
Applied Mathematics and Computation 475 (2024) 128699

Available online 17 April 2024
0096-3003/© 2024 Published by Elsevier Inc.

A novel observer-based neural-network finite-time output control 
for high-order uncertain nonlinear systems 

Hoai Vu Anh Truong a, Van Du Phan b, Duc Thien Tran c, Kyoung Kwan Ahn d,* 

a Department of Mechanical Engineering, Pohang University of Science and Technology, Gyeongbuk 37673, South Korea 
b School of Engineering and Technology, Vinh University, Nghe An 43100, Viet Nam 
c Automatic Control Department, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Viet Nam 
d School of Mechanical Engineering, University of Ulsan, Ulsan 44610, South Korea   

A R T I C L E  I N F O   

Keywords: 
Backstepping control 
Nonlinear systems 
Radial basis function neural network (RBFNN) 
State observer 
Disturbance observer 
Finite-time control 

A B S T R A C T   

Due to the difficulty encountered in dealing with unstructured system dynamics with unmeasured 
system state variables, this paper presents a novel observer-based neural network finite-time 
output control strategy for general high-order nonlinear systems (HNSs). The suggested tech-
nique is performed based on the backstepping-like control (BSC) scheme with a hybrid nonlinear 
disturbance-state observer and norm estimation-based radial basis function neural network 
(RBFNN). This helps not only reduce the number of estimated parameters but also relax the re-
striction of using inequality when exploiting the norm estimation concept in a conventional way; 
thus, retaining the same properties of the original system. Therefore, an observer-based finite- 
time output feedback control is established to deal with the unstructured dynamical behaviors 
and satisfying the output tracking regulation with the semi-global practically finite-time stability 
(SGPFS) guaranteed for the closed-loop system. The effectiveness and workability of the proposed 
algorithm is verified by a numerical simulation on a specific practical application.   

1. Introduction 

Requirement of precise output tracking performance, with stability and robustness, for high-order nonlinear systems (HNSs) in 
practical applications has evoked an interesting topic of control development. Several attractive algorithms have been carried out 
[1–7], based on the structure of backstepping-like control (BSC) as its advantage of stabilization via recursive processes [8]. However, 
existing problems of unmeasured state variables with parametric uncertainties, and unknown system dynamics in HNS have brought 
certain obstacles in developing advanced control strategies to satisfy the system output qualification with the robustness guaranteed. 

For the first concern, several techniques were presented such as state observer, high-gain observer, extended state observer (ESO) 
[9–13], and so on. For example, Yao et al. developed an ESO for an electro-hydraulic system (EHS) to not only observe the mismatched 
and matched uncertainties but system state of velocity also [9]. In [10–12], the authors considered the case where only system output 
was measurable; thus, an ESO was constructed to obtain both an unmeasured state and matched uncertainty. Developed to general 
high-order nonlinear systems, the authors in [13] expressed ESO to cope with effects of both mismatched and matched uncertainties. 
These approaches can estimate unmeasured system states or unmeasurable variables based on the output. However, the literature did 
not consider the case of unknown dynamical behavior. Practically, time-varying unknown dynamics makes a certain influence on 

* Corresponding author. 
E-mail address: kkahn@ulsan.ac.kr (K.K. Ahn).  

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

https://doi.org/10.1016/j.amc.2024.128699 
Received 28 May 2023; Received in revised form 12 January 2024; Accepted 20 March 2024   

mailto:kkahn@ulsan.ac.kr
www.sciencedirect.com/science/journal/00963003
https://www.elsevier.com/locate/amc
https://doi.org/10.1016/j.amc.2024.128699
https://doi.org/10.1016/j.amc.2024.128699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2024.128699&domain=pdf
https://doi.org/10.1016/j.amc.2024.128699


Applied Mathematics and Computation 475 (2024) 128699

2

estimation qualification. 
Regarding the above remaining, observer-based approximation techniques have been proposed, such as using fuzzy logic systems 

(FLS) or radial basis function neural networks (RBFNN)-based universal approximator [8,14–36], to deal with un-modeled or un-
structured dynamics and parametric uncertainties due to their capability of approximating smooth function. Numerous observer-based 
approximation strategies have been successfully applied to practical applications such as hydraulic systems [14], pneumatic artificial 
muscle [15], robotic manipulators [8,16–18], and other HNS [34–36] with various advanced techniques combined. For example, in 
[19,20], the authors developed an observer-based adaptive control with RBFNN operator for non-strict feedback systems to deal with 
partially unknown dynamics and unmeasured state variables. In [21], an event-triggered technique with a state observer was com-
bined for an uncertain strict feedback system subjected to actuator fault. The author in [22] applied a state observer-based fuzzy logic 
control for an uncertain nonlinear system with unmeasured state estimation and fault detection. More results that show the effec-
tiveness of the RBFNN or FLS to cope with unknown dynamical behavior can be further referred to [23–36]. Essentially, the 
approximated output qualification depends on a number of nodes (or elements of unknown weighting vector in other words) in the 
hidden layers of the mechanism. To improve the approximation accuracy, the number of nodes should be increased; however, this 
certainly brings a time-consuming and burden computation due to the step-by-step when employing the backstepping-based method. 
To reduce the number of estimated parameters, a concept of using a Euclidean norm of weighting vector estimation has been alter-
natively introduced. In [37,38], the authors constructed the NN-like approximator with a norm of weighting vector estimation for 
strict feedback nonlinear systems. In [39–41] the authors extended this approach for non-strict feedback nonlinear systems concerning 
problems of state constraint, input saturation, and so forth. In [42], Liu et al. studied a decentralized NN-based adaptive finite-time 
control for general large-scale systems with state constraints. The literature indicates the effectiveness of using norm estimation in 
the control design to take the place of the conventional RBFNN approach. Moreover, by using this way, finite-time control can be 
formulated. Nevertheless, there is no report on using this approach with the state estimation for control development in HNS. 
Regarding the literature on using the RBFNN approximator with norm estimation, this technique is constructed based on the theory of 
inequality. In this manner, the control signals and adaptive laws are determined in such a way that they always bound the system 
dynamics. Unfortunately, by following this manner, unstructured dynamics, or information of approximated term if utilizing con-
ventional RBFNN, cannot be reconstructed as a result. With the approximated unstructured dynamics omitted, unmeasured system 
states cannot be accurately observed because of the couple between the system states and system dynamics; thus, bringing another 
issue for the states estimation and further developments. Although results in [14] and [39] mentioned the norm estimation in the 
design of the adaptive law with a state observer, this brought a redundancy whereby both the weighting vector and its norm needed to 
be estimated. Solving the difficulty when combining the norm estimation technique with the state observer is the main motivation for 
this paper. 

Besides, it should be mentioned that the BSC has been regarded as an efficient tool to construct controllers for HNSs. Accordingly, 
the command filter (CF) technique was also involved to not only obtain their derivative in the recursive progress but also help 
smoothen the intermediate virtual control signals and filter out noise; thus, addressing the complexity explosion, inherently existing in 
the BSC design. The effectiveness of this algorithm for practical applications has been verified in the literature [43–46]. However, with 
the former of norm estimation, the system dynamics could not be reconstructed; thus, restricting the use of the CF approach due to the 
infeasibility of the state estimation. Unfortunately, this issue has yet to be clarified from control developments. 

Therefore, it is the purpose of this paper to construct an observer-based neural network finite-time output feedback control for 
general HNSs suffered from unknown systems dynamics and only output measured. To the best of our knowledge, this is the first time 
the RFNN, with the norm estimation used, is integrated with a hybrid nonlinear state and disturbance observer (NSDO) and CF 
approach. The key innovations of this scope are:  

1) Completely different from the literature, this work first time deploys the norm estimation concept in a new way to facilitate the 
control development with other advanced techniques, by which the inequality constraint is relaxed but still keeps the same 
properties of the original system, 

2) Due to only output measured, an NDSO-based RBFNN is accordingly employed for not only system states but also lumped dis-
turbances and uncertainties estimation for the system dynamical behaviors compensation, which has escaped the attractiveness in 
the literature,  

3) With the new-way approximation and estimation results, an observer-based NN finite time control is designed with the CF approach 
involved to deal with the complexity explosion in BSC design and achieve the system output regulation. The semi-global practically 
finite-time stability (SGPFS) of the closed-loop system is theoretically proven with Lyapunov theorem. 

