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Abstract
Compressive strength is a primary factor of concrete. Concrete characteristic severely affects by temperatures, which can 
reduce the strength properties of the concrete. Therefore, the accurate prediction of the concrete compressive strength at 
elevated temperatures is challenging. This study aims to develop a robust hybrid SCA-XGB model that integrated a sine 
cosine algorithm and an extreme gradient boosting model, to precisely predict the compressive strength of concrete at elevated 
temperatures. First, the database of concrete strength at different temperatures is collected from the literature. Then, hybrid 
SCA-XGB models are developed with the assistance of the SCA algorithm for fining-tune the hyperparameters of the XGB 
model for predicting the compressive strength at elevated temperatures. As a result, several hybrid SCA-XGB models are 
generated by changing the training-test ratio of database and the population size of the SCA algorithm. The best hybrid 
SCA-XGB model is chosen by evaluating the statistical metrics. The performance of the best SCA -XGB model is compared 
with those of other machine learning (ML) models. The SCA-XGB model achieves credible results with (0.995, 0.982) of 
 R2, (0.925 and 0.810) of A10, (1.774 MPa and 3.676 MPa) of RMSE, and (1.317 MPa and 2.706 MPa) of MAE. It is found 
that the SCA-XGB model not only accurately predicts the compressive strength of concrete at elevated temperatures but 
also outperforms other models. Notably, the black box behind the SCA-XGB model is explored using the SHapley Additive 
exPlanation (SHAP) method via the global and local explanations. Finally, a web application is built based on the SCA-XGB 
model for users can rapidly predict the compressive strength of concrete at elevated temperatures.
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Introduction

Concrete is a commonly used material in engineering struc-
tures. The advantages of concrete include but are not limited 
to durability, porosity, acoustic insulation, impact resistance, 
and fire resistance (Dong et al., 2019). Therefore, it can be 
used for buildings, tunnels, reservoirs, dams, or bridges 
(Chica & Alzate, 2019). As urbanization progresses, con-
crete has become an increasingly important material (Reiter 
et al., 2020).

Generally, structures are prone to be subjected to fire 
or high temperatures during their life due to many effects 
(Roy & Matsagar, 2021). Although in terms of fire resist-
ance and heat resistance, concrete is considered one of the 

best materials (Ma et al., 2015), high temperature not only 
severely affects the physical, chemical, and mechanical 
properties of concrete (An et al., 2020; Gupta et al., 2020; 
Nguyen et al., 2020) but also makes the concrete reduce its 
mechanical properties, resulting in the loss of its durability 
(Karahan, 2017), and causing the spalling of concrete (Li 
et al., 2021). Therefore, it is hard to accurately estimate the 
concrete strength at elevated temperatures because of highly 
complex properties and temperature-dependent parameters.

The performance behaviors of ordinary, high-perfor-
mance, and lightweight concrete at high temperatures were 
experimentally investigated in previous studies (Chan et al., 
2000; Husem, 2006; Kim et al., 2002; Masaki & Maki, 2002; 
Memon et al., 2019; Tanyildizi & Coskun, 2008). It was 
found that casting and curing to estimate concrete behav-
iors at high temperatures are considered a challenging task. 
Recent years have seen a considerable increase in the use 
of machine learning (ML) to solve complex and nonlin-
ear problems (Salehi & Burgueño, 2018; Thai, 2022). ML 
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algorithms are typically applied in civil engineering to pre-
dict the mechanical properties of concrete (Dinesh et al., 
2023). Although several studies have utilized ML tech-
niques for predicting compressive concrete strength, they are 
applied to concrete at room temperature (Kaloop et al., 2020; 
Kaveh & Iranmanesh, 1998; Naderpour et al., 2018; Nguyen 
et al., 2022a). The application of ML to concrete strength at 
elevated temperatures is relatively rare. Mukherjee and Nag 
Biswas (1997) and Abbas et al. (2019) collected a database 
of concrete under three load conditions to develop an ANN 
model for predicting the residual strength of high-strength 
concrete at high temperatures. Ahmad et al. (2021) used an 
artificial neural network (ANN), decision tree (DT), gradi-
ent boosting (GB), and bagging models to predict concrete 
strength at high temperatures. Although the bagging model 
outperformed other models, the correlation between predic-
tion and real values is not high  (R2 = 0.90).

