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 A B S T R A C T

We discuss in a stochastic framework the interplay between Riemann–Liouville type operators 
applied to stochastic processes, bounded mean oscillation, real interpolation, and approxima-
tion. In particular, we investigate the singularity of gradient processes on the Wiener space 
arising from parabolic PDEs via the Feynman–Kac theory. The singularity is measured in 
terms of bmo-conditions on the fractional integrated gradient. As an application we treat an 
approximation problem for stochastic integrals on the Wiener space. In particular, we provide a 
discrete time hedging strategy for the binary option with a uniform local control of the hedging 
error under a shortfall constraint.

1. Introduction

We deal with the interplay between Riemann–Liouville type operators applied to adapted càdlàg processes, weighted bounded 
mean oscillation (weighted bmo), real interpolation, and approximation theory. Given a stochastic basis (𝛺, ,P, (𝑡)𝑡∈[0,𝑇 ]), satisfying 
the usual conditions, there are various applications in which stochastic processes 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) appear that have a singularity when 
𝑡 ↑ 𝑇 . Examples are gradient processes obtained in connection to semi-linear parabolic backward PDEs or (non-local) operators, 
that occur as integrands in stochastic integral representations on the Wiener- and Lévy-Itô space, or trading strategies in stochastic 
finance for non-smooth pay-offs. We investigate quantitative properties of (𝐿𝑡)𝑡∈[0,𝑇 ), as the degree of blow-up and distributional 
properties, and apply the results to approximation problems for stochastic processes, in particular to the discrete time hedging in 
the Black–Scholes model.

To be more precise, we discover and exploit the interplay between the following topics and think that the methodology behind 
might be of wider interest:

(a) Self-similarity and bmo: There is a self-similar structure behind in the sense that, given 𝑎 ∈ (0, 𝑇 ) and 𝐴 ∈ 𝑎 of positive 
measure, then (𝐿𝑡)𝑡∈[𝑎,𝑇 ) restricted to 𝐴 has similar properties as (𝐿𝑡)𝑡∈[0,𝑇 ) has. If one seeks for good distributional estimates 
for (𝐿𝑡)𝑡∈[0,𝑇 ), then this suggests to consider (𝐿𝑡)𝑡∈[0,𝑇 ) in bmo, and to exploit relations to the BMO-spaces to achieve better 
tail estimates for 𝐿 than 𝐋𝑝-estimates would imply.
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(b) Polynomial blow-up, Riemann–Liouville type operators, weighted bmo: If the process 𝐿 has a singularity when 𝑡 ↑ 𝑇 , then (a) might 
not work. We will have a polynomial blow-up of 𝐿 in time with a rate (𝑇 − 𝑡)−𝛼 for some 𝛼 > 0. So instead of measuring 
𝐿 in bmo, we will measure 𝛼𝐿 in bmo, where 𝛼 is a Riemann–Liouville type operator given in (1.1) that resolves the 
singularity of the process 𝐿. However, classical bmo-spaces are not sufficient for our applications, we will need to use weighted
bmo-spaces.

(c) End-point estimates, interpolation, and Hölder-spaces: The consideration of the bmo-setting follows a path known for singular 
integral operators or martingale transforms: 𝐋𝑝-𝐋𝑝 estimates yield to bmo-𝐋∞ estimates when 𝑝 ↑ ∞. For us, the Hölder spaces 
will play the role of an 𝐋∞-endpoint in the scale of Besov spaces on the Wiener space. Secondly, we again need to exploit
weighted bmo-spaces instead of the non-weighted bmo-spaces. Only with these ingredients we obtain the desired bmo-Hölder 
estimates behind Corollary  1.2, Theorem  1.3, and Corollary  1.4.

The structure and background of the article are as follows: After the preliminaries in Section 2, we turn in Section 3 to Riemann–
Liouville type operators in a more general context. Riemann–Liouville operators are a central object in fractional calculus. To extend 
them to probabilistic frameworks, for example to martingales (𝐿𝑡)𝑡∈[0,𝑇 ), there are different options depending on the application:

(A) Fractional martingales, i.e. 𝑡↦ ∫ 𝑡0 (𝑡− 𝑢)
𝛼−1𝐿𝑢d𝑢, 𝛼 > 0, were used in [1] for Gaussian processes. Here the martingale property 

gets lost.
We will not concentrate on approach (A), but develop further the following one:
(B) In [2, Definition 4.2] a path-wise approach was used for certain gradient processes on the Wiener space, but no systematic 

investigation was done. This approach is intended for the case when one has a singularity when 𝑡 ↑ 𝑇 , it keeps the martingale 
property, and it commutes with horizontal and vertical derivatives from functional Itô-calculus [3] (see Remark  3.8 of this article). To 
be more precise: For 𝛼 > 0 and a càdlàg function 𝐾 ∶ [0, 𝑇 ) → R we define the Riemann–Liouville type operator 𝛼𝐾 ∶= (𝛼𝑡 𝐾)𝑡∈[0,𝑇 )
by 

𝛼𝑡 𝐾 ∶= 𝛼
𝑇 𝛼 ∫

𝑇

0
(𝑇 − 𝑢)𝛼−1𝐾𝑢∧𝑡d𝑢 and 0

𝑡 𝐾 ∶= 𝐾𝑡. (1.1)

Looking from the perspective of martingales, the idea behind is that we start with a non-closable martingale 𝐾 and might obtain a 
closable martingale 𝛼𝐾. In Proposition  3.6 we show that the approach via (1.1) yields to an extension of the fractional martingale 
transform (cf., for example, [4,5]) to all càdlàg processes. We also extend the family of operators (𝛼)𝛼>0 to 𝛼 ⩽ 0 to get the group 
structure

𝛼(𝛽𝐾) = 𝛼+𝛽𝐾 for 𝛼, 𝛽 ∈ R so that −𝛼(𝛼𝐾) = 𝐾.

A combination of the two approaches (A) and (B) can be found in [6].
Section 4 is about approximations of càdlàg processes. We define for a càdlàg process 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ), 𝑎 ∈ [0, 𝑇 ], and a deterministic 

time-net 𝜏 = {𝑡𝑖}𝑛𝑖=0 with 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 , the 𝐋2-approximation of 𝐿 along 𝜏 by

[𝐿; 𝜏]1𝑎 ∶= ∫

𝑎

0

|

|

|

|

|

𝐿𝑢 −
𝑛
∑

𝑖=1
𝐿𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢)

|

|

|

|

|

2

d𝑢.

If 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) ⊆ 𝐋2 is a càdlàg martingale, then E[𝐿; 𝜏]1𝑇  describes an 𝐋2-filtering problem where the filtration is kept constant 
on the time intervals of the net 𝜏. In Theorem  4.9 we provide in the 𝐋2-context the connections between approximation theory, 
fractional closability, and real interpolation: for 𝜃 ∈ (0, 1) we prove the equivalence of the three conditions

sup
𝜏

E[𝐿; 𝜏]1𝑇
‖𝜏‖𝜃

< ∞, (1.2)


1−𝜃
2 𝐿 is a martingale closable in 𝐋2, (1.3)

(𝐿𝑡𝑘 )
∞
𝑘=0 ∈ (𝓁

− 1
2

2 (𝐋2),𝓁∞(𝐋2))𝜃,2 with 𝑡𝑘 ∶= 𝑇
(

1 − 2−𝑘
)

. (1.4)

Here, for 𝜃 ∈ (0, 1], we use the adapted mesh-size

‖𝜏‖𝜃 ∶= sup
𝑖=1,…,𝑛

𝑡𝑖 − 𝑡𝑖−1
(𝑇 − 𝑡𝑖−1)1−𝜃

to compensate a blow-up of 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) when 𝑡 ↑ 𝑇  as the mesh-size ‖ ⋅ ‖𝜃 assigns more weight to grid-points close to 𝑇  when 𝜃
gets small. The prototype of nets such that ‖𝜏𝑛‖𝜃 ∼ 1∕𝑛 is defined as 𝜏𝑛 ∶=𝜏𝜃𝑛 = {𝑡𝜃𝑖,𝑛}

𝑛
𝑖=0 with 

𝑡𝜃𝑖,𝑛 ∶= 𝑇 − 𝑇 (1 − (𝑖∕𝑛))1∕𝜃 . (1.5)

This adapted mesh-size goes back (at least) to [7,8] and has been exploited in [2,9–11] in the diffusion setting and in [12,13] in 
the jump setting.

Condition (1.4), together with relations (4.13) and (4.14), says that 𝐿 belongs to a space resulting from real interpolation between 
two end-points: the left end-point consists of martingales 𝐿 with ∫ 𝑇0 ‖𝐿𝑡‖2𝐋2

d𝑡 < ∞, a typical condition for integrands of stochastic 
integrals, the right end-point consists of martingales 𝐿 with sup ‖𝐿 ‖ <∞, i.e. martingales closable in 𝐋 .
𝑡∈[0,𝑇 ) 𝑡 𝐋2 2

2 
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Condition (1.3) says that after smoothing the martingale 𝐿 with the operator  1−𝜃
2  we get a martingale closable in 𝐋2. Giving a 

martingale closable in 𝐋2 the smoothness 1 and applying 
𝜃−1
2 = (

1−𝜃
2 )−1, we interpret this as that 𝐿 has a fractional smoothness 

of order 1 − 1−𝜃
2 = 1+𝜃

2  in 𝐋2.
Condition (1.2) concerns a discrete time approximation of 𝐿 by the martingale (∑𝑛

𝑖=1 𝐿𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑡))𝑡∈[0,𝑇 ). In Theorem  4.12 
condition (1.2) also yields another approximation of a càdlàg martingale, a backward in time regularization with local Lipschitz 
trajectories.

Finally, one of the main results of Section 4 is Theorem  4.11, where we prove the equivalent to (1.2) ⇔ (1.3) in the bmo-context.
In Section 5 we apply the results to the Wiener space. We suppose a stochastic basis (𝛺,𝑇 ,P, (𝑡)𝑡∈[0,𝑇 ]) satisfying the usual 

conditions and generated by a standard one-dimensional Brownian motion 𝑊 = (𝑊𝑡)𝑡∈[0,𝑇 ] with continuous paths and starting in 
zero. We start with a diffusion

d𝑋𝑡 = 𝜎̂(𝑋𝑡)d𝑊𝑡 + 𝑏̂(𝑋𝑡)d𝑡

with 𝑋0 ≡ 𝑥0 ∈ R with 0 < 𝜀0 ⩽ 𝜎̂ ∈ 𝐶∞
𝑏 (R) and 𝑏̂ ∈ 𝐶∞

𝑏 (R), and derive

d𝑌𝑡 = 𝜎(𝑌𝑡)d𝑊𝑡 with 𝑌0 ≡ 𝑦0 ∈ 𝑌

in the two cases

(C1) 𝑌 ∶= 𝑋 and 𝑌 ∶= R   (𝜎 ≡ 𝜎̂, 𝑏̂ ≡ 0),
(C2) 𝑌 ∶= e𝑋 and 𝑌 ∶= (0,∞)   (𝜎(𝑦) ∶= 𝑦𝜎̂(ln 𝑦), 𝑏̂(𝑥) ∶= − 1

2 𝜎̂
2(𝑥)).

We let 𝐶𝑌  be the set of all Borel functions 𝑔∶𝑌 → R satisfying the size condition (5.2) from Section 5.1. For 𝑔 ∈ 𝐶𝑌  we let

𝐺(𝑡, 𝑦) ∶= E[𝑔(𝑌𝑇 )|𝑌𝑡 = 𝑦] for (𝑡, 𝑦) ∈ [0, 𝑇 ] ×𝑌 ,

so that 

𝑔(𝑌𝑇 ) − E𝑔(𝑌𝑇 ) = ∫(0,𝑇 )
𝜑𝑡d𝑌𝑡 with 𝜑𝑡 ∶= 𝜕𝑦𝐺(𝑡, 𝑌𝑡). (1.6)

In the Black–Scholes model (case (C2)) the process 𝜑 is the 𝛿-hedging strategy for the pay-off 𝑔(𝑌𝑇 ). For a deterministic net 
𝜏 = {0 = 𝑡0 < ⋯ < 𝑡𝑛 = 𝑇 } we define the approximation error for the Riemann approximation of the stochastic integral in (1.6) as

𝐸𝑡(𝑔; 𝜏) ∶= ∫(0,𝑡]
𝜑𝑠d𝑌𝑠 −

𝑛
∑

𝑖=1
𝜑𝑡𝑖−1 (𝑌𝑡𝑖∧𝑡 − 𝑌𝑡𝑖−1∧𝑡).

So, in the Black–Scholes model, 𝐸𝑡(𝑔; 𝜏) is the hedging error at time 𝑡 when re-balancing the portfolio associated to an option with 
pay-off 𝑔(𝑌𝑇 ) at the discrete times from 𝜏 only. Our starting point is [14, Theorems 7 and 8] from which, for 𝜎(𝑦) = 𝑦 and 𝑦0 = 1
(geometric Brownian motion), it follows that

𝑔 coincides a.e. with a Lipschitz function

⟺ sup
𝜏

‖𝐸(𝑔; 𝜏)‖bmo𝑌2 [0,𝑇 )
√

‖𝜏‖1
< ∞. (1.7)

Here, for 𝑝 ∈ (0,∞) and adapted càdlàg processes 𝐴 and 𝛷 ⩾ 0 defined on [0, 𝑇 ) we let ‖𝐴‖bmo𝛷𝑝 [0,𝑇 )
∶= inf 𝑐, where the infimum is 

taken over all 𝑐 ∈ [0,∞) such that for all 0 ⩽ 𝑎 ⩽ 𝑡 < 𝑇  one has

E
[

|𝐴𝑡 − 𝐴𝑎|𝑝|𝑎
]

⩽ 𝑐𝑝𝛷𝑝
𝑎 a.s.

Hence the RHS of (1.7) is limited to Lipschitz functions. Looking instead at the binary option, one cannot expect an arbitrary small 
local error uniformly over [0, 𝑇 ) when only finitely many times are used to re-balance the portfolio. In fact, given any deterministic 
time-net 0 = 𝑡0 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑇 , on the last interval [𝑡𝑛−1, 𝑇 ] we always have a uniform lower bound independently of how 
small 𝑇 − 𝑡𝑛−1 is:

Proposition 1.1.  Assume 𝜎(𝑦) = 𝑦 and 𝑦0 = 1. There is a 𝑇0 ∈ [0, 𝑇 ) such that for all 𝑎 ∈ [𝑇0, 𝑇 ) there is a set 𝐵𝑎 ∈ 𝑎 of positive 
measure such that, for all 𝑎-measurable 𝑣𝑎, 𝑤𝑎 ∶ 𝛺 → R, 

∫𝐵𝑎
|

|

|

1[1,∞)(𝑌𝑇 ) − [𝑣𝑎 +𝑤𝑎(𝑌𝑇 − 𝑌𝑎)]
|

|

|

2 dP
P(𝐵𝑎)

⩾ 1
192

. (1.8)

Proposition  1.1 is proven in Section 7.9. So there is a discrepancy between (1.7) and (1.8). We resolve this discrepancy in two 
steps:

Step 1: For 𝑀 = (𝑀𝑡)𝑡∈[0,𝑇 ) with

𝑀𝑡 ∶=
𝑡 (
𝜎2𝜕2 𝐺

)

(𝑢, 𝑌𝑢)d𝑊𝑢
∫0 𝑦𝑦

3 
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we show in Theorem  5.8 for all deterministic nets 𝜏 = {0 = 𝑡0 <⋯ < 𝑡𝑛 = 𝑇 } and all adapted càdlàg processes 𝛷 > 0 that
‖𝐸(𝑔; 𝜏)‖2

bmo𝛷2 [0,𝑇 )

‖𝜏‖𝜃
⩽ 𝑐(4.3)

[

4‖
1−𝜃
2 𝑀‖

2
bmo𝛷2 [0,𝑇 )

+
‖

‖

‖

‖

‖

sup
𝑘∈{1,…,𝑛}

sup
𝑎∈[𝑡𝑘−1 ,𝑡𝑘)

𝑇 − 𝑎
(𝑇 − 𝑡𝑘−1)𝜃

|𝜑𝑎 − 𝜑𝑡𝑘−1 |
2 𝜎(𝑌𝑎)

2

𝛷2
𝑎

‖

‖

‖

‖

‖𝐋∞

]

. (1.9)

Step 2 concerns an upper bound for the RHS of (1.9). For this we use a two parameter scale of Hölder spaces. Let 𝐶0
𝑏 (R) consist of 

the bounded continuous functions and Höl01(R) of the Lipschitz functions, both defined on R and vanishing at zero. Then we define 
the scale of Hölder spaces

Höl𝜃,𝑞(R) ∶= (𝐶0
𝑏 (R),Höl

0
1(R))𝜃,𝑞 for (𝜃, 𝑞) ∈ (0, 1) × [1,∞]

by real interpolation [15,16], where the fine-index 𝑞 = ∞ recovers the 𝜃-Hölder functions. The inclusions Höl𝜃,𝑞0 (R)⊆Höl𝜃,𝑞1 (R) for 
1 ⩽ 𝑞0 < 𝑞1 ⩽ ∞ are strict which follows from [17, Theorem 3.1]. For 0 ⩽ 𝑠 ⩽ 𝑎 < 𝑇  we will prove in Theorem  5.9 that

‖
1−𝜃
2 𝑀‖

bmo𝜎(𝑌 )
𝜃

2 [0,𝑇 )
⩽ 𝑐(1.10)‖𝑔‖Höl𝜃,2(R) for 𝜃 ∈ (0, 1), (1.10)

𝑇 − 𝑎
(𝑇 − 𝑠)𝜃

|

|

𝜑𝑎 − 𝜑𝑠||
2 ⩽ 𝑐2(1.11)|𝑔|

2
𝜃
(

𝜎(𝑌𝑎)2(𝜃−1) + 𝜎(𝑌𝑠)2(𝜃−1)
)

(1.11)

for 𝜃 ∈ [0, 1], where |𝑔|𝜃 ∶= sup𝑥≠𝑦 |𝑔(𝑥) − 𝑔(𝑦)|∕|𝑥 − 𝑦|𝜃 is the 𝜃-Hölder semi-norm. In Section 7.4 we show that (1.9), (1.10), and 
(1.11) imply the following: 

Corollary 1.2.  Let 𝜃 ∈ (0, 1) and 𝑔 = 𝑔(𝜃) + 𝑔(1) ∈ Höl𝜃,2(R) + Höl01(R). For a deterministic time-net 𝜏 = {0 = 𝑡0 < ⋯ < 𝑡𝑛 = 𝑇 } and 
𝑎 ∈ [0, 𝑇 ) we define the weight process 𝛷 = (𝛷𝑎)𝑎∈[0,𝑇 ) by

𝛷𝑎(𝜏, 𝜃) ∶= 𝜎(𝑌𝑎)𝜃 + 𝜎(𝑌𝑡𝑘−1 )
𝜃−1𝜎(𝑌𝑎) if 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘),

𝛷𝑎 ∶= ‖𝑔(𝜃)‖Höl𝜃,2(R)𝛷𝑎(𝜏, 𝜃) + |𝑔(1)|1𝜎(𝑌𝑎).

Then there is a 𝑐 = 𝑐(𝑇 , 𝜃, 𝜎) > 0 such that 
‖𝐸(𝑔; 𝜏)‖bmo𝛷2 [0,𝑇 ) ⩽ 𝑐

√

‖𝜏‖𝜃 .

Moreover, for 𝜂 ∈ (𝜃, 1) and an 𝜂-Hölder function 𝑔 ∶ R → R one has
‖𝐸(𝑔; 𝜏)‖bmo𝛷(𝜏,𝜃)+𝜎(𝑌 )2 [0,𝑇 ) ⩽ 𝑑 |𝑔|𝜂

√

‖𝜏‖𝜃

for some 𝑑 = 𝑑(𝑇 , 𝜃, 𝜂, 𝜎) > 0.

In case (C2) Corollary  1.2 applies to powered call and put options (see [18]). Moreover, it plays the key role to provide a solution 
to overcome the discrepancy between (1.7) and (1.8): For 𝐾 > 0 we first replace the pay-off 𝑔 = 1[𝐾,∞) by

𝑔𝜀(𝑦) ∶=
1
𝜀 ∫

𝑦

𝑦−𝜀
1[𝐾,∞)(𝑧)d𝑧 ⩽ 1[𝐾,∞)(𝑦) for some 𝜀 > 0.

The Lipschitz constant blows up like 𝜀−1. The trick is to use the Lipschitz function 𝑔𝜀, however to measure this Lipschitz function in 
the Höl𝜃,2(R) space. With inequality Eq.  (7.11) we will show that

‖𝑔𝜀‖Höl𝜃,2(R) ⩽ 𝑐𝜃𝜀
−𝜃 ,

so that the blow-up is 𝜀−𝜃 instead of 𝜀−1. This effect can be made arbitrary strong by 𝜃 ↓ 0 and yields to a significant improvement of 
the approximation of the binary option. Specializing the results from Section 5 to the function 𝑔(𝑦) = 1[𝐾,∞)(𝑦), which is the pay-off 
of the binary option in the case (C2) introduces above, we prove in Section 7.8:

Theorem 1.3.  For 𝜃 ∈ (0, 1), 𝐷 ⩾ 1, 𝜀 ∶= 2𝐷− 1
𝜃 (sup𝑦∈R 𝑝𝑇 (𝑦))−1, where 𝑝𝑇  is the continuous density of 𝑌𝑇 , 𝐾 > 0, and a 𝑐 = 𝑐(𝑇 , 𝜃, 𝜎) > 0

one has
(1) E1[𝐾,∞)(𝑌𝑇 ) − E𝑔𝜀(𝑌𝑇 ) ⩽ 𝐷− 1

𝜃  and P(𝑔𝜀(𝑌𝑇 ) < 1[𝐾,∞)(𝑌𝑇 )) ⩽ 2𝐷− 1
𝜃 ,

(2) ‖𝐸(𝑔𝜀; 𝜏𝜃𝑛 )‖bmo𝛷2 [0,𝑇 ) ⩽ 𝑐 𝐷
√

𝑛
 for 𝛷 ∶= 𝛷(𝜏𝜃𝑛 , 𝜃),3

(3) |𝜑𝜀| ⩽ 𝑐𝐷
1
𝜃  on [0, 𝑇 ) ×𝛺, where 𝜑𝜀 is defined as in (1.6) for 𝑔𝜀.

In the case (C2) the interpretation is as follows: In (1) we estimate the difference of the option prices for 1[𝐾,∞)(𝑌𝑇 ) and 𝑔𝜀(𝑌𝑇 )
and the shortfall probability, respectively, (3) is a size-constraint on the trading strategy, and (2) bounds the uniform local hedging 
error with the optimal rate 1∕√𝑛. One essential point of Theorem  1.3 is that in (1) the constant 1∕𝐷 is raised to the exponent 1∕𝜃, 

3 𝜏𝜃 is given in (1.5) and 𝛷(𝜏, 𝜃) in Corollary  1.2.
𝑛

4 
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so that for 𝐷 > 1 the constant 𝐷− 1
𝜃  gets arbitrary small for small 𝜃, whereas in (2) we have the exponent 1 for 𝐷. To illustrate this 

further we couple the cardinality 𝑛 of the time-net to 𝐷 by 𝐷 ∶= 𝑛𝛿 for 𝛿 ∈ (0, 1∕4) to get a balance between the hedging error and 
the shortfall probability :

Corollary 1.4.  For 𝛿 ∈ (0, 14 ), 𝜃 ∶= 2𝛿
1−2𝛿 , 𝑛 ∈ N, 𝜀𝑛 ∶=2𝑛−

𝛿
𝜃 (sup𝑦∈R 𝑝𝑇 (𝑦))−1, and 𝐾 > 0 one has:

(1) E1[𝐾,∞)(𝑌𝑇 ) − E𝑔𝜀𝑛 (𝑌𝑇 ) ⩽ 𝑛𝛿−
1
2  and P(𝑔𝜀𝑛 (𝑌𝑇 ) < 1[𝐾,∞)(𝑌𝑇 )) ⩽ 2𝑛𝛿−

1
2 .

(2) If 𝑄 ∈ RH𝑞(P) for some 𝑞 ∈ (1,∞), then one has, for 𝜆 ⩾ 1 and 𝑎 ∈ [0, 𝑇 ),

𝑄
(

sup
𝑡∈[𝑎,𝑇 )

|

|

|

𝐸𝑡(𝑔𝜀𝑛 ; 𝜏) − 𝐸𝑎(𝑔𝜀𝑛 ; 𝜏)
|

|

|

> 𝑐𝑛𝛿−
1
2 𝜆𝛷𝑎

|

|

|

|

𝑎
)

⩽ 𝑐

⎧

⎪

⎨

⎪

⎩

e−
𝜆
𝑐 ∶ (C1)

e−
| ln 𝜆|2
𝑐 ∶ (C2)

where 𝑐 = 𝑐(𝑇 , 𝜃, 𝜎, 𝑞, ‖d𝑄∕dP‖RH𝑞 (P)) > 0 in case (C1), and in case (C2) we additionally assume 𝑄 ∈ RH𝜉∞(P) and get 
𝑐 = 𝑐(𝑇 , 𝜃, 𝜎, 𝑞, 𝜉) > 0.

Corollary  1.4 is proven in Section 7.8. Here 𝑄 ∈ RH𝑞(P) and 𝑄 ∈ RH𝜉∞(P) mean that the Radon–Nikodym derivative d𝑄∕dP
satisfies a reverse Hölder inequality (see Definitions  2.4 and 5.5). 

Remark 1.5.  In Corollary  1.4 we see that 14 > 𝛿 ↓ 0 implies 1 > 𝜃 ↓ 0, so that Theorem  1.3 becomes essential for small 𝜃. Without 
Corollary  1.2 and only using [14], which considers equidistant time-nets for Lipschitz terminal conditions, would necessary yield to 
𝜃 = 1 and therefore to 𝛿 = 1∕4 in the proof of Corollary  1.4. So the rate would be only 𝑛− 1

4 , while we get 𝑛𝛿− 1
2  for any 𝛿 ∈ (0, 1∕4)

in this article.
Sections 6 and 7 contain proofs of the results presented before. In Section 8 we provide some auxiliary results, in particular with 

Section 8.1 the necessary connections to [14] regarding the BMO-spaces and the weights from 𝑝.

2. Preliminaries

2.1. General notation

We let N ∶= {1, 2,…} and N0 ∶= N∪{0}. For 𝑎, 𝑏 ∈ R we use 𝑎∨ 𝑏 ∶= max{𝑎, 𝑏}, 𝑎∧ 𝑏 ∶= min{𝑎, 𝑏}, 𝑎+ ∶= 𝑎∨0, 𝑎− ∶= (−𝑎) ∨ 0, and 
for 𝐴,𝐵 ⩾ 0 and 𝑐 ⩾ 1 the notation 𝐴 ∼𝑐 𝐵 for 1𝑐𝐵 ⩽ 𝐴 ⩽ 𝑐𝐵. The corresponding one-sided inequalities are abbreviated by 𝐴 ⪰𝑐 𝐵
and 𝐴 ⪯𝑐 𝐵 and we agree about 00 ∶= 1. Given a metric space 𝑀 , (𝑀) denotes the Borel 𝜎-algebra generated by the open sets. 
For a probability space (𝛺, ,P) and a measurable map 𝑋 ∶ 𝛺 → R𝑑 , where R𝑑 is equipped with (R𝑑 ), the law of 𝑋 is denoted by 
P𝑋 . For 𝑝 ∈ (0,∞] and a measure space (𝛺, , 𝜇) we use the standard Lebesgue spaces 𝐋𝑝(𝛺, , 𝜇) and omit parts of (𝛺, , 𝜇) in the 
notation if there is no risk of confusion. For a set 𝐴 ∈  with 𝜇(𝐴) ∈ (0,∞) we let 𝜇𝐴 be the normalized restriction of 𝜇 to the trace 
𝜎-algebra  |𝐴.