The rest of the paper remains: Section 2 describes system dynamics with preliminaries for control implementations. In Section 3, 
the new system reformulation is explained based on a new RBFNN-approximator with the NDSO. Thus, in Section 4, the proposed 
control algorithm is expressed with closed-loop system stability proof. Section 5 verifies the effectiveness of the proposed control 
scheme through a simulation of a specific electro-hydraulic system (EHS). Finally, the potential for control development with more 
advanced techniques is discussed in Section 6. 
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2. System descriptions and preliminaries 

2.1. System descriptions 

Consider an n-order nonlinear system as 
⎧
⎨

⎩

ẋk = fk(x) + gk(xk)xk+1 + dk, (k = 1, ..., n − 1)
ẋn = fn(x) + gn(xn)u + dn
y = x1

, (1)  

where x = (x1, x2,…, xn)T; xk = (x1, x2, ..., xk)
T; fk(x) is unknown but bounded and smooth function which is performed as fk(x) =

Ξ∗T
k φk(x) with Ξ∗

k =
(

ξk,1 ξk,2 ... ξk,Nk

)T
∈ RNk being an unknown but bounded ideal vector of Nk elements and φk(x) ∈ RNk being a 

known-structured vector that includes system states; dk and dn represent for, in turn, mismatched and matched disturbances, gk(x‾k) =
gk(x1, x2,…, xk) are known smooth functions with gk(xk) > 0 ∀k; and u is the control input signal. For the sake of simplicity, hereafter, 
we abbreviate gk(x‾k) by gk. 

As the system state variables are unmeasured, except measured x1, system (1) is rewritten as 
⎧
⎪⎪⎨

⎪⎪⎩

ẋk = Ξ∗T
k φk(x̂) + gkxk+1 + dk + ek

ẋn = Ξ∗T
n φn(x̂) + gnu + dn + en

y = x1

, (2)  

where x̂ is an estimation of x and ek = Ξ∗T
k φk(x) − Ξ∗T

k φk(x̂), k = 1, ...,n. 
Besides, to facilitate the control and state observer implementations and stability proof, the following assumption is held: 

Assumption 1. [10]: The nonlinear smooth functions Ξ∗T
k φk(x) and Ξ∗T

k φk(x̂) is Lipschitz continuous that satisfies: 

|ek| =
⃒
⃒Ξ∗T

k φk(x) − Ξ∗T
k φk(x̂)

⃒
⃒ ≤ σk‖ x − x̂ ‖, (3)  

with σk being a constant. 

2.2. Finite-time stability theorem 

To facilitate finite-time stability, the following inequalities are introduced. 

Lemma 1. [42]: Regarding Young’s inequality, the following condition holds: 

xy ≤
δa

a
|x|a +

1
bδb|y|

b
, (4)  

where δ > 0, a, b > 1 and1
a +

1
b = 1. paper, a = b = 2 and δ = 1 are selected. 

Lemma 2. [41]: For 12 < ι = p/q < 1 with p, q being odd constants, and ϑk ∈ R, k = 1, 2, …, n, the following inequality is obtained: 
(
∑n

k=1
|ϑk|

)i

≤
∑n

k=1
|ϑk|

ι
. (5)  

Lemma 3. [32]: Consider a nonlinear system ẋ = f(x). If a continuous and smooth function V(x) can be presented in the form of V̇(x) +

Γ1V(x)+ Γ2Vβ(x)+ C ≤ 0, with Г1 > 0, Г2 > 0, and 0 < β < 1, then, the solution of ẋ = f(x) is SGPFS, where the system-states’ trajectory is 
semi-globally practically finite-time stable and converges to the neighborhood of the equilibrium in t ≥ t0 + Tc. Similar results and proof can be 
found in [32,42]. The finite-time convergence, Tc, is then determined as 

Tc ≤ max
{

t0 +
1

λ0Γ1(1 − β)
ln

λ0Γ1V1− β(t0) + Γ2

Γ2
, t0 +

1
Γ1(1 − β)

ln
Γ1V1− β(t0) + λ0Γ2

λ0Γ2

}

, (6)  

with 0 < λ0 < 1 and the function V(x) is bounded by: 

lim
t→Tc

V(x) ≤ min

{
C

(1 − λ0)Γ1
,

(
C

(1 − λ0)Γ2

)1
β
}

. (7) 

Remark 1. Results inherited from Lemma 3 evoke a general form for the SGPFS, which provides faster convergence to the 
neighborhood of the equilibrium when the system state is far from this point. Besides, one can realize that if adopting Γ1 = 0, or setting 
respective control gains to be zero in other words, the result in Lemma 3 becomes V̇(x)+ Γ2Vβ(x)+ C ≤ 0, which is an original 
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structure of the finite-time control and if setting corresponding finite-time control gains to be zero, i.e., Γ2 = 0, the closed-loop system 
is asymptotically stable with the system states being asymptotically converges to the neighborhood of the origin. Therefore, the SGPFS 
employed in this paper covers ordinary control schemes. 

2.3. Command filter technique 

To smoothen the virtual control signals and obtain its first derivative, the CF technique is conducted based on a first-order low-pass 
filter as 

ϖk,cχ̇k,c + χk,c = αk. (8)  

where the virtual control signal αk is of the input of the DSC, at step k; χk,c and χ̇k,care the output of filtered intermediate virtual control 
and its derivative; respectively. 

Lemma 4. [43]: In case of noise existing, the tracking errors satisfy: 
{⃒
⃒χk,c − αk

⃒
⃒ ≤ ϖu

k
⃒
⃒χ̇k,c − α̇k

⃒
⃒ ≤ ϖd

k

, (9)  

if noise is bounded, with ϖu
k and ϖd

k being positive constants. 

Remark 2. The condition introduced in Lemma (4) is required for the control law implementation. If noise is unbounded, the output 
x1 cannot be measured, or x1 is unobservable in other words. If x1 is unobserved, then tracking error cannot be obtained and thus the 
virtual control signal αk cannot be derived. Consequently, u cannot be designed and the system is uncontrollable as a result. Therefore, 
the condition of bounded noise is necessary to guarantee the observability and controllability of the system. Moreover, with this 
condition, the boundedness (9) can be satisfied, which facilitates the control implementation and stability proof of the closed-loop 
system. 

3. System reformulation 

3.1. Radial basis function neural network-based approximation 

Due to the problem of the algebraic loop at step k, Ξ∗T
k φk(x̂) is then presented through a calculation of k inputs as 

Ξ∗T
k φk(x̂)←Ξ∗T

k φk(x̂|x̂k) = Ξ∗T
k φk(x̂k), (10)  

where x̂k = (x1, x̂2, ..., x̂k)
T is an estimated vector ofxk. 

Thereby, there certainly exists an error: 

Δk = Ξ∗T
k φk(x̂) − Ξ∗T

k φk(x̂k). (11) 

Conventionally, the structure of the vector φk(x̂k) is performed in the Gaussian basis function as 
⎧
⎪⎪⎨

⎪⎪⎩

φk(x̂k) = [φk,1(x̂k) φk,2(x̂k) ... φk,Nk
(x̂k) ]

T

φk,j(x̂k) = exp

[

−

(
x̂k − ck,j

)T ( x̂k − ck,j
)

(
2μk,j

)2

]
, (12)  

where ck,j and μk,j are, in turn, the vector of the center and width of the Gaussian functions of each node in the hidden layer of the neural 
network. It is noteworthy that φT

k (x̂k)φk(x̂k) ≤ N. 

Lemma 5. [47]: For any positive integers m > n > 0, the following inequality for the basis function φk(x̂n) holds: 

‖ φk(x̂m) ‖
2 ≤ ‖ φk(x̂n) ‖

2 ≤ N. (13)  

In view of Lemma 1, the approximated term fk(x̂k)in (10) is constrained by: 

Ξ∗T
k φk(x̂k) ≤

1
2
θ∗

kφT
k (x̂k)φk(x̂k) +

1
2
. (14)  

where θ∗k = ‖ Ξ∗
k‖

2 is the Euclidean norm of the weighting vectorΞ∗
k. Based on Lemma 5 and inequality (14), the error Δkis constrained 

by |Δk| ≤Δ = Nθ∗k + 1. 
The original concept of the norm of weighting vector estimation is employed for the right-hand side of (14), where the norm θ∗k or its 
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estimation is used in the derived control law. However, following this manner will completely omit the presence of unknown terms 
Ξ∗T

k φk(x̂k), and thus restricting the observer implementation. Hence, to use the norm concept and also facilitate more advanced 
techniques development, the following assumption is introduced: 

Assumption 2. There exists a time-varying bounded c∗k such that: 

Ξ∗T
k φk(x̂k) =

1
2
θ∗

kφT
k (x̂k)φk(x̂k) + c∗k . (15)  

Remark 3. The idea comes from the fact that the left-hand side (LHS) of (14) can be either positive or negative depending on the 
dynamical behaviors Ξ∗T

k φk(x̂k) whereas the term 12θ∗kφT
k (x̂k)φk(x̂k) +

1
2 on the right-hand side (RHS) is non-negative, i.e., Ξ∗T

k φk(x̂k) ≤
⃒
⃒Ξ∗T

k φk(x̂k)
⃒
⃒ ≤ 1

2θ∗kφT
k (x̂k)φk(x̂k)+

1
2. Directly using inequality (14) restricts the use of observer in estimating unmeasured system states 

because what we deal with is the RHS of (14), not the original form on the LHS. Hence, there certainly exist a time-varying c∗k to 
equalizes (14), as a result in (15). Thus, the constraint of Ξ∗T

k φk(x̂k) is replaced by another way whereby inequality (14) still satisfies 
but the approximated term Ξ∗T

k φk(x̂k) still complies with the norm estimation technique. 

