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Abstract—The co-authorship recommendation problem aims
to suggest authors join research groups based on their research
topics, expertise, and previous collaborations. To address this
problem, we first model it as a co-authorship network, where each
author is represented as a vertex, and collaborations between
authors are represented as edges. This allows us to generate
two-class imbalanced datasets derived from the co-authorship
networks. We then propose an adaptive weight adjustment
algorithm based on FSVM-CIL to classify highly imbalanced
two-class datasets. To evaluate the performance of our algorithm,
we conducted experiments using self-built co-authorship datasets
of various sizes and imbalance ratios. Our experimental results
show that our algorithm outperformed FSVM-CIL in solving the
co-authorship recommendation problem.

Index Terms—Co-Authorship Network, Fuzzy Support Vector
Machine, Imbalanced Dataset, Recommendation Problem, Sup-
port Vector Machine, Tomek Links

I. INTRODUCTION

In academic social networks, the co-authorship recommen-

dation problem is attractive since it suggests authors join

research groups to collectively write scientific articles based

on their research topics, expertise, and past collaborations.

The co-authorship recommendation problem is commonly

addressed by representing it as a co-authorship network GT =
(V T , ET , PT , T ), where (i) T = {t1, t2, . . . , tk} denotes a

set of timestamps; (ii) V T = {v1, v2, . . . , vN} denotes the

set of vertices corresponding to authors of articles within

the time frame T ; (iii) PT = {p1, p2, . . . , pM} denotes

the set of articles published within the time frame T ; (iv)

ET = {vi, vj , pk, th} denotes a set of links between authors at

a specific time th ∈ T , where two authors (vi, vj) ∈ V T ×V T

have collaborated on the same article pk ∈ PT . Furthermore,

the set V T can be enriched with additional attributes about

each author, such as nationality, affiliation, and research topics.

These attributes are denoted as AT = {a1, a2, . . . , aN},

where ai is a feature vector containing information about a

specific author/vertex pair (vi, vj) ∈ V T × V T . Given a co-

authorship network GT , the co-authorship recommendation

problem aims to predict the likelihood of future collaboration

between authors.

So far, various approaches have been suggested for ad-

dressing co-authorship networks, including similarity measure-

ment, statistical relational learning, graph mining, and machine

learning techniques [1]. Among these, machine learning has

gained significant attention since it can be flexible in choosing

classification algorithms and adjusting parameters during the

training process to improve the machine learning models.

In practice, co-authorship networks frequently have a signif-

icant imbalance in the distribution of connections. This arises

due to the tendency of authors to collaborate with only a

limited number of possible partners, resulting in a much larger

number of potential collaborations than actual collaborations

within the network. As a result, datasets derived from co-

authorship networks typically manifest as highly imbalanced

two-class datasets. Therefore, when utilizing a machine learn-

ing approach, we need robust classification algorithms to

effectively tackle highly imbalanced datasets.

This paper proposes an adaptive weight adjustment algo-

rithm based on FSVM-CIL [15] to address the two-class

imbalanced learning problem. Initially, our algorithm uses

FSVM-CIL to find a set of fuzzy weights for training samples.

Then, our algorithm iteratively performs to train a classi-

fier model WSVM [14] on the training samples, adjust the

fuzzy weights of training samples identified by Tomek Links

pairs [4], and evaluate the trained model. Our algorithm

returns a classification model with the maximum geomet-

ric mean. We collected author and article data from the

46

2023 International Conference on Advanced Computing and Analytics (ACOMPA)

979-8-3503-3122-6/23/$31.00 ©2023 IEEE
DOI 10.1109/ACOMPA61072.2023.00017



TABLE I
METRICS IN CO-AUTHORSHIP NETWORKS

a) Neighbors-based link metrics

CN(vi, vj) = |Γ(vi) ∩ Γ(vj)|
AA(vi, vj) =

∑
vk∈Γ(vi)∩Γ(vj)

1
log(|Γ(vk)|)

JC(vi, vj) =
Γ(vi)∩Γ(vj)
Γ(vi)∪Γ(vj)

PA(vi, vj) = |vi| × |vj |
RA(vi, vj) =

∑
vk∈Γ(vi)∩Γ(vj)

1
|Γ(vk)|

b) Paths-based link metrics

SH(vi, vj) =
1

d(vi,vj)

Katz(vi, vj) =
∑∞

l=1 β
l|pathl

vi,vj
|

c) Additional author information-based link metrics

SW (v1, v2, · · · , vN ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if S1(v1) = S1(v2) = · · · = S1(vN ),

1, if S2(v1) = S2(v2) = · · · = S2(vN ),

0, otherwise,

CC(vi, vj) = SW (vi, vj) +
∑

vk∈Γ(vi)∩Γ(vj) SW (vk, vi, vj)

website www.sciencedirect.com through ScienceDirect APIs

and created two-class imbalanced datasets. Our experimental

results for our self-built co-authorship datasets showed that

our algorithm outperforms FSVM-CIL for the co-authorship

recommendation problem.

The remainder of this paper is structured as follows: Sec-

tion II provides the background related to our proposed algo-

rithm; Section III presents our proposed algorithm; Section IV

describes our experimental results and discussions; Section V

concludes our work.