2.2. Interpolation spaces

Let (𝐸0, 𝐸1) be a couple of Banach spaces over R such that 𝐸0 and 𝐸1 are continuously embedding into some topological 
Hausdorff space 𝑋 ((𝐸0, 𝐸1) is called an interpolation couple). We equip 𝐸0 + 𝐸1 ∶= {𝑥 = 𝑥0 + 𝑥1 ∶ 𝑥𝑖 ∈ 𝐸𝑖} with the norm 
‖𝑥‖𝐸0+𝐸1

∶= inf{‖𝑥0‖𝐸0
+ ‖𝑥1‖𝐸1

∶ 𝑥𝑖 ∈ 𝐸𝑖, 𝑥 = 𝑥0 + 𝑥1} and 𝐸0 ∩ 𝐸1 with the norm ‖𝑥‖𝐸0∩𝐸1
∶= max{‖𝑥‖𝐸0

, ‖𝑥‖𝐸1
} to get Banach 

spaces 𝐸0 ∩ 𝐸1 ⊆ 𝐸0 + 𝐸1. For 𝑥 ∈ 𝐸0 + 𝐸1 and 𝑣 ∈ (0,∞) we define the 𝐾-functional
𝐾(𝑣, 𝑥;𝐸0, 𝐸1) ∶= inf{‖𝑥0‖𝐸0

+ 𝑣‖𝑥1‖𝐸1
∶ 𝑥 = 𝑥0 + 𝑥1},

which is continuous in 𝑣. Given (𝜃, 𝑞) ∈ (0, 1) × [1,∞] we set 
(𝐸0, 𝐸1)𝜃,𝑞 ∶=

{

𝑥 ∈ 𝐸0 + 𝐸1 ∶
‖

‖

‖

𝑣 ↦ 𝑣−𝜃𝐾(𝑣, 𝑥;𝐸0, 𝐸1)
‖

‖

‖𝐋𝑞
(

(0,∞), d𝑣𝑣
) <∞

}

(2.1)

and ‖𝑥‖(𝐸0 ,𝐸1)𝜃,𝑞 ∶= ‖

‖

𝑣 ↦ 𝑣−𝜃𝐾(𝑣, 𝑥;𝐸0, 𝐸1)‖‖𝐋𝑞
(

(0,∞), d𝑣𝑣
). We obtain a family of Banach spaces 

(

(𝐸0, 𝐸1)𝜃,𝑞 , ‖ ⋅ ‖(𝐸0 ,𝐸1)𝜃,𝑞

)

 with the 
lexicographical ordering 

(𝐸0, 𝐸1)𝜃,𝑞0 ⊆ (𝐸0, 𝐸1)𝜃,𝑞1 for all 𝜃 ∈ (0, 1) and 1 ⩽ 𝑞0 < 𝑞1 ⩽ ∞, (2.2)

with 
‖𝑥‖(𝐸0 ,𝐸1)𝜃,𝑞1

⩽ 𝑐(2.3)‖𝑥‖(𝐸0 ,𝐸1)𝜃,𝑞0
(2.3)

where 𝑐(2.3) = 𝑐(2.3)(𝜃, 𝑞0, 𝑞1) > 0, and, under the additional assumption that 𝐸1 ⊆ 𝐸0 with ‖𝑥‖𝐸0
⩽ 𝑐‖𝑥‖𝐸1

 for some 𝑐 > 0,

(𝐸 ,𝐸 ) ⊆ (𝐸 ,𝐸 ) for all 0 < 𝜃 < 𝜃 < 1 and 𝑞 , 𝑞 ∈ [1,∞].
0 1 𝜃0 ,𝑞0 0 1 𝜃1 ,𝑞1 1 0 0 1
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For more information about real interpolation the reader is referred to [15,16,19]. Given a Banach space 𝐸 and (𝑞, 𝑠) ∈ [1,∞] × R, 
we will use the Banach spaces 

𝓁𝑠𝑞(𝐸) ∶= {(𝑥𝑘)∞𝑘=0 ⊆ 𝐸 ∶ ‖(2𝑘𝑠‖𝑥𝑘‖𝐸 )
∞
𝑘=0‖𝓁𝑞

<∞}

with ‖(𝑥𝑘)∞𝑘=0‖𝓁𝑠𝑞 (𝐸) ∶= ‖(2𝑘𝑠‖𝑥𝑘‖𝐸 )
∞
𝑘=0‖𝓁𝑞

 and 𝓁𝑞 being the standard Lorentz sequence space, and the notation 𝓁𝑞(𝐸) ∶= 𝓁0
𝑞 (𝐸). For 

𝑞0, 𝑞1, 𝑞 ∈ [1,∞] and 𝑠0, 𝑠1 ∈ R with 𝑠0 ≠ 𝑠1, and 𝜃 ∈ (0, 1), one has according to [15, Theorem 5.6.1] that 

(𝓁𝑠0𝑞0 (𝐸),𝓁
𝑠1
𝑞1 (𝐸))𝜃,𝑞 = 𝓁𝑠𝑞(𝐸) where 𝑠 ∶= (1 − 𝜃)𝑠0 + 𝜃𝑠1 (2.4)

and there is a 𝑐(2.5) ⩾ 1 that depends at most on (𝑠0, 𝑠1, 𝑞0, 𝑞1, 𝜃, 𝑞) such that 

‖ ⋅ ‖𝓁𝑠𝑞 (𝐸) ∼𝑐(2.5) ‖ ⋅ ‖(𝓁𝑠0𝑞0 (𝐸),𝓁
𝑠1
𝑞1
(𝐸))𝜃,𝑞

. (2.5)

2.3. Function spaces

Given ∅ ≠ 𝐴 ∈ (R), we let 𝐵𝑏(𝐴) be the Banach space of bounded Borel functions 𝑓 ∶𝐴→ R with ‖𝑓‖𝐵𝑏(𝐴) ∶= sup𝑥∈𝐴 |𝑓 (𝑥)|, 𝐶0
𝑏 (R)

be the closed subspace of 𝐵𝑏(R) of continuous functions vanishing at zero, and 𝐶∞
𝑏 (R) ⊆ 𝐵𝑏(R) the infinitely often differentiable 

functions such that the derivatives satisfy 𝑓 (𝑘) ∈ 𝐵𝑏(R), 𝑘 ⩾ 1. The space 𝐶1(R) consists of differentiable functions with continuous 
derivative and 𝐶∞(R) of the functions that are infinitely often differentiable. For 𝜃 ∈ [0, 1] we use the Hölder spaces

Höl𝜃(R) ∶=
{

𝑓 ∶ R → R Borel function ∶ |𝑓 |𝜃 ∶= sup
𝑥≠𝑦

|𝑓 (𝑥) − 𝑓 (𝑦)|
|𝑥 − 𝑦|𝜃

< ∞
}

,

Höl0𝜃(R) ∶= {𝑓 ∈ Höl𝜃(R) ∶ 𝑓 (0) = 0},

Höl𝜃,𝑞(R) ∶= (𝐶0
𝑏 (R),Höl

0
1(R))𝜃,𝑞 for (𝜃, 𝑞) ∈ (0, 1) × [1,∞].

The space Höl0(R) is the space of bounded Borel functions, but equipped with the semi-norm |𝑓 |0 ∶= sup𝑥,𝑦∈R |𝑓 (𝑥) − 𝑓 (𝑦)|. This 
norm is the correct one for Theorem  5.9. To shorten the notation we will use

|𝑓 |𝜃,𝑞 ∶= ‖𝑓‖Höl𝜃,𝑞 (R).

Note that if we use the Banach space 𝐶0
𝑏 (R) + Höl

0
1(R), then we see that (𝐶0

𝑏 (R),Höl
0
1(R)) forms an interpolation pair. Moreover, by 

the above definitions we obtain Banach spaces (Höl0𝜃(R), | ⋅ |𝜃) and for 𝜃 ∈ (0, 1) we have that Höl𝜃,∞(R) = Höl0𝜃(R) with equivalent 
norms up to a multiplicative constant (a direct proof can be obtained by an adaptation of [20, Lemma A.3], see also [19, Theorem 
2.7.2/1]). The fine line between different fine-indices 𝑞 is illustrated in Section 8.4. The following inclusions regarding different 
indices for the Hölder continuity will be used:

Remark 2.1.  For 𝜃 ∈ (0, 1) and 1 ⩽ 𝑞0 ⩽ 𝑞1 ⩽ ∞, by (2.2), it holds
Höl𝜃,𝑞0 (R) ⊆ Höl𝜃,𝑞1 (R).

Moreover, for 0 < 𝜃0 < 𝜃1 < 1 and 𝑞 ∈ [1,∞] one has that 

Höl𝜃1 ,∞(R) ⊆ Höl𝜃0 ,1(R) +Höl
0
1(R) ⊆ Höl𝜃0 ,𝑞(R) +Höl

0
1(R). (2.6)

Although (2.6) should be folklore, we include its proof in Section 8.5.

2.4. Stochastic basis

We fix a time horizon 𝑇 ∈ (0,∞), let (𝛺, ,P) be a complete probability space equipped with a right continuous filtration 
F = (𝑡)𝑡∈[0,𝑇 ] such that 0 is generated by the P-null sets and  = 𝑇 . For I = [0, 𝑇 ] or I = [0, 𝑇 ) we denote by CL(I) the set of 
F-adapted càdlàg (right continuous with left limits) processes 𝐴 = (𝐴𝑡)𝑡∈I, by CL+(I) the subset of 𝐴 ∈ CL(I) with 𝐴𝑡(𝜔) ⩾ 0 on I×𝛺, 
and by CL0(I) the subset of 𝐴 ∈ CL(I) with 𝐴0 ≡ 0. For 𝐴 ∈ CL(I) we use

(1) 𝐴∗ = (𝐴∗
𝑡 )𝑡∈I with 𝐴∗

𝑡 ∶= sup𝑠∈[0,𝑡] |𝐴𝑠|,
(2) 𝛥𝐴 = (𝛥𝐴𝑡)𝑡∈I with 𝛥𝐴𝑡 ∶= 𝐴𝑡 − 𝐴𝑡−, where 𝐴0− ∶= 𝐴0 and 𝐴𝑡− ∶= lim𝑠<𝑡, 𝑠↑𝑡 𝐴𝑠 for 𝑡 > 0.

We write E [𝜉] for the conditional expectation of 𝜉 given ⊆  (where we exploit extended conditional expectations if 𝜉 is non-
negative) and use P(𝐵) ∶= E [1𝐵

] for 𝐵 ∈  . The usual conditions imposed on F allow us to assume that every martingale 
adapted to this filtration is càdlàg. Given a càdlàg 𝐋2-martingale 𝐴 = (𝐴𝑡)𝑡∈I with 𝐴0 ≡ 0, the sharp bracket process is denoted by 
⟨𝐴⟩ = (⟨𝐴⟩𝑡)𝑡∈I and the square bracket process by [𝐴] = ([𝐴]𝑡)𝑡∈I (see [21, Chapter VII]). Both processes are assumed to be path-wise 
non-negative, càdlàg, and non-decreasing on I, and such that ⟨𝐴⟩0 ≡ [𝐴]0 ≡ 0. In particular, the process ⟨𝐴⟩ = (⟨𝐴⟩𝑡)𝑡∈I is the unique 
(up to indistinguishability) non-decreasing, predictable, càdlàg process with ⟨𝐴⟩0 ≡ 0 such that (𝐴2

𝑡 − ⟨𝐴⟩𝑡)𝑡∈I is a martingale.
Given 𝑞 ∈ (1,∞), we say that an (𝑡)𝑡∈[0,𝑇 )-martingale 𝐴 = (𝐴𝑡)𝑡∈[0,𝑇 ) is closable in 𝐋𝑞 provided that (𝐴𝑡)𝑡∈[0,𝑇 ) converges in 𝐋𝑞 as 

𝑡 ↑ 𝑇 . This is equivalent to sup ‖𝐴 ‖ < ∞, see [22, Corollary 7.22].
𝑡∈[0,𝑇 ) 𝑡 𝐋𝑞

6 
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2.5. Bounded mean oscillation and regular weights

We use the following weighted bmo-spaces, where we agree about inf ∅ ∶= ∞ in this subsection.

Definition 2.2.  For 𝑝 ∈ (0,∞), 𝐴 ∈ CL0([0, 𝑇 )), and 𝛷 ∈ CL+([0, 𝑇 )) we let

‖𝐴‖bmo𝛷𝑝 [0,𝑇 )
∶= inf

{

𝑐 ∈ [0,∞) ∶
E𝑎

[

|𝐴𝑡 − 𝐴𝑎|𝑝
]

⩽ 𝑐𝑝𝛷𝑝
𝑎 a.s.

 for all 0 ⩽ 𝑎 ⩽ 𝑡 < 𝑇

}

.

If ‖𝐴‖bmo𝛷𝑝 [0,𝑇 )
< ∞., then we write 𝐴 ∈ bmo𝛷𝑝 [0, 𝑇 ). In particular, for 𝛷 ≡ 1 we use the notation bmo𝑝[0, 𝑇 ). To normalize a process 

to start at zero to be measured in bmo, we use 𝐴 − 𝐴0 to denote the process (𝐴𝑡 − 𝐴0)𝑡∈[0,𝑇 ).

In stochastic process theory there are two classes of spaces of bounded mean oscillation which are frequently used, namely, 
bmo and BMO. In their definitions bmo uses the increments 𝐴𝑡 − 𝐴𝜌, whereas BMO uses 𝐴𝑡 − 𝐴𝜌−, where 𝜌 ∶ 𝛺 → [0, 𝑡] is a 
stopping time (cf. Definition  8.2 and Proposition  8.3 for their relations in our framework). In general, the spaces bmo and BMO
are significantly different, even in discrete time. In fact, the bmo-spaces are more convenient to work with, however, to obtain good 
distributional properties of the process via a John–Nirenberg type theorem one needs to use the BMO-spaces in general. Therefore, 
in this article we mainly work with the bmo-norms, and in the applications when 𝐴 = (𝐴𝑡)𝑡∈[0,𝑇 ) has continuous trajectories, we 
can achieve the good distributional properties for 𝐴 because both bmo- and BMO-norm coincide as 𝐴𝜌− = 𝐴𝜌. For the theory of 
classical non-weighted BMO-martingales and applications we refer exemplary to [21, Ch.VII], [23, Ch.IV], and [24, Section X.1]. 
Non-weighted bmo-martingales were mentioned in [21, Ch.VII, Remark 87] and used after that in [25,26]. The BMO𝛷𝑝 -spaces, which 
we will exploit later to obtain tail-estimates and which coincide with the bmo𝛷𝑝 -spaces for continuous processes, were introduced 
and discussed in [14].

Next we recall (and adapt) the class 𝑝, introduced in [14, Definition 3]:

Definition 2.3.  For 𝑝 ∈ (0,∞) and 𝛷 ∈ CL+([0, 𝑇 )) we let ‖𝛷‖𝑝([0,𝑇 )) ∶= inf 𝑐, where the infimum is taken over all 𝑐 ∈ [1,∞)
such that for all 𝑎 ∈ [0, 𝑇 ) one has

E𝑎

[

sup
𝑡∈[𝑎,𝑇 )

𝛷𝑝
𝑡

]

⩽ 𝑐𝑝𝛷𝑝
𝑎 a.s.

If ‖𝛷‖𝑝([0,𝑇 )) < ∞, then we write 𝛷 ∈ 𝑝([0, 𝑇 )).

By choosing 𝑎 = 0, 𝛷 ∈ 𝑝([0, 𝑇 )) implies E sup𝑡∈[0,𝑇 )𝛷
𝑝
𝑡 < ∞. Moreover, it follows directly from the definition that 

𝑝([0, 𝑇 )) ⊆ 𝑟([0, 𝑇 )) whenever 0 < 𝑟 ⩽ 𝑝 < ∞. If 𝑝 ∈ (1,∞) and 𝛷 is a martingale, then 𝛷 ∈ 𝑝([0, 𝑇 )) is equivalent 
to the standard reverse Hölder condition E𝑎

[

𝛷𝑝
𝑡
]

⩽ 𝑑𝑝𝛷𝑝
𝑎 a.s. for 0 ⩽ 𝑎 ⩽ 𝑡 < 𝑇 . For this article we need to make the connection 

from Definitions  2.2 and 2.3 to the setting of [14], which is done in Section 8.1.

2.6. Reverse Hölder condition and bmo

Definition 2.4.  A probability measure 𝑄 on (𝛺, ,P) satisfies a reverse Hölder inequality with exponent 𝑞 ∈ (1,∞) if d𝑄 = dP
with  > 0 on 𝛺 and  ∈ 𝐋𝑞(P), and if there is a 𝑐 > 0 such that

𝑞
√

E𝑎 [𝑞] ⩽ 𝑐 E𝑎 []  a.s. for all 𝑎 ∈ [0, 𝑇 ].

In this case we let ‖d𝑄∕dP‖RH𝑞 (P) ∶= inf 𝑐 where the infimum is taken over all 𝑐 > 0 as above and we write 𝑄 ∈ RH𝑞(P).

If we define ‖ ⋅ ‖bmo𝛷,𝑄𝑟 [0,𝑇 ) as in Definition  2.2, but under the measure 𝑄, then, for 0 < 𝑟 < 𝑝 < ∞ a direct application of the 
conditional Hölder inequality yields 

‖ ⋅ ‖bmo𝛷,𝑄𝑟 [0,𝑇 ) ⩽ 𝑟

√

‖d𝑄∕dP‖RH 𝑝
𝑝−𝑟

(P)‖ ⋅ ‖bmo𝛷𝑝 [0,𝑇 )
. (2.7)

2.7. Uniform quantization and time-nets

For 𝜃 ∈ (0, 1] and 𝑛 ∈ N we introduce the non-uniform time-nets 𝜏𝜃𝑛 = {𝑡𝜃𝑖,𝑛}
𝑛
𝑖=0 with 

𝑡𝜃𝑖,𝑛 ∶= 𝑇 − 𝑇 (1 − (𝑖∕𝑛))1∕𝜃 (2.8)

for 𝑖 = 0,… , 𝑛, that are characterized by the uniform quantization property

𝜃
𝑇 𝜃 ∫

𝑡𝜃𝑖,𝑛

𝑡𝜃𝑖−1,𝑛

(𝑇 − 𝑢)𝜃−1d𝑢 = 1
𝑛

for 𝑖 = 1,… , 𝑛.

We define the set of all deterministic time-nets
 ∶= {𝜏 = {𝑡 }𝑛 ∶ 0 = 𝑡 < 𝑡 <⋯ < 𝑡 = 𝑇 , 𝑛 ∈ N}
𝑖 𝑖=0 0 1 𝑛
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and, for 𝜃 ∈ (0, 1] and 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈  ,

‖𝜏‖𝜃 ∶= sup
𝑖=1,…,𝑛

𝑡𝑖 − 𝑡𝑖−1
(𝑇 − 𝑡𝑖−1)1−𝜃

.

Note that 

‖𝜏𝜃𝑛‖1 ⩽
𝑇
𝜃𝑛

and ‖𝜏𝜃𝑛‖𝜃 ⩽
𝑇 𝜃

𝜃𝑛
. (2.9)

3. Riemann–Liouville type operators

As described in the introduction we shall not use the concept of fractional martingales, instead the following different approach: 

Definition 3.1.  For 𝛼 > 0 and a càdlàg function 𝐾 ∶ [0, 𝑇 ) → R we define 𝛼𝐾 ∶= (𝛼𝑡 𝐾)𝑡∈[0,𝑇 ) by 

𝛼𝑡 𝐾 ∶= 𝛼
𝑇 𝛼 ∫

𝑇

0
(𝑇 − 𝑢)𝛼−1𝐾𝑢∧𝑡d𝑢. (3.1)

Moreover, for 𝛼 = 0 we let 0
𝑡 𝐾 ∶= 𝐾𝑡.

The càdlàg property implies the boundedness of 𝐾 on any compact interval of [0, 𝑇 ). Therefore, 𝛼𝐾 is well-defined and càdlàg 
on [0, 𝑇 ), i.e. 𝛼 operates from the space of càdlàg functions to the space of càdlàg functions on [0, 𝑇 ). The above definition can be 
re-formulated in terms of the classical Riemann–Liouville operator 𝛼

𝑎 (𝑓 ) ∶=
1

𝛤 (𝛼) ∫
𝑎
0 (𝑎 − 𝑢)𝛼−1𝑓 (𝑢)d𝑢 by

𝛼
𝑇 (𝐾

(𝑡)) = 𝑇 𝛼

𝛤 (𝛼 + 1)
𝛼𝑡 𝐾 with 𝐾 (𝑡)

𝑢 ∶= 𝐾𝑢∧𝑡

where we compute the Riemann–Liouville operator, applied to the function 𝑢 ↦ 𝐾 (𝑡)
𝑢 , at 𝑎 = 𝑇 . We use a different normalization as 

we want to interpret the kernel in the Riemann–Liouville integral as density of a probability measure. The following statement is 
obvious, but useful and important to reveal the group structure of the Riemann–Liouville type operators:

Proposition 3.2.  For 𝛼 ⩾ 0 and 𝑡 ∈ [0, 𝑇 ) one has 

𝛼𝑡 𝐾 = 𝛼
𝑇 𝛼 ∫

𝑡

0
(𝑇 − 𝑢)𝛼−1𝐾𝑢d𝑢 +

(𝑇 − 𝑡
𝑇

)𝛼
𝐾𝑡. (3.2)

In the main part of the article we only need 𝛼𝐾 for 𝛼 ⩾ 0. However, to derive an inversion formula we extend the definition 
by (3.2) to the case 𝛼 < 0 and prove that there is a group structure behind:

Proposition 3.3.  Define for 𝛼 < 0, a càdlàg function 𝐾 ∶ [0, 𝑇 ) → R, and 𝑡 ∈ [0, 𝑇 ), 𝛼𝑡 𝐾 by formula (3.2). Then

(1) 𝛼𝑡 (
𝛽𝐾) = 𝛼+𝛽𝑡 𝐾 for all 𝛼, 𝛽 ∈ R,

(2) −𝛼
𝑡 (𝛼𝐾) = 𝐾𝑡 for all 𝛼 ∈ R.

Proof.  As (2) follows from (1), we only verify (1), which follows from

𝛼𝑡 (
𝛽𝐾) = 𝛼

𝑇 𝛼 ∫

𝑡

0
(𝑇 − 𝑢)𝛼−1𝛽𝑢𝐾d𝑢 +

(𝑇 − 𝑡
𝑇

)𝛼
𝛽𝑡 𝐾

= 𝛼
𝑇 𝛼 ∫

𝑡

0
(𝑇 − 𝑢)𝛼−1

(

𝛽
𝑇 𝛽 ∫

𝑢

0
(𝑇 − 𝑣)𝛽−1𝐾𝑣d𝑣 +

(𝑇 − 𝑢
𝑇

)𝛽
𝐾𝑢

)

d𝑢

+
(𝑇 − 𝑡

𝑇

)𝛼 ( 𝛽
𝑇 𝛽 ∫

𝑡

0
(𝑇 − 𝑢)𝛽−1𝐾𝑢d𝑢 +

(𝑇 − 𝑡
𝑇

)𝛽
𝐾𝑡

)

=
𝛽

𝑇 𝛼+𝛽 ∫

𝑡

0
(𝑇 − 𝑣)𝛼+𝛽−1𝐾𝑣d𝑣 −

𝛽(𝑇 − 𝑡)𝛼

𝑇 𝛼+𝛽 ∫

𝑡

0
(𝑇 − 𝑣)𝛽−1𝐾𝑣d𝑣

+ 𝛼
𝑇 𝛼+𝛽 ∫

𝑡

0
(𝑇 − 𝑢)𝛼+𝛽−1𝐾𝑢d𝑢

+
𝛽(𝑇 − 𝑡)𝛼

𝑇 𝛼+𝛽 ∫

𝑡

0
(𝑇 − 𝑢)𝛽−1𝐾𝑢d𝑢 +

(𝑇 − 𝑡
𝑇

)𝛼+𝛽
𝐾𝑡

= 𝛼+𝛽𝑡 𝐾. □

We continue with some more structural properties:

Proposition 3.4.  For a càdlàg function 𝐾 ∶ [0, 𝑇 ) → R and 𝑡 ∈ [0, 𝑇 ) one has:
(1) lim 𝛼𝐾 = 𝐾 .
𝛼↓0 𝑡 𝑡
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(2) lim𝛼↑∞ 𝛼𝑡 𝐾 = 𝐾0.
(3) 𝛥𝛼𝑡 𝐾 =

(

𝑇−𝑡
𝑇

)𝛼
𝛥𝐾𝑡 for 𝛼 ∈ R.

Proof. (1) and (3) follow from Eq.  (3.2). To verify (2) we use the probability measure 𝜇𝛼(d𝑢) ∶= 𝛼
𝑇 𝛼 (𝑇 − 𝑢)𝛼−1d𝑢 on [0, 𝑇 ) and 

observe that lim𝛼→∞ 𝜇𝛼([0, 𝜀]) = 1 for all 𝜀 ∈ (0, 𝑇 ). As 𝛼𝑡 𝐾 = ∫ 𝑇0 𝐾𝑢∧𝑡𝜇𝛼(d𝑢) the càdlàg property of 𝐾 gives (2). □

With the next statement we derive properties of 𝐾 from properties of 𝛼𝐾:

Proposition 3.5.  For 𝛼 > 0, a càdlàg function 𝐾 ∶ [0, 𝑇 ) → R, and 0 ⩽ 𝑠 < 𝑡 < 𝑇  we have 

𝐾𝑡 −𝐾𝑠 =
( 𝑇
𝑇 − 𝑡

)𝛼
(

𝛼𝑡 𝐾 − 𝛼𝑠𝐾
)

− 𝛼𝑇 𝛼 ∫

𝑡

𝑠
(𝑇 − 𝑢)−𝛼−1

(

𝛼𝑢𝐾 − 𝛼𝑠𝐾
)

d𝑢. (3.3)

Consequently the following holds:

(1) |𝐾𝑡 −𝐾𝑠| ⩽ 2
(

𝑇
𝑇−𝑡

)𝛼
sup𝑢∈[𝑠,𝑡] ||𝛼𝑢𝐾 − 𝛼𝑠𝐾|

|

.

(2) If 𝛼𝑇𝐾 ∶= lim𝑡↑𝑇 𝛼𝑡 𝐾 ∈ R does exist, then lim𝑡↑𝑇 (𝑇 − 𝑡)𝛼𝐾𝑡 = 0.

