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Abstract: In this study, we propose an adaptive fuzzy weight algorithm
for the problem of two-class imbalanced learning. Initially, our algorithm
finds a set of fuzzy weight values for data samples based on the distance
from each sample to the centres of both minority and majority classes.
Then, our algorithm iteratively adjusts the fuzzy weight values of sensitive
samples on either positive or negative margins or class label noises. By
doing so, our algorithm increases the influence of minority samples and
decreases the influence of majority samples in forming a classifier model.
Experimental results on four benchmark real-world imbalanced datasets
including Transfusion, Ecoli, Yeast, and Abalone show that our algorithm
outperforms the fuzzy SVM-CIL algorithm in terms of classification
performance.
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1 Introduction

In the fields of data mining and machine learning, the problem of class imbalance
learning (CIL) has been interesting and widely studying by many researchers (Jordan
and Mitchell, 2015; Kubat et al., 1998). In this paper, we study the problem of two-class
imbalanced learning, where the class with much more samples is called the majority
class, and the class with a few samples is called the minority class (Fernández et al.,
2018; Japkowicz and Stephen, 2002; Liu, 2021). In general, traditional classification
algorithms often consider datasets with an equal number of samples in two classes and
try to find classifier models with the highest accuracy rate. In the case of two-class
imbalanced datasets, samples of the minority class represent rare cases, while these of
the majority class represent the normal cases. This means that the number of samples
of the majority class appears a large proportion in the datasets. Therefore, the classifier
models formed by these algorithms often tend to classify samples of the minority class
into the majority class. Obviously, these models are not good, because samples of
the minority class are often important and should be prioritised to classify correctly
in classifier models. For example, in the problem of diagnosing diseases, patients’
information is represented by samples of the minority class in the dataset. Accurate
diagnosis of patient cases is very important. Therefore, the trained models need to have
the highest accuracy in diagnosing patient cases that play the role of the minority class
in the dataset. To solve this problem, researchers often propose approaches to either data
level or algorithm level modifications.

At the data level approach, researchers focus on improving imbalanced datasets such
that datasets are more balanced than previous ones, such as reducing samples of the
majority class (called under-sampling technique) (Liu et al., 2008; Rekha et al., 2020),
generating samples of the minority class (called over-sampling technique) (Chawla
et al., 2002; Ning et al., 2022), or combining them (Zeng et al., 2016) before using
traditional classification algorithms. Tomek links (Tomek, 1976) is an algorithm to
determine the pairs of two samples belonging to two different classes with the closest
distance from each other. Therefore, the pairs determined by this algorithm often are
either on classification boundaries or noises in datasets. Hereafter, we call a Tomek
link pair as TLP. In the sampling techniques on imbalanced datasets, algorithms often
delete TLPs to eliminate noises and make classification boundaries clearer and more
separate on datasets. If so, this may be not good since it modifies the primitive datasets.
Alternatively, we can assign some weight to each sample to indicate how important a
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sample is for constructing a classifier model. Specifically, if a sample in a pair of TLPs
is noise, then we decrease its weight, however, if a pair in TLPs is on a boundary, then
we increase the weight of the minority sample and decrease the weight of the majority
sample.

At the algorithm level approach, researchers focus on improving classification
algorithms in terms of learning with costs on samples or using appropriate loops to
prioritise the correct classification of samples in the minority class (Quang et al., 2021;
Elkan, 2001; Sun et al., 2007). Among these improved algorithms, the support vector
machine algorithm (SVM) is a powerful margin-based classification algorithm and is
very suitable to improve for datasets with different characteristics (Akbani et al., 2004).
So far, several improvements of SVM have been proposed. (Lin and Wang, 2002)
proposed a fuzzy SVM algorithm, in which they applied a fuzzy membership to each
input sample of SVM and reformulated SVM into fuzzy SVM such that different input
samples can make different contributions to the learning of decision surface. (Yang
et al., 2005) proposed a weighted SVM algorithm that assigns different weights to
different samples such that the algorithm learns the decision surface according to the
relative importance of samples in the training dataset. Hao et al. (2022) proposed a rule
extraction from biased random forest and fuzzy SVM for early diagnosis of diabetes.
Ma et al. (2018) proposed a novel method combining fuzzy SVM and sampling for
imbalanced datasets. Batuwita and Palade (2010) proposed a fuzzy SVM-CIL algorithm
based on the fuzzy SVM algorithm to improve classification efficiency for imbalanced
datasets. Fuzzy SVM-CIL assigns weights to samples based on fuzzy membership
functions in terms of prioritising higher weight values for minority samples and lower
weight values for majority samples. The fuzzy membership functions of the samples are
calculated based on the distance measured by three methods:

1 the distance from samples to their class centre

2 the distance from samples to the estimated hyperplane

3 the distance from samples to an actual hyperplane.

A sample that is further away from its class centre or hyperplanes is considered less
important, and therefore it is assigned by a smaller fuzzy weight value. We found that
in fuzzy SVM-CIL, the fuzzy membership functions only consider the distance from
samples to their class centre without considering the centre of the other class. Therefore,
fuzzy SVM-CIL is inefficient for the case where samples have the same distance to
their class centre, but they have a different distance to the other class centre. Hereafter,
we call fuzzy SVM as FSVM, weighted SVM as WSVM, and fuzzy SVM-CIL as
FSVM-CIL.

