
Advances in Engineering Software 179 (2023) 103434

Available online 18 February 2023
0965-9978/© 2023 Elsevier Ltd. All rights reserved.

Stochastic analysis of steel frames considering the material, geometrical 
and loading uncertainties 

Huy-Khanh Dang , Duc-Kien Thai , Seung-Eock Kim * 

Department of Civil and Environmental Engineering, Sejong University, 98 Gunja Dong, Gwangjin Gu, Seoul, 05006, South Korea   

A R T I C L E  I N F O   

Keywords: 
Stochastic analysis 
Statistic approach 
Steel structure 
Bayesian model averaging 
Monte carlo sampling 
Latin hypercube sampling 
Reliability 
Sensitivity 

A B S T R A C T   

This paper develops a Stochastic Practical Advanced Analysis Program for stochastic analysis of structural steel 
frames. The second-order refined plastic-hinge analysis method combined with the technical simulation of Latin 
Hypercube Sampling is developed to predict the actual ultimate load-carrying capacity of steel frames and 
investigate the sensitivity of the uncertain input parameters. The input parameters of material properties, 
geometrical characteristics, and load combinations are considered as independent random variables that may 
occur in simultaneous randomness. A proposed parallel analytical technique integrates the modified Newton- 
Raphson and Generalized Displacement Control algorithms to solve the nonlinear inelastic problems to esti
mate the critical displacement-based system reliability index. The results of the statistical analysis in terms of 
coefficients of variation and Pearson correlation index show that the yield strength of material is the most 
sensitive with respect to the behavior of steel frames. The Bayesian Model Averaging is employed to find the most 
influential structural components on the ultimate structural resistance. The useful results of this research may be 
used in steel structure design and maintenance in practice.   

1. Introduction 

Steel structures have been widely used in construction, especially for 
industrial or tall buildings [1,2]. Numerous researchers have focused on 
identifying the most precise methods or surrogate models for evaluating 
the responsiveness of the structure in various conditions under static, 
extreme and seismic loads [3–9] and finding solution to optimize the 
steel structures [10–12]. There are numerous applicable calculation 
tools capable of dealing with the distinct types of steel frames, some of 
which are based on the finite element method (FEM). This method offers 
a high degree of intuitiveness and accuracy, is widely applicable, but 
requires a great deal of time and processing resources [13]. It is 
frequently used as a benchmark to compare and develop other methods 
that are more time- and computing-efficient. One of these is the 
elastic-plastic analysis approach, which has just been extensively 
explored and developed for steel frame problems. This method can be 
divided into two primary categories: 1) Plastic zone (distributed plas
ticity) and 2) Plastic hinge (Concentrated plastic hinge). The plastic zone 
approach is regarded as the proper way since it is easy to account for 
advanced effects in steel structures, such as gradual spread yielding, 
residual stress, geometric imperfection, and material strain hardening 

[14–17]. However, due to its complexity and expense [18], this type of 
study is too computationally intensive for application in general design. 
In reality, when a steel frame subjected to an ultimate load, the inelastic 
behavior occurs on the plastic joints, while other portions of the member 
continue to function within the elasticity. In order to replace the con
ventional elastic-plastic hinge analysis method, a second-order refined 
plastic hinge analysis method has been developed that takes into 
consideration the advanced effects similar to the plastic zone method 
[19–22]. In comparison to the plastic zone method and the FEM [23,24], 
the refined plastic hinge method yields enough reliability. In addition, 
this method uses just one beam-column element per member, making it 
significantly more efficient and cost-effective than the plastic zone 
approach, therefore, it is used in this investigation. 

The problem of the steel structure frame calculation model has, thus, 
gained enough dependability to find the accurate behavior of the 
structure, reducing considerable epistemic uncertainty [25]. Nonethe
less, numerous uncertainties in loads, geometry, and material properties 
occur in practical engineering systems [26–28], which are referred to as 
aleatory uncertainty, whereas in traditional deterministic analysis, the 
uncertainty quantification and the structural propagation are not 
addressed. As a result, the structure uses standard deterministic 
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methodologies that may face failure risks in an uncertain environment. 
Developing computer approaches for structural analysis and design ac
counting for random uncertainty has emerged as an important research 
area [29–34]. Among the several approaches for analyzing issues with 
random parameters [35–37], the stochastic finite element method 
(SFEM) [38] has been developed and applied to the assessment of 
dependability and response variability in static and dynamic, linear, and 
non-linear situations. Papadrakakis et al. [39] have devised a novel 
parallel computer implementation methodologies in conjunction with 
the Monte Carlo Simulation and the weighted integral method to create 
efficient numerical processing of SFEM. Wang et al. [40] created an 
extended polynomial chaos expansion that takes into consideration both 
aleatory and epistemic uncertainty. The perturbation approach is used 
to estimate the mean and variance of the response [41]. These methods 
are approximate since the series expansion must be shortened after a few 
terms. Each term in the series represents the response of the same 
deterministic system to various effective random forcing functions. In 
this research, we address aleatory uncertainty as random variables in the 
accurate evaluation of steel structural response using the Monte Carlo 
simulation (MCS) in conjunction with a refined plastic hinge analysis 
approach and supplement the evaluation of system reliability and 
sensitivity of input parameters. Our approach can be used to supplement 
conventional deterministic analysis, moreover, accounting for stochastic 
system behaviors, therefore, the failure probability of structures can be 
significantly reduced. In general, the type of uncertainty dispersed in a 
continuum structure is characterized as random fields, where the value 
at each point is a random variable and various correlating points. 