Proof.  To verify relation (3.3) we define 𝐿𝑡 ∶= 𝛼𝑡 𝐾 for 𝑡 ∈ [0, 𝑇 ), express 𝐾𝑡 −𝐾𝑠 as −𝛼
𝑡 𝐿 − −𝛼

𝑠 𝐿, and use (3.2) to get

−𝛼
𝑡 𝐿 − −𝛼

𝑠 𝐿=
( 𝑇
𝑇 − 𝑡

)𝛼
𝐿𝑡 −

( 𝑇
𝑇 − 𝑠

)𝛼
𝐿𝑠

−𝛼𝑇 𝛼 ∫

𝑡

0
(𝑇 − 𝑢)−𝛼−1𝐿𝑢d𝑢 + 𝛼𝑇 𝛼 ∫

𝑠

0
(𝑇 − 𝑢)−𝛼−1𝐿𝑢d𝑢

=
( 𝑇
𝑇 − 𝑡

)𝛼
𝐿𝑡 −

( 𝑇
𝑇 − 𝑠

)𝛼
𝐿𝑠 − 𝛼𝑇 𝛼 ∫

𝑡

𝑠
(𝑇 − 𝑢)−𝛼−1𝐿𝑢d𝑢

=
( 𝑇
𝑇 − 𝑡

)𝛼
(𝐿𝑡 − 𝐿𝑠) − 𝛼𝑇 𝛼 ∫

𝑡

𝑠
(𝑇 − 𝑢)−𝛼−1(𝐿𝑢 − 𝐿𝑠)d𝑢.

Now claim (1) follows from (3.3). For claim (2) we use
(𝑇 − 𝑡

𝑇

)𝛼
𝐾𝑡 = 𝛼𝑡 𝐾 − ∫

𝑡

0
(𝛼𝑢𝐾)

(

𝛼
(𝑇 − 𝑡)𝛼

(𝑇 − 𝑢)𝛼+1

)

d𝑢,

lim𝑡↑𝑇 ∫ 𝑡0
(

𝛼 (𝑇−𝑡)𝛼

(𝑇−𝑢)𝛼+1

)

d𝑢 = 1, and that lim𝑡↑𝑇 sup𝑢∈[0,𝑣]
(𝑇−𝑡)𝛼

(𝑇−𝑢)𝛼+1
= 0 for all 𝑣 ∈ [0, 𝑇 ). □

If the function 𝐾 is a path of a càdlàg semi-martingale 𝐿 (see [24, Chapter VIII]) we obtain a fractional semi-martingale transform:

Proposition 3.6.  For 𝛼 ⩾ 0, a càdlàg semi-martingale 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ), and 0 ⩽ 𝑎 < 𝑡 < 𝑇  one has 

𝛼𝑡 𝐿 = 𝐿0 + ∫(0,𝑡]

(𝑇 − 𝑢
𝑇

)𝛼
d𝐿𝑢 a.s. (3.4)

Proof.  As the case 𝛼 = 0 is evident we assume 𝛼 > 0. We apply integration by parts [24, Corollary 9.34] to 
((

𝑇−𝑡
𝑇

)𝛼
𝐿𝑡

)

𝑡∈[0,𝑇 )
 and 

obtain, for 𝑡 ∈ [0, 𝑇 ), that
(𝑇 − 𝑡

𝑇

)𝛼
𝐿𝑡 = 𝐿0 + ∫(0,𝑡]

(𝑇 − 𝑢
𝑇

)𝛼
d𝐿𝑢 −

𝛼
𝑇 𝛼 ∫(0,𝑡]

(𝑇 − 𝑢)𝛼−1𝐿𝑢−d𝑢 a.s.

Because 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) has 𝜔-wise only countably many jumps, we can replace 𝐿𝑢− by 𝐿𝑢 in the last term. Then, taking this term to 
the left side and using (3.2), we obtain (3.4). □

Now Proposition  3.3 (1) for 𝛼, 𝛽 ⩾ 0 can be understood from Eq.  (3.4) in the semi-martingale setting. The operator 𝛼 preserves 
the (super-, sub-) martingale property, which can be checked directly from its definition so that we leave out the proof:

Proposition 3.7.  If 𝛼 ⩾ 0 and 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) is a càdlàg martingale (càdlàg super-, or sub-martingale), then (𝛼𝑡 𝐿)𝑡∈[0,𝑇 ) is a càdlàg 
martingale (càdlàg super-, or sub-martingale).

It might be of future interest, that the Riemann–Liouville type operator 𝛼 turns into a multiplier when commuting with the 
horizontal and vertical derivative in the path-dependent setting:

Remark 3.8.  Let 𝐷 be the space of all càdlàg functions 𝑥 = (𝑥(𝑢))𝑢∈[0,𝑇 ) ∶ [0, 𝑇 ) → R. For 𝑥 ∈ 𝐷 and 𝑡 ∈ [0, 𝑇 ) we define the 
horizontal modification 𝑥⃗𝑡 by 𝑥⃗𝑡(𝑢) ∶= 𝑥(𝑢 ∧ 𝑡) and the vertical modification 𝑥ℎ𝑡  by 𝑥ℎ𝑡 (𝑢) ∶= 𝑥(𝑢) + 1[𝑡,𝑇 )(𝑢)ℎ. Let 𝑍 ∶ [0, 𝑇 ) × 𝐷 → R
such that 𝑍(⋅, 𝑥) ∈ 𝐷 for 𝑥 ∈ 𝐷 and such that 𝑍 is non-anticipating, i.e. 𝑍(𝑡, 𝑥) = 𝑍(𝑡, 𝑥⃗𝑡). Then the horizontal and vertical derivatives 
may be defined as (𝜕𝑍∕𝜕𝑡)(𝑡, 𝑥) ∶= limℎ↓0,ℎ<𝑇−𝑡

𝑍(𝑡+ℎ,𝑥⃗𝑡)−𝑍(𝑡,𝑥)
ℎ  and (𝜕𝑍∕𝜕𝑥)(𝑡, 𝑥) ∶= limℎ→0

𝑍(𝑡,𝑥ℎ𝑡 )−𝑍(𝑡,𝑥)
ℎ  if the corresponding limit exist 

(see [3]). Then one has 
𝜕 (𝛼𝑍) =

(𝑇 − 𝑡)𝛼 ( 𝜕𝑍 )

and 𝜕 (𝛼𝑍) =
(𝑇 − 𝑡)𝛼 ( 𝜕𝑍 )

, (3.5)

𝜕𝑡 𝑇 𝜕𝑡 𝜕𝑥 𝑇 𝜕𝑥
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provided that all the corresponding limits exist. To check this one observes that

(𝛼𝑍)(𝑡, 𝑥) = ∫[0,𝑡)
𝑍(𝑢, 𝑥) 𝛼

𝑇 𝛼
(𝑇 − 𝑢)𝛼−1d𝑢 +

(𝑇 − 𝑡
𝑇

)𝛼
𝑍(𝑡, 𝑥).

Then the second relation in (3.5) is obvious and the first one follows from

𝑍(𝑡, 𝑥) 𝛼
𝑇 𝛼

(𝑇 − 𝑡)𝛼−1 − 𝛼
𝑇 𝛼

(𝑇 − 𝑡)𝛼−1𝑍(𝑡, 𝑥) +
(𝑇 − 𝑡

𝑇

)𝛼 𝜕𝑍
𝜕𝑡

(𝑡, 𝑥)

=
(𝑇 − 𝑡

𝑇

)𝛼 𝜕𝑍
𝜕𝑡

(𝑡, 𝑥).

For later use in the article we need the following quantitative relations:

Proposition 3.9.  For 𝛼 > 0, a càdlàg martingale 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) ⊆ 𝐋2 and 0 ⩽ 𝑎 < 𝑡 < 𝑇  one has, a.s.,

E𝑎
[

|

|

𝛼𝑡 𝐿 − 𝛼𝑎𝐿||
2
]

= 2𝛼E𝑎
[

∫

𝑇

𝑎
|𝐿𝑢∧𝑡 − 𝐿𝑎|2

(𝑇 − 𝑢
𝑇

)2𝛼−1 d𝑢
𝑇

]

, (3.6)

E𝑎
[

|

|

𝛼𝑡 𝐿 − 𝛼𝑎𝐿||
2
]

+
(𝑇 − 𝑎

𝑇

)2𝛼
|𝐿𝑎|

2 = 2𝛼E𝑎
[

∫

𝑇

𝑎
|𝐿𝑢∧𝑡|

2
(𝑇 − 𝑢

𝑇

)2𝛼−1 d𝑢
𝑇

]

. (3.7)

Proof.  For (3.6) we exploit (3.4) and Itô’s isometry to get, a.s.,

E𝑎
[

|

|

𝛼𝑡 𝐿 − 𝛼𝑎𝐿||
2
]

= E𝑎
[

∫(𝑎,𝑡]

(𝑇 − 𝑢
𝑇

)2𝛼
d[𝐿]𝑢

]

(3.8)

= 2𝛼
𝑇 2𝛼

E𝑎
[

∫(𝑎,𝑡] ∫[𝑢,𝑇 )
(𝑇 − 𝑣)2𝛼−1d𝑣d[𝐿]𝑢

]

= 2𝛼
𝑇 2𝛼

E𝑎
[

∫(𝑎,𝑇 ) ∫(𝑎,𝑣∧𝑡]
d[𝐿]𝑢(𝑇 − 𝑣)2𝛼−1d𝑣

]

= 2𝛼
𝑇 2𝛼

E𝑎
[

∫(𝑎,𝑇 )
|𝐿𝑣∧𝑡 − 𝐿𝑎|2(𝑇 − 𝑣)2𝛼−1d𝑣

]

.

Relation (3.7) follows directly from (3.6) and the orthogonality of 𝐿𝑢∧𝑡 − 𝐿𝑎 and 𝐿𝑎. □

4. Riemann–Liouville type operators and approximation of càdlàg martingales

Various 𝐋𝑝-approximation problems in stochastic integration theory can be translated by the Burkholder–Davis–Gundy inequali-
ties into problems about quadratic variation processes. In the special case of 𝐋2-approximations this is particularly useful as there is a 
chance to turn the approximation problem into – in a sense – more deterministic problem by Fubini’s theorem when the interchange 
of the integration in time and in 𝜔 is possible. When 𝑝 ≠ 2 this does not work (at least) in this straight way, see for example [11]. 
However, passing from global 𝐋2-estimates to weighted local 𝐋2-estimates, i.e. weighted bounded mean oscillation estimates, and 
exploiting a weighted John–Nirenberg type theorem, gives an approach to 𝐋𝑝- and exponential estimates.

The plan of this section is as follows:

(A) Theorems  4.3 and 4.4 are the key to exploit the local 𝐋2-estimates in the sequel. It turned out that one can formulate these 
theorems in the general setting of random measures (𝛱,𝛶 ). For this we need relation (4.1), which is a general form of the 
identity (4.12), the latter based on the conditional orthogonality of increments of an 𝐋2-martingale.

(B) By Assumption  4.5 we specialize the setting given in Assumption  4.1 so that the measure 𝛱 will describe the quadratic variation 
of the driving process of the stochastic integral to be approximated and 𝛶  will describe some kind of curvature of the stochastic 
integral. As results we obtain Theorem  4.6 and Corollary  4.7.

(C) As an application we provide two approximation results for general càdlàg 𝐋2-martingales: Theorem  4.9 describes a discrete 
time martingale approximation which relates to real interpolation, while Theorem  4.12 provides a regularization, based on 
adapted backward smoothing, leading to local Lipschitz trajectories.

4.1. The general result in terms of random measures

First we introduce the random measures and the quasi-orthogonality (4.1) where we use extended conditional expectations for 
non-negative random variables.

Assumption 4.1.  We assume random measures
𝛱,𝛶 ∶𝛺 × ((0, 𝑇 )) → [0,∞],
10 
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a progressively measurable process (𝜑𝑡)𝑡∈[0,𝑇 ), and a constant 𝜅 ⩾ 1, such that
𝛱(𝜔, (0, 𝑏]) + 𝛶 (𝜔, (0, 𝑏]) + sup

𝑡∈[0,𝑏]
|𝜑𝑡(𝜔)| < ∞

for (𝜔, 𝑏) ∈ 𝛺 × (0, 𝑇 ) and such that, for 0 ⩽ 𝑠 ⩽ 𝑎 < 𝑏 < 𝑇 ,

E𝑎
[

∫(𝑎,𝑏]
|

|

𝜑𝑢 − 𝜑𝑠||
2𝛱(d𝑢)

]

∼𝜅 E𝑎
[

|

|

𝜑𝑎 − 𝜑𝑠||
2𝛱((𝑎, 𝑏]) + ∫(𝑎,𝑏]

(𝑏 − 𝑢)𝛶 (d𝑢)
]

 a.s. (4.1)

When (4.1) holds with ⪯𝜅 , then we denote the inequality by (4.1)⩽, in case of ⪰𝜅 , by (4.1)⩾.
To simplify the notation in some situations we extend 𝛱 and 𝛶  to 𝛱,𝛶 ∶𝛺×((0, 𝑇 ]) → [0,∞] by 𝛱(𝜔, {𝑇 }) = 𝛶 (𝜔, {𝑇 }) = 0 for 

all 𝜔 ∈ 𝛺.

Definition 4.2.  For a random measure 𝛱 ∶𝛺 × ((0, 𝑇 )) → [0,∞] and a progressively measurable process (𝜑𝑡)𝑡∈[0,𝑇 ) such that 
𝛱(𝜔, (0, 𝑏]) + sup𝑡∈[0,𝑏] |𝜑𝑡(𝜔)| < ∞ for (𝜔, 𝑏) ∈ 𝛺 × (0, 𝑇 ) we define for 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈   the càdlàg process [𝜑; 𝜏]𝜋 = ([𝜑; 𝜏]𝜋𝑎 )𝑎∈[0,𝑇 ) by

[𝜑; 𝜏]𝜋𝑎 ∶= ∫(0,𝑎]

|

|

|

|

|

𝜑𝑢 −
𝑛
∑

𝑖=1
𝜑𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢)

|

|

|

|

|

2

𝛱(d𝑢)

and [𝜑; 𝜏]𝜋𝑇 ∶= lim𝑎↑𝑇 [𝜑; 𝜏]𝜋𝑎 ∈ [0,∞]. We also use the notation
[𝜑; 𝜏]𝜋𝑎,𝑏 ∶= [𝜑; 𝜏]𝜋𝑏 − [𝜑; 𝜏]𝜋𝑎 for 0 ⩽ 𝑎 < 𝑏 ⩽ 𝑇

so that, in particular, [𝜑; 𝜏]𝜋0,𝑏 = [𝜑; 𝜏]𝜋𝑏 .

The next two statements, Theorems  4.3 and 4.4, develop further ideas from [10, Lemma 3.8] and [11, Lemma 5.6] to a general 
conditional setting using random measures we exploit in the sequel:

Theorem 4.3 (Upper Bounds).  Suppose Assumption  4.1 with (4.1)⩽. If 𝜃 ∈ (0, 1], 𝜏= {𝑡𝑖}𝑛𝑖=0 ∈  , and 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), then one has, a.s.,

E𝑎
[

[𝜑; 𝜏]𝜋𝑎,𝑇
]

‖𝜏‖𝜃
⩽ 𝜅

E𝑎
[

∫(𝑎,𝑇 )
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢) +

(𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
|𝜑𝑎 − 𝜑𝑡𝑘−1 |

2𝛱((𝑎, 𝑡𝑘])
]

.

Theorem 4.4 (Lower Bounds).  Suppose Assumption  4.1 with (4.1)⩾ and assume 𝜃 ∈ (0, 1].

(1) If 𝜏= {𝑡𝑖}𝑛𝑖=0 ∈  , 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), and ‖𝜏‖𝜃 = 𝑡𝑘−𝑡𝑘−1
(𝑇−𝑡𝑘−1)1−𝜃

, then

E𝑎
[

[𝜑; 𝜏]𝜋𝑎,𝑡𝑘
]

‖𝜏‖𝜃
⩾ 1
𝜅
E𝑎

[

(𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
|𝜑𝑎 − 𝜑𝑡𝑘−1 |

2𝛱((𝑎, 𝑡𝑘])
]

 a.s.

(2) For any 𝑎 ∈ [0, 𝑇 ) there exist 𝜏𝑛 ∈  , 𝑛 ∈ N, with 𝑎 ∈ 𝜏𝑛 and lim𝑛 ‖𝜏𝑛‖𝜃 = 0 such that, a.s., 

lim inf
𝑛

E𝑎
[

[𝜑; 𝜏𝑛]𝜋𝑎,𝑇
]

‖𝜏𝑛‖𝜃
⩾ 1
𝑐(4.2)

E𝑎
[

∫(𝑎,𝑇 )
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢)

]

(4.2)

with 𝑐(4.2) ∶= 4𝜅2
1
𝜃 .

Theorems  4.3 and 4.4 are proven in Section 6. Now we specialize Assumption  4.1 to the settings that will be used in Section 5:

Assumption 4.5.  We assume that there are
(1) a positive, càdlàg, and adapted process (𝜎𝑡)𝑡∈[0,𝑇 ] such that 𝜎∗𝑇 ∈ 𝐋2 and such that there is a 𝑐𝜎 ⩾ 1 with

E𝑎
[

1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝜎2𝑢d𝑢

]

∼𝑐𝜎 𝜎
2
𝑎 a.s. for all 0 ⩽ 𝑎 < 𝑏 ⩽ 𝑇 ,

(2) a càdlàg square integrable martingale 𝑀 = (𝑀𝑡)𝑡∈[0,𝑇 ) with 𝑀0 ≡ 0,
(3) let 𝛱(𝜔, d𝑢) ∶= 𝜎2𝑢 (𝜔)d𝑢 and 𝛶 (𝜔, d𝑢) ∶= d⟨𝑀⟩𝑢(𝜔) for 𝑢 ∈ [0, 𝑇 ), where ⟨𝑀⟩ is the conditional square-function (see Section 2.4),
(4) a 𝜑 ∈ CL([0, 𝑇 )) such that Eq.  (4.1) is satisfied and let [𝜑; 𝜏]𝜎 ∶= [𝜑; 𝜏]𝜋 .

Now we transfer Theorem  4.3 and Theorem  4.4 into the setting of Assumption  4.5, where (4.1)⩽ and (4.1)⩾ simultaneously hold 
(see, for example Lemma  4.8 and Proposition  5.4). In this case the upper and lower bounds of Theorem  4.3 and Theorem  4.4 hold 
simultaneously and are therefore sharp in general:
11 
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Theorem 4.6.  Suppose 𝜃 ∈ (0, 1], 𝛼 ∶= 1−𝜃
2 , that Assumption  4.5 holds, 𝑎 ∈ [0, 𝑇 ), and define 𝑐(4.3) ∶= 𝜅(4𝑇 1−𝜃 ∨ 𝑐𝜎), 𝑐(4.4) ∶= 𝜅𝑐𝜎 , 

𝑐(4.5) ∶= 𝑇 𝜃−116𝜅2
1
𝜃 , and 𝑐(4.6) ∶= 16𝜅2

1
𝜃 . Then the following statements are true:

(1) For all 𝜏= {𝑡𝑖}𝑛𝑖=0 ∈   and 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), one has, a.s.,

E𝑎
[

[𝜑; 𝜏]𝜎𝑎,𝑇
]

‖𝜏‖𝜃
⩽ 𝑐(4.3)

(

E𝑎

[

sup
𝑡∈[𝑎,𝑇 )

|

|

𝛼𝑡 𝑀 − 𝛼𝑎𝑀|

|

2
]

+ 𝑇 − 𝑎
(𝑇 − 𝑡𝑘−1)𝜃

|𝜑𝑎 − 𝜑𝑡𝑘−1 |
2𝜎2𝑎

)

. (4.3)

(2) For all 𝑠 ∈ [0, 𝑎] there is a 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈   with 𝑠 = 𝑡𝑘−1 ⩽ 𝑎 < 𝑡𝑘 and 

E𝑎
[

[𝜑; 𝜏]𝜎𝑎,𝑇
]

‖𝜏‖𝜃
⩾ 1
𝑐(4.4)

𝑇 − 𝑎
(𝑇 − 𝑡𝑘−1)𝜃

|𝜑𝑎 − 𝜑𝑡𝑘−1 |
2𝜎2𝑎 a.s. (4.4)

(3) There are (𝜏𝑛)𝑛∈N ⊂   with 𝑎 ∈ 𝜏𝑛 and lim𝑛 ‖𝜏𝑛‖𝜃 = 0, such that, for all 𝜎-algebras  ⊆ 𝑎, one has, a.s., 

lim inf
𝑛

E
[

[𝜑; 𝜏𝑛]𝜎𝑎,𝑇
]

‖𝜏𝑛‖𝜃
⩾ 1
𝑐(4.5)

E

[

sup
𝑡∈[𝑎,𝑇 )

|

|

𝛼𝑡 𝑀 − 𝛼𝑎𝑀|

|

2
]

. (4.5)

(4) One has 

sup
𝜏∈

‖[𝜑; 𝜏]𝜎𝑇 ‖𝐋1

‖𝜏‖𝜃
∼𝑐(4.6) 𝑇

1−𝜃
‖

‖

‖

‖

‖

sup
𝑡∈[0,𝑇 )

|

|

𝛼𝑡 𝑀|

|

‖

‖

‖

‖

‖

2

𝐋2

. (4.6)

Proof. (1) For 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), Assumption  4.5 implies that

E𝑎
[

(𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
|𝜑𝑎 − 𝜑𝑡𝑘−1 |

2𝛱((𝑎, 𝑡𝑘])
]

𝑎.𝑠.∼𝑐𝜎 |𝜑𝑎 − 𝜑𝑡𝑘−1 |
2 (𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
𝜎2𝑎 (𝑡𝑘 − 𝑎)

⩽ 𝑇 − 𝑎
(𝑇 − 𝑡𝑘−1)𝜃

|𝜑𝑎 − 𝜑𝑡𝑘−1 |
2𝜎2𝑎 .

Moreover, we have

E𝑎
[

∫(𝑎,𝑇 )

(𝑇 − 𝑢
𝑇

)1−𝜃
𝛶 (d𝑢)

]

= E𝑎
[

∫(𝑎,𝑇 )

(𝑇 − 𝑢
𝑇

)1−𝜃
d⟨𝑀⟩𝑢

]

= E𝑎
[

∫(𝑎,𝑇 )

(𝑇 − 𝑢
𝑇

)1−𝜃
d[𝑀]𝑢

]

∼4 E𝑎

[

sup
𝑡∈[𝑎,𝑇 )

|

|

𝛼𝑡 𝑀 − 𝛼𝑎𝑀|

|

2
]

 a.s. (4.7)

by Doob’s maximal inequality and (3.4). Theorem  4.3 implies, a.s.,

E𝑎
[

[𝜑; 𝜏]𝜎𝑎,𝑇
]

‖𝜏‖𝜃

⩽ 𝜅E𝑎
[

∫(𝑎,𝑇 )
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢) +

(𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
|𝜑𝑎 − 𝜑𝑡𝑘−1 |

2𝛱((𝑎, 𝑡𝑘])
]

⩽ 𝜅

(

4𝑇 1−𝜃E𝑎

[

sup
𝑡∈[𝑎,𝑇 )

|

|

𝛼𝑡 𝑀 − 𝛼𝑎𝑀|

|

2
]

+ 𝑐𝜎
𝑇 − 𝑎

(𝑇 − 𝑡𝑘−1)𝜃
|𝜑𝑎 − 𝜑𝑡𝑘−1 |

2𝜎2𝑎

)

.

(2) We choose a net 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈   such that 𝑠 = 𝑡𝑛−1 ⩽ 𝑎 < 𝑡𝑛 = 𝑇  and ‖𝜏‖𝜃 = 𝑇−𝑡𝑛−1
(𝑇−𝑡𝑛−1)1−𝜃

, so that Theorem  4.4 (1) yields to

E𝑎
[

[𝜑; 𝜏]𝜎𝑎,𝑇
]

‖𝜏‖𝜃
⩾ 1
𝜅𝑐𝜎

(𝑇 − 𝑡𝑛−1)1−𝜃

𝑇 − 𝑡𝑛−1
|𝜑𝑎 − 𝜑𝑡𝑛−1 |

2(𝑇 − 𝑎)𝜎2𝑎

= 1
𝜅𝑐𝜎

𝑇 − 𝑎
(𝑇 − 𝑡𝑛−1)𝜃

|𝜑𝑎 − 𝜑𝑡𝑛−1 |
2𝜎2𝑎 a.s.

(3) As we have  ⊆ 𝑎 we use Fatou’s lemma, (4.2), and (4.7) to get a.s. that

E

[

sup |

|

𝛼𝑡 𝑀 − 𝛼𝑎𝑀|

|

2
]

⩽ 4𝑐(4.2)𝑇 𝜃−1E

[

lim inf
𝑛

E𝑎

[

[𝜑; 𝜏𝑛]𝜎𝑎,𝑇
]]
𝑡∈[𝑎,𝑇 ) ‖𝜏𝑛‖𝜃

12 
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⩽ 4𝑐(4.2)𝑇 𝜃−1 lim inf
𝑛

E

[

E𝑎

[

[𝜑; 𝜏𝑛]𝜎𝑎,𝑇
‖𝜏𝑛‖𝜃

]]

= 4𝑐(4.2)𝑇 𝜃−1 lim inf
𝑛

E

[

[𝜑; 𝜏𝑛]𝜎𝑎,𝑇
‖𝜏𝑛‖𝜃

]

.

(4) We let 𝑎 = 0 and  ∶= {∅, 𝛺}. The equivalence (4.6) follows from Eq.  (4.3) (where in this case only the first term appears 
which gives the constant 𝜅4𝑇 1−𝜃) and from (4.5). □

By Theorem  4.6 we characterize ‖[𝜑; 𝜏]𝜎‖
bmo𝛷21 [0,𝑇 )

⩽ 𝑐2‖𝜏‖𝜃 :

Corollary 4.7.  Assume that Assumption  4.5 is satisfied. Then for 𝜃 ∈ (0, 1], 𝛼 ∶= 1−𝜃
2 , and 𝛷 ∈ CL+([0, 𝑇 )) the following assertions are 

equivalent:

(1) One has 𝛼𝑀 ∈ bmo𝛷2 [0, 𝑇 ) and there is a 𝑐(4.8) > 0 such that 

|𝜑𝑎 − 𝜑𝑠|𝜎𝑎 ⩽ 𝑐(4.8)
(𝑇 − 𝑠)

𝜃
2

(𝑇 − 𝑎)
1
2

𝛷𝑎 for 0 ⩽ 𝑠 < 𝑎 < 𝑇  a.s. (4.8)

(2) There is a constant 𝑐(4.9) > 0 such that, for all time-nets 𝜏 ∈  , 

‖[𝜑; 𝜏]𝜎‖
bmo𝛷21 [0,𝑇 )

⩽ 𝑐2(4.9)‖𝜏‖𝜃 . (4.9)

If 𝛷 = (𝜎𝑡𝛹𝑡)𝑡∈[0,𝑇 ), where 𝛹 ∈ CL+([0, 𝑇 )) is non-decreasing, then (4.8) is equivalent to the existence of 𝑐(4.10), 𝑐(4.11) > 0 such that the 
following holds:

𝜃 ∈ (0, 1): |𝜑𝑎 − 𝜑0| ⩽ 𝑐(4.10)(𝑇 − 𝑎)−𝛼𝛹𝑎 for 0 ⩽ 𝑎 < 𝑇  a.s., (4.10)

𝜃 = 1: |𝜑𝑎 − 𝜑𝑠| ⩽ 𝑐(4.11)
(

1 + ln 𝑇 − 𝑠
𝑇 − 𝑎

)

𝛹𝑎 for 0 ⩽ 𝑠 < 𝑎 < 𝑇  a.s. (4.11)

Proof.  The equivalence between (1) and (2) follows directly from Theorem  4.6 and Doob’s maximal inequality applied to 𝛼𝑀 . 
The equivalence between (4.8) and (4.10)–(4.11) follows from Lemma  8.6 below. □

4.2. 𝐋2 - and bmo-approximation of càdlàg martingales

First we show that Assumption  4.5 allows for the investigation of general càdlàg martingales:

Lemma 4.8.  Assume a càdlàg martingale 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) ⊆ 𝐋2, 𝜎 ∶≡ 1, 𝑀 ∶≡ 𝐿−𝐿0, and 𝜑 ∶≡ 𝐿. Then Assumption  4.5 is satisfied with 
𝜅 = 1.