II. BACKGROUND

A. Link metrics in co-authorship networks

In this section, we recall link metrics used in our study.

Given a co-authorship network GT = (V T , ET , PT , T ) and

two connected vertices (vi, vj) ∈ V T × V T , the popular

link metrics of (vi, vj) consist of Common Neighbors (CN ),

Adamic Adar (AA), Jaccard Coefficient (JC), Preferential

Attachment (PA), Resource Allocation (RA), Shortest Path

(SH), Katz, Similar Work (SW ), and Common Country

(CC), as shown in Table I [2], [3].

The link metrics are used for evaluating the similarity levels

of authors/vertices in a co-authorship network. Considering a

set of timestamps denoted as T1, the co-authorship candidate

table constructed from the co-authorship network GT1 has

the following structure: the rows include information about

author pairs (vi, vj) and the columns include author pairs,

link measures, and labels for each author pair. Assuming that

T2 represents a subsequent set of timestamps following T1,

the co-authorship candidate table constructed from the co-

authorship network GT2 is utilized to assign labels indicating

true collaboration (labeled as +1) or no collaboration (labeled

Fig. 1. An example of Tomek Links pairs

as −1) for the data samples associated with candidate author

pairs. Table II illustrates the link metrics in a co-authorship

candidate table.

We can see that the candidate table is a set of co-authored

data samples with complete attributes and class labels. Con-

sequently, the co-authorship recommendation problem can be

reformulated as a classification problem on a two-class labeled

dataset, where one class is labeled +1 to indicate a potential

future collaboration and the other class is labeled −1 to

indicate no future collaboration. Since the number of candidate

pairs can grow exponentially in large co-authorship networks.

As a result, numerous samples may arise where collabora-

tion between authors does not exist, leading to most of the

label −1. Consequently, this situation gives rise to a highly

imbalanced two-class dataset. Therefore, when approaching

the co-authorship recommendation problem using a classifica-

tion model, it becomes necessary to address the challenges of

handling highly imbalanced two-class datasets.

B. Tomek Links

The Tomek Links algorithm [4] is designed to identify

pairs of samples from two different classes that are closest

to each other in terms of distance. These pairs, determined

by the algorithm, are referred to as Tomek Link pairs (TLPs).

We assume that D = {(xi, yi)|i = 1, 2, · · · , N} of labeled

training samples, where each sample xi ∈ Rn is assigned

to a class label yi ∈ {−1,+1}. Moreover, we let D+ and

D− be the sets of positive- and negative-class samples in

D, respectively, i.e. D = D+ ∪ D−. The distance between

xi ∈ D+ and xj ∈ D− is denoted as d(xi, xj). A pair (xi, xj)

is determined as a TLP if there is no sample xk such that

d(xi, xk) < d(xi, xj) or d(xj , xk) < d(xi, xj). Figure II-B

illustrates the locations of TLPs in a dataset. A TLP is either

the creation of a class boundary by two samples in the pair or

the possibility of one in two samples being noisy.

The Tomek Links algorithm is frequently employed in the

classification problem of imbalanced datasets after applying

the SMOTE algorithm [5] and its variants. This generates

additional samples for the minority class, resulting in more

balanced and clearer datasets. Consequently, classification al-

gorithms exhibit improved accuracy when applied to minority

samples. Recently, several improvements of the Tomek Links
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TABLE II
AN ILLUSTRATED TABLE OF CO-AUTHORSHIP CANDIDATES

Index
Candidate pairs Linking metrics Labels

(vi, vj) x = {CN(vi, vj), AA(vi, vj), JC(vi, vj), PA(vi, vj), RA(vi, vj), SH(vi, vj),Kazt(vi, vj), CC(vi, vj)} y ∈ {−1,+1}
1 (v1, v2) {CN(v1, v2), AA(v1, v2), JC(v1, v2), PA(v1, v2), RA(v1, v2), SH(v1, v2),Kazt(v1, v2), CC(v1, v2)} +1

2 (v1, v3) {CN(v1, v3), AA(v1, v3), JC(v1, v3), PA(v1, v3), RA(v1, v3), SH(v1, v3),Kazt(v1, v3), CC(v1, v3)} −1

3 (v1, v4) {CN(v1, v4), AA(v1, v4), JC(v1, v4), PA(v1, v4), RA(v1, v4), SH(v1, v4),Kazt(v1, v4), CC(v1, v4)} −1

4 (v2, v3) {CN(v2, v3), AA(v2, v3), JC(v2, v3), PA(v2, v3), RA(v2, v3), SH(v2, v3),Kazt(v2, v3), CC(v2, v3)} +1

· · · · · · · · · · · ·

algorithm consist of OOS [6], CNN+Tomek links [7], NCL [8],

SMOTE+ENN [9].