Hence, system (2) is rewritten to: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋk =
1
2
θ∗

kφT
k (x̂k)φk(x̂k) + gkxk+1 + dk + ek + Δk + c∗k

ẋn =
1
2
θ∗

nφT
n (x̂)φn(x̂) + gnu + dn + en + Δn + c∗n

y = x1

. (16) 

Or equivalent to 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋk =
1
2
θ∗

kφT
k (x̂k)φk(x̂k) + gkxk+1 + ϕk

ẋn =
1
2
θ∗

nφT
n (x̂)φn(x̂) + gnu + ϕn

y = x1

. (17)  

where ϕk = dk + Δk + c∗k, k = 1, ..., n are lumped uncertainties at step k. 

Assumption 3. [48]: With the investigated system (1), inequality (3), and transformations (15) and (17), there exist unknown 
positive boundaries Dk, Δk, andCk, k = 1,…, n such that |ḋk| ≤Dk, |Δ̇k| ≤Δk, and

⃒
⃒ċ∗k
⃒
⃒ ≤ Ck , respectively. 

Remark 4. The boundedness of the time derivative of dk is a basic premise for extended state observer-based control [9,10,49]. Δ̇k is 
the function of system states which is physically bounded and is Lipschitz continuous, then, it is bounded, i.e.,|Δ̇k| ≤Δk. Similarly, 
without loss of generality, we have c∗k = Ξ∗T

k φk(x̂k) −
1
2θ∗kφT

k (x̂k)φk(x̂k), and its absolute derivative is computed by 
|ċ∗k| = | d

dt (Ξ
∗T
k φk(x̂k)) −

d
dt
( 1

2θ∗kφT
k (x̂k)φk(x̂k)

)
| which is bounded because Ξ∗

k is an ideal weighting vector and it is definitely bounded 
while the Gaussian function φk(x̂k) is smooth and its derivative are constrained, then one can obtain |ċ∗k| ≤Ck . Therefore, Assumption 3 
is reasonable. Even when the system is suddenly affected by external impacts such as disturbance or interaction or uncertainties, these 
impacts are not able to make an abrupt change and also need a certain time to influence the system’s behavior. As a result, if ϕk = dk 

+Δk + c∗k then the derivative of ϕk is bounded i.e., ϕ̇k = ḋk + Δ̇k + ċ∗k≤ |ḋk| + |Δ̇k| + |ċ∗k| ≤Dk + Δk + Ck = ϕk. However, the closed-loop 
stability cannot be guaranteed without appropriate controller and observer gains selections. Hence, this assumption is introduced to 
facilitate the control law design and stability proof. 

Herein, the goal is to design a controller with adaptive laws for θ̂k estimation and observers to estimate unmeasured state, xk, and 
suppress mismatched lumped uncertainties ϕk. Due to unavailability of ideal θ∗k, (17) cannot be used. Thus, instead of directly 
employing θ∗k for the control law implementation, its estimation is utilized, i.e., 12θ̂kφT

k (x̂k)φk(x̂k), where θ̂k = ‖ Ξ̂k‖
2 is an estimated 

norm of θ∗k. For the sake of simplicity, hereafter, φk(x̂k) is shortened by φk. 

3.2. Nonlinear disturbance state observer 

Conventionally, the Luenberger-like state observer was employed for unmeasured system states estimation. However, this cannot 
be effectively achieved in the case of (17) due to the impact of unknown ϕk. Regarding (17), one can realize that the performance of ẋk 

depends on xk+1, fk(xk), and dk. Therefore, if employing an observer like ˙̂xk = x̂k+1 + lk(y − x̂1), one cannot obtain a true value of x̂k+1 

because the term lk(y − x̂1) has no purpose of dealing with the unknown dynamics fk (xk) and dk. It is just used to minimize the 
estimation error such that ̂xk→xk by increasing an observer gain lk. On the contrary, conventional disturbance observers such as [9–13] 
or other techniques required full or certain states measurement to tackle unknown disturbances and/or uncertainties, which brings a 
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barrier in this case when only an output is available. To overcome this obstacle, in this part, the NDSO for not only unmeasured states 
but also unknown lumped uncertainties estimation is established. The NDSO for the system states estimation and lumped disturbance 
rejection are described as 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂xk =
1
2

θ∗
kφT

k φk + gk x̂k+1 +
lk(δ)

σ (y − x̂1) + ϕ̂k
˙̂xn =

1
2

θ∗
nφT

n φn + gnu +
ln(δ)

σ (y − x̂1) + ϕ̂n y = x1 , (18)  

where lk(δ) is a designed state observer gain at step k, σ is an arbitrarily scaled constant, δ is the bandwidth of the observer, and the 
terms ϕ̂k are an estimation of the compound disturbance ϕk. 

To obtain the estimated ϕ̂k, the following auxiliary variable is introduced: 

εk = ϕk − ωkxk, (19)  

where ωk > 0 is a designed updating disturbance observer gain. 
By taking derivative (19) with respect to time, the dynamics behavior of the auxiliary variable is expressed by: 

ε̇k = ϕ̇k − ωkẋk = ϕ̇k − ωk

(
1
2
θ∗

kφT
k φk + gk x̂k+1

)

− ωk(εk +ωkxk). (20) 

Regarding [48], the adaptive law for mismatched disturbance estimation is derived with: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂εk = − ωk

(
1
2
θ∗

kφT
k φk + gk x̂k+1 + ε̂k + ωk x̂k

)

, k = 1, ..., n − 1 ˙̂εn = − ωn

(
1
2
θ∗

nφT
n φn + gnu + ε̂n + ωn x̂n

)

. (21) 

Subsequently, the estimation of the mismatched lumped disturbance can be expressed as 

ϕ̂k = ε̂k + ωk x̂k (k= 1, 2, … n). (22) 

Theorem 1. Considered the rewritten model (18), adaptive laws (21) and (22) with suitable values lk, ωk and δ, unmeasured states xk 
and lumped uncertainty ϕk can be observed and the estimated errors converge to the small neighbourhood of the origin in finite-time with the 
stability guaranteed. 

Proof. By subtracting (22) from (19), the lumped disturbance estimation error can be given as 

ϕ̃k = ε̃k + ωkx̃k. (23)  

Subtracting (21) from (20), one obtains the estimated error dynamics of mismatched uncertainties as 

{

˙̃εk = ε̇k −
˙̂εk = ϕ̇k − ωkgkx̃k+1 − ωk(ε̃k + ωkx̃k), (k = 1, ..., n − 1) ˙̃εn = ε̇n −

˙̂εn = ϕ̇n − ωn(ε̃n + ωnx̃n) . (24) 

Moreover, by subtracting (18) from (17), the error dynamics of the state observer is obtained by: 
⎧
⎨

⎩

ė =
1
σ Ae + Φ

ỹ = x̃1

, (25)  

where e = ( x1 − x̂1 x2 − x̂2 ... xn − x̂n )
T, Φ = ( ϕ̃1 ϕ̃2 ... ϕ̃n )

T , and A =

⎡

⎢
⎢
⎣

− l1(δ) σg1 ... 0
− l2(δ) 0 ⋱ 0

⋮ ⋮ ... σgn− 1
− ln(δ) 0 ... 0

⎤

⎥
⎥
⎦. 