Proof.  We have that 𝛱(𝜔, d𝑢) = d𝑢 and only need to show Eq.  (4.1), i.e. 

E𝑎
[

∫(𝑎,𝑏]
|𝐿𝑢 − 𝐿𝑠|2d𝑢

]

= E𝑎
[

(𝑏 − 𝑎)|𝐿𝑎 − 𝐿𝑠|2 + ∫(𝑎,𝑏]
(𝑏 − 𝑢)d⟨𝑀⟩𝑢

]

 a.s. (4.12)

One can replace in the formula 𝐿 by 𝑀 and write on the LHS 𝑀𝑢−𝑀𝑠 = (𝑀𝑢−𝑀𝑎)+(𝑀𝑎−𝑀𝑠). Using the conditional orthogonality 
of these terms, we reduce the above equation to

E𝑎
[

∫(𝑎,𝑏]
|𝑀𝑢 −𝑀𝑎|

2d𝑢
]

= E𝑎
[

∫(𝑎,𝑏]
(𝑏 − 𝑢)d⟨𝑀⟩𝑢

]

 a.s.

This equality follows from, a.s.,

E𝑎
[

∫(𝑎,𝑏]
|𝑀𝑢 −𝑀𝑎|

2d𝑢
]

= E𝑎
[

∫(𝑎,𝑏] ∫(𝑎,𝑢]
𝑑⟨𝑀⟩𝑣d𝑢

]

= E𝑎
[

∫(𝑎,𝑏]
(𝑏 − 𝑢)d⟨𝑀⟩𝑢

]

. □

If 𝜎 ≡ 1, then the functional [𝐿; 𝜏]𝜎 = [𝐿; 𝜏]1 measures by 

[𝐿; 𝜏]1𝑡 = E∫

𝑡

0

|

|

|

|

|

𝐿𝑢 −
𝑛
∑

𝑖=1
𝐿𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢)

|

|

|

|

|

2

d𝑢

the approximation of 𝐿 by the martingale (∑𝑛
𝑖=1 𝐿𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢))𝑢∈[0,𝑇 ) up to time 𝑡 ∈ [0, 𝑇 ). To characterize the behaviour of [𝐿; 𝜏]1

in terms of real interpolation, we replace a martingale 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) by its discrete time variant
𝐿𝑑 ∶= (𝐿 )∞ with 𝑡 ∶= 𝑇

(

1 − 2−𝑘
)

.
𝑡𝑘 𝑘=0 𝑘

13 
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For the interpolation couple we use the sequence spaces 𝓁− 1
2

2 (𝐻) and 𝓁∞(𝐻) as introduced in Section 2.2, where 𝐻 ∶= 𝐋2(𝛺, ,P). 
Since 𝐿 is an 𝐋2-martingale, it turns out that

𝐿𝑑 ∈ 𝓁
− 1

2
2 (𝐻) ⟺ ∫

𝑇

0
‖𝐿𝑡‖

2
𝐋2
d𝑡 < ∞, (4.13)

𝐿𝑑 ∈ 𝓁∞(𝐻) ⟺ ‖𝐿𝑑‖𝓁∞(𝐻) = sup
𝑡∈[0,𝑇 )

‖𝐿𝑡‖𝐋2
< ∞, (4.14)

where (4.13) follows from (4.15) below. The first condition, ∫ 𝑇0 ‖𝐿𝑡‖2𝐋2
d𝑡 < ∞, is a typical condition on martingales that appear as 

gradient processes. The other condition, sup𝑡∈[0,𝑇 ) ‖𝐿𝑡‖𝐋2
< ∞, means that the martingale 𝐿 is closable in 𝐋2. Here the interpolation is 

done with the spaces 𝓁− 1
2

2 (𝐻) and 𝓁∞(𝐻) as these end-point spaces and the resulting interpolation spaces are technically convenient 
to handle. An alternative approach might be to investigate the usage of 𝐋𝑞([0, 𝑇 );𝐻), 𝑞 ∈ {2,∞}, as end-points along with the results 
from [19, Section 1.18]. However, here Bochner integration and related measurability issues have to be addressed. 

Theorem 4.9.  For 𝜃 ∈ (0, 1), 𝛼 ∶= 1−𝜃
2 , and an 𝐋2-càdlàg martingale 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) with 𝐿0 ≡ 0 the following assertions are equivalent:

(1) 𝐿𝑑 ∈ (𝓁
− 1

2
2 (𝐻),𝓁∞(𝐻))𝜃,2.

(2) (𝛼𝑡 𝐿)𝑡∈[0,𝑇 ) is closable in 𝐋2.
(3) There is a 𝑐 > 0 such that E[𝐿; 𝜏]1𝑇 ⩽ 𝑐‖𝜏‖𝜃 for all 𝜏 ∈  .

Proof.  Because (‖𝐿𝑡𝑘‖𝐻 )∞𝑘=0 is non-decreasing we observe for 𝑠 > −1∕2 that
‖(𝐿𝑡𝑘 )

∞
𝑘=0‖

2
𝓁𝑠2(𝐻)

2𝑇 2𝑠
=

∞
∑

𝑘=0
(𝑇 − 𝑡𝑘)−1−2𝑠(𝑡𝑘+1 − 𝑡𝑘)‖𝐿𝑡𝑘‖

2
𝐻

∼𝑐𝑇 ,𝑠 ∫

𝑇

0
(𝑇 − 𝑡)−1−2𝑠‖𝐿𝑡‖2𝐻d𝑡 (4.15)

for some 𝑐𝑇 ,𝑠 ⩾ 1. The inequality ⩾ in (4.15) follows from

∫

𝑇

0
(𝑇 − 𝑡)−1−2𝑠‖𝐿𝑡‖2𝐻d𝑡 ⩽

∞
∑

𝑘=0
(𝑡𝑘+1 − 𝑡𝑘)(𝑇 − 𝑡𝑘+1)−1−2𝑠‖𝐿𝑡𝑘+1‖

2
𝐻

= 2
∞
∑

𝑘=0
(𝑡𝑘+2 − 𝑡𝑘+1)(𝑇 − 𝑡𝑘+1)−1−2𝑠‖𝐿𝑡𝑘+1‖

2
𝐻

⩽ 2
∞
∑

𝑘=0
(𝑡𝑘+1 − 𝑡𝑘)(𝑇 − 𝑡𝑘)−1−2𝑠‖𝐿𝑡𝑘‖

2
𝐻 .

The proof of the inequality ⩽ is analogous. Now for 𝑠 ∶= (1 − 𝜃)
(

− 1
2

)

+ 𝜃0 (so that −1− 2𝑠 = −𝜃) we use Proposition  3.9 (Eq. (3.7)) 
with 𝑎 = 0 to get

∫

𝑇

0
(𝑇 − 𝑡)−𝜃‖𝐿𝑡‖2𝐻d𝑡 = sup

𝑡∈[0,𝑇 )

𝑇 2𝛼

2𝛼
E|𝛼𝑡 𝐿|

2.

Now the equivalence (1) ⇔ (2) follows from (2.4) and (4.15). The equivalence (2) ⇔ (3) follows from Eq.  (4.6) applied to 𝑀 ∶= 𝐿, 
𝜑 ∶= 𝐿, and 𝜎 ≡ 1. □

Remark 4.10.  From Theorem  4.9 (2) we get for all 𝜀 > 0 a 𝑡(𝜀) ∈ [0, 𝑇 ) such that for 𝑠 ∈ [𝑡(𝜀), 𝑇 ) one has 

E sup
𝑡∈[𝑠,𝑇 )

|

|

|

|

|

∫

𝑇

𝑠
(𝐿𝑢∧𝑡 − 𝐿𝑠)(𝑇 − 𝑢)𝛼−1 𝛼

𝑇 𝛼
d𝑢
|

|

|

|

|

2

< 𝜀. (4.16)

Without the supremum the left-hand side is equal to E|𝛼𝑡 𝐿 − 𝛼𝑠 𝐿|
2, the statement including the supremum follows from Doob’s 

maximal inequality. The behaviour in (4.16) when 𝑠 ↑ 𝑇  might be seen as a replacement of the 𝐋2- and a.s. convergence of 𝐿 in the 
case 𝐿 would be closable in 𝐋2.

The counterpart to Theorem  4.9((2) ⇔ (3)) for the bmo-setting follows directly from Lemma  4.8 and Corollary  4.7:

Theorem 4.11 (Approximation vs. Fractional Integration in bmo).  For a càdlàg martingale 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) ⊆ 𝐋2, 𝜃 ∈ (0, 1], and 𝛼 ∶= 1−𝜃
2

the following is equivalent:

(1) sup𝜏∈
‖[𝐿;𝜏]1‖bmo1[0,𝑇 )

‖𝜏‖𝜃
< ∞.

(2) 𝛼𝐿 − 𝐿0 ∈ bmo2[0, 𝑇 ) and ‖‖ sup0⩽𝑠<𝑎<𝑇 (𝑇−𝑎)
1
2
𝜃 |𝐿𝑎 − 𝐿𝑠|

‖

‖ <∞.

‖ (𝑇−𝑠) 2 ‖𝐋∞

14 
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4.3. Backward in time regularization of càdlàg martingales

Theorem  4.9 and Theorem  4.11 describe discrete time martingale approximations. Another possible approximation is obtained 
by a backwards smoothing in time, which yields to local Lipschitz trajectories. For this we define 𝐻𝜃 ∶ (−∞, 𝑇 ] → [0, 𝑇 ] by

𝐻𝜃(𝑠) ∶= 𝑇 − 𝑇 𝜃
√

1 − max{(𝑠∕𝑇 ), 0}.

For 𝑡 ∈ (0, 𝑇 ] and 𝑛 ∈ N let 𝜈𝜃𝑛 (𝑡, ⋅) be the image measure of the uniform distribution (𝑛∕𝑇 )𝜆1|[𝑠− 𝑇
𝑛 ,𝑠]

 with respect to 𝐻𝜃 where 𝜆1 is 
the 1-dimensional Lebesgue measure and 𝑡 = 𝐻𝜃(𝑠). We define the time adapted 𝐋2-oscillation of a càdlàg process 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇 ) at 
𝑡 ∈ [0, 𝑇 ) by

Osc𝜃𝑛(𝐿, 𝑡) ∶=

√

∫[0,𝑡]
(𝐿𝑡 − 𝐿𝑣)2𝜈𝜃𝑛 (𝑡, d𝑣)

and set

𝐿𝑛,𝜃𝑡 ∶= ∫[0,𝑡]
𝐿𝑣𝜈

𝜃
𝑛 (𝑡, d𝑣) for 𝑡 ∈ [0, 𝑇 ).

Theorem 4.12.  For a càdlàg martingale (𝐿𝑡)𝑡∈[0,𝑇 ) ⊆ 𝐋2 and 𝜃 ∈ (0, 1] the following is equivalent:

(1) There is a 𝑐 > 0 such that E ∫ 𝑇0 |Osc𝜃𝑛(𝐿, 𝑡)|
2d𝑡 ⩽ 𝑐2

𝑛  for all 𝑛 ∈ N.
(2) 

1−𝜃
2 𝐿 is closable in 𝐋2.

If (1) or (2) is satisfied, then

|𝐿𝑛,𝜃|Höl1([0,𝑡]) ⩽ 2𝑛𝜃
(

1 − 𝑡
𝑇

)𝜃−1
sup
𝑟∈[0,𝑡]

|𝐿𝑟|

and
‖

‖

‖

𝐿 − 𝐿𝑛,𝜃‖‖
‖𝐋2([0,𝑇 )×𝛺)

⩽ 𝑐
√

𝑛
.

Proof. (2)⇒(1) For 𝜉, 𝜃 ∈ (0, 1),

𝜏1𝑛 (𝜉) ∶=
{

(𝑖 + 𝜉)𝑇
𝑛
, 𝑖 = 0,… , 𝑛 − 1

}

∪ {0, 𝑇 } ∈  ,

and 𝜏𝜃𝑛 (𝜉) ∶= 𝐻𝜃(𝜏1𝑛 (𝜉)) we get ‖𝜏𝜃𝑛 (𝜉)‖𝜃 ⩽ 𝑇 𝜃

𝜃𝑛 , where we use 
(1−𝑎)1∕𝜃−(1−𝑏)1∕𝜃

(1−𝑎)(1−𝜃)∕𝜃
⩽ (𝑏 − 𝑎)∕𝜃 for 0 ⩽ 𝑎 < 𝑏 ⩽ 1. Because

∫

1

0
|𝐿𝑡 − 𝐿ℎ(𝜏𝜃𝑛 (𝜉),𝑡)|

2d𝜉 = |Osc𝜃𝑛(𝐿, 𝑡)|
2 for 𝑡 ∈ [0, 𝑇 )

with ℎ(𝜏, 𝑡) ∶= 𝑠𝑗−1 if 𝑡 ∈ [𝑠𝑗−1, 𝑠𝑗 ) and 𝜏 = {𝑠𝑗}𝑚𝑗=0 ∈  , Theorem  4.9((2) ⇒ (3)) implies

E∫

𝑇

0
|Osc𝜃𝑛(𝐿, 𝑡)|

2d𝑡 = ∫

1

0
E[𝐿; 𝜏𝜃𝑛 (𝜉)]

1
𝑇 d𝜉 ⩽ 𝑐 𝑇

𝜃

𝜃𝑛
.

(1)⇒(2) Directly from the definition of Osc𝜃𝑛(𝐿, 𝑡) we get that

𝑛E∫(0,𝑇 )
|Osc𝜃𝑛(𝐿, 𝑡)|

2d𝑡

= 𝑛2

𝑇 ∫(0,𝑇 )

(

∫[𝐻−1
𝜃 (𝑡)− 𝑇

𝑛 ,𝐻
−1
𝜃 (𝑡)]

E(𝐿𝑡 − 𝐿𝐻𝜃 (𝑢))
2d𝑢

)

d𝑡

= 𝑛2

𝑇 ∫(0,𝑇 )

(

∫[𝐻−1
𝜃 (𝑡)− 𝑇

𝑛 ,𝐻
−1
𝜃 (𝑡)]

E∫(𝐻𝜃 (𝑢),𝑡]
d[𝐿]𝑟

)

d𝑡

= E∫(0,𝑇 )

⎛

⎜

⎜

⎝

𝑛2

𝑇 ∫ {𝐻−1
𝜃 (𝑟)⩽𝐻−1

𝜃 (𝑡)<𝐻−1
𝜃 (𝑟)+ 𝑇𝑛 }

∩(0,𝑇 )

(

𝐻−1
𝜃 (𝑟) + 𝑇

𝑛
−𝐻−1

𝜃 (𝑡)
)

d𝑡
⎞

⎟

⎟

⎠

d[𝐿]𝑟.

For 𝜀 ∈
(

0, 𝑇2
)

 we choose 𝑛(𝜀) ∈ N such that one has

0 < 𝐻−1
𝜃 (𝜀) < 𝐻−1

𝜃 (𝑇 − 𝜀) + 𝑇
𝑛(𝜀)

< 𝑇 .

For 𝑟 ∈ [𝜀, 𝑇 − 𝜀] and 𝑛 ⩾ 𝑛(𝜀) we get that
𝑛2

∫ −1 −1 −1 𝑇

(

𝐻−1
𝜃 (𝑟) + 𝑇 −𝐻−1

𝜃 (𝑡)
)

d𝑡

𝑇 𝐻𝜃 (𝑟)⩽𝐻𝜃 (𝑡)<𝐻𝜃 (𝑟)+ 𝑛

𝑛

15 
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= 𝑇
2

(

𝑇 2

2𝑛2

)−1

∫

𝐻−1
𝜃 (𝑟)+ 𝑇

𝑛

𝐻−1
𝜃 (𝑟)

(

𝐻−1
𝜃 (𝑟) + 𝑇

𝑛
− 𝑠

)

𝐻 ′
𝜃(𝑠)d𝑠

→
𝑇
2
𝐻 ′
𝜃(𝐻

−1
𝜃 (𝑟)) = 𝑇

2𝜃

(

1 − 𝑟
𝑇

)1−𝜃
as 𝑛→ ∞.

Therefore the Lemma of Fatou implies that

lim inf
𝑛→∞

𝑛E∫(0,𝑇 )
|Osc𝜃𝑛(𝐿, 𝑡)|

2d𝑡 ⩾ 𝑇
2𝜃

E∫[𝜀,𝑇−𝜀]

(

1 − 𝑟
𝑇

)1−𝜃
d[𝐿]𝑟.

As this is true for all 𝜀 ∈
(

0, 𝑇2
)

 we can replace the range of integration [𝜀, 𝑇 − 𝜀] by (0, 𝑇 ). By Proposition  3.6 this implies

lim inf
𝑛→∞

𝑛E∫(0,𝑇 )
|Osc𝜃𝑛(𝐿, 𝑡)|

2d𝑡 ⩾ 𝑇
2𝜃

sup
𝑡∈[0,𝑇 )

E|
1−𝜃
2

𝑡 𝐿 − 𝐿0|
2.

Finally, ‖
‖

𝐿 − 𝐿𝑛,𝜃‖
‖𝐋2([0,𝑇 )×𝛺) ⩽ ‖Osc𝜃𝑛(𝐿, ⋅)‖𝐋2([0,𝑇 )×𝛺) and the standard computation |𝐿𝑛,𝜃(𝜔)|Höl1([0,𝑡]) ⩽ 2𝑛𝜃 (1 − (𝑡∕𝑇 ))𝜃−1

sup𝑟∈[0,𝑡] |𝐿𝑟(𝜔)| imply the remaining part of Theorem  4.12. □

5. Gradient estimates and approximation on the Wiener space

One background of this section is the problem from stochastic finance to estimate and control the error while discrete time 
hedging a continuous time portfolio for a European option. Estimates in the 𝐋2-sense for irregular pay-offs have been obtained 
in [8–10,27,28]. Although the 𝐋2-estimates have the advantage that one can exploit arguments based on orthogonality, the 
corresponding tail-estimates are usually far from being optimal - although the 𝐋2-estimates itself are optimal. To obtain better 
tail-estimates is significantly more difficult, and led to and inspired results that went far beyond the original problem. In the 
context we are concerned with there are two approaches: One can consider 𝐋𝑝-estimates as in [11], where one has to give up 
the orthogonality, or one can consider bmo-estimates as in [14], where we keep some sort of orthogonality but use concepts similar 
as in harmonic analysis, spaces of bounded mean oscillation and reverse Hölder inequalities. In this section we develop further the 
approach from [14] and provide weighted bmo-Hölder estimates for certain gradient processes on the Wiener space to deduce from 
them approximation results.

5.1. Setting

We suppose additionally that  = 𝑇  and that (𝑡)𝑡∈[0,𝑇 ] is the augmentation of the natural filtration of a standard one-
dimensional Brownian motion 𝑊 = (𝑊𝑡)𝑡∈[0,𝑇 ] with continuous paths and starting in zero for all 𝜔 ∈ 𝛺. We recall the setting 
from [9] and start with the stochastic differential equation (SDE) 

d𝑋𝑡 = 𝜎̂(𝑋𝑡)d𝑊𝑡 + 𝑏̂(𝑋𝑡)d𝑡 with 𝑋0 ≡ 𝑥0 ∈ R (5.1)

where 0 < 𝜀0 ⩽ 𝜎̂ ∈ 𝐶∞
𝑏 (R) for some constant 𝜀0 and 𝑏̂ ∈ 𝐶∞

𝑏 (R) and where all paths of 𝑋 are assumed to be continuous. From this 
equation we derive the SDE

d𝑌𝑡 = 𝜎(𝑌𝑡)d𝑊𝑡 with 𝑌0 ≡ 𝑦0 ∈ 𝑌

where two settings are used simultaneously:
Case (C1): 𝑌 ∶= 𝑋 with 𝜎 ≡ 𝜎̂, 𝑏̂ ≡ 0, and 𝑌 ∶= R.
Case (C2): 𝑌 ∶= e𝑋 with 𝜎(𝑦) ∶= 𝑦𝜎̂(ln 𝑦), 𝑏̂(𝑥) ∶= − 1

2 𝜎̂
2(𝑥), and 𝑌 ∶= (0,∞).

In the context of stochastic finance, (C1) describes the generalized Bachelier setting and (C2) the generalized Black–Scholes 
setting. In both cases, we let 𝐶𝑌  be the set of all Borel functions 𝑔∶𝑌 → R such that 

sup
𝑥∈R

e−𝑚|𝑥| ∫R
|𝑔(𝛼(𝑥 + 𝑡𝑦))|2 e−𝑦

2
d𝑦 < ∞ for all 𝑡 > 0 (5.2)

for some 𝑚 > 0, where 𝛼(𝑥) = 𝑥 in the case (C1) and 𝛼(𝑥) = e𝑥 in the case (C2). Under (C1) and (C2) any polynomially bounded 𝑔
belongs to 𝐶𝑌 . Let us denote by (𝑌 𝑡,𝑦𝑠 )𝑠∈[𝑡,𝑇 ] the diffusion 𝑌  started at time 𝑡 ∈ [0, 𝑇 ] in 𝑦 ∈ 𝑌  and let us define, for 𝑔 ∈ 𝐶𝑌 ,

𝐺(𝑡, 𝑦) ∶= E𝑔(𝑌 𝑡,𝑦𝑇 ) for (𝑡, 𝑦) ∈ [0, 𝑇 ] ×𝑌 .

Remark 5.1.  We collect some facts we shall use and that hold in both cases, (C1) and (C2):
(A) ‖𝜎′‖𝐵𝑏(𝑌 ) + ‖𝜎𝜎′′‖𝐵𝑏(𝑌 ) < ∞.
(B) In the case (C2) we have 𝜎(𝑦) ∼𝑐 𝑦 for 𝑦 ∈ 𝑌  and some 𝑐 ⩾ 1.
(C) One has 𝐺 ∈ 𝐶∞([0, 𝑇 ) ×𝑌 ) and 𝜕𝑡𝐺 + 1

2𝜎
2𝜕2𝑦𝑦𝐺 = 0 on [0, 𝑇 ) ×𝑌 .

(D) E
[

|𝑔(𝑌𝑇 )|2 + sup𝑡∈[0,𝑏]
|

|

|

(

𝜎𝜕𝑦𝐺
)

(𝑡, 𝑌𝑡)
|

|

|

2
]

< ∞ for all 𝑏 ∈ [0, 𝑇 ).

(E) The process 
((

𝜎2𝜕2 𝐺
)

(𝑡, 𝑌 )
)

 is an 𝐋 -martingale.
𝑦𝑦 𝑡 𝑡∈[0,𝑇 ) 2
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(F) The process 𝑋 has a transition density 𝛤𝑋 in the sense of Theorem  8.5.
Items (A) and (B) are obvious, (C) is contained in [9, Preliminaries], (D) follows from the definition of 𝐶𝑌 , Theorem  8.5, and [9, 
Lemma 5.2], and (E) is [9, Lemma 5.3].

This yields to the following setting:

Setting 5.2.  In the notation of Assumption  4.5 we set
(1) 𝜎= (𝜎𝑡)𝑡∈[0,𝑇 ] ∶= (𝜎(𝑌𝑡))𝑡∈[0,𝑇 ],
(2) 𝑀 ∶=

(

∫ 𝑡0
(

𝜎2𝜕2𝑦𝑦𝐺
)

(𝑢, 𝑌𝑢)d𝑊𝑢

)

𝑡∈[0,𝑇 )
 (with 𝑀0 ≡ 0 and the continuity of all paths),

(3) 𝜑 ∶=
(

𝜕𝑦𝐺(𝑡, 𝑌𝑡)
)

𝑡∈[0,𝑇 ).

Denote by 𝐸(𝑔; 𝜏) = (𝐸𝑡(𝑔; 𝜏))𝑡∈[0,𝑇 ] the path-wise continuous error process resulting from the difference between the stochastic 
integral and its Riemann approximation associated with the time-net 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈  , i.e.

𝐸𝑡(𝑔; 𝜏) ∶= ∫(0,𝑡]
𝜑𝑠d𝑌𝑠 −

𝑛
∑

𝑖=1
𝜑𝑡𝑖−1 (𝑌𝑡𝑖∧𝑡 − 𝑌𝑡𝑖−1∧𝑡) for 𝑡 ∈ [0, 𝑇 ].

We also denote the approximation error on (𝑎, 𝑡] by
𝐸𝑎,𝑡(𝑔; 𝜏) ∶= 𝐸𝑡(𝑔; 𝜏) − 𝐸𝑎(𝑔; 𝜏) for 0 ⩽ 𝑎 < 𝑡 < 𝑇

and remark that 𝐸0,𝑡(𝑔; 𝜏) = 𝐸𝑡(𝑔; 𝜏). Then, for any 0 ⩽ 𝑎 ⩽ 𝑡 ⩽ 𝑇 , we apply the conditional Itô’s isometry to obtain that, a.s.,

E𝑎
[

|𝐸𝑎,𝑡(𝑔; 𝜏)|2
]

= E𝑎

[

∫

𝑡

𝑎

|

|

|

|

|

𝜑𝑢 −
𝑛
∑

𝑖=1
𝜑𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢)

|

|

|

|

|

2

𝜎2𝑢d𝑢

]

= E𝑎
[

[𝜑; 𝜏]𝜎𝑎,𝑡
]

. (5.3)

For 𝛷 ∈ CL+([0, 𝑇 )) this implies that 
‖𝐸(𝑔; 𝜏)‖2

bmo𝛷2 [0,𝑇 )
= ‖[𝜑; 𝜏]𝜎‖

bmo𝛷21 [0,𝑇 )
. (5.4)

 To shorten the notation at some places we use, for (𝑡, 𝑦) ∈ [0, 𝑇 ) ×𝑌 ,

𝑍𝑡 ∶= 𝜎𝑡𝜑𝑡, 𝜑(𝑡, 𝑦) ∶= 𝜕𝑦𝐺(𝑡, 𝑦), 𝐻𝑡 ∶= 𝜎2𝑡 𝜕
2
𝑦𝑦𝐺(𝑡, 𝑌𝑡).

Next we verify Assumption  4.5. For this reason and later usage, we have the following lemma:

Lemma 5.3.  The following assertions hold true:
(1) In the case (C2) one has (𝑌 𝛽0𝑡 (𝑌 𝛽1 )∗𝑡 )𝑡∈[0,𝑇 ) ∈ 𝑝([0, 𝑇 )) for 𝑝 ∈ (0,∞) and 𝛽0, 𝛽1 ∈ R.
(2) There is a constant 𝑐(5.5) > 0 such that, for all 0 ⩽ 𝑎 < 𝑏 ⩽ 𝑇 , 

E𝑎
[

1
𝑏 − 𝑎 ∫

𝑏

𝑎
𝜎2𝑢d𝑢

]

∼𝑐2(5.5)
𝜎2𝑎  a.s. (5.5)

(3) For 𝑔 ∈ 𝐶𝑌  one has E sup𝑢∈[𝑎,𝑇 ] |𝜑𝑎𝜎𝑢|2 < ∞ for 𝑎 ∈ [0, 𝑇 ).

