0

)∥∥∥
BMO�(1)

2 (P)

)
<∞.

Thus, the desired assertion follows from (5.11).
For B4, it is similar to B3.
(2) Since

∫
|x|>1 epxν(dx) <∞, it follows from Propositions B.2 and B.1(2) that �(η)

and �(η) belong to SMp(P) for all η ∈ [0,1]. Hence, the conclusion follows from Proposi-
tion 2.5(1, 2). �

APPENDIX A: EXPONENTIAL LÉVY PROCESSES

Let X be a Lévy process with characteristic triplet (γ, σ, ν) as in Section 4.1. Then, the
ordinary exponential S = eX can be represented as the Doléans–Dade exponential E(Z) of
another Lévy process Z (see, e.g., [1], Theorem 5.1.6), that is, eX = E(Z) for the process Z

in the SDE (5.32). Z is also known as the stochastic logarithm of S, that is, Z = L(S).
The path relation of X and Z is given by

Zt =Xt + σ 2t

2
+ ∑

s∈[0,t]

(
e�Xs − 1−�Xs

)
, t ∈ [0, T ] a.s.,

which then implies �Z = e�X − 1. The relation between the characteristic (γ, σ, ν) of X

and (γZ,σZ, νZ) of Z is provided, for example, in [1], Theorem 5.1.6. In particular, one has
σZ = σ and νZ(·)= ∫

R 1{ex−1∈·}ν(dx).

APPENDIX B: REGULARITY OF WEIGHT PROCESSES

We recall � from (3.9) and SMp(P) from Definition 2.1.

PROPOSITION B.1.

(1) Let p,q, r ∈ (0,∞) with 1
r
= 1

p
+ 1

q
. Then, for any �,� ∈ CL+([0, T ]) one has

‖��‖SMr (P) ≤ ‖�‖SMp(P)‖�‖SMq(P).
(2) If � ∈ SMp(P) for some p ∈ (0,∞), then � ∈ SMp(P).

PROOF. Item (1) is provided in [17], Proposition A.2, and Item (2) in the supplementary
material [37], subsection F.1. �

Let X = (Xt)t∈[0,T ] be a Lévy process with characteristic triplet (γ, σ, ν) and exponent ψ

as in Section 4.1. Recall S = eX and �(η) from (4.3).

PROPOSITION B.2. If
∫
|x|>1 eqxν(dx) <∞ for some q ∈ (1,∞), then �(η) ∈ SMq(P)

for all η ∈ [0,1]. Moreover, for cq := (
q

q−1)q one has∥∥�(η)
∥∥q
SMq(P) ≤ eT |ψ(−i)|(2q+1)21−ηc2

q‖ST ‖qLq(P).

PROOF. The proof is given in the Supplementary Material [37], subsection F.2. �
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APPENDIX C: GRADIENT TYPE ESTIMATES FOR A LÉVY SEMIGROUP ON
HÖLDER SPACES

Let X be a Lévy process with characteristic triplet (γ, σ, ν) as in Section 4.1. Let η ∈ [0,1]
and recall C0,η(R+) from Definition 4.3(1). Assume

∫
|x|>1 eηxν(dx) <∞. We define the

map Pt : C0,η(R+)→ C0,η(R+) by Ptg(y) := Eg(yeXt ), y > 0, t ≥ 0.
Motivated by formula (4.2), for a Lévy measure � and g ∈ C0,η(R+), we formally set

Γ�(t, y) := σ 2∂yPtg(y)+
∫
R

Ptg(exy)− Ptg(y)

y

(
ex − 1

)
�(dx), t, y > 0,(C.1)

where ∂yPtg(y) := 0 if σ = 0. Although we choose � = ν for (4.2), it is useful to consider
the general � because it might have applications in other contexts (e.g., see [36]).

Proposition C.1(3) below is a variant of [17], Theorem 9.18, in the exponential Lévy set-
ting. Here, the exponent of the time variable t in the obtained estimates is the same as in [17],
Theorem 9.18. We recall S (α) from Definition 4.3(2).

PROPOSITION C.1. Let � be a Lévy measure and g ∈ C0,η(R+) with η ∈ [0,1]. Assume
that

∫
|x|>1 e(η+1)x�(dx) <∞. Then, for any T ∈ (0,∞) there is a c(C.2) > 0 such that∣∣Γ�(t, y)

∣∣≤ c(C.2)V (t)yη−1 ∀(t, y) ∈ (0, T ] ×R+,(C.2)

where the cases for V (t) are provided as follows:

(1) If σ > 0 and
∫
|x|>1 e2xν(dx) <∞, then V (t)= t

η−1
2 .

(2) If σ = 0,
∫
|x|>1 eηxν(dx) <∞ and

∫
|x|≤1 |x|η+1�(dx) <∞, then V (t)= 1.

(3) If σ = 0, η ∈ [0,1) and if the following two conditions hold:

(a) ν ∈S (α) for some α ∈ (0,2) and
∫
|x|>1 exν(dx) <∞,

(b) there is a β ∈ [0,2] such that

0 < c(C.3) := sup
r∈(0,1)

rβ
∫
r<|x|≤1

�(dx) <∞,(C.3)

then V (t)= t
η+1−β

α if β ∈ (1+η,2], V (t)=max{1, log(1/t)} if β = 1+η, and V (t)= 1
if β ∈ [0,1+ η).

Here, the constant c(C.2) may depend on β in Item (3).

PROOF. See the Supplementary Material [37], subsection G.2. �
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