In various fields of science and engineering, the extreme 
gradient boosting (XGB) algorithm has proved its potential 
to address multiple challenges (Huber et al., 2022; Kaveh 
et al., 2021; Mai et al., 2023; Nguyen et al., 2022b; Tran 
& Kim, 2023; Tran et al., 2023; Van Nguyen et al., 2022a, 
2022b, 2022c). According to the literature, the perfor-
mance of the XGB model shows more accurate predictions 
when compared to other ML models. Mirjalili and Gan-
domi (2023) and Kaveh (2021) proposed several potential 
metaheuristic optimization algorithms. These algorithms 
have drawn significant attention from researchers in differ-
ent fields. Admittedly, each algorithm has its advantages 
and limitations. In addition, the performance of optimiza-
tion algorithms depends strongly on the problem solved. 
In this study, many metaheuristic optimization algorithms 
have been tested, and the author found that the SCA cou-
pled with XGB, which was not used previously, achieves the 
best results for predicting compressive concrete strength at 
elevated temperatures.

In light of this gap, this study aims to predict compressive 
concrete strength at elevated temperatures using a hybrid 
SCA-XGB model. The hybridization of SCA with the XGB 
model can enhance prediction accuracy. The performance of 
the developed SCA -XGB model is compared with those of 
other machine learning (ML) models, such as default XGB, 

DT, random forest (RF), adaptive gradient boosting (AGB), 
and GB models. In addition, the black box behind the SCA-
XGB model is explored using the SHapley Additive exPla-
nation (SHAP) method via the global and local explanations. 
Finally, a web application is built based on the SCA-XGB 
model for users can rapidly predict the compressive strength 
of concrete at elevated temperatures.

Databse description

This study collects the tests on concrete strength at elevated 
temperatures from the previous study (Ahmad et al., 2021) 
to develop hybrid SCA-XGB models. Nine features of con-
crete that affected the concrete strength ( f �

c
 ) at elevated tem-

peratures are considered, such as cement (C), water (W), 
fine aggregate (FA), coarse aggregate (CA), fly ash (FLA), 
superplasticizer (S), silica fume (SF), nano silica (NS), and 
temperature (T).

The statistical properties of the database are presented 
in Table 1. Figure 1 depicts the Pearson correlation coeffi-
cient matrix, which reveals the degree of linear relationship 
between variables in the database. It can be found that tem-
perature has a strong negative correlation with compressive 
strength at elevated temperatures, indicated by the coeffi-
cients of – 0.59. C, W, FA, FLA, and S are moderately corre-
lated with compressive strength, indicated by the coefficients 
of 0.28, -0.31, 0.32, 0.24, and 0.28, respectively. Meanwhile, 
CA, SF, and NS have a low correlation with compressive 
strength, indicated by the coefficients of – 0.01, – 0.13, and 
0.14, respectively.

Machine learning and optimization 
algorithms

Extreme gradient boosting (XGB)

The XGB is an improvement of the gradient boosting (GB) 
algorithm (Chen & Guestrin, 2016). The XGB utilizes paral-
lel process computing to enhance the training process speed 
and balance between bias and variance, thereby reducing 

Table 1  Statistical properties of the database

C W FA CA FLA S SF NS T f
�

c

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (MPa)

Min 250.000 123.000 0.000 0.000 0.000 0.000 0.000 0.000 20.000 3.000
Mean 437.686 182.922 610.130 1052.126 12.652 8.581 29.317 1.739 354.522 49.311
Max 786.000 385.000 1345.000 1681.000 150.000 25.900 150.000 22.500 1000.000 133.600
Std 95.491 59.905 317.391 309.412 33.072 7.597 37.086 5.248 287.651 25.170
Cov 0.218 0.327 0.520 0.294 2.614 0.885 1.265 3.018 0.811 0.510
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overfitting. In the XGB, the process involves iteratively train-
ing DTs using residuals from previous trees. Accordingly, each 
DT is built sequentially during training, and each subsequent 
tree tries to correct previous errors. Figure 2 reveals the flow-
chart of the XGB algorithm.