Proof. (1) Because 𝜎̂ ∈ 𝐵𝑏(R), for all 𝛼 ∈ R there is a constant 𝑐(5.6) = 𝑐(5.6)(𝛼, 𝑇 , 𝜎̂) > 0 such that 

E𝑎
[

sup
𝑡∈[𝑎,𝑇 ]

e𝛼 ∫(𝑎,𝑡] 𝜎̂(𝑋𝑠)d𝑊𝑠

]

⩽ 𝑐(5.6) a.s. (5.6)

for 𝑎 ∈ [0, 𝑇 ]. Because 𝑏̂ is bounded this implies that (𝑌 𝛽𝑡 )𝑡∈[0,𝑇 ) ∈ 𝑝([0, 𝑇 )) for all 𝑝 ∈ (0,∞) and 𝛽 ∈ R. Therefore we may 
conclude by Items (2)and (3) of Proposition  8.1.

(2) We only need to check the case (C2) where we replace 𝜎 by 𝑌  due to (B). As 𝑌  is a martingale we get E𝑎
[

∫ 𝑏𝑎 𝑌
2
𝑢 d𝑢

]

⩾ (𝑏−𝑎)𝑌 2
𝑎

a.s., otherwise E𝑎
[

∫ 𝑏𝑎 𝑌
2
𝑢 d𝑢

]

⩽ ‖𝑌 ‖22([0,𝑇 ))
(𝑏 − 𝑎)𝑌 2

𝑎  a.s.
(3) Because of (D) we only need to check (C2), use again (B) to replace 𝜎 by 𝑌 , and obtain

E sup
𝑢∈[𝑎,𝑇 ]

|𝜑𝑎𝑌𝑢|
2 = E

[

|𝜑𝑎|
2E𝑎

[

sup
𝑢∈[𝑎,𝑇 )

𝑌 2
𝑢

]]

⩽ ‖𝑌 ‖22([0,𝑇 ))
E|𝜑𝑎𝑌𝑎|2 < ∞. □

Proposition 5.4.  The Property  5.2 under the assumptions made before in Section 5.1 guarantee that Assumption  4.5 is satisfied.

Proof.  The statement follows from Lemma  5.3 and [8, Corollary 3.3]. □
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For 𝛼 > 0 and 0 ⩽ 𝑎 ⩽ 𝑡 < 𝑇  we get by (3.4) and (3.8), a.s.,

𝛼𝑡 𝑀 = ∫(0,𝑡]

(𝑇 − 𝑢
𝑇

)𝛼
𝐻𝑢d𝑊𝑢

and E𝑎
[

|

|

𝛼𝑡 𝑀 − 𝛼𝑎𝑀|

|

2
]

= E𝑎
[

∫

𝑡

𝑎

(𝑇 − 𝑢
𝑇

)2𝛼
𝐻2
𝑢 d𝑢

]

. (5.7)

Finally, we will use the following condition on a change of measure which implies the reverse Hölder condition 𝑄 ∈ RH𝑞(P)
from Definition  2.4 for all 𝑞 ∈ (1,∞):

Definition 5.5.  Given a measure 𝑄 on (𝛺, ), we say that 𝑄 ∈ RH𝜉∞(P) if there is a progressively measurable process 𝜉 =(𝜉𝑡)𝑡∈[0,𝑇 ]
such that

‖

‖

‖∫

𝑇

0
|𝜉𝑢|

2d𝑢‖‖
‖𝐋∞(P)

<∞ and d𝑄
dP

= e∫(0,𝑇 ] 𝜉𝑢d𝑊𝑢−
1
2 ∫ 𝑇0 |𝜉𝑢|2d𝑢  a.s.

If 𝑄 ∈ RH𝜉∞(P) as in Definition  5.5, then for all 𝑞 ∈ (1,∞) one has that 𝑄 ∈ RH𝑞(P) with ‖d𝑄∕dP‖RH𝑞 (P)
⩽ exp

(

𝑞−1
2
‖

‖

‖

∫ 𝑇0 |𝜉𝑢|2d𝑢
‖

‖

‖𝐋∞(P)

)

.

5.2. Convergence and closure properties

In this section we explain that the process (𝛼𝑡 𝑍)𝑡∈[0,𝑇 ) inherits its limit behaviour from the martingale (𝑀𝑡)𝑡∈[0,𝑇 ). The relevance 
of the process 𝑍 is that 𝑍𝑡 = (𝜎𝜕𝑦𝐺)(𝑡, 𝑌𝑡) is accessible as Markovian functional using the underlying PDE, has a direct interpretation 
in option pricing models, and relates to the Malliavin derivative of 𝑔(𝑌𝑇 ) by the Clark–Ocone formula.

Theorem 5.6.  For (𝛼, 𝑞) ∈ (0,∞) × [2,∞), 𝛷 ∈ 2([0, 𝑇 )), 𝑔 ∈ 𝐶𝑌 , and under the a priori estimate for the process 𝑍 = (𝑍𝑡)𝑡∈[0,𝑇 ), 

(𝑇 − 𝑡)
1
2
|𝑍𝑡| ⩽ 𝑐𝛷𝛷𝑡 a.s. for 𝑡 ∈ [0, 𝑇 ) (𝐶𝛷)

for some 𝑐𝛷 > 0, one has:
(1) (𝛼𝑡 𝑍 −𝑍0)𝑡∈[0,𝑇 ) ∈ bmo𝛷2 [0, 𝑇 ) ⟺ 𝛼𝑀 ∈ bmo𝛷2 [0, 𝑇 ).
(2) If sup𝑡∈[0,𝑇 )𝛷𝑡 ∈ 𝐋𝑞 , then 𝛼𝑍 converges (is bounded) in 𝐋𝑞 ⟺ 𝛼𝑀 converges (is bounded) in 𝐋𝑞 as 𝑡 ↑ 𝑇 .4
(3) 𝛼𝑍 converges a.s. ⟺ 𝛼𝑀 converges a.s. if 𝑡 ↑ 𝑇 .
(4) If sup𝑡∈[0,𝑇 )𝛷𝑡 ∈ 𝐋𝑞 and 𝛼𝑍 −𝑍0 ∈ bmo𝛷2 [0, 𝑇 ), then lim𝑡↑𝑇 𝛼𝑡 𝑍 exists in 𝐋𝑞 and a.s.
We prove this statement in Section 7.1. In the cases, which we are interested in, condition (𝐶𝛷) will be satisfied and corresponds 

to a known a priori condition from the theory of parabolic PDEs. For 𝑞 = 2 in item (4) the condition sup𝑡∈[0,𝑇 )𝛷𝑡 ∈ 𝐋𝑞 follows from 
𝛷 ∈ 2([0, 𝑇 )).

5.3. Approximation results for Hölder spaces and Hölder interpolation spaces

In this section we formulate the results related to the approximation under Hölder conditions. These can be seen as a counterpart 
to Theorem  4.9((2) ⇔ (3)) and Theorem  4.11 in the context of weighted bmo-spaces. We start with the case 𝜃 = 1 in which we 
extend [14, Theorem 8] from the geometric Brownian motion to the process 𝑌  and which we prove in Section 7.2:

Theorem 5.7.  For 𝑔 ∈ 𝐶𝑌  and 𝛷 = 𝜎 the following assertions are equivalent:
(1) There exists a Lipschitz function 𝑔̃∶𝑌 → R such that 𝑔 = 𝑔̃ a.e. on 𝑌  with respect to the Lebesgue measure.
(2) There is a 𝑐⩾0 such that ‖𝐸(𝑔; 𝜏)‖bmo𝛷2 [0,𝑇 ) ⩽ 𝑐

√

‖𝜏‖1 for all 𝜏 ∈  .

In (1) ⇒ (2) one can choose 𝑐 = 𝑑|𝑔̃|1, where 𝑑 = 𝑑(𝜎, 𝑇 ) > 0 is independent from 𝑔 and 𝑔̃.

We have the following counterpart to Theorem  5.7:

Theorem 5.8.  Let 𝑔 ∈ 𝐶𝑌 , 𝛷 ∈ CL+([0, 𝑇 )) with 𝛷 > 0, and 𝜃 ∈ (0, 1].

(1) If 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈  , then
‖𝐸(𝑔; 𝜏)‖2

bmo𝛷2 [0,𝑇 )

‖𝜏‖𝜃
⩽ 𝑐(4.3)

[

4‖
1−𝜃
2 𝑀‖

2
bmo𝛷2 [0,𝑇 )

4 For 𝛼𝑀 the 𝐋 -boundedness and the convergence in 𝐋  is equivalent because of the martingale property.
𝑞 𝑞
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+
‖

‖

‖

‖

‖

sup
𝑘∈{1,…,𝑛}

sup
𝑎∈[𝑡𝑘−1 ,𝑡𝑘)

𝑇 − 𝑎
(𝑇 − 𝑡𝑘−1)𝜃

|𝜑𝑎 − 𝜑𝑡𝑘−1 |
2 𝜎

2
𝑎

𝛷2
𝑎

‖

‖

‖

‖

‖𝐋∞

]

,

where 𝑐(4.3) > 0 is the constant from inequality (4.3).
(2) There is a 𝑐 ⩾ 0 such that

‖𝐸(𝑔; 𝜏)‖bmo𝛷2 [0,𝑇 ) ⩽ 𝑐
√

‖𝜏‖𝜃 for all 𝜏 ∈ 

if and only if  1−𝜃
2 𝑀 ∈ bmo𝛷2 [0, 𝑇 ) and there is a 𝑑 ⩾ 0 such that

|𝜑𝑎 − 𝜑𝑠|𝜎𝑎 ⩽ 𝑑
(𝑇 − 𝑠)

𝜃
2

(𝑇 − 𝑎)
1
2

𝛷𝑎 for 0 ⩽ 𝑠 < 𝑎 < 𝑇  a.s.

Proof.  Item (1) follows from Theorem  4.6 (1), where Doob’s maximal inequality gives the additional factor 4. Corollary  4.7 and Eq. 
(5.4) imply item (2). □

In the next result, whose proof can be found in Section 7.3, we finally use Hölder terminal conditions to apply Theorem  5.8:

Theorem 5.9.  For (𝜃, 𝑝) ∈ [0, 1] × (0,∞) and 𝑔 ∈ Höl𝜃(R) we have:
(1) 𝑔|𝑌

∈ 𝐶𝑌 .
(2) 𝜎𝜃 ∈ 𝑝([0, 𝑇 )).
(3) For 0 ⩽ 𝑠 ⩽ 𝑎 < 𝑇  and 𝑐(7.1) = 𝑐(7.1)(𝜎, 𝑇 ) > 0 from (7.1) it holds that (𝑇 − 𝑠)

1−𝜃
2
|𝜑𝑠| ⩽ 𝑐(7.1)|𝑔|𝜃𝜎𝜃−1𝑠  so that

𝑇 − 𝑎
(𝑇 − 𝑠)𝜃

|

|

𝜑𝑎 − 𝜑𝑠||
2 ⩽ 2𝑐2(7.1)|𝑔|

2
𝜃
(

𝜎2(𝜃−1)𝑎 + 𝜎2(𝜃−1)𝑠
)

.

(4) If 𝜃 ∈ (0, 1), then there is a 𝑐(5.8) = 𝑐(5.8)(𝜎, 𝑇 , 𝜃) > 0 such that 

‖
1−𝜃
2 𝑀‖

bmo𝜎𝜃2 [0,𝑇 )
⩽ 𝑐(5.8)|𝑔|𝜃,2 for 𝑔 ∈ Höl𝜃,2(R). (5.8)

(5) Let 𝜃 ∈ (0, 1) and 𝐴 = 𝑍 −𝑍0 or 𝐴 =𝑀 . If 𝑔 ∈ Höl𝜃,2(R), then


1−𝜃
2 𝐴 ∈ bmo𝜎

𝜃

𝑝 [0, 𝑇 ) and lim
𝑡↑𝑇


1−𝜃
2

𝑡 𝐴 exists in 𝐋𝑝 and a.s.

Remark 5.10.  The statement Theorem  5.9 (4) does not hold for 𝑔 ∈ Höl𝜃,𝑞(R) for 𝑞 ∈ (2,∞], so that the condition 𝑔 ∈ Höl𝜃,2(R) is 
sharp (in [29, Theorem 5.1] we consider an example for the case 𝜎 ≡ 1 and 𝑇 = 1).

The above Theorems  5.8 and 5.9 will allow us to deduce Corollary  1.2 in Section 7.4. Moreover, in order to prove Corollary  1.4 
we provide the following general tail-estimate, which might be of independent interest and which is verified in Section 7.5:

Theorem 5.11.  Let (𝜃, 𝑝, 𝑞) ∈ (0, 1) × (0,∞) × (1,∞), 𝜏 ∈  , 𝛷 ∶= 𝐴𝛷(𝜏, 𝜃) + 𝐵𝜎 with constants 𝐴,𝐵 ⩾ 0, 𝐴 + 𝐵 > 0, 𝑄 ∈ RH𝑞(P), and 
let 𝑅 ∈ bmo𝛷𝑝 [0, 𝑇 ) be continuous. Then one has for 𝜆 ⩾ 1 and 𝑎 ∈ [0, 𝑇 ) that, a.s.,

𝑄

(

sup
𝑡∈[𝑎,𝑇 )

|𝑅𝑡 − 𝑅𝑎|
𝛷𝑎

> 𝑐‖𝑅‖bmo𝛷𝑝 [0,𝑇 )
𝜆||
|

𝑎

)

⩽𝑐
⎧

⎪

⎨

⎪

⎩

e−
𝜆
𝑐 ∶ (C1)

e−
| ln 𝜆|2
𝑐 ∶ (C2), 𝑄 ∈ RH𝜉∞(P)

where 𝑐 > 0 depends at most on (𝜎, 𝑝, 𝑞, ‖d𝑄∕dP‖RH𝑞 (P)) in the case (C1), and on (𝑇 , 𝜎, 𝑝, 𝑞,
‖

‖

‖

∫ 𝑇0 |𝜉𝑢|2d𝑢
‖

‖

‖𝐋∞(P)
) in the case (C2).

Finally we include terminal conditions 𝑔 of bounded variation in our considerations. This is the key to obtain the results about 
the binary option in Theorem  1.3 and Corollary  1.4. To simplify the formulation of the following theorem we do this for a special 
class of 𝑔:

Theorem 5.12.  For 𝜃 ∈ (0, 1), 𝐷 ⩾ 1, 𝜀 ∶= 2𝐷− 1
𝜃 (sup𝑦∈R 𝑝𝑇 (𝑦))−1, where 𝑝𝑇  is the continuous density of 𝑌𝑇 , and a right-continuous 

distribution function 𝑔 of a probability measure on (R) with 𝑔(0) = 0, one has

(1) E𝑔(𝑌𝑇 ) − E𝑔𝜀(𝑌𝑇 ) ⩽ 𝐷− 1
𝜃  with 𝑔𝜀(𝑦) ∶= 1

𝜀 ∫
𝑦
𝑦−𝜀 𝑔(𝑧)d𝑧 ⩽ 𝑔(𝑦),

(2) ‖𝐸(𝑔𝜀; 𝜏𝜃𝑛 )‖bmo𝛷2 [0,𝑇 ) ⩽ 𝑐5.12
𝐷
√

𝑛
 for 𝛷 ∶= 𝛷(𝜏𝜃𝑛 , 𝜃) with 𝜏𝜃𝑛  from (2.8),

(3) |𝜑𝜀| ⩽ 𝑐5.12𝐷
1
𝜃  on [0, 𝑇 ) ×𝛺 with 𝜑𝜀 defined as in Property  5.2 (3) for 𝑔𝜀,

where 𝑐5.12 = 𝑐5.12(𝑇 , 𝜃, 𝜎) > 0.

Balancing the corresponding errors from items (1) and (2) in Theorem  5.12 we arrive at the following result:
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Corollary 5.13.  For 𝛿 ∈ (0, 1∕4), 𝜃 ∶= (2𝛿)∕(1 − 2𝛿) ∈ (0, 1), 𝑛 ∈ N, (𝑔, 𝑔𝜀𝑛 ) as in Theorem  5.12 with 𝜀𝑛 ∶= 2𝑛−
𝛿
𝜃 (sup𝑦∈R 𝑝𝑇 (𝑦))−1, and 

for 𝛷 = 𝛷(𝜏𝜃𝑛 , 𝜃) one has

‖𝐸(𝑔𝜀𝑛 ; 𝜏
𝜃
𝑛 )‖bmo𝛷2 [0,𝑇 ) + (E𝑔(𝑌𝑇 ) − E𝑔𝜀𝑛 (𝑌𝑇 )) ⩽

(

𝑐5.12 + 1
)

𝑛𝛿−
1
2 ,

|𝜑𝜀𝑛 | ⩽ 𝑐5.12𝑛
1
2−𝛿 on [0, 𝑇 ) ×𝛺,

where 𝜑𝜀𝑛  is defined for 𝑔𝜀𝑛  as in Property  5.2 (3).

6. Proof of results of Section 4

6.1. Proof of Theorem  4.3

To simplify the notation we set 𝜑𝑇 ∶= 0. For 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈  , 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), and 𝑠𝑖 ∶= 𝑡𝑖 ∨ 𝑎 one has, a.s.,

E𝑎
[

[𝜑; 𝜏]𝜋𝑎,𝑇
]

= E𝑎

[

∫(𝑎,𝑇 ]

|

|

|

|

|

𝜑𝑢 −
𝑛
∑

𝑖=1
𝜑𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢)

|

|

|

|

|

2

𝛱(d𝑢)

]

= E𝑎

[

∫(𝑎,𝑡𝑘]
|

|

|

𝜑𝑢 − 𝜑𝑡𝑘−1
|

|

|

2
𝛱(d𝑢) +

𝑛
∑

𝑖=𝑘+1
∫(𝑡𝑖−1 ,𝑡𝑖]

|

|

|

𝜑𝑢 − 𝜑𝑡𝑖−1
|

|

|

2
𝛱(d𝑢)

]

⩽ 𝜅E𝑎

[

|

|

|

𝜑𝑎 − 𝜑𝑡𝑘−1
|

|

|

2
𝛱((𝑎, 𝑡𝑘]) +

𝑛
∑

𝑖=𝑘
∫(𝑠𝑖−1 ,𝑠𝑖]

(𝑠𝑖 − 𝑢)𝛶 (d𝑢)

]

⩽ 𝜅E𝑎

[

𝑡𝑘 − 𝑡𝑘−1
(𝑇 − 𝑡𝑘−1)1−𝜃

|

|

|

𝜑𝑎 − 𝜑𝑡𝑘−1
|

|

|

2 (𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
𝛱((𝑎, 𝑡𝑘])

+
𝑛
∑

𝑖=𝑘
∫(𝑠𝑖−1 ,𝑠𝑖]

𝑠𝑖 − 𝑢

(𝑇 − 𝑢)1−𝜃
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢)

]

⩽ 𝜅‖𝜏‖𝜃

E𝑎
[

|

|

|

𝜑𝑎 − 𝜑𝑡𝑘−1
|

|

|

2 (𝑇 − 𝑡𝑘−1)1−𝜃

𝑡𝑘 − 𝑡𝑘−1
𝛱((𝑎, 𝑡𝑘]) + ∫(𝑎,𝑇 )

(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢)
]

where we use 𝑠𝑖−𝑢
(𝑇−𝑢)1−𝜃

= 𝑡𝑖−𝑢
(𝑇−𝑢)1−𝜃

⩽ 𝑡𝑖−𝑡𝑖−1
(𝑇−𝑡𝑖−1)1−𝜃

⩽ ‖𝜏‖𝜃 for 𝑢 ∈ (𝑠𝑖−1, 𝑠𝑖] ∩ [0, 𝑇 ) as 𝑠𝑖−1 < 𝑠𝑖 implies 𝑡𝑖 = 𝑠𝑖. □

6.2. Proof of Theorem  4.4

(1) Beginning the proof as for Theorem  4.3 with 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), we get, a.s.,

E𝑎
[

[𝜑; 𝜏]𝜋𝑎,𝑡𝑘

]

= E𝑎

[

∫(𝑎,𝑡𝑘]

|

|

|

|

|

𝜑𝑢 −
𝑛
∑

𝑖=1
𝜑𝑡𝑖−11(𝑡𝑖−1 ,𝑡𝑖](𝑢)

|

|

|

|

|

2

𝛱(d𝑢)

]

= E𝑎

[

∫(𝑎,𝑡𝑘]
|

|

|

𝜑𝑢 − 𝜑𝑡𝑘−1
|

|

|

2
𝛱(d𝑢)

]

⩾ 1
𝜅
E𝑎

[

|

|

|

𝜑𝑎 − 𝜑𝑡𝑘−1
|

|

|

2
𝛱((𝑎, 𝑡𝑘])

]

.

Dividing by ‖𝜏‖𝜃 = 𝑡𝑘−𝑡𝑘−1
(𝑇−𝑡𝑘−1)1−𝜃

 we obtain the desired statement.
(2) We partition the interval [𝑎, 𝑇 ] with (𝑢𝜃,𝑎𝑖,𝑛 )𝑛𝑖=0 and (𝑟

𝜃,𝑎
𝑖,𝑛 )

𝑛
𝑖=1. As 𝑛, 𝑎, 𝜃 remain fixed in the following estimates we write for ease 

of notation and readability simply 𝑢𝑖 and 𝑟𝑖 defined as

𝑢𝑖 ∶= 𝑎 + (𝑇 − 𝑎)

[

1 −
(

1 − 𝑖
𝑛

)
1
𝜃

]

, 𝑖 = 0,… , 𝑛,

𝑟𝑖 ∶= 𝑎 + (𝑇 − 𝑎)

[

1 −
(

1 − 2𝑖−1
2𝑛

)
1
𝜃

]

, 𝑖 = 1,… , 𝑛,

and add 𝑟0 ∶= 𝑎 and 𝑟𝑛+1 ∶= 𝑇 . Choosing for both nets the remaining time-knots on [0, 𝑎] fine enough, we obtain nets 𝜏𝜃𝑛 (𝑎) and 
𝜃̃
𝑛 (𝑎) satisfying

‖𝜏𝜃𝑛 (𝑎)‖𝜃 = sup
𝑖=1,…,𝑛

𝑢𝑖 − 𝑢𝑖−1
(𝑇 − 𝑢𝑖−1)1−𝜃

and ‖𝜏𝜃𝑛 (𝑎)‖𝜃 = sup
𝑖=0,1,…,𝑛

𝑟𝑖+1 − 𝑟𝑖
(𝑇 − 𝑟𝑖)1−𝜃

.

By a computation, we have for 𝑖 = 1,… , 𝑛 and 𝑢 ∈ (𝑢𝑖−1, 𝑟𝑖] that 
(𝑇 − 𝑎)𝜃

1
⩽

𝑢𝑖 − 𝑟𝑖
1−𝜃

⩽
𝑢𝑖 − 𝑢

1−𝜃
⩽

𝑢𝑖 − 𝑢𝑖−1
1−𝜃

⩽ (𝑇 − 𝑎)𝜃
, (6.1)
𝜃2 𝜃 +1𝑛 (𝑇 − 𝑟𝑖) (𝑇 − 𝑢) (𝑇 − 𝑢𝑖−1) 𝜃𝑛
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and for 𝑖 = 1,… , 𝑛 − 1 and 𝑢 ∈ (𝑟𝑖, 𝑢𝑖] that 
(𝑇 − 𝑎)𝜃

𝜃2
1
𝜃 +1𝑛

⩽
𝑟𝑖+1 − 𝑢𝑖

(𝑇 − 𝑢𝑖)1−𝜃
⩽

𝑟𝑖+1 − 𝑢

(𝑇 − 𝑢)1−𝜃
⩽

𝑟𝑖+1 − 𝑟𝑖
(𝑇 − 𝑟𝑖)1−𝜃

⩽ (𝑇 − 𝑎)𝜃

𝜃𝑛
, (6.2)

where the last inequality in the chain of inequalities in (6.2) holds for 𝑖 ∈ {0, 𝑛} as well. This implies 

‖𝜏𝜃𝑛 (𝑎)‖𝜃 ⩽
(𝑇 − 𝑎)𝜃

𝜃𝑛
and ‖𝜏𝜃𝑛 (𝑎)‖𝜃 ⩽

(𝑇 − 𝑎)𝜃

𝜃𝑛
. (6.3)

 Next we obtain, a.s.,

E𝑎

[

∫(𝑎,𝑟𝑛]
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢)

]

=
𝑛
∑

𝑖=1
E𝑎

[

∫(𝑢𝑖−1 𝑟𝑖]
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢)

]

+
𝑛−1
∑

𝑖=1
E𝑎

[

∫(𝑟𝑖 , 𝑢𝑖]
(𝑇 − 𝑢)1−𝜃𝛶 (d𝑢)

]

⩽ 𝜃2
1
𝜃 +1𝑛

(𝑇 − 𝑎)𝜃

[ 𝑛
∑

𝑖=1
E𝑎

[

∫(𝑢𝑖−1 𝑟𝑖]
(𝑢𝜃,𝑎𝑖,𝑛 − 𝑢)𝛶 (d𝑢)

]

+
𝑛−1
∑

𝑖=1
E𝑎

[

∫(𝑟𝑖 𝑢𝑖]
(𝑟𝑖+1 − 𝑢)𝛶 (d𝑢)

]]

⩽ (𝜅2
1
𝜃 +1)E𝑎

[

[𝜑; 𝜏𝜃𝑛 (𝑎)]
𝜋
𝑎,𝑇

‖𝜏𝜃𝑛 (𝑎)‖𝜃
+

[𝜑; 𝜏𝜃𝑛 (𝑎)]
𝜋
𝑎,𝑇

‖𝜏𝜃𝑛 (𝑎)‖𝜃

]

,

where for the last inequality we first use (4.1), that gives the factor 𝜅. For each 𝑛 we choose the time-net that gives the larger 
quotient and obtain the desired nets as we have (6.3) and 𝑟𝑛 = 𝑎 + (𝑇 − 𝑎)

[

1 −
(

1 − 2𝑛−1
2𝑛

)
1
𝜃

]

↑ 𝑇  as 𝑛→ ∞. □

7. Proof of results of Section 5 and Section 1

Lemma 7.1.  Assume that 𝜃 ∈ (0, 1], 𝑔 ∈ 𝐶𝑌 , 𝜏 ∈  , and 𝛷 ∈ CL+([0, 𝑇 )) such that, for all 𝑎 ∈ [0, 𝑇 ),

E𝑎

[

sup
𝑡∈[𝑎,𝑇 )

|

|

|

|

|


1−𝜃
2

𝑡 𝑀 − 
1−𝜃
2

𝑎 𝑀
|

|

|

|

|

2]

+ 𝑇 − 𝑎
(𝑇 − 𝑡𝑘−1)𝜃

|

|

|

𝜑𝑎 − 𝜑𝑡𝑘−1
|

|

|

2
𝜎2𝑎 ⩽ 𝛷2

𝑎 a.s.

when 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘). Then ‖𝐸(𝑔; 𝜏)‖bmo𝛷2 [0,𝑇 ) ⩽
√

𝑐(4.3)
√

‖𝜏‖𝜃 , where 𝑐(4.3) > 0 is taken from inequality (4.3).

Proof.  The statement follows directly from (5.4) and inequality (4.3). □

Lemma 7.2.  For 𝛼 ⩾ 0 and 𝑡 ∈ [0, 𝑇 ) one has, a.s.,

(𝑇 − 𝑡)𝛼𝑍𝑡 = 𝑇 𝛼𝑍0 + ∫(0,𝑡]
(𝑇 − 𝑢)𝛼𝐻𝑢d𝑊𝑢 + ∫(0,𝑡]

(𝑇 − 𝑢)𝛼𝜎′(𝑌𝑢)𝑍𝑢d𝑊𝑢

− 𝛼 ∫(0,𝑡]
(𝑇 − 𝑢)𝛼−1𝑍𝑢d𝑢 +

1
2 ∫(0,𝑡]

(𝑇 − 𝑢)𝛼(𝜎𝜎′′)(𝑌𝑢)𝑍𝑢d𝑢.