The study is conducted on a complex steel structure with many 
components. For each component, input parameters are treated as 
random variables. Thus, every random combination of input variable for 
the steel frame will yield a random structural scenario subjected to a 
random combination of loads, which is entirely feasible in the actual 
world. The Practical Advanced Analysis Program (PAAP) estimates each 
stochastic situation’s ultimate resistance state. Probability distributions 
of result sets produce quantities of interest to determine the accurate 
steel frame’s load-carrying capacity, the system’s reliability, and the 
impact of each input variable. In order to reduce computational costs, 
we must compute the minimal number of input variable samples needed 
to provide adequate outputs. Thus, the Latin Hypercube Sampling (LHS) 
strategy can generate enough random samples for statistically signifi
cant analysis [42]. The stochastic analysis shows that uncertainty in 
input parameters lowers the structure’s load-carrying capability 
compared to deterministic analysis. Steel yield strength is very sensitive 
to the frame’s load capacity. Parallel analytic techniques of nonlinear 
modified Newton-Raphson (mNR) and General Displacement Control 
(GDC) algorithms can evaluate a structural system’s failure probability 
and reliability index. The Bayesian Model Averaging (BMA) multivari
able linear regression model is firstly used to evaluate input and output 
data of the steel structure. Results show that exterior beam members and 
corner steel columns affect the steel frame the most. This useful result 
enables the engineer to make reasonable decisions in the selection of 
input data when simulating design and to select the optimal solution 
during actual maintenance of structural steel frames. 

2. Refined plastic-hinge analysis method 

2.1. Formulate system tangent stiffness matrix 

The refined plastic hinge approach introduced by Liew et al. [19] is 
the most effective advanced analysis method for determining the ulti
mate strength of steel frames. Using stability functions [43], this model 
adequately captures the geometric nonlinearity caused by the interac
tion between axial force and bending moments (p-δ effect). The incre
mental form of the relationship between the member’s fundamental 
force and deformation of a three-dimensional (3-D) beam-column 
element can be described as shown in [44]. Nonlinear material 

characteristics include steel’s gradual yielding in response to residual 
stresses and flexure. Consideration is given to the gradual yielding 
caused by residual stresses using the Column Research Council tangent 
modulus concept CRC - Et [45]. The gradual loss of stiffness of a plastic 
hinge due to flexure is represented by a parabolic function connected 
with the yield surfaces at the two end portions of a member. In this 
investigation, the yield surface given by Orbison et al. [46] which has 
been shown to accurately characterize the inelastic behavior of light to 
medium weight wide flange sections was employed. Since the inelastic 
behavior is considered to be lumped at the two ends of the member, this 
method is advantageous in that it is straightforward in formulation and 
execution and, more importantly, it requires the fewest number of ele
ments for modeling [47]. The relationship between force and displace
ment for the beam-column element i-j is given as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
Mi

y

Mj
y

Mi
z

Mj
z

T

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EtA
L

0 0 0 0 0

0 k1y k2y 0 0 0

0 k2y k3y 0 0 0

0 0 0 k1z k2z 0

0 0 0 k2z k3z 0

0 0 0 0 0
GJ
L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
θi

y

θj
y

θi
z

θj
z

ϕ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)  

where 

k1y = ηi

(

S1y −
S2

2y

S1y

(
1 − ηj)

)
EtIy

L
(2a)  

k2y = ηiηjS2y
EtIy

L
(2b)  

k3y = ηj

(

S1y −
S2

2y

S1y

(
1 − ηi)

)
EtIy

L
(2c)  

k1z = ηi
(

S1z −
S2

2z

S1z

(
1 − ηj)

)
EtIz

L
(2d)  

k2z = ηiηjS2z
EtIz

L
(2e)  

k3z = ηj
(

S1z −
S2

2z

S1z

(
1 − ηi)

)
EtIz

L
(2f)  

where P, Mi
y, Mj

y, Mi
z, Mj

z, and T are the axial force, end bending mo
ments at node i and j with respect to weak axis (y) and strong axis (z), 
and torsion, respectively. δ, θi

y, θj
y, θi

z, θj
z and ϕ are the incremental 

axial displacement, the joint rotations at node i and j with respect to y 
and z axes, and angle of twist. The sign convention for the positive di
rections of the basic forces and displacements on the beam-column 
element as shown in Fig. 1. A is area, IyandIz are moments of inertia 
with respect to y and z axes, J is torsional modulus, and L is length of 
beam-column element, G is shear modulus of material. The shear 
deformation appears in the modified stiffness matrix by adding the slope 
of the neutral axis due to shear forces into the total rotations at two ends 

Fig. 1. 3D beam-column element.  
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of element as following. 
The total rotations at the two ends i and j corresponding to n = (y, z) 

axes given as 
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where θi
Mn, θj
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Sn, and θj

Sn are the slope of the neutral axis due to the 
bending moment and the shear forces; GASn is shear rigidity concerning 
n axes, Si

n, Sj
n, Mi

n, and Mj
n are the shear forces and bending moments at 

two ends. By substituting Eqs. (4) and (5) into (3), then invert the ob
tained relation we have the basic force and deformation relationship 
including shear deformation as 
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Eq. (6) is extended by constructing the stiffness matrix of general 
beam-column elements as follows: 
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where C denotes the modified stiffness matrix factors corresponding to 
Eq. (1) to consider the shearing deformation effect. 