Herein, the observer gains lk should be designed such that the matrix A is Hurwitz. Thus, regarding the linear system theory, there 
exists a positive definite matrix P that satisfies: 

AT P + PA = − Q. (26) 

Define a Lyapunov function W0 as 

W0 =
1
2
∑n

k=1
ε̃2

k +
1
2

eT Pe. (27) 

Then, by taking derivative W0, one has: 
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Ẇ0 =
∑n

k=1
ε̃k
˙̃εk +

1
2
ėT Pe +

1
2
eT Pė =

∑n− 1

k=1
ε̃k[ϕ̇k − ωkgkx̃k+1 − ωk(ε̃k + ωkx̃k)] + ε̃n[ϕ̇n − ωn(ε̃n + ωnx̃n)] −

1
2σeT Qe + eT PΦ

= −
∑n

k=1
ωkε̃2

k −
∑n

k=1
ω2

k ε̃kx̃k +
∑n

k=1
ε̃kϕ̇k −

∑n− 1

k=1
ωkgkε̃kx̃k+1 −

1
2σeT Qe + eT PΦ

. (28) 

Applying Young’s inequality for each term in (28) yields: 

−
∑n

k=1
ω2

k ε̃k x̃k ≤
1
2
∑n

k=1
ε̃2

k +
1
2

ω4eT e. (29)  

∑n

k=1
ε̃kϕ̇k ≤

1
2
∑n

k=1
ε̃2

k +
1
2
∑n

k=1
ϕ2

k . (30)  

−
∑n− 1

k=1
ωkgkε̃kx̃k+1 ≤

1
2
∑n

k=1
ε̃2

k +
1
2
ω2g2eT e. (31)  

eT PΦ ≤
1
2
eT‖ P ‖2e + 1

2
∑n

k=1
ϕ̃

2
k =

1
2
eT‖ P ‖2e + 1

2
∑n

k=1
(ε̃k + ωkx̃k)

2
≤

1
2
eT‖ P ‖2e +

∑n

k=1
ε̃2

k + ω2eT e. (32)  

where ϕk is an upper bound of ϕ̇k, i.e., |ϕ̇k| ≤ϕk obtained as a result from Assumption 3, ω = max(ωk), g = max(gk), ‖P‖2 is an Euclidean 
norm of matrix P. 

Considering (29) to (32), one has: 

Ẇ0 ≤ −
1
2
eT
(

1
σ λmin(Q) − ‖ P ‖2 − ω2( 1+ g2) − ω4

)

e −
1
2
∑n

k=1
(2ωk − 5)ε̃2

k +
1
2
∑n

k=1
ϕ2

k . (33) 

Moreover, by extending (33) with Lemma 1, the following inequalities are obtained: 

(
eT Pe

)ι+1
2 ≤

[
(eT Pe)ι+1/2

] 2
ι+1

2
ι+1

+
1 2

1− ι

2
1− ι

=
ι + 1

2
(
eT Pe

)
+

1 − ι
2

, (34) 

Fig. 1. Structure of the proposed control scheme with state observer and CF with compensator mechanisms.  
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∑n

k=1

(
ε̃2

k

)ι+1
2
≤

∑n

k=1

[(
ε̃2

k

)ι+1/2]
2

ι+1

2
ι+1

+ n
1 2

1− ι

2
1− ι

=
ι + 1

2
∑n

k=1
ε̃2

k +
n(1 − ι)

2
, (35)  

where 0 < ι < 1 and ι = p/q with p, q being odd constants that satisfy 2p/q > 1. 
Consequently, W0 is constrained by: 

Ẇ0 ≤ −
1
2

eT
(

1
σλmin(Q) − ‖ P ‖2 − (ι + 1)‖ P ‖2 − ω2( 1 + g2) − ω4

)

e −
1
2
∑n

k=1
(2ωk − 6 − ι)̃ε2

k −
(
eT Pe

)ι+1
2 −

∑n

k=1

(
ε̃2

k

)ι+1
2

+
1
2
∑n

k=1
ϕ2

k +
(n + 1)(1 − ι)

2

. (36) 

Regarding (36), values of ωk and σ can be designed to guarantee the stability of the NDSO. However, as the coupling dynamics of 
the lumped disturbances ϕk, state estimation xk, and unknown terms Ξ∗T

k φk(x), to achieve the closed-loop system stability, the control 
law and values of ωk and σ should be appropriately designed such that all approximation and estimated errors are bounded and 
converge to the neighbourhood of the origin in finite-time. 

4. Proposed control scheme 

4.1. Control laws implementation 

In this section, a proposed observer-based BSC-RBFNN is conducted for non-strict feedback nonlinear system to satisfy tracking 
regulation. The proposed control scheme is sketched out in Fig. 1. 

For tracking regulation, let’s define the tracking errors. 
⎧
⎨

⎩

s1 = x1 − x1,d
sk = x̂k − xk,c, k = 2, ..., n
zi = si − ζi, i = 1, ..., n

. (37)  

where sk are the system states tracking errors,x̂kand xk,c are, in turn, the estimated states and filtered intermediate virtual control 
signals; zk are auxiliary compensated tracking errors; and ζk are the compensation errors that satisfy: 

⎧
⎪⎪⎨

⎪⎪⎩

ζ̇1 = − κ1ζ1 + g1
(

x̂2,c − x2,d
)
+ g1ζ2

ζ̇k = − κkζk + gk
(
xk+1,c − xk+1,d

)
− gk− 1ζk− 1 + gkζk+1; (k = 2, ..., n − 1)

ζ̇n = − κnζn − gn− 1ζn− 1
ζ(0) = 0

. (38)   

Step 1: Define a Lyapunov candidate W1 as 

W1 = W0 +
1
2
z2

1 +
1

2γ1
θ̃

2
1 +

1
2

ζ2
1. (39)   

where θ̃1 = θ∗1 − θ̂1 and ˙̃θ1 = −
˙̂θ1. 

Taking derivative W1 results in: 

Ẇ1 = Ẇ0 + z1
(
ẋ1 − ẋ1,d − ζ̇1

)
−

1
γ1

θ̃1
˙̂θ1 + ζ1ζ̇1. (40) 

From (17), (40) is expressed as 

Ẇ1 = Ẇ0 + z1

(
1
2

θ̂1φT
1 φ1 +

l1(δ)
σ (y − x̂1) − ẋ1,d + g1x2,d + ϕ 1 + g1s2 + g1

(
x2,c − x2,d

)
− ζ̇1

)

+
1
2
z1θ̃1φT

1 φ1 −
1
γ1

θ̃1
˙̂θ1

+ ζ1ζ̇1. (41) 

To guarantee the stability of (41), the intermediate virtual control and adaptive law are adopted as 
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2,d =
1
g1

(

−
1
2

θ̂1φT
1 φ1 + ẋ1,d − ϕ̂1 −

l1(δ)
σ (y − x̂1) − κ1s1 − η1zι

1

)

˙̂θ 1

=
1
2
γ1z1φT

1 φ1 − λ1 θ̂1. (42)  

where κ1 and η1 are controller gains, and κ1 > 1; γ1 and λ1 denote arbitrarily constants to update the estimated norm θ̂1. 
Substituting control laws (42) into (41) results in: 

Ẇ1 = Ẇ0 − κ1z2
1 − η1zι+1

1 + g1z1z2 +
λ1

γ1
θ̃1 θ̂1 + ζ1ζ̇1 + z1ϕ̃ 1. (43) 

It is obvious that the following inequalities are satisfied: 
⎧
⎪⎪⎨

⎪⎪⎩

λ1

γ1
θ̃1 θ̂1 =

λ1

γ1
θ̃1
(
θ∗

1 − θ̃1
)

≤ −
λ1

2γ1
θ̃

2
1 +

λ1

2γ1
θ∗2

1

z1ϕ̃ 1 = z1 (̃ε1 + ω 1x̃1) ≤ z2
1 +

1
2
ε̃2

1 +
1
2

ω2
1x̃2

1

. (44) 

Subsequently, the derivative of W1 is constrained by: 

Ẇ1 ≤ Ẇ0 − (κ1 − 1)z2
1 − η1

(
z2

1

)ι+1
2 −

λ1

2γ1
θ̃

2
1 +

1
2
ε̃2

1 +
1
2
ω2

1x̃2
1 + g1z1z2 +

λ1

2γ1
θ∗2

1 + ζ1ζ̇1. (45)   

Step k (k=2, …, n–1): Define a Lyapunov candidate Wk as 

Wk = Wk− 1 +
1
2

z2
k +

1
2γk

θ̃
2
k +

1
2
ζ2

k . (46)   

where θ̃k = θ∗k − θ̂k and ˙̃θk = −
˙̂θk. 