C. WSVM and FSVM-CIL algorithms
Support Vector Machine (SVM) [10]–[12] is a well-known

machine learning technique. For a two-class learning problem,

we consider a set D = {(xi, yi)|i = 1, 2, · · · , N} of labeled

training samples, where each sample xi ∈ Rn is assigned to

a class label yi ∈ {−1,+1}. SVM aims to find a separating

hyperplane defined by the pair (w, b) that separates the training

samples into two classes by solving the following optimization

problem:

Minimize Φ(w) =
1

2
wTw + C

N∑
i=1

εi

subject to yi(〈w, φ(xi)〉+ b) ≥ 1− εi,

εi ≥ 0, i = 1, 2, · · · , N,

(1)

where the trainning vectors xi are mapped into a higher

dimentional space by the function Φ(xi)(i = 1, 2, · · · , N).
The slack variables εi > 0 hold for misclassified samples

and therefore,
∑N

i=1 εi is the total number of misclassified

samples. Besides, C is a user-defined positive parameter to

control the tradeoff between minimum classification error and

maximum margin. The problem in Eq. (1) is a quadratic-

optimization problem and can be solved by constructing a

Lagrangian representation and transforming it into the a dual

problem [10], [11].
SVM is a robust classification algorithm for balanced

datasets. However, when SVM is applied to imbalanced

datasets, it could produce a model biased toward the negative

class and perform poorly on the positive class. Therefore,

several enhancements to SVM have been proposed to solve

the two-class imbalanced learning problem [12]–[15].
One such enhancement is the Weighted SVM (WSVM) [14].

WSVM assigns each sample xi a weight mi ∈ [0, 1] according

to its relative importance in the class such that different sample

has different contribution to forming a classification model.

WSVM aims to find the solution (w, b) of the following

optimization problem:

Minimize Φ(w) =
1

2
wTw + C

N∑
i=1

miεi

subject to yi(〈w, φ(xi)〉+ b) ≥ 1− εi,

εi ≥ 0, i = 1, 2, · · · , N.

(2)

It is important to note that higher weight values mi indicate a

greater significance in accurately classifying the corresponding

samples, while lower weight values mi reduce their influence

on generating the optimal separating hyperplane.

FSVM-CIL [15] is an effective improvement of FSVM [12]

to tackle the challenge of two-class imbalanced learning. In

FSVM-CIL, higher fuzzy weight values, denoted by m+
i ,

are assigned to positive-class samples x+
i , while lower fuzzy

weight values, denoted by m−i , are assigned to negative-

class samples x−i , i = 1, 2, · · · , N . The fuzzy membership

functions are defined as follows:

m+
i = f

(
x+
i

) ∗ r+,
m−i = f

(
x−i

) ∗ r−, (3)

where f(xi) ∈ (0, 1) represents a fuzzy membership function

that reflects the importantce of a sample xi in its own class.

To reflect the class imbalance, r+ = 1 is assigned to positive-

class samples and r− = r is assigned to negative-class

samples, where r is the positive-to-negative class ratio (r < 1).
Moreover, f(xi) is defined based on three distance measures

from sample xi: (i) the distance to its own class center (dceni );
(ii) the distance to the estimated hyperplane (dshpi ) defined

as the center of the entire dataset; and (iii) the distance to

the actual hyperplane (dhypi ) formed by a basic SVM model.

For each distance-based measure, FSVM-CIL constructs two

fuzzy membership functions: a fuzzy linear function (lin) and

a fuzzy exponential function (exp). As a result, six fuzzy

membership functions for sample xi are defined as follows:

1) Based on the distance to its own class center:

f cen
lin (xi) = 1− dceni

max (dceni ) + Δ
, (4)

f cen
exp (xi) =

2

1 + exp (βdceni )
. (5)

2) Based on the distance to the estimated hyperplane:

fshp
lin (xi) = 1− dshpi

max
(
dshpi

)
+Δ

, (6)

fshp
exp (xi) =

2

1 + exp
(
βdshpi

) . (7)
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3) Based on the distance to the actual hyperplane:

fhyp
lin (xi) = 1− dhypi

max
(
dhypi

)
+Δ

, (8)

fhyp
exp (xi) =

2

1 + exp
(
βdhypi

) . (9)

It is noted in Eqs. (4–9) that Δ is a small positive value

used to avoid the cases where f cen
lin (xi) = 0, fshp

lin (xi) = 0, or

fhyp
lin (xi) = 0. The parameter β ∈ [0, 1] controls the slope of

the exponential functions fcen
exp (xi), f

shp
exp (xi), and fhyp

exp (xi).

III. PROPOSED ALGORITHM

In this section, we propose a method to adjust fuzzy weights

based on tomek link pairs and an adaptive weight adjustment

algorithm based on FSVM-CIL to address highly imbalanced

two-class datasets.