Sine cosine algorithm (SCA)

The SCA (Seyedali Mirjalili, 2016) method is based on a 
population-based probabilistic search. It uses sine and cosine 
trigonometric functions to update search agents' positions in 
the population. It is inspired by the periodic nature in the range 
[− 1, 1] of sine and cosine functions, providing great potential 
for exploring and exploiting the search space.

Similar to any other meta-heuristic algorithm, the SCA 
initiates randomly representative search agents or solutions 
in the search space. The search agents in the population can 
be viewed as vectors in a d-dimensional space. A stochastic 
equation containing trigonometric sine and cosine functions is 
used by search agents to update their positions. The ith search 
agent X

i
= (X

i1,Xi2,… ,X
id
) is initialized using the following 

equation:

(1)
Xij = Xlb

ij
+ rand() ×

(
Xub

ij
− Xlb

ij

)
, j = 1 ∶ d, i = 1 ∶ Np,

where Xij is the jth dimension of the ith solution, Xlb
ij

 and 
Xub

ij
 are the lower bound and upper bound of the ith solution in 

the jth dimension, respectively. rand() is a uniformly distrib-
uted random number in the range [0, 1], and Np is the number 
of search agents (the population size).

The following equations are position update equations of 
each search agent:

where, Xt
i
= (Xt

i1
,Xt

i2
,… ,Xt

id
) are the position of the ith 

search agent in the tth iteration. Pt
g
= (Pt

g1
,Pt

g2
,… ,Pt

gd
) is the 

gth search agent having the best fitness and considered as 
the destination point at tth iteration. |.| represents the modu-
lus operator.

(2)Xt+1
ij

= Xt
ij
+ r1 × sin(r2) ×

||
|
r3 × Pt

g
− Xt

ij

||
|
,

(3)Xt+1
ij

= Xt
ij
+ r1 × cos(r2) ×

||
|
r3 × Pt

g
− Xt

ij

||
|
,

(4)r1 = b − b × (
t

T
),

(5)r2 = 2 × π × rand(),

(6)r3 = 2 × rand(),

Fig. 1  Pearson correlation coef-
ficient of variables C 1.00 0.04 0.50 -0.59 -0.17 0.54 0.00 0.16 0.10 0.28

W 0.04 1.00 -0.44 -0.57 -0.13 -0.24 0.20 -0.27 0.03 -0.31

A
F 0.50 -0.44 1.00 -0.37 0.13 0.27 -0.32 0.09 0.03 0.32

A
C -0.59 -0.57 -0.37 1.00 0.04 -0.16 -0.19 0.06 -0.08 -0.01

AL
F -0.17 -0.13 0.13 0.04 1.00 -0.27 -0.30 -0.13 0.14 0.24

S 0.54 -0.24 0.27 -0.16 -0.27 1.00 0.31 0.45 0.03 0.28

FS 0.00 0.20 -0.32 -0.19 -0.30 0.31 1.00 -0.02 0.02 -0.13

S
N 0.16 -0.27 0.09 0.06 -0.13 0.45 -0.02 1.00 0.12 0.14

T 0.10 0.03 0.03 -0.08 0.14 0.03 0.02 0.12 1.00 -0.59

f'c 0.28 -0.31 0.32 -0.01 0.24 0.28 -0.13 0.14 -0.59 1.00

C W FA CA FLA S SF NS T f' c



 Asian Journal of Civil Engineering

1 3

where b is a constant parameter and T denotes the maximum 
number of iterations.

r1 controls the movement of Xi , if r1 < 1, then Xi moves 
toward destination point Pg (exploitation step), and when r1 
≥ 1, the search agent moves far away from the destination 
point Pg (exploration step). A switch probability p ( p = 0.5 ) 
is used to determine whether Eqs. (2) or (3) should be used 
to update the position of the search agents. The p depends on 
a generated random number r4 ∈ [0, 1]. If r4 < p , Eq. (2) is 
used to update the position of the search agents, otherwise 
Eq. (3) is used. The flowchart for the SCA is shown in Fig. 3.