According to the CRC concept, Et is tangent modulus used to account 
for gradual yielding effects caused by residual stresses over the length of 
members subjected to axial loads between two plastic hinges. When this 
model contains the right geometrical imperfections, it can provide a 
very excellent comparison to the plastic zone solutions [48]. According 
to Liew et al. [23], the CRC - Et can be expressed as follows: 
⎧
⎪⎨

⎪⎩

Et = 1.0E if P ≤ 0.5Py

Et = 4
P
Py

(

1 −
P
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)
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(8)  

where E is elastic modulus of material and Py is squash load. 
In Eq. (2.a-f), S1y,S2y,S1z,andS2z are the stability function capturing 

for the geometric nonlinear effect [44]; ηi,andηj are scalar parameters 
that provide a gradual decrease in the inelastic stiffness of the element 
due to plastification at ends i and j, respectively. When the force-state 
parameter α is less than 0.5, indicating that the element is still in an 
elastic state, these terms are equal to 1.0. They decrease gradually to 
zero according to the relation η = 4α(1 − α) when α is larger than 0.5; 

that is, the end section of the element begins to plasticize until it be
comes a complete plastic hinge. The parameter α is expressed by Orbi
son’s yield surfaces [46] as 

α = 1.15p2 + m2
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y + 3.67p2m2
z + 3.0p6m2

y + 4.65m4
z m2
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for strong axis; in which Mpy 

and Mpz are plastic moment capacity of cross-section about y and z axes, 
respectively. 

To consider the effect of local and lateral torsional buckling, we use 
the practical LRFD equations [49] to determine the local buckling 
strength, Mnl, and the lateral torsional buckling strength, Mnt. For the 
local buckling effect, advanced analysis uses the local buckling strength 
Mnl determined by the following equation 

Mnl =
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where Mp and Mr are plastic moment and limiting buckling moment, 
respectively; λ, λp, and λr are slenderness, limiting slenderness for a 
compact section, and limiting slenderness for a noncompact section, 
respectively. Sx is elastic section modulus about major axis; and Fcr is the 
critical stress. 

For the lateral-torsional buckling effect, the nominal buckling 
strength Mnt is determined using the following equation 

Mnt =
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where Lb, Lp, and Lr are distance between points braced to prevent twist 
of the cross section, limiting laterally unbraced length for I-shaped 
members, and limiting laterally unbraced length for doubly symmetric I- 
shaped members, respectively; Cb is a lateral-torsional buckling modi
fication factor non-uniform moment diagrams; E, Iy, G, J, and Cw are 
elastic modulus, moment of inertia about y-axis, shear modulus of 
elasticity of steel, torsional constant, and warping constant, respectively. 

When the local buckling and the lateral-torsional buckling are 
considered, the plastic moment, Mpz, of Eq. (9) is replaced by the 
buckling strength Mn = min(Mnl, Mnt) [50,51]. 

Eq. (1) provides the tangent stiffness matrix after updating to ac
count for the transverse shear deformation effect established in the 
member’s local coordination. The transformation matrix T [44] will 
transfer it to global coordination via equilibrium and kinematic re
lations. The structure is regarded to impose no side-sway in the 
beam-column member during the established procedure. However, 
because member movement in global coordination causes structural 
sway, additional axial and shear forces must be supplied to the member. 
This circumstance is known as the P-Δ effect, and it was accounted for 
throughout the structure’s analysis by including the geometric stiffness 
matrix [Kg]12×12 [52]. The following is the final tangent stiffness matrix 
of the beam-column element in global coordinate considering both 
geometric nonlinear (P-δ, P-Δ) and material nonlinear inelastic effects: 

[K]12x12 = [T]T6x12[Ke]6x6[T]6x12 +
[
Kg
]

12x12 (12)  

and the general force-displacement relationship of beam-column 
element can be written as 

{f} = [K]12x12{d} (13)  
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in which [T]T6x12 is the transformation matrix, while superscript T in
dicates the transfer notion. [Ke]6x6 is the tangent stiffness matrix of the 
beam-column element in the local coordinate. [Kg]12x12 is a geometric 
stiffness matrix used to account for large displacement effect in the 
global coordinate. {f}and{d} are the force and displacement vectors at 
the element nodes in the global coordinate. 

Finally, we derive the system stiffness matrix [K] encompassing the 
advanced effects of interest by assembling the element tangent stiffness 
matrices of Eq. (12) and node force vectors in Eq. (13) and then solving 
the nonlinear problem to find the displacements of the steel frame 
structure. 

2.2. Implementation 

For the second order refined plastic-hinge analysis method 
mentioned above, the relation between a force vector and displacement 
is nonlinear and the displacement often depend on the displacements at 
earlier stages. For this reason, we make the problem discrete in time 
with increments and to achieve equilibrium at the end of the increments, 
we use an iterative solution algorithm. This method is straightforward in 
implementation, and efficient in computation. In the incremental pro
cedure, the magnitude of incremental loads specified in the input data is 
automatically adjusted in the program such that plastic hinges will not 
form within the load increment predetermined through input data. 
Thus, subsequent element stiffness formulation will account for stiffness 
reduction due to the presence of plastic hinges. The analysis program 
scales a predetermined load increment when the change in the element 
stiffness parameter exceeds a tolerance which is predefined in the 
analysis program. This automatic scaling of incremental loads leads to 
minimize the error in using the simple incremental solution method. 