A. Tomek link pairs-based fuzzy weight adjustment

In dealing with a highly imbalanced two-class dataset,

researchers commonly employ techniques to reduce negative-

class samples [16] and generate additional positive-class sam-

ples [5] to create a more balanced dataset. Subsequently,

the Tomek Links algorithm [4] eliminates noisy samples and

enhances classification boundaries in the created dataset. How-

ever, removing noisy samples may discard certain positive-

class samples, while they need to be kept at most. To overcome

this limitation, we propose a solution that involves identifying

pairs of TLPs and evaluating their positions in the distribution

space of samples. Then, we adjust the weights assigned

to each sample, prioritizing the importance of positive-class

samples, reducing the importance of negative-class samples,

and significantly decreasing the influence of noise samples

while preserving the fundamental characteristics of the original

datasets. To do this, we employ the Tomek Links algorithm to

identify sensitive samples and design four rules for adjusting

fuzzy weights to control their impact on forming a classifier

model. Figure 2 illustrates the four cases in which sensitive

samples are identified based on the relative positions of TLPs

along with their K-nearest neighbors. The symbols “+” and

“−” represent positive- and negative-class samples, respec-

tively, and we chose K = 4. A pair of TLPs falls into one

of the four cases: (1) within the positive margin, (2) outside

the positive margin but classified as negative-class noise, (3)

within the negative margin, or (4) outside the negative margin

but classified as positive-class noise.

Our method for adjusting fuzzy weights is shown in Al-

gorithm 1, where ht is a WSVM classifier, hKNN is a KNN
classifier, K is the number of nearest neighbors for a given

sample xi, and the set of parameters {σ1, σ2, σ3, σ4} is used

for adjusting the fuzzy weights. Specifically, the algorithm

initializes a set of TLPs = {}. Then, it identifies a set TLPs of

elements (xi, xj) such that (xi, yi) and (xj , yj) are the nearest

neightbours of each other (lines 3-10). Subsequently, for each

pair (xi, xj) ∈ TLPs satisfying the conditions yi = 1 and

Fig. 2. An illustration of four cases for sensitive samples found by TLPs

yj = −1, the algorithm checks and adjusts the fuzzy weights

based on the four cases illustrated in Figure 2:

1) If ht classified both xi and xj into the positive class,

meaning ht(xi) = 1 and ht(xj) = 1, i.e. the pair

(xi, xj) falls within the positive margin (case 1), the

algorithm follows these steps: The fuzzy weight m+
i is

adjusted upward by σ1 to increase the influence of xi,

while the fuzzy weight m−j is adjusted downward by

σ1 to reduce the influence of xj (lines 13-14). However,

if the K-nearest neighbors xjk(jk = 1, 2, · · · ,K) of

xj belong to the positive class, indicating that xj was

classified as a negative class noise (case 2), a significant

downward adjustment of m−j is applied to reduce the

influence of xj by σ2 (lines 15-17). Hence, to ensure

appropriate adjustments, σ1 and σ2 are chosen such that

0 < σ1 < 0.5 and 0 < σ2 < 1.

2) If ht classified both xi and xj into the negative class,

meaning ht(xi) = −1 and ht(xj) = −1, i.e. the pair

(xi, xj) falls within the negative margin (case 3), the

algorithm follows these steps: The fuzzy weight m+
i is

adjusted upward by σ3 to increase the influence of xi,

while the fuzzy weight m−j is adjusted downward by

σ3 to reduce the influence of xj (lines 20-21). However,

if the K-nearest neighbors xik(ik = 1, 2, · · · ,K) of

xi belong to the negative class, indicating that xi was

classified as a positive class noise (case 4), a significant

downward adjustment of m+
i is applied to reduce the

influence of xi by σ4 (lines 22-24). Hence, to ensure

appropriate adjustments, σ3 and σ4 are chosen such that

0 < σ3 < 0.5 and 0 < σ4 < 1.

By applying our method, we effectively increase m+
i and

decrease m−j to prioritize accurately classifying positive-class

samples xi. Furthermore, if xi is identified as a positive-

class noise and xj is identified as a negative-class noise, our

method significantly reduces both m+
i and m−j to minimize

the influence of samples xi and xj in forming a classifier

model. As a result, our method yields a set of adjusted fuzzy

weights, denoted as {m+
i , m−i }, for all samples xi ∈ D (i =

1, 2, . . . , N).

B. Adaptive weight adjustment algorithm

This section proposes an FSVM-CIL-based Adaptive

Weight Adjustment (F-AWA) algorithm for the highly im-
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Algorithm 1: TLPs-based fuzzy weight adjustment

1 function AdjFW(D,ht,K, σ1, σ2, σ3, σ4,m
+
i , m−

i )
2 Initialize TLPs = {};
3 for i = 1 to N do
4 find the nearest neighbor (xj , yj) of (xi, yi);
5 if (xi, yi) is the nearest neighbor of (xj , yj) then
6 if (xi, xj) /∈ TLPs and (yi �= yj) then
7 TLPs = TLPs ∪ {(xi, xj)};
8 end
9 end

10 end
11 for each (xi, xj) ∈ TLPs that yi = 1 and yj = −1 do
12 if ht(xi) = 1 and ht(xj) = 1 then
13 m+

i = m+
i × (1 + σ1);

14 m−
j = m−

j × (1− σ1);
15 if hKNN(xjk ) = 1 then
16 m−

j = m−
j × σ2;

17 end
18 end
19 if ht(xi) = −1 and ht(xj) = −1 then
20 m+

i = m+
i × (1 + σ3);

21 m−
j = m−

j × (1− σ3);
22 if hKNN(xik ) = −1 then
23 m+

i = m+
i × σ4;

24 end
25 end
26 end
27 return {m+

i ,m
−
i }, i = 1, 2, · · · , N ;

28 end function

balanced two-class datasets. The algorithm presented in Al-

gorithm 2 employs the WSVM algorithm [14] as a basic

classifier denoted by ht for fuzzy weight adjustment. Initially,

F-AWA finds a set of fuzzy weights {m+
i ,m

−
i } for all the

samples (xi, yi) ∈ D by using the FSVM-CIL algorithm [15].