In this study, we propose a fuzzy membership function to compute initial fuzzy
weight values, a method to adjust fuzzy weight values, and an adaptive fuzzy weight
algorithm for the problem of two-class imbalanced learning. Our fuzzy membership
function is designed based on the distance from each sample to the centres of both
minority and majority classes. Meanwhile, our method of adjusting fuzzy weight values
is designed based on the positions of the samples in a sensitive region determined by
TLPs. From these proposals, our algorithm iteratively adjusts fuzzy weight values to
obtain an efficient classifier model for both minority and majority samples. Experimental
results on four benchmark real-world imbalanced datasets consisting of Transfusion,
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Ecoli, Yeast, and Abalone show that our algorithm gives a better classification
performance than FSVM-CIL (Batuwita and Palade, 2010).

The remainder of our paper is structured as follows. Section 2 provides the
preliminaries related to our study. Section 3 presents our proposed algorithm. Section 4
gives experimental results and discussions. Section 5 concludes our work.

2 Preliminaries

2.1 Tomek links

Tomek links pairs, namely TLPs, are defined as pairs of two samples belonging to two
different classes with the shortest distance. It is assumed that Smin and Smaj are sets
of minority and majority samples, respectively, and d(xi, xj) is the distance between
xi ∈ Smin and xj ∈ Smaj . The pair (xi, xj) is called a TLP if there exists no xk such
that d(xi, xk) < d(xi, xj) or d(xj , xk) < d(xi, xj). Figure 1 illustrates the locations of
TLPs in a dataset. When we locate a TLP, either two samples in TLP create a class
boundary or one of two samples in TLP is noisy.

Figure 1 Tomek links pairs (see online version for colours)

In the problem of class imbalance learning, TLPs are often used to clean up the datasets
after SMOTE algorithm and its variants to generate more aggregate samples for the
minority class (Han et al., 2005; He et al., 2008; Chawla et al., 2003). As a result, the
generated datasets are more balanced and clearer and therefore, classification algorithms
improve more accurate performance on minority samples. So far, methods of using
and improving Tomek links algorithm are very diverse such as OOS (Kubat, 2000),
CNN+Tomek links (Batista et al., 2004), NCL (Laurikkala, 2001), SMOTE+ENN (Xu
et al., 2020), etc. However, we recognised that in the above methods, removing such
TLPs will alter the characteristics of original datasets, and this leads to the fact that
some of the minority samples will be discarded, while they need to be kept at most.
To overcome this weakness, after identifying the pairs of TLPs and evaluating the
position of each pair of TLPs in the sample distribution space, we adjust the weights
for the samples to prioritise increasing the importance of positive samples, decreasing
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the importance of the negative samples, and significantly decreasing the importance of
the samples as noise without altering the characteristics of original datasets.

2.2 WSVM and FSVM-CIL algorithms

The SVM is a powerful classifier based on the optimisation of classifier margins.
This algorithm is scalable and improved to create an efficient classification model for
datasets with different characteristics. For a two-class learning problem, it is assumed
that the dataset is D = {(xi, yi)|i = 1, 2, ..., N}, where xi ∈ Rn is a n-dimensional
input feature vector and yi ∈ {−1,+1} is the class label of xi. SVM tries to find the
optimal parameter values for the separate hyperplane in the feature space Rn, in which
the separate hyperplane is expressed by

⟨ω, x⟩+ b = 0, (1)

where ω is a parameter matrix and b is a constant.
For the problem of class imbalanced learning, many improvements of SVM have

been proposed (Lin and Wang, 2002; Akbani et al., 2004; Yang et al., 2005; Batuwita
and Palade, 2010). One typical of them is WSVM (Yang et al., 2005). WSVM assigns
fuzzy weights to the training samples and therefore, it results in the influence of samples
in forming a classification model. In WSVM, the objective function is represented as
follows:

min
1

2
∥ω∥2 + C

N∑
i=1

miεi,

st. yi ∗ (⟨ω, xi⟩+ b) ≥ 1− εi,

εi ≥ 0,with i = 1, 2, ..., N,

(2)

where slack variables εi > 0 represent the misclassification of the samples,
∑N

i=1 εi is
the sum of errors on samples, and C is a parameter to control the trade-off between the
maximum margin width and the minimum error total on samples. The best C value can
be found after running pre-tests on datasets. It should be noted that each mi is a weight
value that reflects the importance for correctly classifying a sample xi. The larger the
weight value of a sample is, the more important the sample is in correctly classifying
itself. In contrast, the smaller the weight value of a sample is, the smaller the influence
of the sample on the generation of the optimal separate hyperplane is.

An efficient improvement of FSVM for the problem of two-class imbalanced
learning is FSVM-CIL (Batuwita and Palade, 2010). In FSVM-CIL, fuzzy membership
functions are designed to determine fuzzy weight values to meet the main objectives:
reducing the influence of imbalance between data classes; reflecting the importance of
samples in a training model; and reducing the influence of outliers and noise samples.
FSVM-CIL assigns higher fuzzy weight values, denoted by m+

i (i = 1, 2, ..., N), to
minority samples x+

i (labelled +1, so-called positive samples) and lower fuzzy weight
values, denoted by m−

i (i = 1, 2, ..., N), to majority samples x−
i (labelled -1, so-called

negative samples). The fuzzy weight values are calculated by

m+
i = f

(
x+
i

)
∗ r+,

m−
i = f

(
x−
i

)
∗ r−,

(3)
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where f(xi) ∈ (0, 1) is a fuzzy membership function that reflects the importance of
xi in its own class, while r+ and r− represent the influence level of the imbalanced
ratio in datasets. FSVM-CIL assigns r+ = 1 and r− = r, where r is the imbalanced
ratio between the minority class and the majority class and thus r < 1. Accordingly, the
fuzzy weights on the positive samples have values in the range (0, 1), while the negative
samples have values in the range (0, r).