Similarly, by taking the derivative Wk with respect to time, one obtains: 

Ẇk = Ẇk− 1 + zk
(
˙̂xk − ẋk,c − ζ̇k

)
−

1
γk

θ̃k
˙̂θk + ζkζ̇k. (47) 

Expressing the k sub-system yields: 

Ẇk = Ẇk− 1 + zk

(
1
2
θ∗

kφT
k φk + gk x̂k+1

lk(δ)
σ (y − x̂1) − ẋk,c + ϕk − ζ̇k

)

−
1
γk

θ̃k
˙̂θk + ζk ζ̇k = Ẇk− 1

+zk

(
1
2

θ̂kφT
k φk − gkxk+1,d +

lk(δ)
σ (y − x̂1) − ẋk,c + ϕk + gksk+1 + gk

(
xk+1,c − xk+1,d

)

k − ζ̇k

)

+
1
2
zkθ̃kφT

k φk −
1
γk

θ̃k
˙̂θk

+ ζkζ̇k . (48) 

Then, the intermediate virtual control signal and adaptive law for norm estimation are adopted as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1,d =
1
gk

(

−
1
2

θ̂kφT
k φk + ẋk,c −

lk(δ)
σ (y − x̂1) − ϕ̂k − κksk − ηkzι

k − gk− 1sk− 1

)

˙̂θk

=
1
2
γkzkφT

k φk − λk θ̂k, (49)  

where κk and ηk are controller gains and κk > 1; γk and λk denote arbitrarily constants to update the estimated norm θ̂k. 
Substituting control laws (49) into (48) results in: 

Ẇk = Ẇk− 1 − κkz2
k − ηkzι+1

k − gk− 1zk− 1zk + gkzkzk+1 +
λk

γk
θ̃k θ̂k + zkϕ̃k + ζkζ̇k. (50) 

It is obvious that the following inequalities are satisfied: 
⎧
⎪⎪⎨

⎪⎪⎩

λk

γk
θ̃k θ̂k =

λk

γk
θ̃k
(
θ∗

k − θ̃k
)

≤ −
λk

2γk
θ̃

2
k +

λk

2γk
θ∗2

k

zkϕ̃ k = zk(ε̃k + ω kx̃k) ≤ z2
k +

1
2
ε̃2

k +
1
2

ω2
kx̃2

k

. (51) 

Subsequently, the derivative of Wk is constrained by: 
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Ẇk ≤ Ẇk− 1 − (κk − 1)z2
k − ηk

(
z2

k

)ι+1
2 −

λk

2γk
θ̃

2
k − gk− 1zk− 1zk + gkzkzk+1 +

λk

2γk
θ∗2

k +
1
2
ε̃2

k +
1
2

ω2
kx̃2

k + ζkζ̇k. (52) 

It is noteworthy that, by following control laws (49), the term existing from the previous step is cancelled out in this step, and the 
term gkzkzk + 1 raising in this step will subsequently be cancelled in the next step. 

By expressing the derivative of Wk–1, (52) becomes: 

Ẇk ≤ Ẇ0 −
∑k

i=1
(κi − 1)z2

i −
∑k

i=1
ηiz

ι+1
i −

∑k

i=1

λi

2γi
θ̃

2
i + gkzkzk+1 +

1
2
∑k

i=1
ε̃2

i +
1
2
∑k

i=1
ω2

i x̃2
i +

∑k

i=1

λi

2γi
θ∗2

i +
∑k

i=1
ζiζ̇i. (53)   

Step n: Define a Lyapunov candidate Wn as 

Wn = Wn− 1 +
1
2
z2

n +
1

2γn
θ̃

2
n +

1
2
ζ2

n. (54)   

where θ̃n = θ∗n − θ̂n and ˙̃θn = −
˙̂θn. 

Taking derivative Wn, with respect to time, results in: 

Ẇn = Ẇn− 1 + zn
(
˙̂xn − ẋn,c − ζ̇n

)
−

1
γn

θ̃n
˙̂θn + ζnζ̇n. (55) 

Expressing sub-system n yields: 

Ẇn = Ẇn− 1 + zk

(
1
2

θ̂nφT
n φn + gnu +

ln(δ)
σ (y − x̂1) − ẋn,c + ϕn + gksk+1 + gk

(
xk+1,c − xk+1,d

)

k − ζ̇k

)

+
1
2

znθ̃kφT
n φn −

1
γn

θ̃n
˙̂θn

+ ζnζ̇n. (56) 

Hence, the control input signal and adaptive law for norm estimation are adopted as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u =
1
gn

(

−
1
2

θ̂nφT
n φn −

ln(δ)
σ (y − x̂1) + ẋn,c − ϕ̂n − κnsn − ηnzι

n − gn− 1sn− 1

)

˙̂θn

=
1
2

γnznφT
n φn − λn θ̂n. (57)  

where κn and ηn are controller gains, and κn > 1; γn and λn denote arbitrarily constants to update the estimated norm θ̂n. 
Substituting control laws (57) into (56) results in: 

Ẇn = Ẇn− 1 + zn
(
− κnsn − ηnzι

n − gn− 1sn− 1 − ζ̇k
)
+

1
γn

λnθ̃n θ̂n + znϕ̃n + ζnζ̇n

= Ẇn− 1 − κnz2
n − ηnzι

n − gn− 1zn− 1zn +
1
γn

λnθ̃n θ̂n + znϕ̃n + ζnζ̇n

. (58) 

Similarly, the following inequalities are satisfied: 
⎧
⎪⎪⎨

⎪⎪⎩

λn

γn
θ̃n θ̂n ≤ −

λn

2γn
θ̃

2
n +

λn

2γn
θ∗2

n

znϕ̃n = zn(ε̃ + ωnx̃n) ≤ z2
n +

1
2

ε̃2
n +

1
2
ω2

nx̃2
n

. (59) 

Subsequently, the derivative of Wn is constrained by: 

Ẇn ≤ Ẇn− 1 − (κn − 1)z2
n − ηnzι+1

n −
λn

2γn
θ̃

2
n − gn− 1zn− 1zn +

λn

2γn
θ∗2

n +
1
2

ε̃2
n +

1
2
ω2

nx̃2
n + ζnζ̇n. (60) 

By expressing the derivative of Wn–1, (61) becomes: 
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Ẇn ≤ Ẇ0 −
∑n

k=1
(κk − 1)z2

i −
∑n

k=1
ηk
(
z2

k

)ι+1
2 −

∑n

k=1

λk

2γk
θ̃

2
k +

1
2
∑n

k=1
ε̃2

k +
1
2
∑n

k=1
ω2

k x̃2
k +

∑n

k=1

λk

2γk
θ∗2

i +
∑n

k=1
ζkζ̇k

≤ −
1
2
eT
(

λmin(Q)

σ − ‖ P ‖2 − (ι + 1)P −
(
ω2( 1 + g2)+ ω4)In

)

e − 1
2
∑n

k=1
(2ωk − 7 − ι)̃ε2

k

−
(
eT Pe

)ι+1
2 −

∑n

k=1

(
ε̃2

k

)ι+1
2
−
∑n

k=1
(κk − 1)z2

k −
∑n

k=1
ηk
(
z2

k

)ι+1
2 −

∑n

k=1

λk

2γk
θ̃

2
k +

1
2
∑n

k=1
ε̃2

k

+
1
2
∑n

k=1
ω2

k x̃2
k +

∑n

k=1

λk

2γk
θ∗2

k +
1
2
∑n

k=1
ϕ2

k +
(n + 1)(1 − ι)

2
+
∑n

k=1
ζkζ̇k

. (61) 

In view of Lemma 4, the error compensation term, 
∑n

i=1ζi ζ̇i, is constrained by: 

∑n

i=1
ζiζ̇i = −

∑n

i=1
κiζ2

i +
∑n− 1

i=1
gi
(
xi+1,c − xi+1,d

)
≤ −

∑n

i=1
κiζ2

i +
∑n− 1

i=1
giϖi+1. (62) 

Then, one has: 

Ẇn ≤ −
1
2
eT
(

λmin(Q)

σ − ‖ P ‖2 − (ι + 1)‖ P ‖2 −
(
ω2( 2 + g2)+ ω4)

)

e − 1
2
∑n

k=1
(2ωk − 7 − ι)ε̃2

k

−
(
eT Pe

)ι+1
2 −

∑n

k=1

(
ε̃2

k

)ι+1
2
−
∑n

k=1
(κk − 1)z2

i −
∑n

k=1
ηk
(
z2

k

)ι+1
2 −

∑n

k=1

λk

2γk
θ̃

2
k

+
∑n

k=1

λk

2γk
θ∗2

k +
1
2
∑n

k=1
ϕ2

k +
(n + 1)(1 − ι)

2
−
∑n

k=1
κkζ2

k +
∑n− 1

k=1
gkϖk+1

. (63)  

4.2. Closed-loop system stability proof 

Theorem 2. Consider system (1) with Assumptions 1, 2, and 3, Lemmas 1, 2, 3, and 4, NDSO (21), system transformations (17), DSC 
adopted (8), error compensation (38), along with control laws, and norm estimations at each step in (42), (49), and (57) the closed-loop 
system is guaranteed to be SGPFS and converge to the small neighbourhood of the origin in finite-time. 