Development of hybrid SCA‑XGB model

The main steps of developing the SCA-XGB model can 
be summarized in Fig. 4. To establish SCA-XGB models 
for predicting concrete strength at elevated temperatures, 
cement, water, fine aggregate, coarse aggregate, fly ash, 
superplasticizer, silica fume, nano silica, and temperature 
are utilized as input variables. The concrete strength is con-
sidered an output parameter.

The database is randomly divided into training and 
test sets, with eight training-to-test set ratios (0.55–0.45, 
0.60–0.40, 0.65–0.35, 0.70–0.30, 0.75–0.25, 0.80–0.20, 
0.85–0.15, and 0.90–0.10). In addition, different population 
sizes of SCA ranging from 50 to 300 with increments of 50 
are tested. In the ML realm, hyperparameters play a signifi-
cant role in model performance. Therefore, hyperparameter 
tuning is critical in developing an ML model. In this study, 
hyperparameter optimization of the XGB model is done 
using the SCA. Five-fold cross-validation is utilized during 
hyperparameter tuning to achieve more reliability and gener-
alization of model performance. Once the optimal hyperpa-
rameters are determined based on the training set. The final 
model is evaluated using the test set. The effectiveness of the 
XGB model is quantified using various evaluation metrics. 
This study uses four statistical metrics to assess the model's 
performance:  R2, A10, RMSE, and MAE. The equations 
of these metrics can be found in the previous studies (Mai 
et al., 2023; Nguyen et al., 2022a, 2022b, 2022c; Tran & 
Kim, 2023). Finally, the XGB model can be deployed as a 
web application to predict new and unseen data.

The detailed performance of several SCA-XGB models 
is presented in the Supplemental material. It is generally 
true that all models perform better during training than 
during testing. However, the performance of models in the 
test phase is used to choose the best model on unseen data. 
Therefore, the population sizes and training-test ratios are 
considered to establish SCA-XGB models, which are scored 
from 1 to 48. It is worth noting that a high  R2 and A10 score 
correlate to a high score, whereas a high RMSE and MAE 
score correlate to a low score. Accordingly, ML models are 
scored based on the sum of all evaluation metrics. The best 
results of the SCA-XGB model are highlighted in bold in the 
tables in the Supplementary materials. The optimized hyper-
parameter values of the XGB model are shown in Table 2. 
The performance of the best SCA-XGB model is presented 
in Table 3. It can be seen that there is a minor difference 
between training and test sets, so there is little overfitting in 
the chosen SCA-XGB model.

Results and discussion

In this study, five other ML models, including DT, random 
forest (RF), adaptive gradient boosting (AGB), GB, and 
XGB, are selected to compare their superiority and reliabil-
ity with the developed SCA-XGB model in predicting the 
concrete strength at elevated temperatures.

The performance of these models is presented in Table 4. 
It is evident from the results that the SCA-XGB outperforms 
the other models, as indicated by its higher  R2 (0.982) and 
A10 (0.810) values and lower RMSE (3.676 MPa) and 
MAE (2.706 MPa) values in the test phase, which are bold 

Fig. 2  Flowchart of XGB
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in Table 4. Followed by the XGB model with  R2 of 0.965, 
A10 of 810, RMSE of 4.604 MPa, and MAE of 3.595 MPa 
in the test phase. Conversely, the AGB model exhibits the 
poorest performance with  R2 of 0.927, A10 of 0.381, RMSE 
of 8.679 MPa, and MAE of 6.735 MPa in the test phase. 
Compared with the XGB, DT, RF, AGB, and GB models, 
 R2 and A10 increased by (1.762%, 4.357%, 1.133%, 5.933%, 
and 1.551%) and (0.0%, 30.856%, 13.445%, 112.598%, 
and 21.439%), RMSE and MAE decreased by (20.156%, 
42.589%, 16.927%, 57.645%, and 24.393%) and (24.729%, 
42.911%, 21.406%, 59.822%, and 25.104%), respectively, in 
the SCA-XGB model in the test phase.