The fuzzy membership function f(xi) is determined based on the position of the
sample xi in the feature space Rn. Accordingly, the samples with a distance closer to
the class centre, actual or estimated hyperplane are considered to have a higher influence
than the other samples, i.e., they have fuzzy weight values that are higher than those of
the others. In FSVM-CIL, f(xi) uses three distance measures from the sample xi: to
its class centre (dceni ); to the estimated hyperplane (dshpi ) defined as the centre of the
entire dataset; to the actual hyperplane (dhypi ) formed by a basic SVM model. For each
distance-based method, FSVM-CIL constructs two fuzzy membership functions, one is
a fuzzy linear function (lin) and the other is a fuzzy exponential function (exp). As a
result, six fuzzy membership functions of sample xi are formed as follows:

1 Based on the distance to the own class centre:

f cen
lin (xi) = 1− dceni

max (dceni ) + ∆
, (4)

f cen
exp (xi) =

2

1 + exp (βdceni )
. (5)

2 Based on the distance to the estimated hyperplane:

fshp
lin (xi) = 1− dshpi

max
(
dshpi

)
+∆

, (6)

fshp
exp (xi) =

2

1 + exp
(
βdshpi

) . (7)

3 Based on the distance to the actual hyperplane:

fhyp
lin (xi) = 1− dhypi

max
(
dhypi

)
+∆

, (8)

fhyp
exp (xi) =

2

1 + exp
(
βdhypi

) . (9)

It should be noted that in equations (4)–(9), ∆ is a small positive value to avoid the case
where f cen

lin (xi) = 0, fshp
lin (xi) = 0, fhyp

lin (xi) = 0, and β ∈ [0, 1] to control the slope of
the exponential functions f cen

exp (xi), fshp
exp (xi), and fhyp

exp (xi).
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3 Proposed algorithm

In this section, we propose a fuzzy membership function to compute initial fuzzy
weight values for samples, a method of adjusting fuzzy weights to fit samples, and
an adaptive fuzzy weight algorithm for the problem of two-class imbalanced learning,
namely AFW-CIL. The general model of our AFW-CIL is shown in Figure 2. First,
AFW-CIL computes initial fuzzy weight values for all training samples. Then, AFW-CIL
runs in T loops, in which at each loop t = 1, 2, ..., T , it performs the following three
steps:

1 fit a classifier model ht with the adjusted fuzzy weights

2 evaluate the fitted classifier model ht

3 adjust fuzzy weights for the next loop.

After T loops, AFW-CIL returns the best classifier model hl (l ∈ [1, T ]) in terms
of maximum geometric mean. It should be recalled that in the problem of two-class
imbalanced learning, the geometric mean is the squared root of the product of the
sensitivity and specificity measures. A model hl with the maximum geometric mean
indicates that it gives the maximum accuracy on each of two classes while keeping these
accuracies balanced. AFW-CIL is described more details in the following subsections.

Figure 2 The general model of the proposed algorithm (see online version for colours)

3.1 Fuzzy membership function

In FSVM-CIL, the fuzzy membership function of each sample is defined based on the
distance measures given in equations (4)–(9). In cases where the fuzzy membership
function is calculated based on the distance from each sample to its class centre,
FSVM-CIL uses equations (4) and (5). As a result, the samples with a distance closer
to the centre of their class are considered to have a higher influence and therefore, they
have higher fuzzy weight values. In contrast, the samples farther from the centre of their
class have lower fuzzy weight values.
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Figure 3 The relative positions of samples between two classes (see online version
for colours)
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We recognised that FSVM-CIL only considers and evaluates the importance of samples
based on the distance to their class centre and thus, it is quite simple and incomplete.
For an example illustrated in Figure 3, it is assumed that C+ and C− are the centres
of two sets of samples labelled +1 and –1, respectively. Moreover, xp, xq , and xt are
samples labelled +1 having the same distance R to centre C+, meaning that d(xp, C

+)
= d(xq, C

+) = d(xt, C
+) = R. If we apply FSVM-CIL to find a classifier model, then

the fuzzy weight values m+
p , m+

q and m+
t of xp, xq , and xt are calculated by the

fuzzy membership functions f(xp), f(xq), and f(xt) as given in equation (3), where
f(xp) = f(xq) = f(xt) since r+ = 1. This means that three samples xp, xq, xt are
equally important in contributing to form a classifier model. However, we see that the
positions of these three samples to the centre C− of the opposite class are clearly
different: d(xp, C

−) > d(xq, C
−) > d(xt, C

−). In terms of significance, xt can be a
sensitive sample, because it is closest to the centre C−. The influenced level on a
classifier model of xp must be greater than xq and that of xq must be greater than xt,
i.e., m+

p > m+
q > m+

t .
To deal with the weakness of FSVM-CIL, we propose a fuzzy membership function

for samples based on considering the distance from samples to the centres of two
classes. Specifically, if xi is a sample, then the fuzzy membership function for xi is
defined by

f cen 2c
lin (xi) =

dcen opp
xi

dcen own
xi

+ dcen opp
cen own +∆

, (10)

where dcen opp
xi

is the distance from xi to the opposite class centre, dcen own
xi

is the
distance from xi to its class centre, dcen opp

cen own is the distance between the centres of two
classes, and ∆ is a small positive value.
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Algorithm 1 Calculate fuzzy weights for a dataset

Fnfunction CalFW(D, r+, r−,∆) for i = 1 to N do1
calculate the fuzzy membership fcen 2c

lin by Eq. (10);2
if yi = +1 then3

m+
i = fcen 2c

lin (xi)× r+;4
else5

m−
i = fcen 2c

lin (xi)× r−;6
end7

end8

return {m+
i ,m

−
i }, i = 1, 2, ..., N ;9

end function10

Given a dataset D = {(x1, y1), ..., (xN , yN )} of N samples, where yi ∈ {−1,+1}, ∀i =
1, 2, ..., N , we set r+ = 1 and denote r− by the imbalanced ratio of the number of
minority samples to that of majority samples. Our algorithm to find the fuzzy weight
values m+

i and m−
i for xi ∈ D is shown in Algorithm 1. At each loop, the algorithm

calculates the fuzzy membership function f cen 2c
lin for each sample xi by equation (10)

with ∆ = 10(−6). If the current sample xi belongs to the minority class, i.e., yi = +1,
then m+

i is the value of the fuzzy membership function of xi since r+ = 1. Otherwise,
m−

i is decreased by r−. After N loops, the algorithm returns a set of fuzzy weight
values {m+

i , m
−
i } for samples in xi ∈ D (i = 1, 2, ..., N).