In this study, we apply the two incremental-iterative methods in 
parallel to make a dual algorithm technique to find the solution vectors. 
The modified Newton-Raphson algorithm [53] is called for solving 
nonlinear inelastic problem to determine the maximum response state of 
the structure under load actions, and then the Generalized Displacement 
Control method [54] is called to determine the ultimate resistance state 
of structure. The Stochastic Practical Advanced Analysis Program 
(SPAAP) is, therefore, developed in random field of input factors in 
whole structure to find accurate results, reliability index and sensitivity 
of parameters in straightforward way but high efficiency as follows. 

3. Sampling techniques 

Several techniques may be utilized to solve the safety structure 
challenges since the input parameters are uncertain factors that affect 
the system’s true responsiveness, reliability, and sensitivity. The simu
lation techniques are presented as one feasible way to solve such 
problems. The essential objective is to numerically simulate a phe
nomenon and then count the number of times a particular event occurs. 

3.1. Monte carlo sampling 

The Monte Carlo method is a methodology that allows us to obtain 
numerical findings without conducting any physical testing. We can use 
existing experimental results (or other information) to calculate the 
probability distributions of the main parameters in our situation. After 
that, the distribution information is used to generate numerical data 
samples. This strategy is used to address complex issues where closed- 
form solutions are either impossible or extremely difficult to find. In 
some cases, if the closed-form solution can be solved (or at least), many 
simplifying assumptions are made, whereas MCS allow us to investigate 
the original problem without any assumptions and acquire more real
istic conclusions. The sample data sets are generated as follows based on 
the known probability distribution of uncertain input parameters: 

- Generation of Normal Random Numbers: 

Because normal probability distribution is most commonly employed 
in this study, the ability to model normally distributed random variables 
is crucial. To begin, we must construct a set of standard normal random 
numbers z1, z2, …, zn. To achieve this, we must first generate a series of 
uniformly distributed random variables u1, u2, …, un between 0 and 1. 
Then, for each ui, we may compute a value zi as, 

zi = Φ− 1(ui) (14)  

where Φ− 1 is the inverse of the standard normal cumulative distributed 
function. Assuming we have a normally distributed random variable X 
with mean μX and standard deviation σX, we can determine the appro
priate xi value using 

xi = μX + ziσX (15)  

- Generation of Lognormal Random Numbers 
Assume X is a lognormal random variable with a mean μX and a 

standard deviation σX. To obtain a sample value xi, we first construct a 
sample value ui of a uniformly distributed random number with a 
probability such that 0 ≤ ui ≤ 1. Then, using Eq. (14), a sample value zi 
from a standard normal distribution is calculated. Finally, we can 
deduce xi from the relationship between normal and lognormal variables 
as follows: 

xi = exp(μlnX + ziσlnX) (16)  

where 

σlnX =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ln
(
V2

X + 1
)√

(17)  

μlnX = ln(μX) −
1
2
σ2

lnX (18)  

in which VX is the coefficient of variation of random variable X. 

3.2. Latin hypercube sampling 

The MCS often induces lower convergence rate because of its poor 
space-filling properties (irregular distribution data), i.e., there are too 
many sample points in one place while other regions have no sample 
points. This approach, therefore, has not received an overwhelming 
acceptance due to the excessive computational effort that is required. 
Several sampling techniques, called variance reduction techniques, have 
been developed in order to improve the computational efficiency of MCS 
by reducing its statistical error and keeping the smallest sample size. 
Because of its simplicity and efficacy, importance sampling has been the 
most extensively used variance reduction strategy [55], although it is 
dependent on the importance function used, which is connected to the 
simulation’s convergence speed and accuracy. When the output contains 
a large number of random variables with varying probability distribu
tions, selecting the importance function incorrectly may result in 
incorrect results. 

LHS is a stratified sampling technique. In conventional random 
sampling, new sample points are created without regard for prior sample 
points, or the number of sample points required. In LHS, one must pick 
how many sample points to utilize and memorize each one’s overall 
position. Unlike pseudo-random generators, this sampling method as
sures that the generated samples are more evenly dispersed in the 
sample space. LHS has two effortless steps: 1) Divide each random 
variable’s range into N equal-mass bins; 2) Generate one sample from 
each bin. This method has the advantage of reducing statistical variance 
and converges faster than MCS, yet the random variables are sampled 
from the entire range of values, guaranteeing that no subdomain is over- 
sampled. 

According to the previously mentioned techniques, a subroutine is 
constructed by the own MATLAB script to produce pseudo - random 
input parameters into the analysis program for collecting desired 
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information of interest. 

4. Numerical examples and discussions 

4.1. Typical space steel frame structure 

The purpose of this section is to present the application of the 
developed program to investigate the stochastic response of steel frame 
structure compared to the deterministic analysis, and to evaluate the 
sensitivity and correlation of the input and output parameters. In fact, 
several different structures have been investigated, for example a two- 
story frame structure, however, the comparison results showed the 
same trend. Therefore, in this paper, we only present the analysis results 
of a six-story steel frame as a typical problem. The 63-member steel 
structure as shown in Fig. 2 is constructed using A36 steel and W-shaped 
steel in accordance with AISC Manual [56]. Twelve columns employ 
W12×87, six columns employ W12×120, twelve columns employ 
W10×60, nine beams employ W12×53, six beams employ W12×87, and 
eighteen beams employ W12×26. The types of W-shape steel for each 
member in this frame were selected by Liew et al. [19]. The material 
properties of all sections with their nominal values are the yield stress of 
250 MPa, the Elastic modulus of 200 GPa, and Poisson’s ratio of 0.3. All 
joints between beam and column are assumed rigid connections and the 
frame is rigidly fixed to the ground. The nominal gravity load is a uni
form floor load of 9.6 kN/m2 equivalent to concentrated loads applied at 
the columns of every story. The nominal wind load is assumed as point 
loads of 53.376 kN applied in Y-direction on the front elevation at all 
beam-column joints. All columns and beams are considered to be 
compact and to have sufficient lateral support allowing them to rise to 
their full plastic moment capabilities without experiencing local and 
lateral buckling. 

