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Abstract. Let C be a bounded, closed and convex subset of a reflexive metric space
with a digraph G such that G-intervals along walks are closed and convex. We show in
the main theorem that if T : C → C is a monotone G-nonexpansive mapping and there
exists c ∈ C such that Tc ∈ [c,→)G, then T has a fixed point provided for each a ∈ C,
[a, a]G has the fixed point property for nonexpansive mappings. In particular, it gives a
wide generalization of the Dehaish-Khamsi theorem concerning partial orders in complete
uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular
spaces, and for commutative families of mappings are given too.

1. Introduction

In 2004, Ran and Reurings [19] initiated the investigation of an analogue to the classi-
cal Banach contraction principle in the context of a complete metric space endowed with
a partial order. It was further refined by Nieto and Rodŕıguez-López [17]. Their fixed
point theorems are generalized and extended by numerous authors. In 2008, Jachymski [8]
performed a more general approach by using a graph instead of a partial order.

It is natural to study fixed point theorems for monotone nonexpansive mappings. In
2015, Alfuraidan [2] initiated the study of monotone nonexpansive mappings on a Banach
space X equipped with a directed graph G. In 2016, Dehaish and Khamsi showed in [4]
that if X is a partially ordered uniformly convex hyperbolic metric space, then a monotone
nonexpansive map T : C → C has a fixed point, where C is a nonempty bounded, closed
and convex subset of X. This is parallel to Browder-Göhde’s fixed point theorem for
nonexpansive mappings. Recently, Esṕınola and Wísnicki [7] have proved a lemma and
applied it to show a fixed point theorem for monotone mappings in a Hausdorff topological
space with a partial order �. They concluded that a lot of fixed point results related to
monotone nonexpansive mappings are a particular case of their theorem. But this approach
only works in the case of partially ordered sets. The situation is more difficult in the case
of sets endowed with a digraph.

The aim of this paper is two-fold: firstly to present some fixed point theorems in geodesic
metric spaces with the UUC property endowed with a digraph, secondly to extend the
results of Abdou and Khamsi in [1] for modular spaces with the UUC2 property. The
key ingredient in our generalization is the compactness of the order intervals and the fixed
point property. Combining with the approach of Esṕınola and Wísnicki [7], we show that
a monotone G-nonexpansive mapping T : C → C has a fixed point on a bounded, closed,
convex subset C (resp. ρ-bounded, ρ-closed, convex subset C) of a geodesic space with the
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UUC property (resp. a modular space with the UUC2 property). In particular, in the case
when digraph is a partial order, Theorem 2.11 gives a wide extension of Theorem 3.1 of
Dehaish and Khamsi [4] by dropping both assumptions about hyperbolicity of the space
and nonexpansivity of the mapping.

We start this section by recalling some basic notions in graph theory (see [3], [6]).

Definition 1.1. A graph G is a pair (V (G), E(G)), where elements of the nonempty set
V (G) are called vertices of G, and E(G) is the set of paired vertices called edges. If a
direction is imposed on each edge, we call the graph a directed graph or a digraph.

Definition 1.2. Assume that G = (V (G), E(G)) is a digraph.

(i) G is reflexive if for each x ∈ V (G), (x, x) ∈ E(G).
(ii) G is transitive if for every x, y, z ∈ V (G) with (x, y), (y, z) ∈ E(G), we have (x, z) ∈

E(G).
(iii) We call (V ′, E ′) a subgraph of G if V ′ ⊆ V (G), E ′ ⊆ E(G), and x, y ∈ V ′ whenever

(x, y) ∈ E ′.
(iv) A (directed) walk (of length k) from x to y in G is a nonempty alternating sequence

v0e0v1e1...ek−1vk of vertices and edges in G such that v0 = x, vk = y and ei =
(vi, vi+1) for all i < k.
A directed path is a directed walk in which all vertices are distinct.

(v) For a, b ∈ V (G), we define G-intervals along walks as follows:

[a,→)G = {x ∈ V (G) : there is a walk from a to x},
(←, b]G = {x ∈ V (G) : there is a walk from x to b},

[a, b]G = [a,→)G ∩ (←, b]G.

(vi) Let A be a subset of V (G). An element b ∈ V (G) is called an G-upper (G-lower)
bound of A if a ∈ (←, b]G (resp. a ∈ [b,→)G) for all a ∈ A. A set A is called
G-bounded if A ⊂ [a, b]G.

(vii) A subset J of V (G) is directed if each finite subset of J has a G-upper bound in J .

Definition 1.3 ([2]). Let (V (G), E(G)) be a digraph, and A be a nonempty subset of
V (G). A mapping T : A → A is called G-monotone if (Tx, Ty) ∈ E(G) for each x, y ∈ A
such that (x, y) ∈ E(G).

Recall that a nonempty family A of subsets of a set X is said to satisfy the finite
intersection property if the intersection over any finite subfamily of A is nonempty.

Lemma 1.4 ([18]). Let G = (V (G), E(G)) be a digraph. Assume that any family of
G-intervals along walks in V (G) having the finite intersection property has nonempty in-
tersection. If J is a directed subset of V (G), then

⋂
x∈J

[x,→)G 6= ∅.

Our basic tool is the following result proved in [18]. We sketch the proof for the conve-
nience of the reader, thus making our exposition self-contained.