3.2 Adjusting fuzzy weights

In the problem with highly imbalanced data, researchers often use the methods of
reducing negative samples (Liu et al., 2008) and/or generating positive samples (Chawla
et al., 2002) to get a more balanced dataset. Then, they use Tomek links algorithm
(Tomek, 1976) to remove noisy samples as well as improve classification boundaries in
the formed datasets. However, we recognised that if we do so, the primitive datasets
are modified. Alternatively, we determine sensitive samples based on the Tomek links
algorithm and design rules of assigning and adjusting fuzzy weights of samples in four
cases. Depending on each case, fuzzy weights of samples are adjusted to control their
influence in forming a classifier model. Figure 4 illustrates four cases for sensitive
samples found by the relative positions of TLPs along with their K-nearest neighbours,
where samples of the minority class are represented by circles, samples of the majority
class are represented by triangles, and K = 5. Specifically, a pair of TLPs is either:

1 in the positive margin

2 outside the positive margin, but it is a negative label noise

3 in the negative margin

4 outside the negative margin, but it is a positive label noise.

Our algorithm to adjust the fuzzy weight values is shown in Algorithm 2, where ht is
a WSVM classifier, hKNN is a KNN classifier, K is the number of nearest neighbours
of xi, and {σ1, σ2, σ3, σ4} is a set of parameters to adjust fuzzy weight values. The
algorithm runs as follows. First, it finds a set {(xi, xj)} of TLPs (lines 2–7). Then, for
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each (xi, xj) ∈ TLPs such that yi = 1 and yj = −1, it checks and adjusts the fuzzy
weight values as follows, where cases 1, 2, 3, and 4 are illustrated in Figure 4:

1 If xi and xj are classified by ht into the minority class, i.e., ht(xi) = 1 and
ht(xj) = 1 or (xi, xj) is in the positive margin (case 1), then m+

i is adjusted up
by σ1 to increase the influence of xi, while m−

j is adjusted down by σ1 to
decrease the influence of xj (lines 10–11). However, if the K-nearest neighbours
xjk(jk = 1, 2, ...,K) of xj are in the minority class, i.e., xj is a negative label
noise (case 2), then m−

j is adjusted down significantly by σ2 to decrease
significantly the influence of xj (lines 12–14). Therefore, σ1 and σ2 are chosen
such that 0 < σ1 < 0.5 and 0 < σ2 < 1.

2 If xi and xj are classified by ht into the majority class, i.e., ht(xi) = −1 and
ht(xj) = −1 or (xi, xj) is in the negative margin (case 3), then m+

i is adjusted
up by σ3 to increase the influence of xi, while m−

j is adjusted down by σ3 to
decrease the influence of xj (lines 17–18). However, if the K-nearest neighbours
xik(ik = 1, 2, ...,K) of xi are in the majority class, i.e., xi is a positive label
noise (case 4), then m+

i is adjusted down significantly by σ4 to decrease
significantly the influence of xi (lines 19–21). Therefore, σ3 and σ4 are chosen
such that 0 < σ3 < 0.5 and 0 < σ4 < 1.

Figure 4 An illustration of four cases for sensitive samples found by TLPs
(see online version for colours)

By doing so, our algorithm increases m+
i and decreases m−

j to prioritise the correct
classification of minority samples xi. Moreover, if xi is a positive label noise and xj is
a negative label noise, then our algorithm decreases significantly m+

i and m−
j to reduce

the influence of samples xi and xj in forming classifier models. Our algorithm returns
a set of adjusted fuzzy weights {m+

i , m
−
i } for samples xi ∈ D (i = 1, 2, ..., N).
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Algorithm 2 Adjust fuzzy weights

Fnfunction AdjFW(D,ht,K, σ1, σ2, σ3, σ4) Initialise TLPs = {};1
for i = 1 to N do2

find a sample (xj , yj) such that (xi, yi) and (xj , yj) are the nearest neighbours of3
each other;
if (xi, xj) /∈ TLPs and (yi ̸= yj) then4

TLPs = TLPs ∪ {(xi, xj)};5
end6

end7
for each (xi, xj) ∈ TLPs such that yi = 1 and yj = −1 do8

if ht(xi) = 1 and ht(xj) = 1 then9
m+

i = m+
i × (1 + σ1);10

m−
j = m−

j × (1− σ1);11

if hKNN(xjk ) = 1 then12
m−

j = m−
j × σ2;13

end14

end15
if ht(xi) = −1 and ht(xj) = −1 then16

m+
i = m+

i × (1 + σ3);17

m−
j = m−

j × (1− σ3);18

if hKNN(xik) = −1 then19
m+

i = m+
i × σ4;20

end21

end22

end23

return {m+
i ,m

−
i }, i = 1, 2, ..., N ;24

end function25

3.3 AFW-CIL algorithm

In this section, we present an AFW-CIL algorithm for the problem of two-class
imbalanced learning, as shown in Algorithm 3. Our AFW-CIL uses WSVM as a basic
classifier model, denoted by ht, for adjusting fuzzy weights.