Proof. The result (63) is modified as 

Ẇn ≤ −
1
2
eT
(

λmin(Q)

σ − ‖ P ‖2 − (ι + 1)‖ P ‖2 −
(
ω2( 2 + g2)+ ω4)

)

e − 1
2
∑n

k=1
(2ωk − 7 − ι)ε̃2

k

−
(
eT Pe

)ι+1
2 −

∑n

k=1

(
ε̃2

k

)ι+1
2
−
∑n

k=1
(κk − 1)z2

k −
∑n

k=1
ηk
(
z2

k

)ι+1
2 −

∑n

k=1

λk

2γk
θ̃

2
k

−
∑n

k=1

λk

2γk

(
θ̃

2
k

)ι+1
2
+
∑n

k=1

λk

2γk

(
θ̃

2
k

)ι+1
2
−
∑n

k=1

(
ζ2

k

)ι+1
2 +

∑n

k=1

(
ζ2

k

)ι+1
2

+
∑n

k=1

λk

2γk
θ∗2

k +
1
2
∑n

k=1
ϕ2

k +
(n + 1)(1 − ι)

2
−
∑n

k=1
κkζ2

k +
∑n− 1

k=1
gkϖk+1

. (64)  

By applying Lemma 1, one obtains: 

∑n

k=1

λk

2γk

(
θ̃

2
k

)ι+1
2
≤
∑n

k=1

λk

2γk

[(
θ̃

2
k

)ι+1
2
] 2

ι+1

2
ι+1

+
∑n

k=1

λk

2γk

1 2
1− ι

2
1− ι

=
1
2
∑n

k=1

λk

2γk
(ι+ 1)θ̃

2
k +

∑n

k=1

λk(1 − ι)
4γk

. (65)  

∑n

k=1

(
ζ2

k

)ι+1
2 ≤

1
2
∑n

k=1
(ι+ 1)ζ2

k +
n(1 − ι)

2
. (66) 

From (66) and (65), inequality (64) is rewritten as 
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Ẇn ≤ −
1
2
eT
(

λmin(Q)

σ − ‖ P ‖2 − (ι + 1)‖ P ‖2 −
(
ω2( 2 + g2)+ ω4)

)

e −
1
2
∑n

k=1
(2ωk − 7 − ι)ε̃2

k

−
(
eT Pe

)ι+1
2 −

∑n

k=1

(
ε̃2

k

)ι+1
2
−
∑n

k=1
(κk − 1)z2

k −
∑n

i=1

1
4γk

λk(1 − ι)θ̃
2
i −

1
2
∑n

k=1
(2κk − 1 − ι)ζ2

k

−
∑n

k=1
ηk
(
z2

k

)ι+1
2 −

∑n

i=1

λk

2γk

(
θ̃

2
k

)ι+1
2
−
∑n

k=1

(
ζ2

k

)ι+1
2 +

∑n

k=1

λk

2γk
θ∗2

k

+
1
2
∑n

k=1
ϕ2

k +
(n + 1)(1 − ι)

2
+
∑n− 1

k=1
gkϖk+1 +

∑n

k=1

λk(1 − ι)
4γk

+
n(1 − ι)

2

. (67) 

From (67), it is obvious that to guarantee the stability of the closed-loop system, the values of positive parameters σ, ωk, κk should be 
adopted such that they satisfy: κk > 1, 1σλmin(Q) − ‖ P ‖2 − (ι + 1)‖ P ‖2 − (ω2(2 + g2) + ω4) > 0, and 2ωk − 7 − ι > 0. 

In view of Lemma 2, one has: 

(
eT Pe

)ι+1
2 +

∑n

k=1

(
ε̃2

k

)ι+1
2
+
∑n

i=1
ηi
(
z2

i

)ι+1
2 +

∑n

i=1

λi

2γi

(
θ̃

2
i

)ι+1
2
+
∑n

i=1

(
ζ2

i

)ι+1
2

≥ Γ2

(
1
2
(
eT Pe

)
+
∑n

i=1

1
2
ε̃2

k +
∑n

i=1

1
2
z2

i +
∑n

i=1

1
2γi

θ̃
2
i +

∑n

i=1

1
2
ζ2

i

)ι+1
2

. (68) 

As a result, the derivative of Wn is bounded by: 

Ẇn ≤ − Γ1Wn − Γ2W
ι+1

2
n + C . (69)  

withΓ1 = min
{

λmin(Q)

σ − ‖ P ‖2 − (ι + 1)‖ P ‖2 − (ω2(2 + g2) + ω4),(2ωk − 7 − ι),2(κk − 1),λk(1 − ι),(2κk − 1 − ι)
}
, k = 1,...,n, Γ2 =

min
(

2ι+1
2 ,2ι+1

2 ηk,
λk

(2γk)
1− ι
2
,2ι+1

2

)

, k = 1, ...,n, and C = 1
2
∑n

k=1ϕ2
k +

∑n
k=1

λk
2γk

θ∗2
k +

∑n− 1
k=1gkϖk+1 +

∑n
k=1

λk(1− ι)
4γk

+
(2n+1)(1− ι)

2 . 

From Lemma 3, the system (1) is SGPFS for t ≥ t0 + Tc. The finite-time convergence, Tc, is then determined as 

Tc ≤ max

⎧
⎪⎪⎨

⎪⎪⎩

t0 +
1

λ0Γ1

(
1− ι

2

) ln
λ0Γ1W1− ι

2 (t0) + Γ2

Γ2
, t0 +

1

Γ1

(
1− ι

2

) ln
Γ1W1− ι

2 (t0) + λ0Γ2

λ0Γ2

⎫
⎪⎪⎬

⎪⎪⎭

. (70)  

with 0 < λ0 < 1 and the function Wn(t) is bounded by: 

lim
t→Tc

Wn(t) ≤ min

{
C

(1 − λ0)Γ1
,

(
C

(1 − λ0)Γ2

) 2
ι+1
}

. (71) 

Therefore, the stability proof of the closed-loop system is completed. 
Regarding the above proof, the closed-loop system stability is guaranteed if the control gains and observer gains satisfy the 

following conditions: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ωk − 7 − ι > 0

λk(1 − ι) > 0

λmin(Q)

σ − ‖ P ‖2 − (ι + 1)‖ P ‖2 −
(
ω2( 2 + g2)+ ω4) > 0

2(κk − 1) > 0

2κk − 1 − ι > 0

(72) 

As seen, by setting suitable control and observer gains, the stability of the closed-loop system can be achieved. Theoretically, large 
values can help achieve fast response and convergence; however, this also brings a tradeoff of inducing unexpected chattering phe-
nomenon and performance degradation due to the system’s characteristics. Therefore, to avoid this problem encountered, these pa-
rameters should be carefully adjusted as the following:  

- Set ηk = 0 and set arbitrary small values for κ1 (κ1 > 1 and 2κ1 > 2 > 1 + ι) such that the output position can follow the desired 
trajectory. For k=2, …, n, theoretically, values of κk should be set smaller than κ1.  

- The Gaussian functions are selected based on the characteristics of the motion such as maximum movement, velocity, torque/force 
or inside dynamical behaviors. Set initial value ̂θk,0 > 0. Noted that ̂θk+1,0 > θ̂k,0 because the dynamical behaviors of the inner loop 
is faster than the outer loop. 
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- Set λk = 0 and gradually increase the learning rate γk from a very small value and check the convergence of the approximated θ̂k. 
Once light fluctuation occurs, stop tuning the learning rate γk and fix a value that is smaller than the current one. This helps prevent 
unexpected chattering because of the mutual influence of the approximation between the outer and inner loops.  

- Slowly increase ωk from ωk > 0.5(7 + ι) and check the tracking performance. Stop increasing ωk when fluctuation is observed, or 
until the output tracking error has not much changed without chattering, then fix a value that is less than the current one. Besides, 
observer gains lk(δ)/σ should be designed such that the matrix A in (25) satisfy Hurwitz. Thus, these gains were adopted through an 
observer bandwidth δ that depends on the order of the system.  