Theorem 1.5. Let (V (G), E(G)) be a digraph. Assume that any family of G-intervals
along walks in V (G) having the finite intersection property has nonempty intersection. Let
T : V (G) → V (G) be a G-monotone mapping such that Tc ∈ [c,→)G for some c ∈ V (G).
Then there exists s ∈ V (G) such that [s, s]G 6= ∅ and T ([s, s]G) ⊂ [s, s]G.
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Proof. Set

I0 = {c, T nc : n ∈ N}.
It is not difficult to prove that I0 is a directed set and for each x ∈ I0, Tx ∈ I0 and
Tx ∈ [x,→)G. We note that if T is a chain of directed subsets of V (G) containing I0 with
the above properties, then

⋃
T is also a directed subset with the following properties: for

each x ∈
⋃
T , Tx ∈

⋃
T and Tx ∈ [x,→)G. By Kuratowski-Zorn’s lemma, there exists

a maximal directed set I ⊂ V (G) which contains I0 and satisfies above properties. It
follows from Lemma 1.4 that the set K :=

⋂
x∈I

[x,→)G is nonempty. Choose finite subsets

{x1, ..., xn} of I and {y1, ..., yn} of K. Since I is directed,
n⋂
i=1

[xi, yi]G is nonempty. It

deduces that K0 :=
⋂

x∈I,y∈K
[x, y]G is nonempty. Thus there is s ∈ K0. Clearly, for each

x ∈ I, s ∈ [x,→)G, and hence Ts ∈ [Tx,→)G. It yields Ts ∈ [x,→)G for all x ∈ I, i.e.,
Ts ∈ K. Hence Ts ∈ [s,→)G. Set

I1 = I ∪ {s, T ns : n ∈ N}.

It is not difficult to see that I1 is a directed subset of V (G) such that I0 ⊂ I1, Tx ∈ I1
and Tx ∈ [x,→)G for each x ∈ I1. By the maximality of I, I1 = I. It follows that both
s, Ts ∈ I. Therefore, s ∈ [Ts,→)G and Ts ∈ [s,→)G.

Put H := [s, s]G 6= ∅. Take x ∈ H. Since s ∈ [x,→)G, we have Ts ∈ [Tx,→)G and
s ∈ [Ts,→)G. Hence s ∈ [Tx,→)G, i.e., Tx ∈ (←, s]G. On the other hand, Tx ∈ [Ts,→)G
since x ∈ [s,→)G. Combining with Ts ∈ [s,→)G yields Tx ∈ [s,→)G. Therefore, Tx ∈ H
for all x ∈ H, that is, T (H) ⊂ H. �

Remark 1.6. Note that for every a, b ∈ K0 we have a ∈ [b,→)G and b ∈ [a,→)G. Indeed,
by the above argument, {a, b} ⊂ I ∩ K. Since a ∈ I, b ∈ K, we have b ∈ [a,→)G. And
a ∈ [b,→)G follows from a ∈ K, b ∈ I.

Furthermore, it is clear that K0 ⊆ [a, b]G. We show that K0 = [a, b]G. For this purpose,
fix t ∈ [a, b]. Since t ∈ [a,→)G and a ∈ [x,→)G for each x ∈ I, we have t ∈ [x,→)G for
each x ∈ I. In a similar way, t ∈ (←, y]G for all y ∈ K. Hence t ∈

⋂
x∈I,y∈K

[x, y]G = K0. It

implies [a, b]G ⊆ K0 and thus K0 = [a, b]G. In particular, K0 = [s, s]G and T (K0) ⊆ K0.

2. Uniformly convex metric spaces

In this section, we obtain some fixed point theorems for monotone G-nonexpansive map-
pings. The setting are reflexive metric spaces, in particular, uniformly convex metric spaces.

Let (X, d) be a metric space. Recall that X is said to be uniquely geodesic if any two
points x, y in X are endpoints of a unique metric segment [x, y] (i.e., [x, y] is an isometric
image of the interval [0, d(x, y)]). We shall denote by αx ⊕ (1 − α)y a unique point z of
[x, y] which satisfies

d(x, z) = (1− α)d(x, y) and d(z, y) = αd(x, y),

where α ∈ [0, 1]. A set C ⊂ X is convex if the metric segment [x, y] ⊂ C for each x, y ∈ C.

Definition 2.1 ([9]). Let I be a directed set. A complete geodesic metric space X is
said to be reflexive if for every nonincreasing family (Ci)i∈I of nonempty, bounded, closed,
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convex subsets, i.e., Ci ⊂ Cj whenever j ≤ i, then⋂
i∈I

Ci 6= ∅.

Lemma 2.2 ([9]). A space X is reflexive iff any family of nonempty closed bounded convex
subsets of X satisfying the finite intersection property has nonempty intersection.

Our first result is an application of Theorem 1.5 to the case of a reflexive metric space
with a partial order �:= E(G). Recall that on (X,�), order intervals are sets of the forms
[a,→) = {x ∈ X : a � x}, (←, b] = {x ∈ X : x � b} and [a, b] = [a,→) ∩ (←, b] for some
a, b ∈ X. A mapping T : X → X is said to be monotone (or increasing) if T (x) � T (y)
whenever x, y ∈ X such that x � y.

Theorem 2.3. Let (X, d,�) be a reflexive metric space with a partial order �, and C be a
nonempty bounded closed convex subset of X. Assume that order intervals are closed and
convex. Let T : C → C be a monotone mapping. If there exists c ∈ C such that c � Tc,
then T has a fixed point.

Proof. Let G be the collection of all subsets of the form C ∩P , where P is an order interval
in X. By Lemma 2.2, G satisfies that any subcollection G ′ of G having the finite intersection
property, has nonempty intersection. It follows from Theorem 1.5 that there exists s ∈ C
such that T ([s, s]G) ⊂ [s, s]G. Since � is a partial order, [s, s]G is a singleton and hence T
has a fixed point in C. �

Since nearly uniformly convex metric spaces (in the sense of Kell, see [9, Definition 2.2])
are reflexive, we have the following corollary.