Figure 5 depicts the scatter plot of their predicted and actual 
concrete strength values. As shown in the figure, the black 
line represents the ideal scenario where predictions are per-
fect matches with targets. Based on the figure, it is obvious 
that the SCA-XGB model is significantly more accurate than 
other models. In conclusion, the hybrid SCA-XGB model 
demonstrates greater accuracy and robustness in predicting 
concrete strength at elevated temperatures. It is found that the 
SCA proves to be effective in improving the XGB's predictive 
capability for the given dataset. The hybrid approach exhibits 
the best performance, leveraging the strengths of both SCA 
and XGB to achieve superior prediction.

Fig. 3  Flowchart of SCA
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Model explanation

To explore the black box of the SCA-XGB model, it is 
essential to conduct a comprehensive investigation of the 
effects of various input parameters, such as cement, water, 
fine aggregate, coarse aggregate, fly ash, superplasticizer, 

silica fume, nano silica, and temperature, on concrete 
strength at elevated temperatures.

This study uses the Shapley Additive Explanations (SHAP) 
method (Lundberg & Lee, 2017) to explain the feature impor-
tance of input features and their contribution to concrete 
strength prediction. The details of the SHAP method can 
be found somewhere (Lundberg & Lee, 2017; Tran & Kim, 
2023). In the SHAP method, the output is calculated based on 
the baseline value and the Shapley value of the input variables 
as follows:

(7)y
(i)

pred
= ybase +

n∑

j=1

f(xij)

Fig. 4  Flowchart of development of SCA-XGB models

Table 2  Optimal hyperparameters of the XGB model

Hyperparameter learning_rate max_depth n_estimators

Optimized value 0.28763 2 618

Table 3  Performance of the best 
SCA-XGB model

The unit of RMSE and MAE is MPa

Pop size Ratio Training set Test set
R2 A10 RMSE MAE R2 A10 RMSE MAE

100 90–10 0.995 0.925 1.774 1.317 0.982 0.810 3.676 2.706
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where ybase is the baseline value of the ML model; n is the 
number of input parameters; f(xij) is the Shapley value of 
the input parameter xij.

Figure 6 shows the global importance factors of the input 
variables for the compressive strength prediction. The fea-
ture with a higher absolute summation of Shapley values is 
more important. It can be seen that T has a significant influ-
ence on compressive strength prediction, followed by FA, 
FLA, CA, C, S, W, SF, and NS.

Figure 7 depicts the SHAP summary plot of each input 
parameter. Each point on the plot indicates a sample data 
point. The y-axis exhibits the feature names, while the x-axis 
displays the magnitude of the Shapley value. The feature 
importances are sorted based on the amplitude of their 
impact on the prediction in the y-axis. It can be seen that 
the T has the most significant effect on the concrete strength 
based on the SCA-XGB model. Notably, a higher value of 
T and W cause reducing the concrete strength. In contrast, 
the concrete strength increases if the FA, FLA, CA, C, S, 
SF, and NS increases.

Figure 8 shows the prediction of specific instances of 
the database. In this figure, E[f(x)] is the baseline value 
(average predictive value of the training data), and f(x) 
is the final prediction value based on the SCA-XGB 
model. The red bar indicates the positive contribution of 
the feature. In contrast, the blue bar denotes the nega-
tive contribution of the feature. The grey numbers are 
the normalized values of the input parameters. It can be 
seen that the prediction (7.941 MPa) is lower than the 
base value (49.241 MPa). In this specimen, CA (normal-
ized value of 1.988) and W (normalized value of – 1.016) 
have a positive effect on the concrete strength, which adds 
1.82 MPa and 0.38 MPa, respectively, to the prediction 
from the baseline value (49.241 MPa). However, T (nor-
malized value of 1.536), C (normalized value of – 1.958), 
FA (normalized value of – 0.69), FLA (normalized value 
of – 0.4), SF (normalized value of – 0.78), S (normalized 