Algorithm 3 AFW-CIL algorithm

Fnfunction AFW CIL(D,h1,K, σ1, σ2, σ3, σ4, T) find a set of fuzzy weights1

{m+
i ,m

−
i } for D by CalFW(D, r+, r−,∆);

for t := 1 to T do2
fit a classifier model ht using WSVM with {m+

i ,m
−
i } on D;3

adjust fuzzy weights {m+
i ,m

−
i } of D by AdjFW(D,ht,K, σ1, σ2, σ3, σ4);4

evaluate the geometric mean g(ht) of ht;5

end6
l := max(g(ht)), ∀t = 1, 2..., T ;7
return hl;8
end function9
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First, AFW-CIL finds a set of fuzzy weights {m+
i ,m

−
i } for samples in D by calling

the function given in Algorithm 1. Then, AFW-CIL runs in T loops, in which at each
loop t = 1, 2, ..., T , it performs as follows:

1 fits a classifier model ht using WSVM with fuzzy weights {m+
i ,m

−
i } on samples

of D

2 adjusts fuzzy weights {m+
i ,m

−
i } of D by calling the function given in

Algorithm 2

3 evaluates the geometric mean g(ht) of the model ht. After T loops, the algorithm
returns a model hl (l ∈ [1, T ]) such that the geometric mean g(hl) is maximum.

This means that hl gives the maximum accuracy on each of two classes while keeping
these balanced accuracies.

4 Experiments

In this section, we present three experiments to evaluate the efficiency of our proposed:

1 fuzzy membership function

2 method of adjusting fuzzy weights

3 AFW-CIL algorithm.

We used four benchmark real-world imbalanced datasets consisting of Transfusion,
Ecoli, Yeast, and Abalone published in UCI Machine Learning Repository (Dua and
Graff, 2017) for our experiments. Table 1 shows the details of these datasets in the
descending order of the imbalanced ratio of positive and negative samples. To consider
the performance of our proposals in datasets with different characteristics, we chose two
datasets containing a small number of samples and having a low imbalance rate, and two
datasets containing a large number of samples and having a very high imbalance rate.
Moreover, we used measures of sensitivity (SE), specificity (SP), geometric mean (GM),
area under curve (AUC), accuracy (ACC), and F1-score (F1S) to evaluate experimental
results. It should be noted that SE, GM and AUC are three most important measures
considered to evaluate for the two-class imbalanced learning problem. Besides, we
chose FSVM-CIL to compare its results with those of our proposed 1, 2 and 3 since
FSVM-CIL has been shown to be more efficient than both WSVM and FSVM for the
two-class imbalanced learning problem (Batuwita and Palade, 2010).

For each dataset, we used the 5-fold cross validation. In FSVM-CIL, we set
parameters to optimal values inherited from FSVM-CIL as follows: β ∈ {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9,1}, ∆ = 10(−6), and C = 100. In our AFW-CIL, we set
K = 5, σ2 = σ4 = 0.5, σ1 = 0.1, σ3 = 0.1. Besides, we used the Euclidean distance
in the fuzzy membership functions. We implemented the AFW-CIL and FSVM-CIL
algorithms by Python 3.11 software on a laptop computer with Core i7-8550U CPU 1.8
GHz and 16 GB RAM, running on Windows 10.
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Table 1 Description of datasets

ID Dataset Number of Positive Negative Number of Ratio (%)
samples samples samples attributes

1 Transfusion 748 178 570 5 31.23
2 Ecoli 336 77 259 8 29.73
3 Yeast 1,484 51 1,433 8 3.56
4 Abalone 4,177 103 4,074 8 2.53

4.1 Experiment 1

In this experiment, we ran experiments to evaluate our proposed fuzzy membership
function. To do this, we applied our f cen 2c

lin (xi) function given in equation (10) to
FSVM-CIL and compared the obtained results to those of FSVM-CIL used the fuzzy
membership functions given in equations (4)–(9). For simplicity, we name FSVM-CIL
using the same superscript and subscript of the fuzzy membership functions as shown
in Table 2 and we call these FSVM-CILs the normal FSVM-CIL. For example, if
FSVM-CIL uses the fuzzy linear function based on the distance to the own class centre,
i.e., equations (4) and (5), then FSVM-CIL is named by FSVM-CILcen

lin . Table 3 shows
the experimental results of FSVM-CIL using the fuzzy membership functions. The main
results can be observed as follows:

1 For both Transfusion and Ecoli datasets, FSVM-CILcen 2c
lin gave higher SE, GM,

F1S, ACC, and AUC than FSVM-CIL. Especially, FSVM-CILcen 2c
lin gave much

higher SE, GM, and AUC than FSVM-CIL.

2 For the Yeast dataset, FSVM-CILcen 2c
lin gave higher SE, GM, and AUC than

FSVM-CIL. Especially, FSVM-CILcen 2c
lin gave much higher SE (79.77%) than the

best FSVM-CIL (41.50%).

3 For the Abalone dataset, FSVM-CILcen 2c
lin gave much higher SE, GM, F1S, and

AUC than FSVM-CIL. It should be noted that in six fuzzy membership functions
given in equations (4)–(9), only FSVM-CILhyp

lin correctly classified some positive
samples (SE = 19.57%), while FSVM-CILcen 2c

lin demonstrates that it classified
positive samples much more correct than FSVM-CILhyp

lin (SE = 61.48%).