Corollary 2.4. Let (X, d,�) be a nearly uniformly convex metric space with a partial order
�, and C be a nonempty bounded closed convex subset of X. Assume that order intervals
are closed and convex. Let T : C → C be a monotone mapping. If there exists c ∈ C such
that c � Tc, then T has a fixed point.

In particular, Corollary 2.4 applies to uniformly ∞-convex spaces as defined in Kell [9].
However, there is another notion of a uniformly convex metric space (see, e.g., [4]) that
appears to be not quite comparable to uniformly ∞-convex spaces.

Definition 2.5. Let (X, d) be a uniquely geodesic metric space. For any a ∈ X, r > 0 and
ε > 0, define

Da(r, ε) = {(x, y) ∈ X ×X : d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε},
and let

δ(r, ε) = inf
{

1− 1

r
d
(1

2
x⊕ 1

2
y, a
)

: (x, y) ∈ Da(r, ε), a ∈ X
}
.

In the above, we adopt the convention that inf ∅ = 1.

(a) We say that X is uniformly convex (UC for short) if δ(r, ε) > 0 for any r > 0 and
ε > 0.

(b) We say that X is UUC if for every s > 0 and ε > 0, there exists η(s, ε) > 0 such
that δ(r, ε) > η(s, ε) > 0 for any r > s.

Notice that if a uniquely geodesic metric space X is uniformly convex, then all closed
balls B(a, r) = {x ∈ X : d(a, x) ≤ r} are convex, where a ∈ X, r > 0. In fact, we have a
stronger conclusion.
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Lemma 2.6. Let (X, d) be a complete uniquely geodesic metric space. Let r > 0, a ∈ X.

i) Assume that X is UC. Let t ∈ [α, β], where 0 < α ≤ β < 1. If

d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

for some ε > 0, x, y ∈ X, then there exists δ(r, 2εmin{α, 1− β}) ∈ (0, 1) such that

d(a, (1− t)x⊕ ty) ≤ r
(

1− δ(r, 2εmin{α, 1− β})
)
.

ii) Assume that tn ∈ [α, β] for every n ≥ 1, where 0 < α ≤ β < 1, and (xn)n, (yn)n
are two sequences in X such that lim sup

n→∞
d(a, xn) ≤ r, lim sup

n→∞
d(a, yn) ≤ r, and

lim
n→∞

d
(
a, tnxn ⊕ (1− tn)yn

)
= r. If X is UCC, then lim

n→∞
d(xn, yn) = 0.

Proof. (i) Take ε > 0, x, y ∈ X. Without loss of generality we may assume that t < 1/2.
Let zt = (1− t)x⊕ ty and z2t = (1− 2t)x⊕ 2ty so that

d(x, zt) = td(x, y), d(y, zt) = (1− t)d(x, y),

and

d(x, z2t) = 2td(x, y), d(y, z2t) = (1− 2t)d(x, y).

Note that d(zt, z2t) = td(x, y). Hence d(x, zt) = d(zt, z2t) = td(x, y) = 1/2d(x, z2t). It
implies zt = 1

2
x⊕ 1

2
z2t. Since t ≥ min{α, 1− β}, we have

d(x, z2t) = 2td(x, y) ≥ 2rεmin{α, 1− β}.

Hence

d(a, zt) ≤ r(1− δ(r, 2εmin{α, 1− β})).
(ii) For each n ≥ 1, define

rn = max{d(a, xn), d(a, yn)}.

Hence

lim sup
n→∞

rn = lim sup
n→∞

max{d(a, xn), d(a, yn)}

= max{lim sup
n→∞

d(a, xn), lim sup
n→∞

d(a, yn)} ≤ r.

We note that the sequences (d(a, xn))n and (d(a, yn))n are bounded so that there exists
R > 0 such that rn ≤ R for all n ≥ 1.

Case 1. If lim sup
n→∞

rn = 0, then lim sup
n→∞

d(a, xn) = lim sup
n→∞

d(a, yn) = 0. It is not difficult

to see that lim
n→∞

d(xn, yn) = 0.

Case 2. Let d = lim sup
n→∞

rn > 0. Without loss of generality, we assume that lim
n→∞

d(xn, yn) 6=

0. Then there exists ε > 0 and subsequences (xnk
)k, (ynk

)k, (rnk
)k such that

d(xnk
, ynk

) ≥ ε and rnk
> d− ε > 0

for any k ≥ k0. We have

d(xnk
, ynk

) ≥ ε ≥ rnk

ε

R
.
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Since X is UUC, it follows from (i) that there exists η
(
d− ε, 2 min{α, 1 − β} ε

R
)
)
∈ (0, 1)

such that

d
(
a, tnk

xnk
⊕ (1− tnk

)ynk

)
≤ rnk

(
1− δ(rnk

, 2 min{α, 1− β} ε
R

)
)

< rnk

(
1− η(d− ε, 2 min{α, 1− β} ε

R
)
)

for any k ≥ k0. Taking limsup as k →∞, we get

r ≤ d
(

1− η(d− ε, 2 min{α, 1− β} ε
R

)
)
< r,

which is the desired contradiction. Therefore, lim
n→∞

d(xn, yn) = 0. �

Recall that a mapping T : C → C acting on a subset C of a metric space (X, d) is called
nonexpansive if d(Tx, Ty) ≤ d(x, y) for any x, y ∈ C. We say that C has the fixed point
property for nonexpansive mappings if each nonexpansive mapping T : C → C has a fixed
point in C.