Table 4  Performance of 
different ML models

Model Training set Test set
R2 A10 RMSE MAE R2 A10 RMSE MAE

SCA-XGB 0.995 0.925 1.774 1.317 0.982 0.810 3.676 2.706
XGB 1.0 1.0 0.003 0.002 0.965 0.810 4.604 3.595
DT 1.0 1.0 0.0 0.0 0.941 0.619 6.403 4.740
RF 0.985 0.828 3.296 2.109 0.971 0.714 4.425 3.443
AGB 0.941 0.446 7.731 6.410 0.927 0.381 8.679 6.735
GB 0.984 0.839 3.259 2.337 0.967 0.667 4.862 3.613

Fig. 5  Scatter plots of different ML models

Fig. 6  Global importance of features
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value of – 1.1), and NS (normalized value of – 0.309) have 
a negative effect on the concrete strength, which decreases 
the prediction by – 20.04 MPa, – 11.11 MPa, – 6.91 MPa, 
– 2.61 MPa, – 1.58 MPa, – 1.14 MPa, and – 0.12 MPa, 
respectively, to the prediction from the baseline value 
(49.241 MPa).

Web application development

This section aims to create an interactive web application for 
users unfamiliar with ML algorithms. The web application is 
developed based on a Streamlit platform to facilitate the pre-
diction of concrete strength at elevated temperatures. Users 
can directly measure concrete strength using nine input 
parameters. Accordingly, using the web application can save 

time and effort in estimating the concrete strength at elevated 
temperatures in the pre-design process. The web application 
interface is shown in the Appendix. The accessed link of 
the web application can be found here: https:// tvl- concr etest 
rength- hight emper ature. strea mlit. app/.

Conclusions

This study develops a novel hybrid ML model, called SCA-
XGB, that integrates a sine cosine algorithm and an extreme 
gradient boosting, to enhance the prediction of concrete com-
pressive strength at elevated temperatures. The SHAP method 
explores the effect of different input features on the concrete 
compressive strength. An effective web tool is developed for 
practical applications. Some conclusions are stated as follows:

(1) The SCA-XGB model achieves the lowest values of the 
errors (RMSE of 3.676 MPa and MAE of 2.706 MPa) 
and the highest correlation  (R2 of 0.982 and A10 of 
0.810) in the test phase. It demonstrates remarkable 
performance, achieving high accuracy and robustness 
compared to other ML models (i.e., XGB, DT, RF, 
AGB, and GB). It is indicated that the SCA proves to 
be effective in improving the XGB's predictive capabil-
ity.

(2) Compared with the XGB, DT, RF, AGB, and GB mod-
els,  R2 and A10 increased by (1.762%, 4.357%, 1.133%, 
5.933%, and 1.551%) and (0.0%, 30.856%, 13.445%, 
112.598%, and 21.439%), RMSE and MAE decreased 
by (20.156%, 42.589%, 16.927%, 57.645%, and 
24.393%) and (24.729%, 42.911%, 21.406%, 59.822%, 
and 25.104%), respectively, in the SCA-XGB model in 
the test phase.

(3) The SHAP method shows that T has a significant influ-
ence on compressive strength prediction, followed by 
FA, FLA, CA, C, S, W, SF, and NS.

(4) The web application is considered an efficient tool 
for accurate concrete strength prediction at elevated 
temperatures, which can be successfully adopted for 
concrete strength prediction without spending time and 
cost on experimental work in the laboratory.

It is noted that ML algorithms depend significantly on the 
amounts and quality of training data. It should be possible to 
improve ML models' accuracy using updated data with diverse 
input parameters in future work.

Fig. 7  SHAP summary plot

Fig. 8  Shapley values of a typical prediction

https://tvl-concretestrength-hightemperature.streamlit.app/
https://tvl-concretestrength-hightemperature.streamlit.app/
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Appendix

Web application interface
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