Table 2 FSVM-CIL setting with methods of calculating fuzzy weights

ID FSVM-CIL setting m+
i m−

i

1 FSVM-CILcen
lin fcen

lin (x+
i ) fcen

lin (x−
i ) ∗ r

2 FSVM-CILcen
exp fcen

exp (x
+
i ) fcen

exp (x
−
i ) ∗ r

3 FSVM-CILshp
lin fshp

lin (x+
i ) fshp

lin (x−
i ) ∗ r

4 FSVM-CILshp
exp fshp

exp (x
+
i ) fshp

exp (x
−
i ) ∗ r

5 FSVM-CILhyp
lin fhyp

lin (x+
i ) fhyp

lin (x−
i ) ∗ r

6 FSVM-CILhyp
exp fhyp

exp (x
+
i ) fhyp

exp (x
−
i ) ∗ r

7 FSVM-CILcen 2c
lin fcen 2c

lin (x+
i ) fcen 2c

lin (x−
i ) ∗ r



234 V.D. Quang and T.D. Khang

Table 3 Classification results of FSVM-CIL and FSVM-CIL using our fuzzy membership
function

Dataset FSVM-CIL method SP SE GM F1S ACC AUC
(%) (%) (%) (%) (%) (%)

Transfusion FSVM-CILcen
lin 90.46 27.33 39.81 29.44 75.46 58.89

FSVM-CILcen
exp 89.26 30.73 45.97 33.85 75.35 60.00

FSVM-CILshp
lin 90.63 26.29 37.74 27.87 75.35 58.46

FSVM-CILshp
exp 91.93 20.80 30.10 21.88 75.03 56.36

FSVM-CILhyp
lin 85.33 34.60 39.05 29.08 73.32 59.97

FSVM-CILhyp
exp 89.19 32.99 47.62 35.72 75.83 61.09

FSVM-CILcen 2c
lin 88.14 38.96 54.30 41.53 76.45 63.55

Ecoli FSVM-CILcen
lin 92.21 76.88 83.88 75.58 88.69 84.55

FSVM-CILcen
exp 91.89 75.33 82.89 74.19 88.09 83.61

FSVM-CILshp
lin 92.13 76.60 83.74 75.32 88.57 84.36

FSVM-CILshp
exp 92.13 76.08 83.39 75.02 88.45 84.11

FSVM-CILhyp
lin 92.59 77.15 84.23 76.18 89.05 84.87

FSVM-CILhyp
exp 92.13 77.15 84.05 75.67 88.69 84.64

FSVM-CILcen 2c
lin 92.67 77.38 84.42 76.49 89.17 85.03

Yeast FSVM-CILcen
lin 97.49 37.45 57.86 34.73 95.42 67.47

FSVM-CILcen
exp 97.31 38.27 58.26 34.62 95.28 67.79

FSVM-CILshp
lin 97.63 35.45 54.90 32.91 95.48 66.54

FSVM-CILshp
exp 98.36 29.41 42.44 26.98 95.99 63.88

FSVM-CILhyp
lin 89.08 39.68 58.11 31.17 87.40 64.38

FSVM-CILhyp
exp 96.68 41.50 62.46 35.75 94.79 69.09

FSVM-CILcen 2c
lin 59.65 79.77 65.09 14.55 60.35 69.71

Abalone FSVM-CILcen
lin 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILcen
exp 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILshp
lin 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILshp
exp 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILhyp
lin 61.10 19.57 33.79 2.34 60.07 40.33

FSVM-CILhyp
exp 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILcen 2c
lin 56.65 61.48 52.91 6.51 56.76 59.06

The experimental results showed that when we applied our fuzzy membership function
f cen 2c
lin (xi) to FSVM-CIL, FSVM-CILcen 2c

lin is more efficient than FSVM-CIL for the
experimental datasets. Moreover, when the imbalanced ratio increases, FSVM-CILcen 2c

lin

exhibits a better performance than FSVM-CIL in correctly classifying the positive
samples in the dataset since FSVM-CILcen 2c

lin found much higher values of SE and GM
than FSVM-CIL. This is because our f cen 2c

lin (xi) function is designed based on the
distance from xi to the centre of two classes, while the fuzzy membership functions in
FSVM-CIL only consider the distance from xi to its class centre.
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4.2 Experiment 2

In this experiment, we ran experiments to evaluate our method for adjusting fuzzy
weight values. To do this, we applied our method to FSVM-CIL and compared the
obtained results to those of the normal FSVM-CIL. We set the maximum number of
iterations to adjust the set of fuzzy weights {m+,m−} to T = 20. Table 4 shows our
experimental results, where l ∈ [1, T ] is a value when GM is maximum. We see that
when we applied our method of adjusting fuzzy weights to FSVM-CIL, FSVM-CIL
gave slightly higher SE, GM, F1S, ACC, and AUC than the normal FSVM-CIL for
the Ecoli dataset. However, when we applied our method of adjusting fuzzy weights
to FSVM-CIL, FSVM-CIL gave much higher SE, GM, F1S, ACC, and AUC than the
normal FSVM-CIL for Transfusion, Yeast, and Abalone datasets.

This shows that our method of adjusting fuzzy weight values is efficient when it is
applied to the normal FSVM-CIL. This is due to the fact that our method iteratively
adjusts the fuzzy weights of sensitive samples on boundaries and positive/negative label
noises based on TLPs, while the normal FSVM-CIL only computes and uses initial
fuzzy weights for all samples in the training dataset.