Definition 2.7. Let X be a metric space with a digraph G = (V (G), E(G)), X = V (G),
and let C be a nonempty subset of X. A mapping T : C → C is called monotone G-
nonexpansive if T is G-monotone and satisfies

d(Tx, Ty) ≤ d(x, y)

for every x, y ∈ C such that x ∈ [y,→)G.

In particular, if E(G) is a partial order we obtain the definition of a monotone nonex-
pansive mapping. Note that a monotone G-nonexpansive map need not to be continuous.
Dehaish and Khamsi showed in [4] that if C is a bounded closed and convex subset of a par-
tially ordered uniformly convex hyperbolic metric space, then every monotone nonexpansive
mapping T : C → C has a fixed point.

In what follows, we show an analogue of Corollary 2.4 for UUC spaces, thus giving a
wide generalization of Dehaish–Khamsi’s theorem by dropping both assumptions about
hyperbolicity of the space and nonexpansivity of the mapping. We start with the following
theorem that has been proved in [12] in the case of hyperbolic UUC spaces.

Theorem 2.8. Let (X, d) be a complete uniquely geodesic metric space, C a nonempty
closed convex subset of X, and a ∈ X. Assume that X is UUC. Let d(a, C) = inf{d(a, y) :
y ∈ C}. Then there exists a unique c ∈ C such that d(a, C) = d(a, c).

Proof. If d(a, C) = 0, then there exists a sequence (xn)n≥1 of elements of C that tends to a,
and since C is closed, c := a ∈ C. Thus we can assume that r = d(a, C) > 0. By definition
of infimum, there exists xn ∈ C such that d(a, xn) ≤ (1+ 1

n
)r for every n ≥ 1. We are going

to prove that (xn)n≥1 is a Cauchy sequence. Assume otherwise that the sequence (xn)n≥1 is
not Cauchy. Then there exist ε0 > 0 and two subsequences (xnk

)k≥1 and (xmk
)k≥1 of (xn)n

such that nk > mk, d(xnk
, xmk

) ≥ ε0 for any k ≥ 1. We have

d(a, xmk
) ≤ (1 + 1/mk)r, d(a, xnk

) ≤ (1 + 1/nk)r < (1 + 1/mk)r,

and

d(xmk
, xnk

) ≥ ε0 ≥
(

1 +
1

mk

)
r
ε0
2r
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for any k ≥ 1. Since X is UUC, there is η(r, ε0
2r

) < δ((1 + 1/mk)r,
ε0
2r

) such that

d
(
a,

1

2
xnk
⊕ 1

2
xmk

)
<
(

1 +
1

mk

)
r
(

1− η(r,
ε0
2r

)
)
.

for every k ≥ 1. We note that 1
2
xnk
⊕ 1

2
xmk
∈ C since C is convex. Thus for any k ≥ 1,

r <
(

1 +
1

mk

)
r(1− η(r,

ε0
2r

)).

Letting k → ∞, we obtain a contradiction since r ≤ r(1 − η(r, ε0
2r

)) with r > 0 and
η(r, ε0

2r
) ∈ (0, 1). Hence (xn)n≥1 is a Cauchy sequence. Thus there exists c ∈ X such that

lim
n→∞

d(c, xn) = 0. It implies that c ∈ C since C is closed. For each n ≥ 1, we have

r = d(a, C) ≤ d(a, c) ≤ d(a, xn) + d(c, xn)

≤ (1 +
1

n
)r + d(c, xn).

Letting n→∞, we conclude that d(a, C) = d(a, c).
Next we are going to prove the uniqueness of c. Assume that there exists c′ ∈ C such

that c′ 6= c and d(a, c′) = r. Put r1 = d(c, c′) and ε = r1
r

. Since X is UUC, we have

d
(
a,

1

2
c⊕ 1

2
c′
)
≤ r(1− δ(r, ε)).

Since 1
2
x0 ⊕ 1

2
x1 ∈ C, we have r ≤ r(1 − δ(r, ε)). This is a contradiction with r > 0 and

δ(r, ε) > 0. Therefore, c is the unique point such that d(a, c) = d(a, C). �

Similarly, the point (i) of the following lemma has been proved in [12] in the case of
hyperbolic UUC spaces, and the point (ii) is a counterpart of Proposition 3.5 in [1] for
modular spaces.

Lemma 2.9. Let (X, d) be a complete uniquely geodesic metric space. Assume that X is
UUC. Then the following properties hold:

(i) Any nonincreasing sequence (Cn)n≥1 of nonempty bounded closed convex subsets of
X has a nonempty intersection.

(ii) X is reflexive, i.e., any family of nonempty closed bounded convex subsets of X
satisfying the finite intersection property has nonempty intersection.

Proof. (i) Suppose that (Cn)n≥1 is a nonincreasing sequence of nonempty bounded closed
convex subsets of X. If Cn = X for all n ≥ 1, then we are done. So we assume that
Cn0 6= X for some n0 > 1 and take x ∈ X \Cn0 . It is not difficult to see that the sequence
(d(x,Cn))n is nondecreasing and bounded. Hence there exists the limit r = lim

n→∞
d(x,Cn).

Clearly, r ∈ (0,∞). It follows from Theorem 2.8 that for each n ≥ 1, there exists xn ∈ Cn
such that d(x,Cn) = d(x, xn). Since (Cn)n is non-increasing, we have that xk ∈ Cn for any
k ≥ n. Using a similar argument as in the proof of Theorem 2.8, there exists x0 ∈ X such
that lim

n→∞
d(xn, x0) = 0. Since Cn is closed, x0 ∈ Cn for all n ≥ 1, i.e., x0 ∈

⋂
n≥1

Cn.