Then, F-AWA runs in T iterations, in which at each iteration

t = 1, 2, . . . , T , it follows the steps: (i) training a classifier

model ht using WSVM with the fuzzy weights {m+
i ,m

−
i }

on all the samples (xi, yi) ∈ D; (ii) adjusting the fuzzy

weights {m+
i ,m

−
i } for all the samples (xi, yi) ∈ D by using

the function described in Algorithm 1; (iii) evaluating the

geometric mean g(ht) of the model ht. After completing the

T iterations, the algorithm outputs a classification model hl

(l ∈ [1, T ]) such that the geometric mean g(hl) is maximized.

This indicates that hl achieves the highest accuracy for each

of the two classes while maintaining a balanced performance

across both classes.

IV. EXPERIMENTS

In this section, we present experiments to evaluate the

efficiency of our proposed algorithm for the co-authorship

recommendation problem.

A. Datasets

To generate datasets for the co-authorship recommendation

problem, we collected the article titles, publication years,

content summaries, keyword lists, and authors’ information

from three journals consisting of Chemical Physics Letters,

Algorithm 2: Adaptive weight adjustment algorithm

1 function F-AWA(D,h1,K, σ1, σ2, σ3, σ4, T)
2 find {m+

i ,m
−
i } by FSVM-CIL(D, r+, r−,Δ);

3 for t := 1 to T do
4 fit ht using WSVM with {m+

i ,m
−
i } for ∀xi ∈ D;

5 call AdjFW(D,ht,K, σ1, σ2, σ3, σ4,m
+
i , m−

i );
6 evaluate the geometric mean g(ht) of ht;
7 end
8 l := max(g(ht)), ∀t = 1, 2 . . . , T ;
9 return hl;

10 end function

TABLE III
DESCRIPTION OF CO-AUTHORSHIP DATASETS

Datasets Positive
sample
number

Negative
sample
number

Total
sample
number

Positive
percent-

age

Group I
(No. of positive

samples = 33± 3)

CoAuthor-1 32 368 400 8%

CoAuthor-2 36 564 600 6%

CoAuthor-3 33 792 825 4%

CoAuthor-4 35 1715 1750 2%

CoAuthor-5 31 1894 1925 1.61%

Group II
(No. of positive

samples = 70± 7)

CoAuthor-6 70 805 875 8%

CoAuthor-7 75 1175 1250 6%

CoAuthor-8 71 1704 1775 4%

CoAuthor-9 68 3332 3400 2%

CoAuthor-10 63 3850 3913 1.61%

Journal of Molecular Biology, and Biochemical and Biophys-
ical Research Communications through ScienceDirect APIs

from the year 2011 to the year 2016. For each journal from

the year 2011 to the year 2014, we created a co-authorship

candidate table consisting of link metrics as shown in Table II.

The information from the year 2015 to the year 2016 was used

to determine the labels of the data samples. If two authors

were co-authors on an article, the data sample was assigned

a label +1. Otherwise, it was assigned a label −1. By doing

so, we obtained a co-authorship dataset consisting of 477136
samples, in which the number of positive- and negative-class

samples is 7683 and 469453, respectively. This means that the

percentage of positive-class samples in our dataset is 1.61%.

To evaluate the performance of our algorithm for datasets

with varying characteristics, we employed a bootstrap tech-

nique on our co-authorship dataset to generate 10 sub-datasets

categorized into two groups of small and large sizes. Each

group consisted of five datasets given in Table III. It is worth

noting that datasets with a percentage of positive-class samples

below 10% are considered highly imbalanced.

B. Experimental results

Our experimental results were evaluated using several met-

rics, including SE (Sensitivity), SP (Specificity), GM (Geomet-

ric Mean), AUC (Area Under Curve), ACC (Accuracy), and

F1S (F1-Score) [17]. However, SE, GM, and AUC are partic-

ularly crucial when evaluating the performance of algorithms

for the two-class imbalanced learning problem.
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We chose FSVM-CIL to compare its results with those ob-

tained by our algorithm since FSVM-CIL outperformed both

WSVM and FSVM in addressing the two-class imbalanced

learning problem [15]. In our experiments, we employed a

5-fold cross-validation method for each dataset. For FSVM-

CIL, we utilized optimal parameter values inherited in [15],

which are as follows: β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9,1.0}, Δ = 10(−6), and C = 100. In our F-AWA algorithm,

we set K = 5, σ2 = σ4 = 0.5, σ1 = σ3 = 0.1, T = 20, and

the fuzzy membership functions was the Euclidean distance.

Both FSVM-CIL and F-AWA algorithms were implemented

using Python 3.11 on a computer with a Core i7-8550U CPU,

1.8GHz, and 16GB RAM running on Windows 11.