Proof.  The assertion follows by Itô’s formula applied to the function (𝑡, 𝑦) ↦ (𝑇 − 𝑡)𝛼
(

𝜎𝜕𝑦𝐺
)

(𝑡, 𝑦) with 𝑌𝑡 inserted into the 
𝑦-component, where we use the PDE from (C). □

Lemma 7.3.  There exists a constant 𝑐(7.1) = 𝑐(7.1)(𝑐(8.3), 𝑇 ) > 0 such that for 𝜃 ∈ [0, 1] and 𝑔 ∈ Höl𝜃(R) one has 
|

|

|

𝜕𝑦𝐺(𝑢, 𝑦)
|

|

|

⩽ 𝑐(7.1) |𝑔|𝜃 𝜎(𝑦)𝜃−1(𝑇 − 𝑢)
𝜃−1
2 for (𝑢, 𝑦) ∈ [0, 𝑇 ) ×𝑌 . (7.1)

Proof.  Set 𝑓 ∶= 𝑔 and 𝐹 ∶= 𝐺 in case (C1) and 𝑓 (𝑥) ∶= 𝑔(e𝑥) and 𝐹 (𝑢, 𝑥) ∶= 𝐺(𝑢, e𝑥) for (𝑢, 𝑥) ∈ [0, 𝑇 ) × R in case (C2). Let us fix 
𝑢 ∈ [0, 𝑇 ). In both cases, (C1) and (C2), we have

𝜕𝑥𝐹 (𝑢, 𝑥) = ∫R
𝜕𝑥𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)𝑓 (𝜉)d𝜉 = ∫R

𝜕𝑥𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)(𝑓 (𝜉) − 𝑓 (𝑥))d𝜉

where we use (F) with the transition density 𝛤𝑋 from Theorem  8.5. For 𝑡 > 0 denote 𝛾𝑡(𝑥) ∶= 1
√

2𝜋𝑡
e−

𝑥2
2𝑡 . In the case (C1) we derive 

for 𝑦 = 𝑥 that
|

|𝜕𝑦𝐺(𝑢, 𝑦)
|

| = |𝜕𝑥𝐹 (𝑢, 𝑥)| ⩽ |𝑔|𝜃 |𝜕𝑥𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)| |𝜉 − 𝑥|𝜃d𝜉

| |

| | ∫R | |
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⩽ |𝑔|𝜃 ∫R
𝑐(8.3)(𝑇 − 𝑢)−

1
2 𝛾𝑐(8.3)(𝑇−𝑢)(𝑥 − 𝜉)|𝜉 − 𝑥|

𝜃d𝜉

= |𝑔|𝜃(𝑇 − 𝑢)
𝜃−1
2

∫R
𝑐(8.3)𝛾𝑐(8.3) (𝜂)|𝜂|

𝜃d𝜂

⩽ |𝑔|𝜃(𝑇 − 𝑢)
𝜃−1
2

∫R
𝑐(8.3)𝛾𝑐(8.3) (𝜂)(1 + |𝜂|)d𝜂

where we use ∫R 𝜕𝑥𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)d𝜉 = 𝜕
𝜕𝑥 ∫R 𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)d𝜉 = 0. For 𝑦 = e𝑥 we get for (C2) that

|

|

|

𝑦𝜕𝑦𝐺(𝑢, 𝑦)
|

|

|

= |

|

𝜕𝑥𝐹 (𝑢, 𝑥)||

⩽ |𝑔|𝜃 ∫R
|

|

𝜕𝑥𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)|
|

| e𝜉 −e𝑥 |𝜃d𝜉

= |𝑔|𝜃 e𝑥𝜃 ∫R
|

|

𝜕𝑥𝛤𝑋 (𝑇 − 𝑢, 𝑥, 𝜉)|
|

| e𝜉−𝑥 −1|𝜃d𝜉

⩽ |𝑔|𝜃 e𝑥𝜃 ∫R
𝑐(8.3)(𝑇 − 𝑢)−

1
2 𝛾𝑐(8.3)(𝑇−𝑢)(𝑥 − 𝜉)| e

𝜉−𝑥 −1|𝜃d𝜉.

We conclude by

∫R
𝛾𝑐(8.3)(𝑇−𝑢)(𝑥 − 𝜉)| e

𝜉−𝑥 −1|𝜃d𝜉 ⩽ ∫R
𝛾𝑐(8.3)(𝑇−𝑢)(𝜉)|𝜉|

𝜃 e𝜃|𝜉| d𝜉

⩽ (𝑇 − 𝑢)
𝜃
2
∫R

𝛾𝑐(8.3) (𝜂)|𝜂|
𝜃 e𝜃

√

𝑇 |𝜂| d𝜂

⩽ (𝑇 − 𝑢)
𝜃
2
∫R

𝛾𝑐(8.3) (𝜂)(1 + |𝜂|) e
√

𝑇 |𝜂| d𝜂

<∞. □

Lemma 7.4.  Let dP̂ ∶= 𝐿dP with 𝐿 ∶= e∫(0,𝑇 ] 𝜎
′(𝑌𝑡)d𝑊𝑡−

1
2 ∫(0,𝑇 ] |𝜎

′(𝑌𝑡)|2d𝑡 and 𝑔 ∈ 𝐶𝑌 . Then the process (𝜑(𝑡, 𝑌𝑡))𝑡∈[0,𝑇 ) = (𝜕𝑦𝐺(𝑡, 𝑌𝑡))𝑡∈[0,𝑇 ) is 
a P̂-martingale.

Proof.  Applying the PDE from (C) we get that

𝜕𝑡𝜑(𝑡, 𝑦) + (𝜎𝜎′)(𝑦)𝜕𝑦𝜑(𝑡, 𝑦) +
1
2
𝜎(𝑦)2𝜕2𝑦𝑦𝜑(𝑡, 𝑦)

= 𝜕
𝜕𝑦

[

𝜕𝑡𝐺(𝑡, 𝑦) +
1
2
𝜎(𝑦)2𝜕2𝑦𝑦𝐺(𝑡, 𝑦)

]

= 0

on [0, 𝑇 ) ×𝑌 . By Itô’s formula this implies that

𝜑(𝑡, 𝑌𝑡) = 𝜑(0, 𝑦0) + ∫(0,𝑡]

(

𝜎𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)
[

d𝑊𝑢 − 𝜎′(𝑌𝑢)d𝑢
]  a.s.

for 𝑡 ∈ [0, 𝑇 ). Because of (A) and Girsanov’s theorem we obtain a P̂ standard Brownian motion 𝑊̂𝑡 ∶= 𝑊𝑡 − ∫(0,𝑡] 𝜎
′(𝑌𝑢)d𝑢, 𝑡 ∈ [0, 𝑇 ]. 

Moreover, for 𝑡 ∈ [0, 𝑇 ), 𝑝, 𝑞 ∈ (1,∞), 1 = 1
𝑝 +

1
𝑝′ =

1
𝑞 +

1
𝑞′ , and with 𝑝′𝑞′ = 2 we have that

EP̂
(

∫

𝑡

0

|

|

|

(

𝜎𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)
|

|

|

2
d𝑢
)

1
2

⩽ (EP𝐿𝑝)
1
𝑝
⎛

⎜

⎜

⎝

EP
(

∫

𝑡

0

|

|

|

(

𝜎𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)
|

|

|

2
d𝑢
)

𝑝′
2 ⎞
⎟

⎟

⎠

1
𝑝′

⩽ (EP𝐿𝑝)
1
𝑝
⎛

⎜

⎜

⎝

EP
(

sup
𝑢∈[0,𝑇 ]

(𝜎−𝑝
′

𝑢 )
)(

∫

𝑡

0

|

|

|

(

𝜎2𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)
|

|

|

2
d𝑢
)

𝑝′
2 ⎞
⎟

⎟

⎠

1
𝑝′

⩽ (EP𝐿𝑝)
1
𝑝

(

EP
(

sup
𝑢∈[0,𝑇 ]

(𝜎−𝑝
′

𝑢 )
)𝑞) 1

𝑝′𝑞
(

EP
∫

𝑡

0

|

|

|

(

𝜎2𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)
|

|

|

2
d𝑢
)

1
2
.

The last term is finite because of (E), the first term is finite as 𝜎′ is bounded, the second term is finite in the case (𝐶1), but also 
finite in the case (𝐶2) because of 𝜎(𝑦) ∼ 𝑦 and Lemma  5.3 (1). As by the Burkholder–Davis–Gundy inequalities applied to continuous 
local martingales we also have

EP̂
|

|

|

|

|

∫(0,𝑡]
|

|

|

(

𝜎𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)
|

|

|

2
d𝑢
|

|

|

|

|

1
2
∼𝑐 EP̂ sup

𝑠∈[0,𝑡]

|

|

|

|

|

∫(0,𝑠]

(

𝜎𝜕𝑦𝜑
)

(𝑢, 𝑌𝑢)d𝑊̂𝑢

|

|

|

|

|

for some absolute constant 𝑐 ⩾ 1 and 𝑡 ∈ [0, 𝑇 ), we get that (𝜑(𝑡, 𝑌 ))  is a P̂-martingale. □
𝑡 𝑡∈[0,𝑇 )
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7.1. Proof of Theorem  5.6

(1) For 𝑡 ∈ [0, 𝑇 ) the relation

𝛼 ∫

𝑇

0
(𝑇 − 𝑢)𝛼−1𝑍𝑢∧𝑡d𝑢 = 𝛼 ∫

𝑡

0
(𝑇 − 𝑢)𝛼−1𝑍𝑢d𝑢 + (𝑇 − 𝑡)𝛼𝑍𝑡

and Lemma  7.2 imply that

𝛼 ∫(0,𝑇 ]
(𝑇 − 𝑢)𝛼−1𝑍𝑢∧𝑡d𝑢

= 𝑇 𝛼𝑍0 + ∫(0,𝑡]
(𝑇 − 𝑢)𝛼𝐻𝑢d𝑊𝑢 + ∫(0,𝑡]

(𝑇 − 𝑢)𝛼𝜎′(𝑌𝑢)𝑍𝑢d𝑊𝑢

+ 1
2 ∫(0,𝑡]

(𝑇 − 𝑢)𝛼(𝜎𝜎′′)(𝑌𝑢)𝑍𝑢d𝑢 a.s.

Denote 𝑏𝑢(𝜔) ∶= 1
2 (𝜎𝜎

′′)(𝑌𝑢(𝜔)) and 𝐵 ∶= 1
2‖𝜎𝜎

′′
‖𝐵𝑏(𝑌 ) <∞. Dividing both sides of the equality above by 𝑇 𝛼 and using (5.7), gives 

(𝛼𝑡 𝑍 −𝑍0) − 𝛼𝑡 𝑀 = ∫(0,𝑡]

(𝑇 − 𝑢
𝑇

)𝛼
𝑍𝑢(𝜎′(𝑌𝑢)d𝑊𝑢 + 𝑏𝑢d𝑢) a.s. (7.2)

Next we observe that, for 0 ⩽ 𝑎 < 𝑡 < 𝑇 , a.s.,
(

E𝑎

[

|

|

|

|

|

∫(𝑎,𝑡]

(𝑇 − 𝑢
𝑇

)𝛼
𝑍𝑢𝜎

′(𝑌𝑢)d𝑊𝑢

|

|

|

|

|

2])
1
2

+

(

E𝑎

[

|

|

|

|

|

∫(𝑎,𝑡]

(𝑇 − 𝑢
𝑇

)𝛼
|𝑍𝑢𝑏𝑢|d𝑢

|

|

|

|

|

2])
1
2

⩽ (‖𝜎′‖𝐵𝑏(𝑌 ) + 𝐵
√

𝑇 )
(

E𝑎
[

∫(𝑎,𝑡]

(𝑇 − 𝑢
𝑇

)2𝛼
𝑍2
𝑢 d𝑢

])
1
2

⩽ 𝑐𝛷(‖𝜎′‖𝐵𝑏(𝑌 ) + 𝐵
√

𝑇 )

(

E𝑎

[

sup
𝑢∈[𝑎,𝑇 )

𝛷2
𝑢 ∫(𝑎,𝑡]

(𝑇 − 𝑢
𝑇

)2𝛼 d𝑢
𝑇 − 𝑢

])
1
2

⩽
𝑐𝛷(‖𝜎′‖𝐵𝑏(𝑌 ) + 𝐵

√

𝑇 )
√

2𝛼
‖𝛷‖2([0,𝑇 ))

(𝑇 − 𝑎
𝑇

)𝛼
𝛷𝑎.

Because of (7.2) Item (1) follows.
(2) Also, the martingale (∫(0,𝑡]

(

𝑇−𝑢
𝑇

)𝛼
𝑍𝑢𝜎′(𝑌𝑢)d𝑊𝑢)𝑡∈[0,𝑇 ) converges in 𝐋𝑞 and a.s. because of 𝛷 ∈ 2([0, 𝑇 )), sup𝑡∈[0,𝑇 )𝛷𝑡 ∈ 𝐋𝑞 , 

and (8.2) of Theorem  8.4. Again by (8.2), the non-negative and non-decreasing process
(

∫

𝑡

0

(𝑇 − 𝑢
𝑇

)𝛼
|𝑍𝑢𝑏𝑢|d𝑢

)

𝑡∈[0,𝑇 )

converges in 𝐋𝑞 and a.s. For this reason 
(

∫ 𝑡0
(

𝑇−𝑢
𝑇

)𝛼
𝑍𝑢𝑏𝑢d𝑢

)

𝑡∈[0,𝑇 )
 converges in 𝐋𝑞 and a.s. as well. So, again using (7.2), Item (2) 

follows.
(3) This part follows from the proof of (2) for 𝑞 = 2 as 𝛷 ∈ 2([0, 𝑇 )) gives sup𝑡∈[0,𝑇 )𝛷𝑡 ∈ 𝐋2.
(4) From sup𝑡∈[0,𝑇 )𝛷𝑡 ∈ 𝐋𝑞 , 𝛼𝑍 − 𝑍0 ∈ bmo𝛷2 ([0, 𝑇 )), and (8.2) of Theorem  8.4 we deduce that sup𝑡∈[0,𝑇 ) |𝛼𝑡 𝑍| ∈ 𝐋𝑞 . By (2) we 

conclude that sup𝑡∈[0,𝑇 ) ‖‖𝛼𝑡 𝑀‖

‖𝐋𝑞
< ∞ and obtain from the martingale property the 𝐋𝑞- and a.s. convergence of 𝛼𝑀 . Now we can 

use (2) and (3) to obtain the 𝐋𝑞- and a.s. convergence of (𝛼𝑡 𝑍)𝑡∈[0,𝑇 ). □

7.2. Proof of Theorem  5.7

(1) ⇒ (2) We may assume that 𝑔∶𝑌 → R is Lipschitz. By Lemma  7.3 we have
|

|

|

𝜕𝑦𝐺(𝑢, 𝑦)
|

|

|

⩽ 𝑐(7.1)|𝑔|1 and |

|

𝑍𝑢|| ⩽ 𝑐(7.1)|𝑔|1𝜎𝑢 for (𝑢, 𝑦) ∈ [0, 𝑇 ) ×𝑌 .

Let 0 ⩽ 𝑎 < 𝑡 < 𝑇 . From Lemma  7.2 with 𝛼 = 0 we get that

𝑍𝑡 = 𝑍𝑎 + ∫(𝑎,𝑡]
𝐻𝑢d𝑊𝑢 + ∫(𝑎,𝑡]

𝜎′(𝑌𝑢)𝑍𝑢d𝑊𝑢 +
1
2 ∫(𝑎,𝑡]

(𝜎𝜎′′)(𝑌𝑢)𝑍𝑢d𝑢 a.s.

Then one has, a.s.,
√

E𝑎

[ 𝑡
𝐻2
𝑢 d𝑢

]

∫𝑎
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⩽
√

E𝑎
[

|𝑍𝑡 −𝑍𝑎|2
]

+ ‖𝜎′‖𝐵𝑏(𝑌 )

√

E𝑎

[

∫

𝑡

𝑎
𝑍2
𝑢 d𝑢

]

+ 1
2
‖𝜎𝜎′′‖𝐵𝑏(𝑌 )

√

√

√

√E𝑎

[

|

|

|

|

|

∫

𝑡

𝑎
|𝑍𝑢|d𝑢

|

|

|

|

|

2]

⩽
√

E𝑎
[

|𝑍𝑡 −𝑍𝑎|2
]

+

[

‖𝜎′‖𝐵𝑏(𝑌 ) +

√

𝑇
2

‖𝜎𝜎′′‖𝐵𝑏(𝑌 )

]
√

E𝑎

[

∫

𝑡

𝑎
𝑍2
𝑢 d𝑢

]

⩽ 𝑐(7.1)|𝑔|1

[

√

E𝑎
[

𝜎2𝑡
]

+ 𝜎𝑎

]

+ 𝑐(7.1)|𝑔|1

[

‖𝜎′‖𝐵𝑏(𝑌 ) +

√

𝑇
2

‖𝜎𝜎′′‖𝐵𝑏(𝑌 )

]

√

𝑇

√

√

√

√E𝑎

[

sup
𝑢∈[𝑎,𝑇 )

𝜎2𝑢

]

⩽ 𝑐(7.1)|𝑔|1
[

2 +
√

𝑇 ‖𝜎′‖𝐵𝑏(𝑌 ) +
𝑇
2
‖𝜎𝜎′′‖𝐵𝑏(𝑌 )

]

√

√

√

√E𝑎

[

sup
𝑢∈[𝑎,𝑇 )

𝜎2𝑢

]

⩽ 𝑐(7.1)|𝑔|1
[

2 +
√

𝑇 ‖𝜎′‖𝐵𝑏(𝑌 ) +
𝑇
2
‖𝜎𝜎′′‖𝐵𝑏(𝑌 )

]

‖𝜎‖2([0,𝑇 ))𝜎𝑎

and hence 
√

E𝑎
[

|𝑀𝑡 −𝑀𝑎|
2
]

=

√

E𝑎

[

∫(𝑎,𝑡]
𝐻2
𝑢 d𝑢

]

⩽ 𝑐(7.3)|𝑔|1‖𝜎‖2([0,𝑇 ))𝜎𝑎 a.s., (7.3)

for some 𝑐(7.3)(𝜎, 𝑇 ) > 0.  Applying Lemma  7.3 for 𝜃 = 1 yields ||
|

𝜕𝑦𝐺(𝑢, 𝑦)
|

|

|

⩽ 𝑐(7.1) |𝑔|1 for (𝑢, 𝑦) ∈ [0, 𝑇 ) ×𝑌 . Therefore, by applying 
Doob’s maximal inequality in (7.3) and assuming 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘) we have

E𝑎

[

sup
𝑡∈[𝑎,𝑇 )

|

|

𝑀𝑡 −𝑀𝑎
|

|

2
]

+ 𝑇 − 𝑎
𝑇 − 𝑡𝑘−1

|

|

|

𝜑𝑎 − 𝜑𝑡𝑘−1
|

|

|

2
𝜎2𝑎

⩽ 4
[

𝑐(7.3)|𝑔|1‖𝜎‖2([0,𝑇 ))

]2
𝜎2𝑎 + 4

[

𝑐(7.1) |𝑔|1
]2 𝜎2𝑎

= 4
[

𝑐2(7.3)‖𝜎‖
2
2([0,𝑇 ))

+ 𝑐2(7.1)
]

|𝑔|21𝜎
2
𝑎

where we used 𝑇−𝑎
𝑇−𝑡𝑘−1

⩽ 1. Now Lemma  7.1 implies (2).
(2) ⇒ (1) Given 𝑎 ∈ (0, 𝑇 ), exploiting (4.4) and (5.3) give 

sup
𝑠∈[0,𝑎]

𝑇 − 𝑎
𝑇 − 𝑠

|𝜑𝑎 − 𝜑𝑠|2 ⩽ 𝑐2(7.4) a.s. (7.4)

For 𝑎 ∈
(

𝑇
2 , 𝑇

)

 we choose 𝑠 ∈ (0, 𝑎) such that 𝑇−𝑎𝑇−𝑠 = 1
2 . Therefore we may continue to

|

|

|

𝜕𝑦𝐺(𝑎, 𝑦𝑎)
|

|

|

⩽ |

|

|

𝜕𝑦𝐺(𝑠, 𝑦𝑠)
|

|

|

+
√

2𝑐(7.4) for all 𝑦𝑎, 𝑦𝑠 ∈ 𝑌

where we use the positivity and continuity of the transition density 𝛤𝑌  with

𝛤𝑌 (𝑡 − 𝑠; 𝑦1, 𝑦2) =
1
𝑦2
𝛤𝑋 (𝑡 − 𝑠; ln(𝑦1), ln(𝑦2))

in the case (C2) and 𝛤𝑌 = 𝛤𝑋 in the case (C1) (𝛤𝑋 is taken from Theorem  8.5), that the support of the law of (𝑌𝑠, 𝑌𝑎) is 𝑌 ×𝑌 , 
and the continuity of 𝜕𝑦𝐺(𝑡, ⋅) ∶ 𝑌 → R for 𝑡 ∈ [0, 𝑇 ). Applying Lemma  7.4, we have EP̂𝜑(𝑠, 𝑌𝑠) = 𝜑(0, 𝑌0) for 𝑠 ∈ [0, 𝑇 ). Therefore, 
for each 𝑠 ∈ [0, 𝑇 ) there are 𝜔0

𝑠 , 𝜔
1
𝑠 ∈ 𝛺 such that for 𝑦𝑖𝑠 ∶= 𝑌𝑠(𝜔𝑖𝑠) ∈ 𝑌  we have 𝜑(𝑠, 𝑦0𝑠 ) ⩽ 𝜑(0, 𝑌0) ⩽ 𝜑(𝑠, 𝑦1𝑠 ). Because 𝑦 ↦ 𝜕𝑦𝐺(𝑠, 𝑦)

is continuous on 𝑌  we find a 𝑦𝑠 ∈ 𝑌  such that 𝜑(𝑠, 𝑦𝑠) = 𝜑(0, 𝑦0). Therefore, 
|

|

|

𝜕𝑦𝐺(𝑎, 𝑦)
|

|

|

⩽ |

|

|

𝜕𝑦𝐺(0, 𝑦0)
|

|

|

+
√

2𝑐(7.4) =∶ 𝑐(7.5) for all (𝑎, 𝑦) ∈
(𝑇
2
, 𝑇

)

×𝑌 . (7.5)

Let 𝛺𝑔 ∈  be of measure one such that for all 𝜔 ∈ 𝛺𝑔 one has
lim
𝑡↑𝑇

𝐺(𝑡, 𝑌𝑡(𝜔)) = 𝑔(𝑌𝑇 (𝜔)).

Let 𝐼𝑔 ∶= 𝑌𝑇 (𝛺𝑔) ⊆ 𝑌 . Then 𝑔 is Lipschitz on 𝐼𝑔 with Lipschitz constant 𝑐(7.5), and since 𝐼𝑔 is dense in 𝑌  (as 𝑌𝑇  has a positive 
density on 𝑌 ), the function 𝑔|𝐼𝑔  can be extended to 𝑔̃∶𝑌 → R as a Lipschitz function on 𝑌 . Moreover, P(𝑔(𝑌𝑇 ) = 𝑔̃(𝑌𝑇 )) ⩾
P(𝛺𝑔) = 1. □

7.3. Proof of Theorem  5.9

As (1) is obvious we start with (2). We only need to check the case (C2) and in this case we have 𝜎(𝑦) ∼ 𝑦 so that we can use 
Lemma  5.3 (1). (3) follows directly from Lemma  7.3.
24 



S. Geiss and N.T. Thuan Stochastic Processes and their Applications 187 (2025) 104651 
(4) By Proposition  5.4 we have that Assumption  4.5 (and therefore relation (4.1)) is satisfied. To derive (5.8), our idea is to use 
the Stein–Weiss interpolation theorem [15, Theorem 5.4.1]. To do that, we need to establish the respective end-point estimates in 
the cases 𝜃 = 0 and 𝜃 = 1. We fix 𝑎 ∈ [0, 𝑇 ), a set 𝐴 ∈ 𝑎 of positive measure. First we observe that by (4.1) (applied to 𝑠 = 𝑎 and 
with 𝑏 ↑ 𝑇 ), Lemma  7.3 for 𝜃 = 0, and Lemma  5.3,

1
√

𝜅

√

∫𝐴 ∫

𝑇

𝑎
(𝑇 − 𝑢)𝐻2

𝑢 d𝑢dP

⩽

√

∫𝐴 ∫

𝑇

𝑎
|

|

𝜑𝑢 − 𝜑𝑎||
2 𝜎2𝑢d𝑢dP

⩽

√

∫𝐴 ∫

𝑇

𝑎
𝑍2
𝑢 d𝑢dP +

√

∫𝐴
𝜑2
𝑎 ∫

𝑇

𝑎
𝜎2𝑢d𝑢dP

⩽

√

∫𝐴
𝑔(𝑌𝑇 )2dP +

√

∫𝐴

[

𝑐2(7.1)|𝑔|
2
0𝜎

−2
𝑎 (𝑇 − 𝑎)−1

][

𝑐2(5.5)(𝑇 − 𝑎)𝜎2𝑎
]

dP

⩽ 𝑐0‖𝑔‖𝐵𝑏(𝑌 )
√

P(𝐴).

On the other hand, the end-point estimate for 𝜃 = 1 follows from (7.3) as
√

∫𝐴 ∫

𝑇

𝑎
𝐻2
𝑢 d𝑢dP ⩽ 𝑐(7.3)|𝑔|1‖𝜎‖2([0,𝑇 ))

√

∫𝐴
𝜎2𝑎dP.

For the linear map 𝑇 ∶ 𝑔 ↦
(

𝐻𝑢
)

𝑢∈[𝑎,𝑇 ) and 𝜆1 being the Lebesgue measure we get
‖

‖

‖

𝑇 ∶ 𝐶0
𝑏 (R) → 𝐋2([𝑎, 𝑇 ) × 𝐴, ((𝑇 − ⋅)𝜆1)⊗ P𝐴)

‖

‖

‖

⩽ 𝑐0
√

𝜅, (7.6)

‖

‖

‖

𝑇 ∶ Höl01(R) → 𝐋2([𝑎, 𝑇 ) × 𝐴, 𝜆1 ⊗ P𝐴)
‖

‖

‖

⩽ 𝑐1

√

∫𝐴
𝜎2𝑎dP𝐴, (7.7)

where P𝐴 is the normalized restriction of P to 𝐴. Applying the Stein–Weiss interpolation theorem [15, Theorem 5.4.1] to (7.6) and 
(7.7) yields

‖

‖

‖

𝑇 ∶ (𝐶0
𝑏 (R),Höl

0
1(R))𝜃,2 → 𝐋2([𝑎, 𝑇 ) × 𝐴, ((𝑇 − ⋅)1−𝜃𝜆1)⊗ P𝐴)

‖

‖

‖

⩽ 𝑐(7.8)

(

∫𝐴
𝜎2𝑎dP𝐴

)
𝜃
2
, (7.8)

with 𝑐(7.8) ∶= 𝐶(𝑐0
√

𝜅)1−𝜃𝑐𝜃1 . In other words, we did prove
(

∫𝐴 ∫

𝑇

𝑎
(𝑇 − 𝑢)1−𝜃𝐻2

𝑢 d𝑢dP𝐴
)

1
2
⩽ 𝑐(7.8)

(

∫𝐴
𝜎2𝑎dP𝐴

)
𝜃
2
|𝑔|𝜃,2.