(ii) Suppose that (Yi)i∈I is a family of nonempty bounded closed convex subsets of X
such that

⋂
i∈F Yi 6= ∅ for any finite subset F of I. We fix i0 ∈ I, and put Ci := Yi ∩ Yi0

for each i ∈ I. We only need to prove that
⋂
i∈I Ci 6= ∅. Obviously, (Ci)i∈I is a family of

nonempty bounded closed convex subsets of Yi0 satisfying the finite intersection property.



8 D. H. QUAN AND A. WIŚNICKI

Put

J = {J ⊆ I : J is countable}.
First we are going to prove that if J ∈ J , then

⋂
j∈J

Cj 6= ∅. Indeed, assume that

J = {j1, j2, ...}. For each n ≥ 1, put J(n) = {j1, ..., jn}. Let An =
⋂

j∈J(n)
Cj for any n ≥ 1.

It is not difficult to see that (An)n is a decreasing sequence of nonempty bounded closed
convex subsets of X. Using (i), we have CJ =

⋂
j∈J

Cj 6= ∅.

Take x ∈ X. For each J ∈ J , we put dJ := d(x,CJ) and

dJ = sup{dJ : J ∈ J }.
Clearly, dJ ∈ [0,∞). For any n ≥ 1, there exists a subset Jn ∈ J such that

dJ −
1

n
≤ dJn ≤ dJ .

For each n ≥ 1, put J∗n =
n⋃
i=1

Ji. Clearly, J∗n is countable. Thus
( ⋂
j∈J∗

n

Cj

)
n

is a decreasing

sequence of nonempty bounded closed convex subsets of Ci0 . It follows from (i) that
K =

⋂
j∈F

Cj 6= ∅, where F =
⋃
n≥1

J∗n =
⋃
n≥1

Jn. We note that
⋃
n≥1

Jn is a countable subset of

I, i.e,
⋃
n≥1

Jn ∈ J . Hence

dJ −
1

n
≤ dJn ≤ d(x,K) ≤ dJ

for any n ≥ 1. It implies d(x,K) = dJ . Now Theorem 2.8 yields the existence of a unique
y ∈ K such that d(x, y) = d(x,K) = dJ .

Take i ∈ I. Since F ∪ {i} is countable, K ∩ Ci 6= ∅ and

d(x,K) ≤ d(x,K ∩ Ci) ≤ dJ .

Hence d(x,K) = d(x,K ∩Ci) = dJ , which implies y ∈ K ∩Ci. Thus y ∈ Ci for every i ∈ I,
that is, y ∈

⋂
i∈I
Ci. �

Remark 2.10. We can prove in Lemma 2.9 that (i) is equivalent to (ii). Indeed, we only
have to prove that (ii) implies (i). Suppose that (ii) holds and take a decreasing sequence
(Cn)n of nonempty bounded closed bounded convex subsets of X. Then for any finite

subset {n1, ..., nl} ⊂ N, where n1 ≤ ... ≤ nl, we have
l⋂

k=1

Cnk
= Cnl

6= ∅. Hence (Cn)n has

the finite intersection property and thus
⋂
n∈N

Cn 6= ∅.

We are now in a position to obtain a counterpart of Corollary 2.4 for UUC spaces.

Theorem 2.11. Let X be a complete uniquely geodesic metric space with a partial order �.
Assume that X is UUC, and order intervals are convex and closed. Let C be a nonempty
bounded closed convex subset of X and let T : C → C be a monotone mapping. If there
exists c ∈ C such that c � Tc, then T has a fixed point in C.

Proof. It is enough to notice that from Lemma 2.9 (ii) X is reflexive and then apply
Theorem 2.3. �
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Before we give our next results concerning metric spaces with a digraph, let us recall
definitions of normal structure and uniform normal structure, see e.g., [14].

Definition 2.12. A convexity structure in a metric space X is a family F of subsets of X
such that ∅, X, {x} ∈ F for every x ∈ X, and F is closed under arbitrary intersections. The
structure F is said to be compact if every subfamily of F which has the finite intersection
property has nonempty intersection.

Given a convexity structure F in a metric space (X, d), we adopt the following notation:
for D ∈ F and x ∈ X, set

rx(D) = sup{d(x, y) : y ∈ D},
rX(D) = inf{rx(D) : x ∈ X},
r(D) = inf{rx(D) : x ∈ D}.

Definition 2.13. We say that X has normal structure (resp. uniform normal structure)
if there exists a convexity structure F on X such that r(A) < diam(A) (resp. r(A) ≤
c diam(A) for a fixed constant c ∈ (0, 1)) for any nonempty A ∈ F which is bounded and
not reduced to a single point. We will also say that F is normal (resp. uniformly normal).

A subset A of a metric space X is said to be admissible if A is the intersection of closed
balls centered at points of X. Of particular interest in metric fixed point theory is the
convexity structure A(X) consisting of ∅, X and all admissible sets in X. Given any
bounded set A ⊆ X, set

cov(A) :=
⋂
{D : D ∈ A(X) and D ⊇ A}.

Clearly, cov(A) ∈ A(X) and thus A = cov(A)⇔ A ∈ A(X).

Lemma 2.14. Let X be a complete UUC metric space. Then X has normal structure.