Experiment 1. In this experiment, we compared the perfor-

mance of F-AWA with that of FSVM-CIL on the datasets with

a small size in Group I. Our experimental results are shown

in Table IV, where l ∈ [1, T ] is the iteration at which the

GM achieved its maximum value. Accordingly, we observed

that in 5 datasets with 30 cases using fuzzy membership

functions of FSVM-CIL, our F-AWA achieved GM and AUC

higher than FSVM-CIL in 23 cases. This is because we used

the method of iteratively adaptive adjustment of the sample

weights based on TLPs to prioritize the correct classification of

positive samples. Specifically, for CoAuthor-1 and CoAuthor-
2 (i.e., the positive percentage is 8% and 6%, respectively),

F-AWA obtained the maximum GM, SE, and AUC in 3 of

6 cases using fuzzy membership functions. For CoAuthor-3
and CoAuthor-5, F-AWA obtained the maximum GM, SE, and

AUC in 5 of 6 cases, while for CoAuthor-4, F-AWA obtained

the maximum GM, SE, and AUC in all 6 cases using fuzzy

membership functions. This show that F-AWA is more efficient

than FSVM-CIL, especially for highly imbalanced datasets.

Experiment 2. In this experiment, we compared the per-

formance of F-AWA with that of FSVM-CIL on the datasets

with a large size in Group II. Our experimental results are

shown in Table V, where l ∈ [1, T ] is the iteration at which

the GM achieved its maximum value. The experimental results

show that in 5 datasets with 30 cases using fuzzy membership

functions of FSVM-CIL, our F-AWA achieved GM and AUC

higher than FSVM-CIL in 22 cases. Specifically, F-AWA

obtained the maximum GM, SE, and AUC in 4 of 6 cases

for CoAuthor-6, and 3 in 6 cases for CoAuthor-7. For datasets

with lower positive percentage consisting of CoAuthor-7,

CoAuthor-8, and CoAuthor-9 (i.e., the positive percentage is

4%, 2%, and 1.61%, respectively), F-AWA obtained GM and

AUC higher than FSVM-CIL in almost cases (i.e., 15 of 18
cases) using fuzzy membership functions. For three of the

remaining cases, the value of GM found by FSVM-CIL and

F-AWA is approximate (i.e., their deviation is smaller than

1.0%). This shows that our F-AWA is efficient for highly

imbalanced datasets of large sizes.

V. CONCLUSIONS

In this paper, we proposed an adaptive weight adjust-

ment algorithm based on FSVM-CIL, namely F-AWA, to

address highly imbalanced two-class datasets. First, F-AWA

uses FSVM-CIL to find a set of fuzzy weights for training

samples. Second, F-AWA iteratively runs to train a classifier

model using WSVM, adjust the fuzzy weights of training

samples identified by Tomek Links pairs, and evaluate the

geometric mean of the training model. Finally, F-AWA returns

a classification model with the maximum geometric mean.

To evaluate the performance of F-AWA for the co-authorship

recommendation problem, we collected author and article data

from the website www.sciencedirect.com through ScienceDi-

rect APIs and created two-class imbalanced datasets. Our

experimental results for our self-built co-authorship datasets

showed that F-AWA outperforms the FSVM-CIL for the co-

authorship recommendation problem.
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TABLE IV
CLASSIFICATION RESULTS OF FSVM-CIL AND F-AWA FOR DATASETS IN GROUP I

Dataset Algorithm Fuzzy
Function Adjusted SP

(%)
SE
(%)

GM
(%)

F1S
(%)

ACC
(%)

AUC
(%)

CoAuthor-1

FSVM-CIL
fcen
lin

None 93.75 36.98 54.25 34.53 89.25 65.37

F-AWA l = 12 93.40 40.32 58.60 37.29 89.17 66.86
FSVM-CIL

fcen
exp

None 90.59 44.29 60.19 34.97 86.92 67.44
F-AWA l = 10 89.96 44.44 60.18 34.18 86.33 67.20

FSVM-CIL
fshp
lin

None 83.61 45.40 52.92 25.81 80.58 64.50
F-AWA l = 12 91.68 36.51 52.76 30.61 87.33 64.09

FSVM-CIL
fshp
exp

None 89.23 27.14 42.90 19.65 84.25 58.19

F-AWA l = 13 89.23 33.97 49.75 25.46 84.83 61.60
FSVM-CIL

fhyp
lin

None 84.61 51.90 57.47 26.95 82.00 68.26

F-AWA l = 5 68.83 76.67 60.73 24.31 69.50 72.75
FSVM-CIL

fhyp
exp

None 82.60 53.33 56.43 28.23 80.33 67.97
F-AWA l = 5 93.93 31.27 48.76 29.16 89.00 62.60

CoAuthor-2

FSVM-CIL
fcen
lin

None 89.08 45.36 59.92 32.66 86.44 67.22

F-AWA l = 1 94.27 40.71 60.99 36.19 91.06 67.49
FSVM-CIL

fcen
exp

None 92.67 40.95 60.48 32.37 89.56 66.81

F-AWA l = 9 91.96 43.57 62.24 32.95 89.06 67.77
FSVM-CIL

fshp
lin

None 80.99 56.19 61.36 27.33 79.44 68.59
F-AWA l = 10 93.62 37.02 57.09 31.42 90.22 65.32