4.2. Verification of deterministic analysis 

The steel frame used in this study is a popular example as the 
benchmark frame for progress applications of analysis approach pro
posed by Orbison [57] who used the basic plastic-hinge approach. Then 

Liew et al. [19] proposed the direct analysis under the improved plastic 
hinge technique for this frame. A spread-of-plasticity analysis for the 
inelastic approach is also introduced by Jiang et al. [15]. Kim et al. [22] 
used the nonlinear stable functions to evaluate the ultimate response of 
steel frames. In this study, we use the module of the refined plastic-hinge 
analysis with one element per member to solve this frame due to the fact 
that it is easier controllable and accurate enough with concentrated 
plasticity at the ends of the members [15]. More complicated phenom
ena like initial imperfections, buckling, and semi-rigid connections were 
not considered because their effects obviously weaken the system [51, 
58]. 

The deterministic analysis of the steel frame is conducted using the 
PAAP and its results are then compared to that conducted by the com
mercial software ABAQUS v6.14 and other research. The comparison is 
presented in Fig. 3 and Table 1. The relationship of load – displacement 
curve at node A obtained from the PAAP program is slight deviation 
compared to Liew et al. (used plastic hinge analysis, − 2.02% deviation), 
Jiang et al. (used plastic zone analysis, − 1.39% deviation) and com
mercial program ABAQUS V6.14 (used beam element B31 with ten el
ements per member, 0.09% deviation), these results prove reliability of 
the PAAP in deterministic analysis. However, the time consumed to run 
one simulation by ABAQUS is longer than the proposed program about 
10.8 times. The comparison indicates that the deterministic analysis 
using PAAP provide a reliable result, thus it can be confidently used for 
the next simulation. 

4.3. Stochastic analysis 

In practical design, we normally use the input parameters of mate
rial, geometry, and loads as constant factors and the same values are 
assigned the structural members which have the same kind. But 
distinctive features always exist in each member due to inevitable un
certainty resources. The combination together in a whole structure is 
clearly unknown, therefore, the deterministic results may hide the risks 
for the system. For these situations, we consider the response of the 
entire structure as random variable in which each input parameter of 
each individual section is a random variable, and it combines together 
randomly to form a random structure. The uncertain input parameters 
vary in their random field with a defined distribution law found by 
experimental measures in practice. The mean value of the structural 
response after running a large number of simulations may be considered 
accurately resistant capacity based on the large number law [59]. 

In this study, the principal material parameters of structural steel are 
elastic modulus (E), yield stress (Fy), Poisson’s ratio (υ), and shearing 
modulus (G), whose values are uncertain. Bartlett et al. [27] examined 
207 steel coupons and determined that the measurement of E and Fy for 
each sample has distinct values. By statistical analysis, the mean value, 

Fig. 2. Six-story space steel frame.  Fig. 3. Load-displacement curves at node A of steel frame.  
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bias factor (ratio of mean to nominal value), coefficient of variation 
(Cov), and lognormal distribution law have been determined (see 
Table 2). Therefore, each member can be considered as a random vari
able of E and Fy, creating a total of sixty-three random members per 
simulation of the steel frame. Due to its slight change, the Poisson’s ratio 
assumes as a constant value, but the shearing modulus depends on the 
variability of E through the deterministic expression G = E

2(1+ϑ). 
The geometrical section characteristics include cross-section area 

(A), bending inertia about y and z axes (Iy, Iz), shear area along y and z 
axes (Say, Saz), plastic section modulus about y and z axes (Zpy, Zpz), 
section modulus about y and z axes (Sy, Sz), and torsional modulus (J). 
These characteristics are expressed via deterministic expressions that 
depend on cross-sectional dimensions. In reality, the cross-sectional di
mensions are uncertain measured values making geometrical section 
characteristics to be uncertain. Melcher et al. [26] evaluated the vari
ability of shaped steel dimensions and their correlation based on 371 
measurements and statistical characteristics. Because there are the 
strong correlations between width of the upper and the lower flanges as 
well as the thickness of the upper and lower flanges, we only consider 
the independent randomness of four primary dimensions of height (H), 
width (B), flange thickness (tf), and web thickness (tw) whose values vary 
according to the Gaussian distribution (see Table 3). Since the di
mensions of the section fit the Normal distribution law, the geometrical 
section characteristics obey the Normal distribution as well, according 
to the central limit theorem [60]. 

In the static analysis of steel frame structures, we frequently consider 
two common loads of the dead load, and the live load, in despite of the 
fact that structures are subject to the variety of loads. Typically, the dead 
load in design is the self-weight of the structural and nonstructural parts 
that are permanently attached to the structure. Due to the varying de
grees of variance among structural and nonstructural elements, it is 
extremely challenging to precisely determine their magnitudes. There
fore, all components of the dead load are regarded as normal random 
variables [28] (see Table 4) with varying random magnitudes at every 
location on the structure. The wind load on a structure depends on a 
number of characteristics, including wind speed, wind direction, local 
topography, and a number of other variables. For design reasons, the 
wind pressure on the exterior surfaces of a structure is first estimated, 
and then converted to loads. Due to the fact that wind load varies ac
cording to the extreme value type I distribution [28] in a given time 
interval, we may estimate the instantaneous extreme magnitude of wind 
load and assume it to be constant for the analysis. 