For 𝛿 ∈ (0, 1) and 𝑙 ∈ Z define 𝐴𝑙 ∶= {𝛿𝑙+1 < 𝜎2𝑎 ⩽ 𝛿𝑙}. Then

∫𝐴 ∫

𝑇

𝑎
(𝑇 − 𝑢)1−𝜃𝐻2

𝑢 d𝑢dP𝐴

=
∑

P(𝐴∩𝐴𝑙 )>0

(

∫𝐴∩𝐴𝑙 ∫

𝑇

𝑎
(𝑇 − 𝑢)1−𝜃𝐻2

𝑢 d𝑢dP𝐴∩𝐴𝑙

)

P𝐴(𝐴 ∩ 𝐴𝑙)

⩽ 𝑐2(7.8)
∑

P(𝐴∩𝐴𝑙 )>0

(

∫𝐴∩𝐴𝑙
𝜎2𝑎dP𝐴∩𝐴𝑙

)𝜃

P𝐴(𝐴 ∩ 𝐴𝑙) |𝑔|2𝜃,2

⩽ 𝑐2(7.8)
∑

P(𝐴∩𝐴𝑙 )>0
𝛿𝑙𝜃P𝐴(𝐴 ∩ 𝐴𝑙) |𝑔|2𝜃,2

⩽ 𝑐2(7.8)𝛿
−𝜃

∫𝐴
𝜎2𝜃𝑎 dP𝐴 |𝑔|2𝜃,2.

As 𝛿 ∈ (0, 1) was arbitrary, we derive

∫𝐴 ∫

𝑇

𝑎
(𝑇 − 𝑢)1−𝜃𝐻2

𝑢 d𝑢dP𝐴 ⩽ 𝑐2(7.8) ∫𝐴
𝜎2𝜃𝑎 dP𝐴 |𝑔|2𝜃,2

and by (5.7), for 0 ⩽ 𝑎 ⩽ 𝑡 < 𝑇 ,

𝑇 1−𝜃E𝑎

[

|

|

|

|

|


1−𝜃
2

𝑡 𝑀 − 
1−𝜃
2

𝑎 𝑀
|

|

|

|

|

2]

=E𝑎
[

∫

𝑇

𝑎
(𝑇 − 𝑢)1−𝜃𝐻2

𝑢 d𝑢
]

⩽ 𝑐2 𝜎2𝜃|𝑔|2  a.s.
(7.8) 𝑎 𝜃,2
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(5) From (2) we know that 𝜎𝜃 ∈ 𝑞([0, 𝑇 )) for all 𝑞 ∈ (0,∞) which also implies that sup𝑡∈[0,𝑇 ) 𝜎𝜃𝑡 ∈ 𝐋𝑞 . For a continuous adapted 
process (𝐴𝑡)𝑡∈[0,𝑇 ) with 𝐴0 ≡ 0 we know from Proposition  8.3 (2) and Theorem  8.4 (1) that

‖𝐴‖
bmo𝜎𝜃𝑝 [0,𝑇 )

= |𝐴|
bmo𝜎𝜃𝑝 [0,𝑇 )

= |𝐴|
BMO𝜎𝜃𝑝 [0,𝑇 )

∼𝑐 |𝐴|BMO𝜎𝜃2 [0,𝑇 )
= ‖𝐴‖

bmo𝜎𝜃2 [0,𝑇 )

where 𝑐 > 0 depends at most on (𝑝, ‖𝜎𝜃‖2([0,𝑇 )), ‖𝜎
𝜃
‖𝑝([0,𝑇 ))). The a priori estimate (𝐶𝛷) holds because 𝑔 ∈ Höl𝜃,2(R) ⊆ Höl𝜃,∞(R)

and Lemma  7.3. So the statement follows from (4) and Theorem  5.6. □

7.4. Proof of Corollary  1.2

By Theorem  5.7 we get some 𝑐1 = 𝑐1(𝜎, 𝑇 ) > 0 such that
‖𝐸(𝑔(1); 𝜏)‖bmo𝜎2 [0,𝑇 )

⩽ 𝑐1|𝑔
(1)
|1
√

‖𝜏‖1 for 𝜏 ∈  .

Combining Theorem  5.8 with Theorem  5.9 we get

‖𝐸(𝑔(𝜃); 𝜏)‖bmo𝛷(𝜏,𝜃)2 [0,𝑇 ) ⩽
√

𝑐(4.3)
[

4𝑐2(5.8)|𝑔
(𝜃)
|

2
𝜃,2 + 2𝑐2(7.1)|𝑔

(𝜃)
|

2
𝜃

]

√

‖𝜏‖𝜃

⩽ 𝑐𝜃|𝑔
(𝜃)
|𝜃,2

√

‖𝜏‖𝜃

with 𝑐𝜃 = 𝑐𝜃(𝑇 , 𝜎) > 0 where we exploit (2.3). Finally, ‖𝜏‖1 ⩽ 𝑇 1−𝜃
‖𝜏‖𝜃 , 𝛷 = |𝑔(𝜃)|𝜃,2𝛷(𝜏, 𝜃) + |𝑔(1)|1𝜎 and 𝑐 ∶= 𝑐𝜃 ∨ (𝑇

1−𝜃
2 𝑐1) give

‖𝐸(𝑔; 𝜏)‖bmo𝛷2 [0,𝑇 ) ⩽ 𝑐
√

‖𝜏‖𝜃 .

Now we check the moreover -part: For an 𝜂-Hölder function 𝑔 with 𝜂 ∈ (𝜃, 1) we apply Remark  2.1 with inequality (8.7) and get a 
decomposition 𝑔 = 𝑔(𝜃) + 𝑔(1) with

|𝑔(𝜃)|𝜃,2 + |𝑔(1)|1 ⩽ 𝑐𝜃|𝑔
(𝜃)
|𝜃,1 + |𝑔(1)|1 ⩽ 𝑐𝜃𝑐(8.7)|𝑔|𝜂,∞

for some 𝑐𝜃 ⩾ 1. This implies that
𝛷 = |𝑔(𝜃)|𝜃,2𝛷(𝜏, 𝜃) + |𝑔(1)|1𝜎 ⩽ 𝑐𝜃𝑐(8.7)|𝑔|𝜂,∞[𝛷(𝜏, 𝜃) + 𝜎]

which proves this remaining part. □

7.5. Proof of Theorem  5.11

We fix 𝜏 = {𝑡𝑖}𝑛𝑖=0 ∈   and will proceed in four steps.
(a) We choose 𝑟 ∈ (0, 𝑝) such that 𝑞 = 𝑝

𝑝−𝑟  so that (2.7) implies

‖𝑅‖bmo𝛷,𝑄𝑟 [0,𝑇 ) ⩽
𝑟
√

‖d𝑄∕dP‖RH𝑞 (P)‖𝑅‖bmo𝛷𝑝 [0,𝑇 )
=∶ 𝜌 < ∞.

For 𝑎 ∈ [0, 𝑇 ) and 𝐹 ∈ 𝑎 with 𝑄(𝐹 ) > 0 this implies
‖

‖

‖

‖

‖

(

𝑅𝑡 − 𝑅𝑎
𝛷𝑎

1𝐹

)

𝑡∈[𝑎,𝑇 )

‖

‖

‖

‖

‖bmo

(

𝛷𝑡
𝛷𝑎

1𝐹

)

𝑡∈[𝑎,𝑇 )
,𝑄

𝑟 [𝑎,𝑇 )

⩽ 𝜌.

From Proposition  8.3 (2), the continuity of the process 𝑅, Proposition  8.3 (3), and Theorem  8.4 (2) we deduce for 𝜇 ⩾ 1 and 𝜈 > 0
that 

𝑄𝐹

(

sup
𝑡∈[𝑎,𝑇 )

|

|

|

|

𝑅𝑡 − 𝑅𝑎
𝛷𝑎

|

|

|

|

> 𝑏𝜌𝜇𝜈

)

⩽ e1−𝜇 +𝛽𝑄𝐹

(

sup
𝑡∈[𝑎,𝑇 )

𝛷𝑡
𝛷𝑎

> 𝜈

)

(7.9)

where 𝑏, 𝛽 > 0 depend at most on 𝑟.
(b) Let 0 ⩽ 𝑎 ⩽ 𝑡 < 𝑇 , 𝑎 ∈ [𝑡𝑘−1, 𝑡𝑘), and 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗 ). If 𝑡𝑗−1 = 𝑡𝑘−1, then we get

𝛷𝑡
𝛷𝑎

=
𝐴𝛷𝑡(𝜏, 𝜃) + 𝐵𝜎𝑡
𝐴𝛷𝑎(𝜏, 𝜃) + 𝐵𝜎𝑎

⩽
𝜎𝑡
𝜎𝑎

∨
𝛷𝑡(𝜏, 𝜃)
𝛷𝑎(𝜏, 𝜃)

=
𝜎𝑡
𝜎𝑎

∨
𝜎𝜃𝑡 + 𝜎

𝜃−1
𝑡𝑗−1

𝜎𝑡

𝜎𝜃𝑎 + 𝜎
𝜃−1
𝑡𝑘−1

𝜎𝑎
⩽
𝜎𝑡
𝜎𝑎

∨
𝜎𝜃𝑡
𝜎𝜃𝑎

⩽ sup
𝑢∈[𝑎,𝑡]

{

(

𝜎𝑢
𝜎𝑎

)𝜃−1 𝜎𝑡
𝜎𝑎

}

.

Similarly, if 𝑡𝑗−1 > 𝑡𝑘−1, then

𝛷𝑡 ⩽
𝜎𝑡 ∨

𝛷𝑡(𝜏, 𝜃) ⩽
𝜎𝑡 ∨

𝜎𝜃𝑡 + 𝜎
𝜃−1
𝑡𝑗−1

𝜎𝑡
𝜃 ⩽ sup

{

2
(

𝜎𝑢
)𝜃−1 𝜎𝑡

}

.

𝛷𝑎 𝜎𝑎 𝛷𝑎(𝜏, 𝜃) 𝜎𝑎 𝜎𝑎 𝑢∈[𝑎,𝑡] 𝜎𝑎 𝜎𝑎
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Using 𝜎(𝑦) ∼𝑐𝜎 1 for (C1) and 𝜎(𝑦) ∼𝑐𝜎 𝑦 for (C2) we bound the last term with

2
(

𝜎𝑢
𝜎𝑎

)𝜃−1 𝜎𝑡
𝜎𝑎

⩽ 2𝑐2𝜎

⎧

⎪

⎨

⎪

⎩

1 (𝐶1)

sup𝑢∈[𝑎,𝑡]

{

(

𝑌𝑢
𝑌𝑎

)𝜃−1 𝑌𝑡
𝑌𝑎

}

(𝐶2),

where the factor 𝑐2𝜎 , and not a higher order, comes from a cancellation.
(c) Case (C1): If we set 𝜈𝜎 ∶= 2𝑐2𝜎 , then (7.9) implies for 𝜇 ⩾ 1 that

𝑄𝐹

(

sup
𝑡∈[𝑎,𝑇 )

|

|

|

|

𝑅𝑡 − 𝑅𝑎
𝛷𝑎

|

|

|

|

>
[

𝑏 𝑟
√

‖d𝑄∕dP‖RH𝑞 (P) 𝜈𝜎
]

‖𝑅‖bmo𝛷𝑝 [0,𝑇 )
𝜇

)

⩽ e1−𝜇

which can be taken to the form used in Theorem  5.11.
(d) Case (C2): By assumption we have d𝑄 = e∫(0,𝑇 ] 𝜉𝑢d𝑊𝑢−

1
2 ∫ 𝑇0 |𝜉𝑢|2d𝑢 dP with ‖‖

‖

∫ 𝑇0 |𝜉𝑢|2d𝑢
‖

‖

‖𝐋∞(P)
< ∞. Therefore, 𝑊𝑡 ∶= 𝑊𝑡 − ∫ 𝑡0 𝜉𝑢d𝑢

is a 𝑄-Brownian motion by Girsanov’s theorem. Using (b), 𝑌 = e𝑋 , and ‖‖
‖

∫ 𝑇0 |𝜉𝑢|d𝑢
‖

‖

‖𝐋∞(P)
⩽
√

𝑇 ‖

‖

‖

∫ 𝑇0 |𝜉𝑢|2d𝑢
‖

‖

‖

1
2

𝐋∞(P)
 we get that, a.s.,

sup
𝑡∈[𝑎,𝑇 )

𝛷𝑡
𝛷𝑎

⩽ 𝑐 e2 sup𝑡∈[𝑎,𝑇 ]
|

|

|

∫(𝑎,𝑡] 𝜎̂(𝑋𝑢)d𝑊𝑢
|

|

|

⩽
⎡

⎢

⎢

⎣

𝑐 e
2
√

𝑇 ‖‖
‖

∫ 𝑇0 |𝜉𝑢|2d𝑢
‖

‖

‖

1
2
𝐋∞(P)

‖𝜎̂‖𝐵𝑏 (R)
⎤

⎥

⎥

⎦

e2 sup𝑡∈[𝑎,𝑇 ]
|

|

|

∫(𝑎,𝑡] 𝜎̂(𝑋𝑢)d𝑊𝑢
|

|

|

with 𝑐 = 𝑐(𝑇 , 𝜎) > 0 independent of 𝜃. With 𝜇 = 𝜈 =
√

𝜆 one can follow the arguments of [30, Lemma 6.2(ii)] to deduce from (7.9) 
the desired bound. □

7.6. Proof of Theorem  5.12

For 𝜀 > 0 we have 𝑔, 𝑔𝜀 ∶ R → [0, 1] with 0 ⩽ 𝑔𝜀 ⩽ 𝑔 and 𝑔(𝑦) = ∫[0,∞) 1[𝐾,∞)(𝑦)𝜇(d𝐾), i.e. 𝑔 is an average over functions of type 
1[𝐾,∞)(𝑦) for 𝐾 ⩾ 0. So 𝑔𝜀 is the corresponding average over (1[𝐾,∞))𝜀. As |(1[𝐾,∞))𝜀|1 =

1
𝜀 , we get

|𝑔𝜀|1 ⩽
1
𝜀
.

Drawing (1[𝐾,∞))𝜀 and (1[𝐾,∞))𝑡+𝜀 for 𝑡 > 0, we see that

‖(1[𝐾,∞))𝜀 − (1[𝐾,∞))𝑡+𝜀‖𝐶0
𝑏 (R)

= 1 − 𝜀
𝑡 + 𝜀

,

whence ‖𝑔𝜀 − 𝑔𝑡+𝜀‖𝐶0
𝑏 (R)

⩽ 1 − 𝜀
𝑡+𝜀 . Next, we observe ∫R(𝑔(𝑦) − 𝑔𝜀(𝑦))d𝑦 =

𝜀
2 . If 𝑝𝑇 ∶ R → [0,∞) is the continuous density of the law of 

𝑌𝑇  (see Theorem  8.5), then this implies

|E𝑔(𝑌𝑇 ) − E𝑔𝜀(𝑌𝑇 )| ⩽
‖𝑝𝑇 ‖𝐵𝑏(R)

2
𝜀.

Now we are in a position to verify 

𝐾(𝑡, 𝑔𝜀;𝐶0
𝑏 (R),Höl

0
1(R)) ⩽

2𝑡
𝑡 + 𝜀

for 𝑡 > 0. (7.10)

This follows from the decomposition 𝑔𝜀 = (𝑔𝜀 − 𝑔𝑡+𝜀) + 𝑔𝑡+𝜀 with |𝑔𝑡+𝜀|1 ⩽ 1
𝑡+𝜀  and ‖𝑔𝜀 − 𝑔𝑡+𝜀‖𝐶0

𝑏 (R)
⩽ 1 − 𝜀

𝑡+𝜀 = 𝑡
𝑡+𝜀  which yields to 

(7.10). We deduce that 

|𝑔𝜀|𝜃,2 =
(

∫

∞

0
|𝑡−𝜃𝐾(𝑡, 𝑔𝜀;𝐶0

𝑏 (R),Höl
0
1(R))|

2 d𝑡
𝑡

)
1
2
⩽ 𝑐𝜃𝜀

−𝜃 . (7.11)

Finally, with 𝜀 ∶= 2𝐷− 1
𝜃

‖𝑝𝑇 ‖𝐵𝑏 (R)
 this implies,

|E𝑔(𝑌𝑇 ) − E𝑔𝜀(𝑌𝑇 )| ⩽ 𝐷− 1
𝜃 , |𝑔𝜀|𝜃,2 ⩽

𝑐𝜃‖𝑝𝑇 ‖𝜃𝐵𝑏(R)
2𝜃

𝐷, |𝑔𝜀|1 ⩽
‖𝑝𝑇 ‖𝐵𝑏(R)

2
𝐷

1
𝜃 .

The first inequality is item (1). Using the second inequality, Corollary  1.2 (𝑔(1) ∶= 0 and 𝑔(𝜃) ∶= 𝑔𝜀), and (2.9), we derive item (2), 
where an upper bound for ‖𝑝𝑇 ‖𝐵𝑏(R) can be found in Theorem  8.5 (2). The third inequality and Lemma  7.3 with 𝜃 = 1 imply item 
(3). □
27 
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7.7. Proof of Corollary  5.13

In Theorem  5.12 we choose 𝐷𝑛 ∶= 𝑛𝛿 so that 𝐷𝑛√

𝑛
= 𝐷

− 1
𝜃

𝑛 = 𝑛𝛿−
1
2 , and 𝜀𝑛 ∶= 2𝐷

− 1
𝜃

𝑛
‖𝑝𝑇 ‖𝐵𝑏 (R)

= 2
‖𝑝𝑇 ‖𝐵𝑏 (R)

𝑛−
𝛿
𝜃 . We deduce |𝜑𝜀𝑛 | ⩽ 𝑐5.12𝐷

1
𝜃
𝑛 =

𝑐5.12𝑛
1
2−𝛿 and

‖𝐸(𝑔𝜀𝑛 ; 𝜏
𝜃
𝑛 )‖bmo𝛷2 [0,𝑇 ) + |E𝑔(𝑌𝑇 ) − E𝑔𝜀(𝑌𝑇 )| ⩽ 𝑐5.12

𝐷𝑛
√

𝑛
+𝐷

− 1
𝜃

𝑛

=
(

𝑐5.12 + 1
)

𝑛𝛿−
1
2 . □

7.8. Proof of Theorem  1.3 and Corollary  1.4

If 𝑔(𝑦) = 1[𝐾,∞)(𝑦) for 𝐾 > 0, then Theorem  5.12 and Corollary  5.13 remain true with the term P(𝑔𝜀̃(𝑌𝑇 ) < 1[𝐾,∞)(𝑌𝑇 ))∕2 instead 
of E1[𝐾,∞)(𝑌𝑇 ) − E𝑔𝜀̃(𝑌𝑇 ), 𝜀̃ ∈ {𝜀, 𝜀𝑛}. In fact, inspecting the proof of Theorem  5.12, we have P(𝑔𝜀(𝑌𝑇 ) < 1[𝐾,∞)(𝑌𝑇 )) ⩽ ‖𝑝𝑇 ‖𝐵𝑏(R)𝜀
which implies this change for Theorem  5.12 and consequently for Corollary  5.13. By this observation Theorem  1.3 and Corollary 
1.4 (1) follow. To check Corollary  1.4 (2), we note that Corollary  5.13 implies

‖𝐸(𝑔𝜀𝑛 ; 𝜏
𝜃
𝑛 )‖bmo𝛷2 [0,𝑇 ) ⩽

(

𝑐5.12 + 1
)

𝑛𝛿−
1
2 ,

so that we may finish with Theorem  5.11. □

7.9. Proof of Proposition  1.1

(a) We find an 𝜀0 ∈ (0, 𝑇 ] and for all 𝜀 ∈ (0, 𝜀0] an 𝜂(𝜀) ∈ (0, 1) such that

min
{

P(𝑦𝑌𝜀 ⩾ 1),P(𝑦𝑌𝜀 < 1)
}

⩾ 5
12

for 𝜀 ∈ (0, 𝜀0] and 𝑦 > 0 with |𝑦 − 1| ⩽ 𝜂(𝜀). In fact, the condition is equivalent to 

min

{

P

(

𝑊1 ⩾
√

𝜀
2

+ 1
√

𝜀
ln 1
𝑦

)

,P

(

𝑊1 <

√

𝜀
2

+ 1
√

𝜀
ln 1
𝑦

)}

⩾ 5
12
. (7.12)

Now, choosing first 𝜀 ∈ (0, 𝑇 ] small enough to bound 
√

𝜀
2  and then 𝜂(𝜀) ∈ (0, 1) to bound 1

√

𝜀
ln 1

𝑦  we can arrange (7.12).
(b) Define 𝐼0 ∶= [−1∕4, 1∕4], 𝐼1 ∶= [3∕4, 5∕4], and 𝐽 ∶= (1∕4, 3∕4). For 𝐴,𝐵 ∈ R the density of 𝑍 ∶= 𝐴𝑌𝜀+𝐵 is continuous and has 

exactly two monotonicity intervals when 𝐴 ≠ 0, otherwise 𝑍 is a constant. For this reason P(𝑍 ∈ 𝐽 ) ⩾ min{P(𝑍 ∈ 𝐼0),P(𝑍 ∈ 𝐼1)}, 
which implies that there is an 𝑖0 ∈ {0, 1} such that P(𝑍 ∈ 𝐼𝑖0 ) ⩽ 1∕3. Let 𝑦 > 0. The random variable 1[1,∞)(𝑦𝑌𝜀) only takes the values 
0 and 1, each of them with a probability larger than or equal to 5∕12. But 𝑍 ∈ 𝐼𝑖0  holds only with probability less than or equal to 
1∕3. Because the distance of 𝐼𝑐𝑖0  to 𝑖0 equals 1∕4, this implies

E|1[1,∞)(𝑦𝑌𝜀) −𝑍|

2 ⩾ 1
42

( 5
12

− 1
3

)

= 1
192

.

(c) Now let 𝑇0 ∶= 𝑇 − 𝜀0 ∈ (0, 𝑇 ] and define for 𝑎 ∈ [𝑇0, 𝑇 ) the set 𝐵𝑎 ∶= {|𝑌𝑎 − 1| ⩽ 𝜂(𝑇 − 𝑎)} ∈ 𝑎. We get from (a) and (b) that

∫𝐵𝑎
|

|

|

1[1,∞)(𝑌𝑇 ) − [𝑣𝑎 +𝑤𝑎(𝑌𝑇 − 𝑌𝑎)]
|

|

|

2 dP
P(𝐵𝑎)

= ∫𝐵𝑎

|

|

|

|

|

1[1,∞)

(

𝑌𝑎
𝑌𝑇
𝑌𝑎

)

−
[

(𝑣𝑎 −𝑤𝑎𝑌𝑎) + (𝑤𝑎𝑌𝑎)
𝑌𝑇
𝑌𝑎

]

|

|

|

|

|

2
dP

P(𝐵𝑎)
⩾ 1

192
.

8. Auxiliary results

8.1. The class 𝑝 and BMO-spaces

We provide some facts about the class 𝑝 and the BMO-spaces that are required in this article, in particular to apply the results 
from [14]. We assume a stochastic basis (𝛺, ,P, (𝑡)𝑡∈[0,𝑇 ]) with 𝑇 ∈ (0,∞) such that (𝛺, ,P) is complete, 0 contains all null-sets, 
and such that 𝑡 =

⋂

𝑠∈(𝑡,𝑇 ] 𝑠 for all 𝑡 ∈ [0, 𝑇 ). Note that 0 is not necessarily generated by the null-sets only.
For this reason we add to Definition  2.3 in the definition of 𝛷 ∈ 𝑝([0, 𝑇 )) that 𝛷0 ∈ 𝐋𝑝.
Moreover, we again use inf ∅ ∶= ∞. We start with some structural properties of the class 𝑝([0, 𝑇 )):

Proposition 8.1.  For 0 < 𝑝, 𝑝0, 𝑝1 < ∞ with 1𝑝 = 1
𝑝0

+ 1
𝑝1

 and I = [0, 𝑇 ) the following holds:

(1)  (I) ⊆  (I) and ‖𝛷‖ ⩽ ‖𝛷‖  whenever 0 < 𝑝 < 𝑞 < ∞.
𝑞 𝑝 𝑝(I) 𝑞 (I)
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(2) If 𝛷 ∈ 𝑝(I), then 𝛷∗ ∈ 𝑝(I) and ‖𝛷∗
‖𝑝(I) ⩽ 𝑝

√

1 + ‖𝛷‖𝑝𝑝(I)
.

(3) For 𝛷𝑖 ∈ 𝑝𝑖 (I), 𝑖 = 0, 1, and 𝛷 = (𝛷𝑎)𝑎∈[0,𝑇 ) with 𝛷𝑎 ∶= 𝛷0
𝑎𝛷

1
𝑎, one has

‖𝛷‖𝑝(I) ⩽ ‖𝛷0
‖𝑝0 (I)

‖𝛷1
‖𝑝1 (I)

.

Proof. (1) follows from the definition. Now let 𝑎 ∈ I. To check (2) we observe 𝛷∗
0 = 𝛷0 ∈ 𝐋𝑝 and, a.s.,

E𝑎
[

sup
𝑎⩽𝑡∈I

|𝛷∗
𝑡 |
𝑝
]

=E𝑎
[

sup
𝑡∈I

𝛷𝑝
𝑡

]

⩽ |𝛷∗
𝑎|
𝑝 + ‖𝛷‖𝑝𝑝(I)

𝛷𝑝
𝑎 ⩽ (1 + ‖𝛷‖𝑝𝑝(I)

)|𝛷∗
𝑎|
𝑝.

(3) We get 𝛷0
0𝛷

1
0 ∈ 𝐋𝑝 and by the conditional Hölder inequality that, a.s.,

𝑝

√

E𝑎

[

sup
𝑎⩽𝑡∈I

𝛷𝑝
𝑡

]

⩽ 𝑝

√

E𝑎

[

sup
𝑎⩽𝑡∈I

(𝛷0
𝑡 )𝑝 sup

𝑎⩽𝑡∈I
(𝛷1

𝑡 )𝑝
]

⩽ 𝑝0

√

E𝑎

[

sup
𝑎⩽𝑡∈I

(𝛷0
𝑡 )𝑝0

]

𝑝1

√

E𝑎

[

sup
𝑎⩽𝑡∈I

(𝛷1
𝑡 )𝑝1

]

⩽ ‖𝛷0
‖𝑝0 (I)

‖𝛷1
‖𝑝1 (I)

𝛷0
𝑎𝛷

1
𝑎 = ‖𝛷0

‖𝑝0 (I)
‖𝛷1

‖𝑝1 (I)
𝛷𝑎. □

Next we reformulate and extend definitions made so far to be in accordance with [14]:

Definition 8.2.  Let 𝑝 ∈ (0,∞), I = [0, 𝑇 ) or I = [0, 𝑇 ], and 𝛷 ∈ CL+(I).

(1) For 𝑌 ∈ CL0(I) we let |𝑌 |BMO𝛷𝑝 (I)
∶= inf 𝑐, where the infimum is taken over all 𝑐 ∈ [0,∞) such that, for all 𝑡 ∈ I and all 

stopping times 𝜌 ∶ 𝛺 → [0, 𝑡],

E𝜌
[

|𝑌𝑡 − 𝑌𝜌−|𝑝
]

⩽ 𝑐𝑝𝛷𝑝
𝜌 a.s.