Proof. Let F be the family consisting of ∅, X and all nonempty closed convex bounded
subsets of X. Since X is UUC, F is a compact convexity structure. We are going to
prove that r(A) < diam(A) for any A ∈ F which is not reduced to a single point. Assume
that A ∈ F and A has at least two distinct elements. Denote d = diam(A), r = r(A).
By definition of the diameter of A, we can choose x, y ∈ A such that d(x, y) ≥ d/2. Let
w = 1

2
x ⊕ 1

2
y. For every z ∈ A, we have d(z, x) ≤ d, d(z, y) ≤ d and d(x, y) ≥ d/2. Since

X is UUC, it follows that

d(z, w) ≤ d− dδ(d, 1/2),

and so

rw(A) ≤ d− dδ(d, 1/2).

Thus

r ≤ d− dδ(d, 1/2),

and since δ(d, 1/2) > 0, we have r < d, i.e., r(A) < diam(A). Therefore, X has normal
structure. �

The following result extends Theorem 2.3 for reflexive metric spaces with digraphs.
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Theorem 2.15. Let X be a reflexive metric space with a digraph G and let C be a bounded
closed convex subset of X. Assume that G-intervals along walks are closed and convex, and
for each a ∈ C, [a, a]G is either empty or has the fixed point property for nonexpansive
mappings. If T : C → C is monotone G-nonexpansive and there exists c ∈ C such that
Tc ∈ [c,→)G, then T has a fixed point in C.

Proof. It follows from Theorem 1.5 that there exists s ∈ C such that [s, s]G 6= ∅, T ([s, s]G) ⊂
[s, s]G and T is nonexpansive on [s, s]G since x ∈ [y,→)G and y ∈ [x,→)G for any x, y ∈
[s, s]G. By assumption, T has a fixed point in [s, s]G. �

Corollary 2.16. Let X be a complete UUC metric space with a digraph G. Assume that
G-intervals along walks are convex and closed. Let C be a nonempty bounded closed convex
subset of X. If T : C → C is monotone G-nonexpansive and there exists c ∈ C such that
Tc ∈ [c,→)G, then T has a fixed point in C.

Proof. It follows from Lemma 2.9 (ii) that X is reflexive. Without loss of generality we can
assume that V (G) = C. It is sufficient to prove that each nonempty [a, a]G, a ∈ C, has the
fixed point property for nonexpansive mappings. Fix such [a, a]G, and let F be the family
consisting of ∅ and all bounded closed convex subsets of [a, a]G. By virtue of Lemma 2.9
(ii), F is a convexity structure on [a, a]G and F is also compact. We invoke Lemma 2.14
to deduce that [a, a]G has normal structure. Applying Theorem 3.2 in [14] (see also [10,
Theorem 8]) we conclude that T has a fixed point in [a, a]G. Now the conclusion follows
from Theorem 2.15. �

Remark 2.17. Notice that the set Fix(T )[a,a]G of fixed points of T in [a, a]G is closed and
convex if X is a complete UUC metric space. Indeed, to show that Fix(T )[a,a]G is closed,
select a sequence (xn)n in Fix(T )[a,a]G which converges to x ∈ [a, a]G. Then

d(xn, Tx) = d(Txn, Tx) ≤ d(xn, x) for all n,

and hence (xn)n≥1 also converges to Tx. By the uniqueness of the limit, x = Tx. Thus x ∈
Fix(T )[a,a]G and therefore, Fix(T )[a,a]G is closed.

To show convexity, let x, y ∈ Fix(T )[a,a]G with x 6= y and set 2r = d(x, y) > 0. We prove
that z = 1

2
x ⊕ 1

2
y ∈ Fix(T )[a,a]G . Assume conversely that z 6= Tz and let d(z, Tz) = r0.

Then d(x, z) = 1
2
d(x, y) = r and

d(x, Tz) = d(Tx, Tz) ≤ d(x, z), d(z, Tz) = r
r0
r
.

Hence

d(x,
1

2
z ⊕ 1

2
Tz) ≤ r

(
1− δ(r, r0

r
)
)
,

and similarly,

d(y,
1

2
z ⊕ 1

2
Tz) ≤ r

(
1− δ(r, r0

r
)
)
.

By the triangle inequality,

2r = d(x, y) ≤ 2r − r
(
δ(r,

r0
r

) + δ(r,
r0
r

)
)
< 2r,

and we obtain a contradiction. Therefore, z = Tz. This shows that Fix(T )[a,a]G is convex.

We are thus led to the following theorem.
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Theorem 2.18. Let X be a complete UUC metric space with a digraph G. Assume that G-
intervals along walks are convex and closed. Let C be a bounded closed and convex subset of
X. Let T1, T2 : C → C be two monotone G-nonexpansive mappings which are commutative.
If there exists c ∈ C such that Tic ∈ [c,→)G for i = 1, 2, then Fix(T1) ∩ Fix(T2) is
nonempty.

Proof. Without loss of generality we can assume that V (G) = C. Arguing in a similar way
to the proof of Theorem 1.5 (see also [18]) there exists s ∈ C such that Ti([s, s]G) ⊂ [s, s]G
and Ti are nonexpansive on [s, s]G for i = 1, 2. By Corollary 2.16 and Remark 2.17,
Fix(T1)[s,s]G and Fix(T1)[s,s]G are nonempty, closed and convex. Since T1, T2 are commu-
tative, we have T2(Fix(T1)[s,s]G) ⊂ Fix(T1)[s,s]G . Hence T2 : Fix(T1)[s,s]G → Fix(T1)[s,s]G
has a fixed point in Fix(T1)[s,s]G by Corollary 2.16. It implies Fix(T1)[s,s]G ∩ Fix(T2)[s,s]G
is nonempty, bounded, closed and convex. Hence Fix(T1) ∩ Fix(T2) is nonempty. �

Remark 2.19. We note that the conclusion of Theorem 2.18 holds for a finite family of
monotone G-nonexpansive mappings which are commutative.