Table 4 Classification results of FSVM-CIL and FSVM-CIL using our adjusting fuzzy
weights

Dataset FSVM-CIL Adjusted SP SE GM F1S ACC AUC
method method (%) (%) (%) (%) (%) (%)

Transfusion FSVM-CILcen
lin None 90.46 27.33 39.81 29.44 75.46 58.89

l = 19 83.51 48.20 63.06 47.85 75.11 65.85
FSVM-CILcen

exp None 89.26 30.73 45.97 33.85 75.35 60.00
l = 19 84.21 47.65 62.93 47.95 75.51 65.93

FSVM-CILshp
lin None 90.63 26.29 37.74 27.87 75.35 58.46

l = 18 83.33 47.64 62.63 47.33 74.84 65.49
FSVM-CILshp

exp None 91.93 20.80 30.10 21.88 75.03 56.36
l = 18 83.37 47.87 62.81 47.56 74.93 65.62

FSVM-CILhyp
lin None 85.33 34.60 39.05 29.08 73.32 59.97

l = 11 86.46 35.65 55.04 39.63 74.36 61.06
FSVM-CILhyp

exp None 89.19 32.99 47.62 35.72 75.83 61.09
l = 18 83.68 48.08 63.06 47.98 75.22 65.88

Ecoli FSVM-CILcen
lin None 92.21 76.88 83.88 75.58 88.69 84.55

l = 4 91.97 77.63 84.21 75.72 88.69 84.80
FSVM-CILcen

exp None 91.89 75.33 82.89 74.19 88.09 83.61
l = 2 92.05 74.78 82.71 74.13 88.09 83.41

FSVM-CILshp
lin None 92.13 76.60 83.74 75.32 88.57 84.37

l = 7 92.05 77.37 84.13 75.69 88.69 84.71
FSVM-CILshp

exp None 92.13 76.08 83.39 75.02 88.45 84.11
l = 4 92.05 76.35 83.53 75.09 88.45 84.20

FSVM-CILhyp
lin None 92.59 77.15 84.23 76.18 89.05 84.87

l = 7 93.21 76.83 84.34 76.65 89.46 85.02
FSVM-CILhyp

exp None 92.13 77.15 84.05 75.67 88.69 84.64
l = 4 91.97 78.18 84.51 75.99 88.81 85.08
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Table 4 Classification results of FSVM-CIL and FSVM-CIL using our adjusting fuzzy
weights (continued)

Dataset FSVM-CIL Adjusted SP SE GM F1S ACC AUC
method method (%) (%) (%) (%) (%) (%)

Yeast FSVM-CILcen
lin None 97.49 37.45 57.86 34.73 95.42 67.47

l = 6 97.09 41.64 62.56 37.12 95.18 69.36
FSVM-CILcen

exp None 97.31 38.27 58.26 34.62 95.28 67.79
l = 2 97.19 42.45 62.98 38.01 95.32 69.82

FSVM-CILshp
lin None 97.63 35.45 54.9 32.91 95.48 66.54

l = 9 97.37 42.14 63.32 39.07 95.47 69.75
FSVM-CILshp

exp None 98.36 29.41 42.44 26.98 95.99 63.88
l = 7 97.87 38.18 58.22 37.18 95.82 68.03

FSVM-CILhyp
lin None 89.08 39.68 58.11 31.17 87.40 64.38

l = 1 89.62 42.41 60.00 31.54 88.02 66.02
FSVM-CILhyp

exp None 96.68 41.5 62.46 35.75 94.79 69.09
l = 4 96.75 42.55 63.25 36.74 94.9 69.65

Abalone FSVM-CILcen
lin None 100 0.00 0.00 0.00 97.53 50.00

l = 5 100 0.00 0.00 0.00 97.53 50.00
FSVM-CILcen

exp None 100 0.00 0.00 0.00 97.53 50.00
l = 5 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILshp
lin None 100 0.00 0.00 0.00 97.53 50.00

l = 5 100 0.00 0.00 0.00 97.53 50.00
FSVM-CILshp

exp None 100 0.00 0.00 0.00 97.53 50.00
l = 10 100 0.00 0.00 0.00 97.53 50.00

FSVM-CILhyp
lin None 61.1 19.57 33.79 2.34 60.07 40.33

l = 5 59.82 49.43 53.89 6.03 59.56 54.62
FSVM-CILhyp

exp None 100 0.00 0.00 0.00 97.53 50.00
l = 4 100 0.00 0.00 0.00 97.53 50.00

4.3 Experiment 3

In this experiment, we evaluated the efficiency of our AFW-CIL. To do this, we
compared the experimental results found by AFW-CIL with those found by FSVM-CIL
as shown in Table 5. The main results observed on the experimental results are as
follows. For Transfusion dataset, AFW-CIL gave much higher SE, GM, F1S, and AUC
than FSVM-CIL. For Ecoli dataset, AFW-CIL gave higher all the SP, SE, GM, F1S,
ACC, and AUC than FSVM-CIL. For Yeast dataset, AFW-CIL gave much higher SE,
GM, and AUC than FSVM-CIL. For Abalone dataset, AFW-CIL gave much higher
SE, GM, F1S, and AUC than FSVM-CIL. As we mentioned before, for the two-class
imbalanced learning problem, SE, GM, and AUC are the three most important measures
to evaluate the efficiency of a classification algorithm. Therefore, we can see that:

1 For the Transfusion dataset, the best FSVM-CIL gave the highest SE, GM, and
AUC at 34.60%, 47.62%, and 61.09%, respectively, while AFW-CIL gave SE,
GM, and AUC at 47.64%, 62.62%, and 65.50%, respectively. This shows that
AFW-CIL gave 13.04%, 15.00%, and 4.41% of SE, GM, and AUC, respectively,
higher than the best FSVM-CIL, i.e., AFW-CIL is much more efficient than
FSVM-CIL.
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2 For the Ecoli dataset, the best FSVM-CIL gave the highest SE, GM, and AUC at
77.15%, 84.23%, and 84.87%, respectively, while AFW-CIL gave SE, GM, and
AUC at 78.42%, 84.93%, and 85.51%, respectively. This means that AFW-CIL
classified positive samples more correct than FSVM-CIL.