FSVM-CIL
fshp
exp

None 82.35 45.24 52.57 19.98 80.06 63.79
F-AWA l = 1 93.38 29.88 50.52 25.69 89.56 61.63

FSVM-CIL
fhyp
lin

None 66.29 77.14 59.38 17.76 66.83 71.71

F-AWA l = 1 64.99 80.00 59.97 17.86 65.78 72.49
FSVM-CIL

fhyp
exp

None 94.38 35.95 57.32 32.62 90.89 65.17

F-AWA l = 12 94.09 38.81 59.20 34.85 90.78 66.45

CoAuthor-3

FSVM-CIL
fcen
lin

None 93.60 43.81 62.33 30.19 91.64 68.71

F-AWA l = 1 94.61 46.19 65.05 34.31 92.69 70.40
FSVM-CIL

fcen
exp

None 92.30 38.89 56.91 25.43 90.18 65.59

F-AWA l = 1 92.42 38.89 58.68 25.50 90.30 65.66
FSVM-CIL

fshp
lin

None 87.78 43.49 57.96 22.69 86.06 65.64

F-AWA l = 1 94.45 38.89 59.70 29.53 92.24 66.67
FSVM-CIL

fshp
exp

None 93.35 30.16 50.46 21.92 90.83 61.76

F-AWA l = 6 93.18 34.92 56.39 24.50 90.87 64.05
FSVM-CIL

fhyp
lin

None 82.92 51.59 56.08 15.58 81.66 67.25

F-AWA l = 1 71.35 72.06 59.69 14.46 71.35 71.71
FSVM-CIL

fhyp
exp

None 89.04 45.71 58.25 25.82 87.35 67.38
F-AWA l = 1 95.75 37.14 56.79 31.40 93.41 66.45

CoAuthor-4

FSVM-CIL
fcen
lin

None 95.06 33.33 52.34 17.18 93.83 64.20

F-AWA l = 15 95.78 38.10 58.54 21.93 94.63 66.94
FSVM-CIL

fcen
exp

None 92.75 40.00 59.24 16.12 91.70 66.38

F-AWA l = 14 93.78 40.00 59.93 18.06 92.70 66.89
FSVM-CIL

fshp
lin

None 94.73 29.52 46.88 14.99 93.43 62.13

F-AWA l = 8 95.96 33.33 52.72 20.22 94.70 64.65
FSVM-CIL

fshp
exp

None 93.86 26.67 42.67 11.65 92.51 60.26

F-AWA l = 2 94.71 26.67 46.54 13.57 93.35 60.69
FSVM-CIL

fhyp
lin

None 63.52 54.29 38.72 7.16 63.33 58.90

F-AWA l = 1 56.35 67.62 46.03 6.91 56.57 61.98
FSVM-CIL

fhyp
exp

None 92.63 31.43 48.32 13.86 91.41 62.03

F-AWA l = 1 92.85 39.05 55.11 18.97 91.77 65.95

CoAuthor-5

FSVM-CIL
fcen
lin

None 95.74 30.48 50.36 15.22 94.68 63.11

F-AWA l = 4 96.16 35.08 54.36 19.10 95.19 65.62
FSVM-CIL

fcen
exp

None 92.54 39.37 56.55 13.38 91.69 65.95

F-AWA l = 1 92.27 40.32 57.09 13.09 91.45 66.30
FSVM-CIL

fshp
lin

None 94.99 28.57 47.57 13.34 93.90 61.78

F-AWA l = 1 95.21 39.52 60.24 18.91 94.32 67.37
FSVM-CIL

fshp
exp

None 94.51 28.89 46.93 13.53 93.45 61.70

F-AWA l = 15 93.65 32.86 50.05 12.44 92.68 63.25
FSVM-CIL

fhyp
lin

None 72.77 44.29 48.26 7.44 72.31 58.53
F-AWA l = 1 72.10 43.17 47.22 7.66 71.64 57.64

FSVM-CIL
fhyp
exp

None 95.95 25.40 40.96 11.96 94.81 60.67

F-AWA l = 7 95.90 35.56 53.38 20.16 94.93 65.73
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TABLE V
CLASSIFICATION RESULTS OF FSVM-CIL AND F-AWA FOR DATASETS IN GROUP II

Dataset Algorithm Fuzzy
Function Adjusted SP

(%)
SE
(%)

GM
(%)

F1S
(%)

ACC
(%)

AUC
(%)

CoAuthor-6

FSVM-CIL
fcen
lin

None 66.63 81.90 70.61 30.78 67.85 74.27
F-AWA l = 1 75.07 69.52 68.13 33.03 74.63 72.30

FSVM-CIL
fcen
exp

None 91.76 48.57 66.35 40.14 88.30 70.17

F-AWA l = 1 91.22 51.90 68.49 41.53 88.08 71.56
FSVM-CIL

fshp
lin

None 63.89 84.76 70.83 29.64 65.56 74.33
F-AWA l = 5 82.40 59.05 66.24 35.35 80.53 70.72