By Remark 2.19 and using the finite intersection property in Lemma 2.9 (ii), we can
extend Theorem 2.18 for any commutative family of monotone G-nonexpansive mappings.

Theorem 2.20. Let X be a complete UUC metric space with a digraph G. Assume that G-
intervals along walks are convex and closed. Let C be a nonempty bounded closed convex of
X. Let T be a commutative family of monotone G-nonexpansive mappings from C into C.
If there exists c ∈ C such that Tc ∈ [c,→)G for every T ∈ T , then

⋂
T∈T

Fix(T ) is nonempty.

3. Modular spaces

In this section we show some fixed point theorems for monotone Gρ-nonexpansive maps
in modular vector spaces. We start with basic definitions concerning modular spaces.

Definition 3.1 ([16]). Let X be a vector space over K (= R or C). A functional ρ : X →
[0,∞] is called modular if

(1) ρ(x) = 0 if and only if x = 0;
(2) ρ(αx) = ρ(x) for α ∈ K with |α| = 1, for all x ∈ X;
(3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all α, β ≥ 0, α + β = 1, and x, y ∈ X.

In Definition 3.1 if the condition (3) is replaced by

ρ(αx+ βy) ≤ αsρ(x) + βsρ(y)

for any α, β ≥ 0, αs + βs = 1 with s ∈ (0, 1], then the modular ρ is called an s-convex
modular and if s = 1, ρ is called a convex modular.

Definition 3.2 ([16]). A modular ρ defines a corresponding modular space, that is, the
space Xρ given by

Xρ = {x ∈ X : lim
λ→0

ρ(λx) = 0}.

The Luxemburg norm ‖ · ‖ρ : Xρ → [0,+∞) is defined by

‖x‖ρ = inf
{
α > 0 : ρ

(x
α

)
≤ 1
}

for every x ∈ Xρ.

Definition 3.3 ([16]). Let Xρ be a modular space.
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(a) A sequence (xn)n≥1 in Xρ is said to be ρ-converging to x if lim
n→∞

ρ(xn − x) = 0.

(b) A sequence (xn)n≥1 in Xρ is said to be ρ-Cauchy if lim
n,m→∞

ρ(xn − xm) = 0.

(c) The modular space Xρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent.
(d) A subset B ⊂ Xρ is said to be ρ-closed if for any sequence (xn)n≥1 ⊂ B with xn → x,

then x ∈ B. We denotes B
ρ

the closure of B with respect to ρ.
(e) A subset B ⊂ Xρ is called ρ-bounded if diamρ(B) = sup{ρ(x − y) : x, y ∈ B} is

finite, diamρ(B) is called the ρ-diameter of B.
(f) A set B ⊂ Xρ is called ρ-compact, if for any sequence (xn)n≥1 ⊂ Xρ there exists a

subsequence (xnk
)k≥1 and x ∈ B such that (xnk

)k≥1 ρ-converges to x.
(g) ρ is said to satisfy the Fatou property if ρ(x − y) ≤ lim inf

n→∞
ρ(x − yn) whenever

(yn)n≥1 ρ-converges to y for any x, y, yn in Xρ. Note that if ρ satisfies the Fatou
property, then the ρ-balls

Bρ(x, r) = {y ∈ Xρ : ρ(x− y) ≤ r}
with x ∈ Xρ, r ≥ 0 are ρ-closed.

Definition 3.4 ([16]). Let ρ be a modular defined on a vector space X. We say that ρ
satisfies the 42-type condition if there exists K > 0 such that

ρ(2x) ≤ Kρ(x)

for any x ∈ Xρ. The smallest such constant K will be denoted by ω(2) [5].

Proposition 3.5 ([16]). Let ρ be a modular defined in X and let ‖ · ‖ρ be a norm on
Xρ. Then ρ-convergence follows from norm convergence in Xρ. Norm convergence and
ρ-convergence are equivalent in Xρ if and only if the following condition holds: for every
sequence (xn)n≥1 ⊂ Xρ, if lim

n→∞
ρ(xn) = 0 then lim

n→∞
ρ(2xn) = 0.

Definition 3.6 ([1]). Let ρ be a modular defined on a vector space X and C ⊂ Xρ. A
mapping T : C → C is called ρ-nonexpansive if for every x, y ∈ C,

ρ(T (x)− T (y)) ≤ ρ(x− y).

Definition 3.7. Let Xρ be a modular space endowed with a digraph G = (V (G), E(G)) and
C ⊂ Xρ. A mapping T : C → C is called monotone Gρ-nonexpansive if T is G-monotone
and satisfies ρ(T (x)− T (y)) ≤ ρ(x− y) for every x, y ∈ C such that x ∈ [y,→)G.

Our first result is an application of compactness.

Theorem 3.8. Let ρ be a convex modular in X satisfying ∆2-type condition. Let G be a
digraph on X. Assume that Xρ is ρ-complete, and G-intervals along walks are convex and
ρ-closed. Let C be a ρ-compact convex ρ-bounded subset of Xρ and T : C → C a monotone
Gρ-nonexpansive mapping. If there exists c ∈ C such that Tc ∈ [c,→)G, then there is
x0 ∈ C such that Tx0 = x0.