On practical constructions, we cannot anticipate what instantaneous 
combination would occur at the moment of analysis; thus, we typically 
utilize their nominal values instead. Due to the inability to conduct 
actual experiments, it is better to investigate the random strength of the 
steel frame using the probability models in this instance. These input 
parameters are consequently modeled as random variables using the 

crude MCS approach coupled with the variance reduction method of 
LHS. The load-displacement curve for each numerical simulation has 
been computed by the PAAP program, and the precise result of steel 
frame strength is a statistical convergence after nsim pseudo-random 
samples under the law of large numbers [59] as follows: 

lim
n→nsim

Pr(|Rn − μ|< ε) = 1 (19)  

where Rn is the average response of the system’s ultimate strength, μ is 
expected value, n is the number of simulation, and ε is specified nonzero 
margin. As illustrated in Fig. 4, the convergence rate of the crude MCS 
and the technique of LHS simulations is compared. If we choose a very 
small nonzero margin of ε = 10− 7, the LHS simulation requires 321 
pseudo-random samples to converge to the expected value, whereas the 
crude MCS simulation requires 418 samples to achieve the same result. It 
demonstrates that the LHS is approximately 30% more efficient than the 
crude MCS in terms of the number of simulations; hence, the LHS is 
chosen for the other simulations in this study. 

As shown in Table 5, the SPAAP is executed multiple times to eval
uate the confidence of the probability model and to compare the out
comes of the crude MCS simulation to the LHS simulation. The 
convergence of the maximum load factor after a number of runs, with a 
deviation of less than 0.01 percent, demonstrated that the probability 
model is accurate enough to determine the precise steel frame strength. 
The comparison between the stochastic results and that of deterministic 
as shown in Fig. 5 reveals that the ultimate load-carrying capacity using 
the stochastic analysis tends to underestimate the nominal result 
approximately 3.62%. Thus, the effect of uncertain input parameters is 
considerable in practical design. 

4.3. System reliability analysis 

The uncertainty of input parameters makes the response of system to 
be unpredictable both its demand and resistance. Consequently, total 
safety cannot be attained, which necessitates that structures be con
structed with an "acceptable low" probability of failure [61]. In the 
context of structural reliability assessments, a limit state function rep
resents the border between the desired and undesirable performance of 
the structures in order to characterize failure. Let the probability of 
failure (Pf) be a function involving many random variables, and let Pf be 
defined as follows: 

Pf = P(R − S ≤ 0) = P(Q(R, S) ≤ 0) =
∫

FR(x)fS(x)dx (20)  

where R and S represent the system resistance and total load effect, 
respectively, whose values rely on the unpredictability of the uncorre
lated variables E, Fy, H, B, tf, tw, D, and W [26]. Q(R,S) is the limit state 
(performance) function whose value corresponds to the difference be
tween R and S. FR(x) represents the cumulative distribution function of 
R, while fS(x) represents the probability density function of S. Several 
methods exist for calculating the probability of failure for various 
prevalent types of limit state functions found in practice. The application 
of the simultaneous equation approach or the matrix approach to 
determine Pf is either extraordinarily difficult or impossible for struc
tural engineering problems with so many random variables. In such 
cases, MCS is the only feasible method for determining Pf or the reli
ability index β [62]. The probability of failure can be expressed by 

Table 1 
Comparison of deterministic analysis results to PAAP.  

Deterministic analysis Max. load factor Deviation (%) Time (s) 

Liew et al. 1.005 − 2.02 – 
Jiang Et al. 0.9986 − 1.39 – 
ABAQUS – 10 elements 0.9838 0.09 25 
PAAP – 1 element 0.9847 – 2.3  

Table 2 
Statistical properties of material variables.  

Property Variable Nominal Bias factor Cov. Distribution Reference 

Elastic modulus E 200 (GPa) 0.993 0.034 Lognormal [27] 
Yield stress Fy 250 (MPa) 1.002 0.06 Lognormal [27] 
Poisson’s ratio υ 0.3 1.0 0 Constant Assumed 
Shearing modulus G 76.923 (GPa) 1.0 0.034 Lognormal Dependence  
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Pf =
Nf

N
(21)  

where Nf is number of simulations when the structure failed and N is the 
total number of simulations. The reliability index β is related to the 
probability of failure by 

β = − Φ− 1( Pf
)

(22)  

where Φ− 1(.) is the inverse of the standard normal cumulative distri
bution function [61]. 

Initially, the MCS using the variance reduction method of the LHS 
technique, which is developed in MATLAB, is used to generate the 
random variables. Then, the SPAAP is invoked to execute the probabi
listic model with these simulated input parameters by the dual analysis 
algorithms. The mNR algorithm helps to define the set of the maximum 
demand displacement of the frame under acting loads and the GDC al
gorithm helps to determine the set of ultimately resistant displacement 

of structure at the time of collapse due to plastic mechanism. The set of 
limit states of the structure is determined by the difference between the 
displacement values of resistance and the demand. Lastly, the resistance, 
demand, and performance data are plotted as shown in Fig. 6. The 
probability of failure, P(Q(R,S) < 0), can be determined by reading the 
probability value at the point where a vertical line passes through the 
origin crosses the plotted data curve. Eq. (22) indicates that a reliability 
index corresponds to the value of the normal standard variable at the 
point of intersection. 