- Slightly increase values of λk and check the system qualification. It is noted that this value should be less than γk. otherwise, the 
approximated θ̂k may converge to non-optimal value.  

- After achieving the above adjustment, slightly increase ηk and λk, but these should be maintained at small values, to enhance the 
tracking qualification. 

5. Verification 

In this section, comparative simulations on an electro-hydraulic system (EHS) is carried out with three controllers: (1) the proposed 
methodology, (2) a proportional-integral-derivative (PID) control, considered a specific model-free approach, and (3) an ideal model- 
based BSC, considered a benchmark model-based with all existing dynamical behaviors. The aim is to evaluate the effectiveness of the 
proposed methodology in achieving near the same tracking performance as the model-based with only output feedback to the main 
controller like the model-free approach. The system dynamics of the EHS is inheritably derived from [50] as 

⎧
⎨

⎩

ẋ1 = x2
ẋ2 = f2 + g2x3 + d2
ẋ3 = f3 + g3u + d3

, (73)  

with x = (x1, x2, x3)
T
= ( x ẋ A1P1 − A2P2 )

T, g2 = 1/m, d2 = − Fext/m, f2 = ( − b1x2 − b2tanh(b3x2))/m, f3 =
(
−

A2
1

V1
−

A2
2

V2

)
βx2, d3 =

(
− A1

V1
− A2

V2

)
βqL, qL = Ct(P1 − P2), g3 =

(
A1
V1

R1 + A2
V2

R2

)
βkt, kt = Cdωkv

̅̅
2
ρ

√
, V1 = V10 + A1x1, R1 = s(xv)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PS − P1

√
+ s( − xv)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P1 − Pt

√
, V2 

= V20 + A2(L − x1), R2 = s(xv)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
P2 − Pt

√
+ s( − xv)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PS − P2

√
. Herein, x and ẋ˙ are position and velocity of the end-effector; m is the total 

weight of the cylinder stroke and end-effector block; b1 and b2 are friction coefficients; d2 stands for lumped matched uncertainty; A1 
and A2 denote cross-section areas in bore-side and rod-side of the cylinder, respectively; L denotes the cylinder stroke; P1 and P2 are 
pressure in the bore-side and rod-side of the cylinder, respectively; V1 and V2 are volumes in the bore-side and rod-side, including 
initial volume of pipelines, V10 and V20, of the cylinder, respectively; β denotes the Bulk modulus; kt is the coefficient factor that 
presents the relationship between the control signal u and spool valve displacement xv, i.e., xv = ktu; Ps and Pt denote supply and tank 
pressure, respectively; qL is the simplified internal leakage model; and Ct is internal leakage coefficient. 

The values of system parameters are followed from [50] with L = 0.5 (m); A1 = A2 = 1.2×10–4 (m2); m = 0.327 (kg); b1 = 45 
(N/m/s); b2 = 0.01 (N), b3 = 104; Fext = 10 (N); β = 1.5×109 (Pa); V10 = V20 = 1.15×10–4 (m3); kt = 2×10–8 (m3/s/V/Pa1/2); PS = 100 
(bar); Pt = 1 (bar), Ct = 1.8×10–8 (m3/s/Pa). Initial x1(t0) = x2(t0) = xv(t0) = 0, P1(t0) = P2(t0) = 0. 

The aim is to track a reference motion, which is defined as 

x1,d = 0.25 + 0.2sin(πt) (m). (74) 

The control parameters are as the followings: 
PID: KP = 500; KI = 10000; KD = 0.01, 
BSC: κ1= 500; κ2 = 300; κ3 = 1500, η1 = 2, η2 = 1, η3 = 1, ι = 3/5, 
Proposed: same control gains as the BSC; RBFNN structure: cf2 = [cf21, cf22]T with cf21 = cf22 = [–2, –1, 0, 1, 2]; cf3 = [cf31, cf32, 

cf33]T with cf31 = cf32 = [–2, –1.5, –1, –0.5, 0, 0.5, 1, 1.5, 2]; cf33 = 103 × [ − 1, − 0.75, − 0.5, − 0.25, 0, 0.25, 0.5, 0.75, 1]T, μf2 = 2, μf3 
= 20, γf2 = 2×103; λf2 = 5×10–4, γf3 = 2×104; λf3 = 5×10–4; Initial weighting vectors: θf2,0 = 10, θf3,0 = 2×105; NSDO: σ= 1, δ = 2000, 
l1 = 3δ, l2 = 3δ2, l3 = δ3, ω2 = 15, ω3 = 150, 

CF: ϖ2,c = ϖ3,c = 10–4. 
The NN-approximator architecture of the proposed control strategy in the second step includes two inputs of x1 and x̂2 in the input 

layer, and five nodes in the hidden layer. In the third step, the NN is structured with three inputs of x1, x̂2, and x̂3 in the input layer and 
nine nodes in the hidden layer. 

Remark 5. For a fair comparison, controller gains of three comparative approaches should be equivalently selected. However, it is 
difficult to accomplish this because the executions of these methods are different, in essence, where one is a model-free and the other 
two are model-based techniques. Thus, the PID controller gains are heuristically designed to achieve the best tracking performance 
with less chattering in the output performance. The parameters of proposed method and BSC, followed by the guideline, are adopted as 
the same values as each other. 

Remark 6. To facilitate the control expressions, the driver’s dynamics is assumed to ideally operate without delay; thus, the control 
signal u is proportional to the spool valve displacement. 
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The system output qualification is pointed out in Fig. 2 in which the continuous black line represents the reference trajectory, the 
dotted-green line, the dotted-dashed-red line, and the dashed-blue line denote the output responses under the PID, model-based BSC, 
and proposed technique, respectively. The upper subfigure displays the output tracking performance while the bottom subfigure shows 
the output tracking error. As seen, the PID method offered the simplest implementation because only the actuator movement was 
feedback for the control execution; nevertheless, it returned the worst tracking qualification with the largest tracking error of 
±1.15×10–4 (m). Besides, at the beginning, significant fluctuation was generated. These drawbacks came from the uncompensated 
dynamical behaviors and the influence of the external disturbance Fext. Increasing the PID gains could only improve the tracking effort, 
but they could not address the system dynamics and uncertainties, which had a significant influence. In contrast, the full-state feedback 
BSC achieved the best regulation with the smallest tracking error of approximately ±2.5×10–5 (m) because all parameters of the 
system were available; thus, the dynamical behaviors was comprehensively compensated and the influence of the predefined 
disturbance was also suppressed. Meanwhile, although the proposed control methodology only required the feedback output signal, 
like the former PID, it could achieve nearly similar performance to the model-based approach. This result could be obtained because 
the system dynamics was approximated with the lumped disturbance and uncertainties estimated as presented through the norm 
estimation RBFNN-based approximation and NDSO. Thereby, these terms were suppressed in the virtual signals and control law ex-
ecutions. As a result, the influences of unstructured dynamics behaviors and uncertainties were relaxed and the tracking performance 
could be enhanced by only concerning the control gains κk. 

Fig. 3 displays the system velocity, i.e., x2, responses with the smallest error of PID in comparison with the other controllers. The 
reason is that the actuator velocity under the PID control was regulated through control gain KD to follow the desired ẋ1d. Meanwhile, 
the velocity under the BSC followed the virtual x2d = ẋ1d − κ1s1 − η1zι

1 and under the proposed method, ̂x2, followed the virtual control 
x2d = ẋ1d − κ1s1 − η1zι

1 −
l1(δ)

σ (y − x̂1) instead, not ẋ1d like the PID approach. Moreover, one can also observe the chattering in the 
velocity response under the PID technique. This came from the initial position x(t0), which was set far from reference and uncom-
pensated dynamics when conducting the control execution. 

Fig. 4 shows the response of the load force, i.e., state x3, in which the response under the proposed control nearly followed the 
model-based BSC. The control input signals are performed in Fig. 5. Generally, all control signals exerted fluctuations at the beginning 
because the initial position x(t0) was set at 0, which was far from the initial position of the reference. Thus, the control action executed 
more effort to regulate the current initial position to the reference one at the beginning, and over-shoot inevitably existed. However, 
the fluctuation under the PID was significant due to not considering the uncompensated disturbance, uncertainties, and dynamical 
behaviors, which had a significant effect on the output performance. On the contrary, the BSC generated the least fluctuation since all 
dynamics, disturbances, and uncertainties were compensated. The control action under the proposed technique quite fluctuated more 
than the model-based approach. This is reasonable because it required a certain time (finite time) for all unknown parameters and 
unstructured dynamics and uncertainties to be approximated by adaptive laws. 