(2) For I = [0, 𝑇 ] and 𝑌 ∈ CL0(I) we let |𝑌 |BMO
𝛷
𝑝 ([0,𝑇 ])

∶= inf 𝑐, where the infimum is taken over all 𝑐 ∈ [0,∞) such that, for all 
stopping times 𝜌 ∶ 𝛺 → [0, 𝑇 ],

E𝜌
[

|𝑌𝑇 − 𝑌𝜌−|𝑝
]

⩽ 𝑐𝑝𝛷𝑝
𝜌 a.s.

(3) For 𝑌 ∈ CL0(I) we let |𝑌 |bmo𝛷𝑝 (I)
∶= inf 𝑐, where the infimum is taken over all 𝑐 ∈ [0,∞) such that, for all 𝑡 ∈ I and all stopping 

times 𝜌 ∶ 𝛺 → [0, 𝑡],

E𝜌
[

|𝑌𝑡 − 𝑌𝜌|𝑝
]

⩽ 𝑐𝑝𝛷𝑝
𝜌 a.s.

(4) If 𝛷0 ∈ 𝐋𝑝, then we let |𝛷|𝑝(I) ∶= inf 𝑐, where the infimum is taken over all 𝑐 ∈ [1,∞) such that for all stopping times 
𝜌 ∶ 𝛺 → I one has

E𝜌

[

sup
𝜌⩽𝑡∈I

𝛷𝑝
𝑡

]

⩽ 𝑐𝑝𝛷𝑝
𝜌 a.s.

To be in accordance with the above definition we use, for example, the notation bmo𝛷𝑝 ([0, 𝑇 )) instead of bmo𝛷𝑝 [0, 𝑇 ) as we did 
before. In [14] the definitions | ⋅ |

BMO
𝛷
𝑝 ([0,𝑇 ])

 and | ⋅ |𝑝([0,𝑇 ]) has been used. We verify that these variants are consistent with the 
definitions we already introduced:

Proposition 8.3.  Let 𝑝 ∈ (0,∞), 𝑌 ∈ CL0([0, 𝑇 )) and 𝛷 ∈ CL+([0, 𝑇 )).

(1) If 𝛷0 ∈ 𝐋𝑝, then one has |𝛷|𝑝([0,𝑇 )) = ‖𝛷‖𝑝([0,𝑇 )).
(2) One has |𝑌 |bmo𝛷𝑝 ([0,𝑇 ))

= ‖𝑌 ‖bmo𝛷𝑝 ([0,𝑇 ))
.

(3) One has

|𝑌 |
BMO

𝛷
𝑝 ([0,𝑇 ])

⩽ |𝑌 |BMO𝛷𝑝 ([0,𝑇 ])
⩽ 2(

1
𝑝−1)

+
[1 + |𝛷|𝑝([0,𝑇 ])]|𝑌 |BMO

𝛷
𝑝 ([0,𝑇 ])

,

where |𝛷|𝑝([0,𝑇 ]) <∞ is assumed for the second inequality.

Proof. (1) Because ‖𝛷‖𝑝([0,𝑇 )) ⩽ |𝛷|𝑝([0,𝑇 )) is evident we assume that 𝑐 ∶= ‖𝛷‖𝑝([0,𝑇 )) < ∞. Let 𝜌 ∶ 𝛺 → [0, 𝑇 ) be a stopping 
time, ℎ ∶ [0, 𝑇 ) → [0,∞) be given by ℎ(𝑡) ∶= 1

𝑇−𝑡 −
1
𝑇 . For 𝑘,𝑁 ∈ N0 set

[𝑎𝑁𝑘 , 𝑏
𝑁
𝑘 ) ∶= ℎ−1

([ 𝑘
𝑁 ,

𝑘 + 1
𝑁

))

⊆ [0, 𝑇 ) and let 𝐻𝑁 (𝑡) ∶=
∞
∑

1[𝑎𝑁 ,𝑏𝑁 )(𝑡)𝑏
𝑁
𝑘 .
2 2 𝑘=0 𝑘 𝑘
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Then 𝐻𝑁 (𝑡) ↓ 𝑡 for all 𝑡 ∈ [0, 𝑇 ) and 𝜌𝑁 ∶= 𝐻𝑁 (𝜌) ∶ 𝛺 → [0, 𝑇 ) is a stopping time as well. Then, a.s.,

E𝜌𝑁

[

sup
𝜌𝑁⩽𝑡<𝑇

𝛷𝑝
𝑡

]

=
∞
∑

𝑘=0
E𝜌𝑁

⎡

⎢

⎢

⎣

1{𝜌𝑁=𝑏𝑁𝑘 } sup
𝑏𝑁𝑘 ⩽𝑡<𝑇

𝛷𝑝
𝑡

⎤

⎥

⎥

⎦

=
∞
∑

𝑘=0
1{𝜌𝑁=𝑏𝑁𝑘 }E

𝑏𝑁𝑘
⎡

⎢

⎢

⎣

1{𝜌𝑁=𝑏𝑁𝑘 } sup
𝑏𝑁𝑘 ⩽𝑡<𝑇

𝛷𝑝
𝑡

⎤

⎥

⎥

⎦

⩽
∞
∑

𝑘=0
1{𝜌𝑁=𝑏𝑁𝑘 }𝑐

𝑝𝛷𝑝
𝑏𝑁𝑘

⩽ 𝑐𝑝𝛷𝑝
𝜌𝑁
.

This implies that E𝜌
[

sup𝜌𝑁⩽𝑡<𝑇 𝛷
𝑝
𝑡
]

⩽ 𝑐𝑝E𝜌
[

𝛷𝑝
𝜌𝑁

]

 a.s. By 𝑁 → ∞, monotone convergence on the left-hand side and because 𝛷 is 
càdlàg, and dominated convergence on the right-hand side (𝛷 is càdlàg and E sup𝑡∈[0,𝑇 )𝛷

𝑝
𝑡 <∞) we obtain the assertion.

(2) Because ‖𝑌 ‖bmo𝛷𝑝 ([0,𝑇 ))
⩽ |𝑌 |bmo𝛷𝑝 ([0,𝑇 ))

 we assume 𝑐 ∶= ‖𝑌 ‖bmo𝛷𝑝 ([0,𝑇 ))
< ∞. For 𝑡 ∈ [0, 𝑇 ), a stopping time 𝜌 ∶ 𝛺 → [0, 𝑡], and 

𝐿 ∈ N0 we define the new stopping times 𝜌𝐿(𝜔) ∶= 𝜓𝐿(𝜌(𝜔)) where 𝜓𝐿(0) ∶= 0 and 𝜓𝐿(𝑠) = 𝑠𝐿𝓁 ∶= 𝓁2−𝐿𝑡 when 𝑠 ∈
(

𝑠𝐿𝓁−1, 𝑠
𝐿
𝓁

]

 for 
𝓁 ∈ {1,… , 2𝐿}. By definition, 𝜌𝐿(𝜔) ↓ 𝜌(𝜔) for all 𝜔 ∈ 𝛺 as 𝐿→ ∞. Then E

𝑠𝐿
𝓁

[

|𝑌𝑡 − 𝑌𝑠𝐿
𝓁
|

𝑝
]

⩽ 𝑐𝑝𝛷𝑝
𝑠𝐿
𝓁

 a.s. for 𝓁 = 0,… , 2𝐿. Multiplying 
both sides with 1{𝜌𝐿=𝑠𝐿𝓁 }

 and summing over 𝓁 = 0,… , 2𝐿, we get that

E𝜌𝐿
[

|𝑌𝑡 − 𝑌𝜌𝐿 |
𝑝
]

⩽ 𝑐𝑝𝛷𝑝
𝜌𝐿

 a.s.

For any 𝑀 > 0 this implies E𝜌𝐿
[

|𝑌𝑡 − 𝑌𝜌𝐿 |
𝑝 ∧𝑀

]

⩽ (𝑐𝑝𝛷𝑝
𝜌𝐿 ) ∧𝑀 a.s. and

E𝜌
[

|𝑌𝑡 − 𝑌𝜌𝐿 |
𝑝 ∧𝑀

]

⩽ E𝜌
[

(𝑐𝑝𝛷𝑝
𝜌𝐿
) ∧𝑀

]

 a.s.
The càdlàg properties of 𝑌  and 𝛷 imply

E𝜌
[

|𝑌𝑡 − 𝑌𝜌|𝑝 ∧𝑀
]

⩽ E𝜌
[

(𝑐𝑝𝛷𝑝
𝜌) ∧𝑀

]

 a.s.
By 𝑀 ↑ ∞ it follows that |𝑌 |bmo𝛷𝑝 ([0,𝑇 ))

⩽ 𝑐 as desired.
(3) The left-hand side inequality is obvious. To check the other inequality we may assume that 𝑐 ∶= |𝑌 |

BMO
𝛷
𝑝 ([0,𝑇 ])

< ∞. We let 
𝑡 ∈ [0, 𝑇 ] and 𝜌 ∶ 𝛺 → [0, 𝑡] be a stopping time. Then, a.s.,

(

E𝜌
[

|𝑌𝑡 − 𝑌𝜌−|𝑝
])

1
𝑝 ⩽ 2(

1
𝑝−1)

+
[

(

E𝜌
[

|𝑌𝑇 − 𝑌𝜌−|𝑝
])

1
𝑝 +

(

E𝜌
[

|𝑌𝑇 − 𝑌𝑡|𝑝
])

1
𝑝

]

⩽ 2(
1
𝑝−1)

+
[

𝑐𝛷𝜌 +
(

E𝜌
[

|𝑌𝑇 − 𝑌𝑡|𝑝
])

1
𝑝

]

.

To estimate the second term we may assume 𝑡 ∈ [0, 𝑇 ). We find a sequence 𝑡𝑛 ∈ (𝑡, 𝑇 ] with 𝑡𝑛 ↓ 𝑡. Using Fatou’s Lemma for conditional 
expectations we get, a.s.,

(

E𝜌
[

|𝑌𝑇 − 𝑌𝑡|𝑝
])

1
𝑝 ⩽ lim inf

𝑛

(

E𝜌
[

|𝑌𝑇 − 𝑌𝑡𝑛−|
𝑝
])

1
𝑝 ⩽ lim inf

𝑛
𝑐
(

E𝜌
[

𝛷𝑝
𝑡𝑛

])
1
𝑝

⩽ 𝑐|𝛷|𝑝([0,𝑇 ])𝛷𝜌. □

Finally, we state and verify the main statement of this section:

Theorem 8.4.  Let 0 < 𝑝 ⩽ 𝑞 < ∞, 𝑟 ∈ (0,∞), I = [0, 𝑇 ) or I = [0, 𝑇 ], and 𝛷 ∈ CL+(I).

(1) If 𝛷 ∈ 𝑞(I) with |𝛷|𝑞 (I) ⩽ 𝑑 < ∞, then there is a 𝑐 = 𝑐(𝑝, 𝑞, 𝑑) ⩾ 1 such that | ⋅ |BMO𝛷𝑝 (I)
∼𝑐 | ⋅ |BMO𝛷𝑞 (I)

.

(2) There are 𝑏 = 𝑏(𝑟) > 0, 𝛽 = 𝛽(𝑟) > 0, and 𝑐(8.2) = 𝑐(8.2)(𝑟, 𝑞) > 0 such that for 𝑌 ∈ CL0(I), 0 ⩽ 𝑎 ⩽ 𝑡 ∈ I, 
𝐷 ∶= |(𝑌𝑢 − 𝑌𝑎)𝑢∈[𝑎,𝑡]|BMO

𝛷
𝑟 ([𝑎,𝑡])

< ∞, 𝜇 ⩾ 1, and 𝜈 > 0 one has, a.s.,

P𝑎

(

sup
𝑢∈[𝑎,𝑡]

|𝑌𝑢 − 𝑌𝑎| > 𝑏𝐷𝜇𝜈
)

⩽ e1−𝜇 +𝛽P𝑎

(

sup
𝑢∈[𝑎,𝑡]

𝛷𝑢 > 𝜈
)

, (8.1)

E𝑎
[

sup
𝑢∈[𝑎,𝑡]

|𝑌𝑢 − 𝑌𝑎|𝑞
]

⩽𝑐𝑞(8.2)𝐷
𝑞E𝑎

[

sup
𝑢∈[𝑎,𝑡]

𝛷𝑞
𝑢

]

if sup
𝑢∈[𝑎,𝑡]

𝛷𝑢 ∈ 𝐋𝑞 . (8.2)

Proof ((1)a). For I = [0, 𝑇 ] and 𝛷 > 0 on [0, 𝑇 ] × 𝛺 the result follows from [14, Corollary 1(i)], where we use Proposition  8.3 to 
relate the formally different BMO-definitions to each other and Proposition  8.1 (1).

((1)b) For I = [0, 𝑇 ) and 𝛷 > 0 on [0, 𝑇 ) × 𝛺 this follows from (1a) by considering the restrictions of the processes to [0, 𝑡] for 
𝑡 ∈ [0, 𝑇 ).

((1)c) For I = [0, 𝑇 ] or I = [0, 𝑇 ), and 𝛷 ⩾ 0 on I×𝛺 we proceed as follows: For 𝜀 > 0 we consider 𝛷𝜀
𝑡 ∶= 𝛷𝑡 + 𝜀 and observe that 

|𝛷𝜀
| ⩽ 𝑐 |𝛷|  and sup | ⋅ | 𝛷𝜀 = | ⋅ | 𝛷 .
𝑝(I) 𝑝 𝑝(I) 𝜀>0 BMO𝑝 (I) BMO𝑝 (I)
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(2) We restrict the stochastic basis to (𝐴,𝑎∩𝐴,P𝐴, (𝑢∩𝐴)𝑢∈[𝑎,𝑡]) with 𝐴 ∈ 𝑎 and P(𝐴) > 0, where P𝐴 is the normalized restriction 
of P to 𝐴 and 𝑢 ∩𝐴 denotes the trace 𝜎-algebra. So we can assume that 𝑎 = 0 and can replace P𝑎  by P and E𝑎  by E. Moreover, by 
replacing 𝛷𝑢 by 𝛷𝜀

𝑢 as above, proving the statement for the new weight, and letting 𝜀 ↓ 0, we may assume that 𝛷 > 0 on [0, 𝑡] ×𝛺
(𝜀 ↓ 0 gives sup𝑢∈[𝑎,𝑡]𝛷𝑢 ⩾ 𝜈 in (8.1), by adjusting 𝑏 it can be changed into >). Now (8.1) and (8.2) follow from [14, inequalities 
(5,6) and step (a) of the proof of Corollary 1]. □

8.2. Transition density

The following result, that is taken from [31, p. 263, p. 44], is crucial for estimates on gradients and curvatures on the Wiener 
space:

Theorem 8.5.  For 𝑏̂, 𝜎̂ ∈ 𝐶∞
𝑏 (R) with 𝜎̂ ⩾ 𝜀0 > 0 there is a jointly continuous transition density 𝛤𝑋 ∶ (0, 𝑇 ] × R × R → (0,∞) such that 

P(𝑋𝑥
𝑡 ∈ 𝐵) = ∫𝐵 𝛤𝑋 (𝑡, 𝑥, 𝜉)d𝜉 for 𝑡 ∈ (0, 𝑇 ] and 𝐵 ∈ (R), where (𝑋𝑥

𝑡 )𝑡∈[0,𝑇 ] is the solution to (5.1) starting in 𝑥 ∈ R, such that one has:

(1) One has 𝛤𝑋 (𝑠, ⋅, 𝜉) ∈ 𝐶∞(R) for (𝑠, 𝜉) ∈ (0, 𝑇 ] × R.
(2) For 𝑘 ∈ N0 there is a 𝑐(8.3) = 𝑐(𝑘) > 0 such that for (𝑠, 𝑥, 𝜉) ∈ (0, 𝑇 ] × R × R one has that 

|

|

|

|

|

𝜕𝑘𝛤𝑋
𝜕𝑥𝑘

(𝑠, 𝑥, 𝜉)
|

|

|

|

|

⩽ 𝑐(8.3)𝑠
− 𝑘

2 𝛾𝑐(8.3)𝑠(𝑥 − 𝜉) where 𝛾𝑡(𝜂) ∶=
1

√

2𝜋𝑡
e−

𝜂2
2𝑡 . (8.3)

(3) For 𝑘 ∈ N and 𝑓 ∈ 𝐶𝑋 (the set 𝐶𝑌  from Section 5 in the case (C1)) one has
𝜕𝑘

𝜕𝑥𝑘 ∫R
𝛤𝑋 (𝑠, 𝑥, 𝜉)𝑓 (𝜉)d𝜉 = ∫R

𝜕𝑘𝛤𝑋
𝜕𝑥𝑘

(𝑠, 𝑥, 𝜉)𝑓 (𝜉)d𝜉 for (𝑠, 𝑥) ∈ (0, 𝑇 ] × R.

8.3. A technical lemma

Lemma 8.6.  For 𝜃 ∈ [0, 1], a function 𝜑 ∶ [0, 𝑇 ) → R, and a non-decreasing function 𝛹 ∶ [0, 𝑇 ) → [0,∞) the following assertions are 
equivalent:

(1) There is a 𝑐(8.4) > 0 such that for any 0 ⩽ 𝑠 ⩽ 𝑎 < 𝑇  one has 

|𝜑𝑎 − 𝜑𝑠| ⩽ 𝑐(8.4)
(𝑇 − 𝑠)

𝜃
2

(𝑇 − 𝑎)
1
2

𝛹𝑎. (8.4)

(2) (a) 𝜃 ∈ [0, 1): There is a 𝑐(8.5) > 0 such that for 𝑎 ∈ [0, 𝑇 ) one has 

|𝜑𝑎 − 𝜑0| ⩽ 𝑐(8.5)(𝑇 − 𝑎)
𝜃−1
2 𝛹𝑎. (8.5)

(b) 𝜃 = 1: There is a 𝑐(8.6) > 0 such that for 0 ⩽ 𝑠 ⩽ 𝑎 < 𝑇  one has 

|𝜑𝑎 − 𝜑𝑠| ⩽ 𝑐(8.6)
(

1 + ln 𝑇 − 𝑠
𝑇 − 𝑎

)

𝛹𝑎. (8.6)

Proof. (1)⇒ (2) We let 𝑡𝑛 ∶= 𝑇 − 𝑇
2𝑛  for 𝑛 ⩾ 0. If 𝑠, 𝑎 ∈ [𝑡𝑛−1, 𝑡𝑛], 𝑛 ⩾ 1, then Eq.  (8.4) implies

|𝜑𝑎 − 𝜑𝑠| ⩽ 𝑐(8.4)𝛹𝑎𝑇
𝜃
2 −

1
2
[1 − (1 − 1

2𝑛−1 )]
𝜃
2

[1 − (1 − 1
2𝑛 )]

1
2

⩽ 𝑐(8.4)𝛹𝑎𝑇
𝜃−1
2 (

√

2)
1+(1−𝜃)𝑛

.

We now let 𝑠 ∈ [𝑡𝑛−1, 𝑡𝑛) and 𝑎 ∈ [𝑡𝑛+𝑚−1, 𝑡𝑛+𝑚) for 𝑛 ⩾ 1, 𝑚 ⩾ 0 arbitrarily. If 𝜃 ∈ [0, 1), then the triangle inequality and the 
monotonicity of 𝛹 give

|𝜑𝑎 − 𝜑0| ⩽ 𝑐(8.4)𝛹𝑎𝑇
𝜃−1
2

𝑛+𝑚
∑

𝑘=1
(
√

2)
1+(1−𝜃)𝑘

⩽ 𝑐(8.4)𝑐𝜃𝛹𝑎𝑇
𝜃−1
2 (

√

2)
(1−𝜃)(𝑛+𝑚−1)

⩽
𝑐(8.4)𝑐𝜃𝛹𝑎

(𝑇 − 𝑎)
1−𝜃
2

for some 𝑐𝜃 > 0 depending on 𝜃 only. When 𝜃 = 1, similarly as above we get

|𝜑𝑎 − 𝜑𝑠| ⩽ 𝑐(8.4)𝛹𝑎
√

2(1 + 𝑚) ⩽ 2
√

2𝑐(8.4)𝛹𝑎
(

1 + ln 𝑇 − 𝑠
𝑇 − 𝑎

)

.

(2)⇒ (1) If 𝜃 ∈ [0, 1), then Eq.  (8.5) implies for any 0 ⩽ 𝑠 ⩽ 𝑎 < 𝑇  that

|𝜑𝑎 − 𝜑𝑠| ⩽ |𝜑𝑎 − 𝜑0| + |𝜑𝑠 − 𝜑0| ⩽ 𝑐(8.5)
[

𝛹𝑎(𝑇 − 𝑎)
𝜃−1
2 + 𝛹𝑠(𝑇 − 𝑠)

𝜃−1
2
]

⩽ 𝑐(8.5)𝛹𝑎

[

(𝑇 − 𝑎
𝑇 − 𝑠

)

𝜃
2 +

(𝑇 − 𝑎
𝑇 − 𝑠

)

1
2

]

(𝑇 − 𝑠)
𝜃
2

1

(𝑇 − 𝑎) 2
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⩽ 2𝑐(8.5)𝛹𝑎
(𝑇 − 𝑠)

𝜃
2

(𝑇 − 𝑎)
1
2

.

The case 𝜃 = 1 is derived from the inequality 1 + ln 𝑥 ⩽ 2
√

𝑥, 𝑥 ⩾ 1. □

8.4. The fine lines in the scale of Hölder spaces Höl𝜃,𝑞(R)

To illustrate the scale of Hölder spaces we consider the following example:

Example 8.7.  Let

ℎ𝜃,𝑎(𝑥) ∶= 0 if 𝑥 < 0 and ℎ𝜃,𝑎(𝑥) ∶= 𝜃 ∫

1∧𝑥

0
𝑦𝜃−1

(

𝐴
𝐴 − log 𝑦

)𝑎
d𝑦 if 𝑥 ⩾ 0

for 𝜃 ∈ (0, 1), 𝐴 > 0, and 0 ⩽ 𝑎 < (1 − 𝜃)𝐴. In particular, ℎ𝜃,0(𝑥) = (max{0, 𝑥})𝜃 ∧ 1. Then we get

ℎ𝜃,0 ∈ Höl𝜃,∞(R) and ℎ𝜃,𝑎 ∈ Höl𝜃,𝑞(R) for 𝑎 > 1∕𝑞 and 𝑞 ∈ [1,∞).

Proof.  The case 𝑎 = 0 is obvious as Höl𝜃,∞(R) are the 𝜃-Hölder continuous functions vanishing at zero. Let 𝑎 > 0. As 
𝐾(𝑣, ℎ𝜃,𝑎;𝐶0

𝑏 (R),Höl
0
1(R)) ⩽ ℎ𝜃,𝑎(1) for 𝑣 ∈ [1,∞), we only need to check that

‖

‖

‖

𝑣−𝜃𝐾(𝑣, ℎ𝜃,𝑎;𝐶0
𝑏 (R),Höl

0
1(R))

‖

‖

‖𝐋𝑞
(

(0,1], d𝑣𝑣
) <∞

for 𝑎 > 1∕𝑞. This follows from

𝑣−𝜃𝐾(𝑣, ℎ𝜃,𝑎;𝐶0
𝑏 (R),Höl

0
1(R)) ⩽ (1 + 𝜃)

(

𝐴
𝐴 − log 𝑣

)𝑎
for 𝑣 ∈ (0, 1].

To verify this fix 𝑣 ∈ (0, 1], let 𝑓 ∶= ℎ𝜃,𝑎 and 𝐾(𝑦) ∶= 1{0<𝑦⩽1}𝜃𝑦𝜃−1
(

𝐴
𝐴−log 𝑦

)𝑎
. For 𝑥 ⩾ 0 we decompose 𝑓 (𝑥) = 𝑓 (𝑣)

1 (𝑥) + 𝑓 (𝑣)
𝑏 (𝑥) with 

𝑓 (𝑣)
1 (𝑥) ∶= ∫ 𝑥∧10 (𝐾(𝑦)∧𝐾(𝑣))d𝑦 and 𝑓 (𝑣)

𝑏 (𝑥) ∶= 𝑓 (𝑥)−𝑓 (𝑣)
1 (𝑥) (for 𝑥 < 0 the decomposing functions are defined to be zero). By definition 

we have ‖𝑓 (𝑣)
1 ‖Höl01(R)

⩽ 𝐾(𝑣). Exploiting the monotonicity of 𝐾, where we use 𝑎 < (1 − 𝜃)𝐴, we also have ‖𝑓 (𝑣)
𝑏 ‖𝐶0

𝑏 (R)
⩽ ∫ 𝑣0 𝐾(𝑦)d𝑦. 

Finally, a computation yields ∫ 𝑣0 𝐾(𝑦)d𝑦 ⩽ 𝑣
𝜃𝐾(𝑣) so that

𝐾(𝑣, ℎ𝜃,𝑎;𝐶0
𝑏 (R),Höl

0
1(R)) ⩽ 𝑣

𝜃
𝐾(𝑣) + 𝑣𝐾(𝑣) =

( 1
𝜃
+ 1

)

𝑣𝐾(𝑣)

= (1 + 𝜃) 𝑣𝜃
(

𝐴
𝐴 − log 𝑣

)𝑎
. □

8.5. Proof of relation (2.6)

By definition, for 𝑓 ∈ Höl𝜃1 ,∞(R) we have

𝐾(𝑣, 𝑓 ;𝐶0
𝑏 (R),Höl

0
1(R)) ⩽ |𝑓 |𝜃1 ,∞𝑣

𝜃1 for 𝑣 > 0.

Assume 𝑐 > |𝑓 |𝜃1 ,∞. For 𝑣 = 1 this gives a decomposition 𝑓 = 𝑓0 + 𝑓1 with ‖𝑓0‖𝐶0
𝑏 (R)

+ |𝑓1|1 ⩽ 𝑐. So it remains to verify that 
𝑓0 ∈ Höl𝜃0 ,1(R). For 𝑣 ⩾ 1 we have

𝐾(𝑣, 𝑓0;𝐶0
𝑏 (R),Höl

0
1(R)) ⩽ ‖𝑓0‖𝐶0

𝑏 (R)
⩽ 𝑐,

and for 𝑣 ∈ (0, 1] we have

𝐾(𝑣, 𝑓0;𝐶0
𝑏 (R),Höl

0
1(R)) ⩽ 𝐾(𝑣, 𝑓 ;𝐶0

𝑏 (R),Höl
0
1(R)) +𝐾(𝑣, 𝑓1;𝐶0

𝑏 (R),Höl
0
1(R))

⩽ |𝑓 |𝜃1 ,∞𝑣
𝜃1 + |𝑓1|1𝑣 ⩽ (|𝑓 |𝜃1 ,∞ + |𝑓1|1)𝑣𝜃1⩽ 2𝑐 𝑣𝜃1 .

Inserting this bound for 𝐾(𝑣, 𝑓0;𝐶0
𝑏 (R),Höl

0
1(R)) into the definition of the interpolation space Höl𝜃0 ,1(R), we derive |𝑓0|𝜃0 ,1 + |𝑓1|1 ⩽

𝑐𝜃0 ,𝜃1 𝑐 + 𝑐 so that 

|𝑓0|𝜃0 ,1 + |𝑓1|1 ⩽ (𝑐𝜃0 ,𝜃1 + 1)|𝑓 |𝜃1 ,∞ =∶ 𝑐(8.7)|𝑓 |𝜃1 ,∞. □ (8.7)
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