Proof. Since ρ satisfies ∆2-property, there exists K > 0 such that

ρ(2x) ≤ Kρ(x)

for any x ∈ Xρ. Then for each (xn)n ⊂ Xρ such that lim
n→∞

ρ(xn) = 0, we have lim
n→∞

ρ(2xn) =

0. Hence ρ-convergence is equivalent to convergence in the space (Xρ, ‖ · ‖ρ). It implies
that every ρ-compact subset of Xρ is compact in (Xρ, ‖ · ‖ρ). Now Theorem 1.5 implies
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that there exists s ∈ C such that [s, s]G 6= ∅ and T : [s, s]G → [s, s]G is ρ-nonexpansive. It
follows from Theorem 4.4 in [1] that T has a fixed point in [s, s]G. �

Definition 3.9 ([13]). Let ρ be a modular, r > 0 and ε > 0. Define for i = 1, 2,

Di(r, ε) =
{

(x, y) ∈ (Xρ)
2 : ρ(x) ≤ r, ρ(y) ≤ r, ρ

(x− y
i

)
≥ rε

}
.

If Di(r, ε) 6= ∅, let

δi(r, ε) = inf
{

1− 1

r
ρ
(x+ y

2

)
: (x, y) ∈ Di(r, ε)

}
.

If Di(r, ε) = ∅, we set δi(r, ε) = 1.

(a) We say that ρ satisfies (UCi) if for each r > 0 and ε > 0, we have δi(r, ε) > 0. Note
that for each r > 0, Di(r, ε) 6= ∅ for ε > 0 small enough.

(b) We say that ρ satisfies (UUCi) if for each s > 0 and ε > 0, there exists ηi(s, ε) > 0
depending on s and ε such that

δi(r, ε) > ηi(s, ε) > 0

for r > s.
(c) We say that ρ is strictly convex (SC) if for every x, y ∈ Xρ such that ρ(x) = ρ(y)

and

ρ
(x+ y

2

)
=
ρ(x) + ρ(y)

2
,

we have x = y.

Proposition 3.10 ([13]). We have the following relations:

(a) (UUCi) implies (UCi) for i = 1,2.
(b) δ1(r, ε) ≤ δ2(r, ε) for r > 0 and ε > 0.
(c) (UC1) implies (UC2) implies (SC).
(d) (UUC1) implies (UUC2).

Lemma 3.11 ([1]). Let ρ be a convex modular satisfying the Fatou property. Assume
that Xρ is ρ-complete and ρ is (UUC2). Then Xρ has property (R), i.e., every decreasing
sequence (Cn)n∈N of nonempty ρ-closed, convex and ρ-bounded subsets of Xρ has a nonempty
intersection.

Definition 3.12 ([11]). A modular space Xρ is said to have ρ-normal structure if for any
nonempty ρ-bounded ρ-closed convex subset C of Xρ not reduced to one point there exists
x ∈ C such that rρ(x,C) < diamρ(C), where rρ(x,C) := sup{ρ(x− c) : c ∈ C}.

A modular space Xρ is said to have ρ-uniform normal structure if there exists a constant
c ∈ (0, 1) such that for any subset C as above, there exists x ∈ C such that rρ(x,C) ≤
c diamρ(C).

Theorem 3.13. Let ρ be a modular defined in X. If ρ is (UC2), then Xρ has ρ-normal
structure.

Proof. Assume that C ⊂ Xρ is ρ-closed, convex, ρ-bounded, and diamρ(C) > 0. Put
1
2
C = { c

2
: c ∈ C}. Then 0 < diamρ(

1
2
C) ≤ diamρ(C). Define d1 = diamρ(C) and
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d2 = diamρ(
1
2
C). Then there are x, y ∈ C such that ρ(x−y

2
) ≥ d2/2. For all z ∈ C, we have

ρ(x− z) ≤ d1 and ρ(y − z) ≤ d1. Hence

ρ(z − w) ≤ d1 − d1δ(d1,
d2
2d1

),

where w = x+y
2

. Thus

rρ(w,C) ≤ d1 − d1δ(d1,
d2
2d1

),

and since ρ is (UC2), we have δ(d1,
d2
2d1

) > 0. It follows that rρ(w,C) < d1. Therefore, Xρ

has ρ-normal structure. �

In [1, Theorem 4.5], Abdou and Khamsi proved that a nonempty ρ-closed ρ-bounded
and convex subset of a complete modular space Xρ which satisfies the Fatou property and
(UUC1) has the fixed point property for nonexpansive mappings. We can apply Theorem
3.13 to obtain a little improvement on the Abdou–Khamsi’s result.

Theorem 3.14. Let ρ be a convex modular satisfying the Fatou property and (UUC2).
Assume that Xρ is ρ-complete. Let C be a nonempty ρ-closed convex ρ-bounded subset of
Xρ and T : C → C be a ρ-nonexpansive mapping. Then Fix(T ) is a nonempty ρ-closed
and convex subset of C.

Proof. It follows from Proposition 3.10 (a) and Theorem 3.13 that Xρ has ρ-normal struc-
ture. Furthermore, by Lemma 3.11, Xρ has property (R). Now Theorem 4 in [11] yields
Fix(T ) is nonempty. To prove that Fix(T ) is ρ-closed and convex we can argue in the
same way as in [1, Theorem 4.5]. �

Having Theorem 3.14 in hand we can prove a fixed point theorem for monotone Gρ-
nonexpansive maps in modular spaces in a similar way to Theorem 2.20.

Theorem 3.15. Let ρ be a convex modular satisfying the Fatou property and (UUC2).
Assume that Xρ is ρ-complete. Let G be a digraph on Xρ such that G-intervals along walks
are convex and ρ-closed. Let C be a nonempty ρ-bounded ρ-closed convex subset of Xρ and
let T be a commutative family of monotone Gρ-nonexpansive mappings from C into C. If
there exists c ∈ C such that Tc ∈ [c,→)G for every T ∈ T , then

⋂
T∈T

Fix(T ) is nonempty.
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