As shown in Table 6, it can be seen that the steel frame structure’s 
reliability index remains outside the range of the required target reli
ability index for the strength of the limit state. In accordance with the 
LRFD specification, the target reliability indices for steel members range 
between 2.5 and 3.0 [28], equating to a failure probability between 0.62 
and 0.13 percent. Due to the advantageous effects of force redistribu
tion, the system reliability of redundant structures is generally greater 
than that of a single member. The displacement-based reliability index 
for steel frame is an efficient and accurate solution for system reliability 
analysis based on numerical simulation and probability model in 
conjunction with advanced analysis methods. 

4.4. Sensitivity and correlation of uncertain input parameters 

4.4.1. Sensitivity in terms of coefficients of variation 
Sensitivity measurements connected to failure probability, or a 

certain limit state function are not the only things that designers are 
interested in. There are numerous instances where the impact of various 
basic variables on diverse types of structural responses is investigated. In 
general, it is a problem involving a function of random variables that 
represents a variable R response. The following are some sensitivity 
measures that can be used to estimate the impact of randomness on the 
response variable. MCS approaches provide a straightforward way to 
handle such challenges, and the LHS currently appears to be the most 
successful technique for estimating statistical parameters of structural 
response [63]. 

Table 3 
Statistical properties of cross-sectional dimension variables.  

Dimension Variable Nominal Bias factor Cov. Distribution Ref. 
W12×87 W12×120 W10×60 W12×53 W12×26     

Height H (mm) 318.00 333.26 259.49 307.82 310.37 1.001 0.0044 Normal [26,56] 
Width B (mm) 307.82 312.91 256.94 254.40 160.02 1.012 0.0103 Normal [26,56] 
Flange thickness tf (mm) 20.61 28.24 17.30 14.63 9.67 0.998 0.0480 Normal [26,56] 
Web thickness tw (mm) 13.10 18.06 10.68 8.78 5.85 1.055 0.0418 Normal [26,56]  

Table 4 
Statistical properties of loads.  

Load Variable Nominal Bias 
factor 

Cov. Distribution Reference 

Dead 
load 

D 9.6 (kN/ 
m2) 

1.05 0.1 Normal [28] 

Wind 
load 

W 53.376 
(kN) 

0.85 0.35 Gumbel [28]  

Fig. 4. Convergence rate of numerical simulation methods.  

Table 5 
Convergence of LHS and crude MCS simulations.  

Stochastic analysis Max. load factor Deviation (%) Time (s) 

SPAAP_LHS 1000 samples 0.9493 0.01 5621.9  
5000 samples 0.9491 − 0.01 28,034.2  
10,000 samples 0.9493 0.01 54,652.2 

SPAAP_MCS 1000 samples 0.9499 0.02 5619.9  
5000 samples 0.9496 − 0.01 28,175.4  
10,000 samples 0.9497 0 56,350.8  

Fig. 5. Deterministic and stochastic load-displacement curves at node A on X 
and Y axes. 
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The statistical evaluation of the set of simulated response variables Rj 
(j = 1, 2, …, n), where n is the number of simulations, and their means 
and coefficients of variation are presented in Table 7. We designate the 
partial coefficient variation vRi for the scenarios where the simulation 
process treats only the variable Xi = (E, Fy, H, B, tf, tw, L) as random. 
Other basic variables are maintained at their nominal values. These 
factors demonstrate the relative impact of random input variables on the 
unpredictability of structural response. According to Novak et al. [64], 
the approximate formula for the coefficient of variation of the response 
variable in the case of compound variable vR is as follows: 

v2
R ≅

∑7

i=1
v2

Ri
(23) 

As shown in Fig. 7, such sensitivity can be easily depicted using pie 
charts, as shown in Eq. (23). The results show that, among the individual 
basic variables, yield stress has the highest sensitivity with a ratio of 
approximately 60.6%, followed by flange thickness of shaped steel with 
a ratio of approximately 26.6%, followed by loads with a sensitivity 
ratio of approximately 7.6%, and the remaining variables have small 
sensitivities, indicating a negligible influence on the resistance of steel 
structures, as showed in Fig. 7a. Among the group variables, the 

composition of material properties has the greatest influence (63.2%), 
followed by geometrical characteristics (29.2%), and finally loads 
(7.6%), as showed in Fig. 7b. 

Sensitivity data is expected to have a significant impact on the 
development of technological processes and on manufacturing of 
building materials and structures. It is possible to plan and organize the 
checking and inspection activities in a way that leads to more consistent 
constructions because of the varied sensitivity of the structural response. 

4.4.2. Correlation analysis 
Measures of sensitivity can offer designers with valuable information 

by focusing resources on decreasing uncertainty in the most sensitive 
parameters, not just for individual failure modes but also for the prob
abilities of system failure. However, this only indicates the degree of 
influence of the input variables on the structural system’s behavior and 
not the degree of mutual correlation between the basic input variables 
and the system’s overall behavior. A linear correlation research based on 
statistical theory is necessary to provide light on this question. To 
investigate this linear correlation, a statistical set of critical responses of 
steel structure frames affected by uncertainty in input parameters of 
single variables Xi and compound variables X are employed. In accor
dance with the law of large numbers, the distribution of sample data 
tends to approach the normal distribution as the number of samples 
increases to infinity [59], however a test procedure is required to ensure 
that the outcome data adhere to Gaussian distribution laws. We there
fore employ the R-programming with application of Shapiro-Wilk 
normality test to confirm this issue [65]. According to test data pre
sented in Table 7, the P-value of all scenarios is greater than 0.05, 
indicating that the outcome data has passed the significance test or that 
the distributions comply with the normal distribution. These median 
values are not statistically different, and the distribution data is 
concentrated also indicating that these distributions correspond to the 
normal distribution (see Fig. 8). As a result, the Pearson correlation 
coefficient (r) can be used to evaluate the relationship between any 
couple of variables. Using the following formula, the Pearson correlation 
coefficient was calculated: 

r =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

√ (24)  

where n is sample size; xi and yi are the individual sample points indexed 
with i of random response variable x and y; and x and y are the sample 

Fig. 6. Probability of failure for six-story steel frame structure.  