3 For the Yeast dataset, the best FSVM-CIL gave the highest SE, GM, and AUC at
41.50%, 62.46%, and 69.09%, respectively, while AFW-CIL gave SE, GM, and
AUC at 85.14%, 74.15%, and 75.93%, respectively. This means that AFW-CIL
outperforms FSVM-CIL in correctly classifying positive samples.

4 For the Abalone dataset, only FSVM-CILhyp
lin found SE and GM at 19.57% and

33.79%, respectively, while AFW-CIL gave SE, GM, and AUC at 65.10%,
59.88%, and 60.17%, respectively. This shows that AFW-CIL gave 44.53%,
26.09%, and 19.84% of SE, GM, and AUC, respectively, much higher than the
best FSVM-CIL, i.e., AFW-CIL is better than FSVM-CIL in terms of correctly
classifying positive samples.

Table 5 Classification results of FSVM-CIL and AFW-CIL

Dataset Learning method SP SE GM F1S ACC AUC
(%) (%) (%) (%) (%) (%)

Transfusion FSVM-CILcen
lin 90.46 27.33 39.81 29.44 75.46 58.89

FSVM-CILcen
exp 89.26 30.73 45.97 33.85 75.35 60.00

FSVM-CILshp
lin 90.63 26.29 37.74 27.87 75.35 58.46

FSVM-CILshp
exp 91.93 20.80 30.10 21.88 75.03 56.36

FSVM-CILhyp
lin 85.33 34.60 39.05 29.08 73.32 59.97

FSVM-CILhyp
exp 89.19 32.99 47.62 35.72 75.83 61.09

AFW-CIL (l = 16) 83.37 47.64 62.62 47.25 74.87 65.50
Ecoli FSVM-CILcen

lin 92.21 76.88 83.88 75.58 88.69 84.55
FSVM-CILcen

exp 91.89 75.33 82.89 74.19 88.09 83.61
FSVM-CILshp

lin 92.13 76.60 83.74 75.32 88.57 84.37
FSVM-CILshp

exp 92.13 76.08 83.39 75.02 88.45 84.11
FSVM-CILhyp

lin 92.59 77.15 84.23 76.18 89.05 84.87
FSVM-CILhyp

exp 92.13 77.15 84.05 75.67 88.69 84.64
AFW-CIL (l = 7) 92.59 78.42 84.93 76.95 89.35 85.51

Yeast FSVM-CILcen
lin 97.49 37.45 57.86 34.73 95.42 67.47

FSVM-CILcen
exp 97.31 38.27 58.26 34.62 95.28 67.79

FSVM-CILshp
lin 97.63 35.45 54.90 32.91 95.48 66.54

FSVM-CILshp
exp 98.36 29.41 42.44 26.98 95.99 63.88

FSVM-CILhyp
lin 89.08 39.68 58.11 31.17 87.40 64.38

FSVM-CILhyp
exp 96.68 41.50 62.46 35.75 94.79 69.09

AFW-CIL (l = 2) 66.73 85.14 74.15 17.14 67.37 75.93
Abalone FSVM-CILcen

lin 100 0.00 0.00 0.00 97.53 50.00
FSVM-CILcen

exp 100 0.00 0.00 0.00 97.53 50.00
FSVM-CILshp

lin 100 0.00 0.00 0.00 97.53 50.00
FSVM-CILshp

exp 100 0.00 0.00 0.00 97.53 50.00
FSVM-CILhyp

lin 61.10 19.57 33.79 2.34 60.07 40.33
FSVM-CILhyp

exp 100 0.00 0.00 0.00 97.53 50.00
AFW-CIL (l = 4) 55.25 65.10 59.88 6.73 55.49 60.17
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In summary, the results of the three above experiments show that:

1 when we apply our fuzzy membership function f cen 2c
lin (xi) to the normal

FSVM-CIL, FSVM-CILcen 2c
lin classifies positive samples more correct than

FSVM-CIL for all the experimental datasets, since FSVM-CILcen 2c
lin gave higher

SE, GM, and AUC than the normal FSVM-CIL

2 when we apply our method of adjusting fuzzy weights to the normal FSVM-CIL,
FSVM-CIL is efficient than the normal FSVM-CIL in terms of classifying
positive samples, since FSVM-CIL gave much higher SE, GM, and AUC than the
normal FSVM-CIL

3 when we combine our fuzzy membership function f cen 2c
lin (xi) and our method of

adjusting fuzzy weights together in AFW-CIL, AFW-CIL outperforms FSVM-CIL
for all the experimental datasets, since AFW-CIL gave much higher SE, GM, and
AUC than the normal FSVM-CIL.

5 Conclusions

In this study, we proposed an efficient adaptive fuzzy weight algorithm for the two-class
imbalanced learning problem, namely AFW-CIL. To do this, we first proposed a fuzzy
membership function based on the distance from each sample to the centres of both
minority and majority classes. We then proposed a method for adjusting fuzzy weight
values based on the positions of the sensitive samples determined by Tomek links
pairs in the feature space of samples. Initially, our algorithm finds a set of fuzzy
weight values for samples based on the proposed fuzzy membership function. Then,
our algorithm iteratively adjusts fuzzy weight values of the sensitive samples based
on the proposed method of adjusting fuzzy weight values such that it increases the
influence of minority samples and decreases the influence of majority samples in
constructing a classifier model. Our experimental results on the datasets consisting of
Transfusion, Ecoli, Yeast, and Abalone published in UCI Machine Learning Repository
(Dua and Graff, 2017) show that AFW-CIL does not only outperform FSVM-CIL but
also outperforms FSVM-CIL combined with either our fuzzy membership function or
our method of adjusting fuzzy weights.
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