It is noteworthy that responses of velocity and load force under the proposed control scheme in Figs. 3 and 4 were of the estimated 
values because the states x2 and x3 were not available. The estimations of x2 and x3 are performed in Fig. 6, where the black line 
denotes the actual system state (obtained in the case when all system states are measurable) and the dot-dashed red line describes the 
estimated values. Generally, these results indicated that the NDSO could successfully estimate unavailable state variables for the 
proposed control implementation. Moreover, the actual load x3 exerted severe chattering at the beginning because it was directly 
calculated from measured pressure, which was strongly affected by dynamical behaviors. Thus, this variable was vulnerable to 
chattering if the sampling time was not properly set, from the theory and simulation point of view, or if noise was not filtered out when 

Fig. 2. Tracking effort of the system state x1.  
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using sensors to measure pressure when conducting experiments. On the contrary, the estimation performed a smoother response 
because it was obtained from the NDSO, where estimated parameters conventionally were smoothened out. However, inappropriate 
observer gains or sampling time could also deteriorate the observer qualification, in both simulation and practice. 

The norm estimations of θ̂2 and θ̂3 are revealed in Fig. 7 with non-negative responses. Accordingly, the positive part f̂ k(x̂|x̂k) =

1
2θ̂kφT

k (x̂k)φk(x̂k), where k = 2, 3, are obtained as shown in Fig. 8, with continuous blue lines. As can be observed, due to using norm, 
these equivalent approximations always performed non-negative values and the norm estimations were stably adapted to the system 
behavior. However, in comparison to the original fk(x) = Ξ∗T

k φk(x) that varied with both positive and negative values, to reflect the 
original behavior, the lumped ϕk were subsequently estimated that returned negative parts of fk (x), as shown in Fig. 8 with dot-dashed 
red color lines. As a result, the sum of ̂f k(x̂|x̂k) =

1
2θ̂kφT

k (x̂k)φk(x̂k) and ϕ̂k reconstructed the behaviors of actual fk(x) = Ξ∗T
k φk(x) in the 

right way. 

Fig. 3. Estimated and tracking effort of the system state x2.  

Fig. 4. Estimated and tracking effort of the system state x3.  

Fig. 5. Control input signal u under different methodologies.  
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As can be said that our idea is decoupling the dynamics Ξ∗T
k φk(x) into two positive and negative parts. The positive part was 

performed by using RFBNN with norm estimation, while the negative part was obtained by estimating ϕk. Thus, instead of updating all 
14 parameters (5 nodes of Ξ̂2 = (ξ̂2,1 ξ̂2,2 … ξ̂2,5)

Tfor approximating Ξ∗T
2 φ2(x|x̂2) and 9 nodes of Ξ̂3 = (ξ̂3,1 ξ̂3,2 … ξ̂3,9)

T for 
approximating Ξ∗T

3 φ3(x̂)), only 2 parameters to be updated, i.e., θ̂2 = ‖ Ξ̂2‖
2 and θ̂3 = ‖ Ξ̂3‖

2. As a results, less updated parameters 
reduced the computation cost with less time-consuming, especially when extending to other applications such as an ESS with servo- 
valve dynamics included, where a fourth- or fifth-order system is modeled, or when the dynamics of a driver is taken into the automatic 
systems modeling. 

Furthermore, in the simulation, the initial value of W(t0) depends on tracking position error, initial estimation error, control, and 
observer gains at the initial time t0 = 0. Thus, based on the values selected for the simulation, one can obtain the finite time Tc. 
However, it is not easy to obtain these errors because we cannot know exactly the value of optimal norm θ∗k = ‖ Ξ∗

k‖
2 (or optimal 

weighting vector. But we know the initial value θ̂k(t0) based on the value set in the simulation), and W0 at t0=0; thus, W(t0) cannot be 
exactly obtained. In our evaluation, we assumed that at the initial time, the estimation errors are all zero, i.e., εk = ϕk = θ̃k = ζk = 0, 
except for the tracking errors of the position s1(t0) = x1(t0) – x1,d(t0) and velocity s2(t0) = x2(t0) – x2,c(t0) since x1,d(t0) = 0.25 [m] and x2, 

Fig. 6. Comparison between the actual and estimated state.  

Fig. 7. Norm estimation of θ̂2 and θ̂3.  
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c(t0) = x2,d(t0) = 0.25 + 0.2π [m/s]. g2 and g3, relating to the stability of the NDSO, can also be obtained based on their formulas. 
Thereby, the initial W(t0) was much less than its actual initial value. Subsequently, one can obtain that the convergence time Tc is much 

less than the theoretical calculation, i.e., Tc ≪ max
{

t0 + 1
λ0Γ1(1− ι

2 )
ln λ0Γ1W

1− ι
2 (t0)+Γ2
Γ2

, t0 + 1
Γ1(1− ι

2 )
ln Γ1W

1− ι
2 (t0)+λ0Γ2
λ0Γ2

}

based on the control pa-

rameters, learning rates, and observer gains selection. Consequently, the justification of the practical finite-time stable was proven. 
However, also obtained from Fig. 9, the approximated results did not accurately follow the actual dynamics Ξ∗T

k φk(x). Moreover, 
although the proposed method can help reduce a number of estimated elements of the weighting vector and facilitate the advanced 
techniques integrated, there still exist shortcomings as the followings:  

1) Compared to the actual dynamical behaviors fk, the positive part of fk was presented through f̂ k(x̂k) as they were approximated 
based on the system states, but ϕk included not only a negative part of fk but also mismatched and matched disturbances/un-
certainties, i.e., d2 and d3 in the simulation. It should be noted that for the case of unknown system dynamics, the influences of fk are 
always lumped with disturbances and/or uncertainties because they appear in the same channel and are coupled with each other. 
Thereby, the approximation will return their lumped effect. This will certainly occur if mismatched and/or matched uncertainties 
are also functions of system states, i.e., internal leakage in this case study. However, if the system is only required to satisfy position 

Fig. 8. Positive part f̂ k(x̂|x̂k) =
1
2θ̂kφT

k (x̂k)φk(x̂k) of Ξ∗T
k φk(x), and estimated lumped ϕ̂k.  

Fig. 9. Results of approximated unknown functions f2 and f3 in comparison with the real ones.  
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requirements, this issue cannot be ignored because the lumped dynamics are estimated and compensated by control laws 
implementation.  

2) The parameters adopted for output tracking regulation, states estimation, and adaptive law for updating the estimated norms, have 
mutual influences. It is difficult to select optimal values for all variables. Then, how to achieve optimal solutions will become our 
next goal.  

3) Due to using norm, the choice of the Gaussian basis function (centers and widths) becomes more significant where inappropriate 
design certainly affects the approximation accuracy. This does not appear on the conventional fuzzy logic or RRBFNN techniques 
owing to the flexibility in separately updating each element ξk,j(j=1,...,Nk)

of the weighting vector Ξ∗
k =

(
ξk,1 ξk,2 ... ξk,Nk

)T
∈ RNk . Subsequently, the effect of inappropriate φk,j (and corresponding center ck,j) is mitigated. This 

cannot be executed by using the norm estimation θ∗k = ‖ Ξ∗
k‖

2 since ξk,j(j=1,...,Nk)
cannot be extracted. Therefore, establishing or 

optimizing Gaussian basis function of self-organized RBF-based approximation evokes a new challenge to enhance the approxi-
mation and system performance. 

6. Conclusion 

With the output tracking requirement subject to partially unknown dynamics and unavailability of the system states, except for the 
measurable output only, this paper proposed a new methodology to not only address these difficulties but also achieve and improve the 
output tracking regulation. The proposed control scheme was constructed based on the RBFNN-norm estimation technique to cope 
with unstructured dynamical behavior. In order to make this approach implementable in the case of missing system state variables, the 
system was reformulated in which the unstructured dynamics term was presented in a new form of the RBFNN operator but still kept 
the same key properties as the original model. As the new form, the process errors, lumped into disturbance and uncertainties, 
consequently arose. Therefore, the NSDO was employed for not only state observation but also for lumped uncertainties and distur-
bances rejection to enhance the output tracking effort. Besides, the CF technique was also combined to obtain smooth virtual controls 
and their first derivatives as the requirement when deploying BSC. The stability of the closed-loop system was mathematically proven 
to guarantee that all signals were bounded and converged to the vicinity of the boundary in finite time. The effectiveness of the 
proposed control scheme was verified through comparative simulations. With the new approach using NN-based approximator, other 
advanced techniques, such as input saturation, input quantization, dead zone, state constraints, compliance control, and so on, can 
possibly be investigated, as future developments, to enhance the system qualification. 
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