FSVM-CIL
fshp
exp

None 90.14 44.76 62.60 34.58 86.51 67.45

F-AWA l = 3 89.65 46.19 63.73 34.79 86.17 67.92
FSVM-CIL

fhyp
lin

None 64.80 80.48 64.52 24.74 66.06 72.64

F-AWA l = 3 59.63 90.00 68.97 26.01 62.06 74.81
FSVM-CIL

fhyp
exp

None 95.40 37.14 58.77 39.75 90.74 66.27

F-AWA l = 4 93.46 46.67 65.23 41.97 89.71 70.06

CoAuthor-7

FSVM-CIL
fcen
lin

None 62.72 86.22 70.97 22.96 64.13 74.47
F-AWA l = 2 69.42 74.67 67.68 24.02 69.73 72.04

FSVM-CIL
fcen
exp

None 93.22 42.22 61.92 33.68 90.16 67.72

F-AWA l = 5 93.65 44.00 63.44 36.06 90.67 68.82
FSVM-CIL

fshp
lin

None 60.00 90.22 72.17 22.56 61.81 75.11
F-AWA l = 1 62.75 84.44 69.26 21.94 64.05 73.60

FSVM-CIL
fshp
exp

None 76.31 61.78 63.54 25.94 75.44 69.04
F-AWA l = 1 81.45 52.89 60.40 26.25 79.73 67.17

FSVM-CIL
fhyp
lin

None 59.04 91.11 72.61 21.86 60.96 75.07

F-AWA l = 1 57.70 94.67 73.87 22.17 59.92 76.18
FSVM-CIL

fhyp
exp

None 93.93 34.22 54.49 32.23 90.35 64.08

F-AWA l = 14 91.86 43.11 61.32 34.54 88.93 67.48

CoAuthor-8

FSVM-CIL
fcen
lin

None 71.22 73.38 65.83 16.86 71.30 72.30

F-AWA l = 1 74.24 71.90 68.54 20.83 74.14 73.07
FSVM-CIL

fcen
exp

None 93.84 38.71 59.07 26.92 91.63 66.28
F-AWA l = 3 94.39 38.00 58.46 27.83 92.14 66.20

FSVM-CIL
fshp
lin

None 67.69 80.05 68.19 16.58 68.20 73.87
F-AWA l = 1 70.80 75.76 68.19 18.62 71.01 73.28

FSVM-CIL
fshp
exp

None 70.66 73.38 65.95 16.13 70.76 72.02

F-AWA l = 1 77.05 67.57 67.54 21.35 76.68 72.31
FSVM-CIL

fhyp
lin

None 76.93 57.19 55.48 14.61 76.17 67.06

F-AWA l = 3 67.81 80.76 69.97 17.69 68.34 74.28
FSVM-CIL

fhyp
exp

None 95.31 18.52 29.78 12.82 92.23 56.92

F-AWA l = 5 95.13 37.24 58.67 29.28 92.82 66.18

CoAuthor-9

FSVM-CIL
fcen
lin

None 40.24 29.95 32.49 7.07 40.01 35.09

F-AWA l = 1 40.39 29.95 32.54 7.49 40.16 35.17
FSVM-CIL

fcen
exp

None 46.47 19.34 29.19 7.85 45.93 32.91

F-AWA l = 5 46.83 19.34 29.33 8.67 46.28 33.09
FSVM-CIL

fshp
lin

None 36.95 34.95 33.22 5.77 36.90 35.95
F-AWA l = 1 36.83 34.23 32.36 5.16 36.76 35.53

FSVM-CIL
fshp
exp

None 40.06 27.09 29.29 5.41 39.78 33.57
F-AWA l = 2 46.62 19.40 28.54 7.80 46.07 33.01

FSVM-CIL
fhyp
lin

None 40.86 22.91 23.30 4.21 40.50 31.89

F-AWA l = 5 37.80 31.65 28.51 5.46 37.68 34.72
FSVM-CIL

fhyp
exp

None 45.05 16.43 20.74 5.47 44.47 30.74

F-AWA l = 3 44.21 25.33 31.95 11.51 43.82 34.77

CoAuthor-10

FSVM-CIL
fcen
lin

None 92.84 33.85 52.85 15.46 91.90 63.35

F-AWA l = 1 92.27 39.62 57.82 16.64 91.43 65.94
FSVM-CIL

fcen
exp

None 93.32 38.14 58.87 13.96 92.44 65.73

F-AWA l = 4 93.61 39.68 60.23 15.21 92.74 66.64
FSVM-CIL

fshp
lin

None 77.77 57.69 55.53 9.03 77.45 67.73

F-AWA l = 2 81.22 56.54 61.74 13.24 80.82 68.88
FSVM-CIL

fshp
exp

None 90.01 37.18 54.57 10.86 89.17 63.60
F-AWA l = 2 93.22 33.40 55.22 12.27 92.26 63.31

FSVM-CIL
fhyp
lin

None 91.40 21.54 21.84 3.38 90.28 56.47
F-AWA l = 10 97.30 13.72 26.43 7.91 95.95 55.51

FSVM-CIL
fhyp
exp

None 98.47 13.33 28.88 10.84 97.10 55.90

F-AWA l = 3 92.82 37.88 56.65 17.69 91.94 65.35
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