Table 6 
Probability of failure and system reliability index.  

Number of 
simulation 

Number of 
failure 

Failure 
probability 

Reliability 
index 

Target 
reliability 

2500 3 0.12% 3.04 2.5 – 3.0 
5000 3 0.06% 3.24  
10,000 5 0.05% 3.29   

Table 7 
Coefficients of variation of response variables and Shapiro-Wilk normality test.  

Scenario Variable Mean COV P value Distribution 

Elastic modulus vRE 0.9633 0.0037 0.069 Normal 
Yield stress vRFy 0.9641 0.0178 0.052 Normal 
Height vRH 0.9643 0.0016 0.918 Normal 
Width vRB 0.9643 0.0028 0.504 Normal 
Flange thickness vRtf 0.9637 0.0118 0.273 Normal 
Web thickness vRtw 0.9643 0.0017 0.512 Normal 
Loads vRL 0.9543 0.0063 0.279 Normal 
Compound vR 0.9514 0.0228 0.071 Normal  

H.-K. Dang et al.                                                                                                                                                                                                                                



Advances in Engineering Software 179 (2023) 103434

9

means of response variables x and y. 
The value of the correlation between response variables is calculated 

using R-programming as presented in Fig. 9. The results demonstrate 
that there is not mutual correlation between the effect of individual 
input parameters on the ultimate resistance of the structure. The yield 
stress of the material shows a high correlation with the structure’s 
resistance, rfy = 0.78 close to 1.0, which is consistent with the sensitivity 
analysis results in terms of coefficient of variation. In other words, the 
higher the yield stress of the steel, the stronger the resistance of the 
structural frame. This is a clear indicator to help the engineer better 
selecting a solution to increase the load carrying capacity of the steel 
structure frames. The uncertainty of cross-sectional dimensions does not 
have any significant sensitivity to the behavior of the system. Their 
linear correlation coefficient is small, close to zero, showing that the 
uncertainty in the size of the members does not considerably effect on 
the ultimate load-carrying capacity of the steel frame. The correlation 
coefficient between external load and resistance of the steel frame is 
very low as rL = 0.23. It can be concluded that the resistance of a steel 
frame is not a function of external loading. 

The investigation of the correlation coefficient between the effects of 
input variables on the resistance of the structural steel frame indicates 
that selecting a steel material with a high yield strength is more effective 
than enlarging the cross-sectional dimensions of the members. In order 
to precisely manage the ultimate resistance of steel frames, it is prefer
able to control the material properties, particularly yield strength, as 
opposed to the geometrical characteristics of the members. In addition, 
it is recommended that the self-weight be carefully evaluated, since it 

tends to result in an overestimation of the actual load capacity of the 
steel structures. 

4.4.3. Predictive models of bayesian model averaging method 
The results of the sensitivity analysis in terms of the coefficient of 

variation can provide the ranking of the uncertain input parameters 
according to their sensitivity. The Pearson correlation coefficient is 
employed to evaluate the relation between input variables and the limit 
state analysis of steel structural frames. In order to better control the 
analysis and design outcomes for complex steel frames consisting of 
many components, it is crucial to identify sensitive and highly correlated 
individual portions or components in a steel frame. Focusing on the 
precise processing of these input parameters at structural components 
that have a substantial impact on the overall structural behavior would 
reduce design risks and shorten the maintenance time of steel structure 
frames in practice. For these reasons, we employ the multi-variable 
linear regression Bayesian Model Average (BMA) [66] to predict the 
potential models which forecast the most information on the structural 
response based on individual features of components through their 
weighted factors. 

Based on the set of input data, X = (E, Fy, H, B, tf, tw, L) is generated 
by MCS simulation to find the set of critical load factor λ by the SPAAP. If 
we let M = {M1, M2, …, MK} to denote the set of all potential models, the 
posterior distribution of λ given the data X is 

p(λ|X) =
∑K

k=1
p(λ|Mk,X)p(Mk|X) (25)  

in this equation, each model’s predictions, p(λ|Mk,X), are weighted by 
the model’s posterior model probability, p(Mk|X). This term is derived 
by re-applying the Bayes rule, but this time at the level of models rather 
than parameters 

p(Mk|X) =
p(X|Mk)p(Mk)

∑K
l=1p(X|Ml)p(Ml)

(26)  

where 

p(X|Mk) =

∫

p(X|βk,Mk)p(βk|Mk)dβk (27) 

Eq. (25) is the marginal likelihood of model Mk, βk is the vector of 
parameters of model Mk, p(βk|Mk) is the prior density of βk under model 
Mk, p(X|βk,Mk) is the likelihood, and the p(Mk) is the prior probability 
that Mk is the true model. M, the set of all models under consideration, is 
implicitly conditional on all probabilities. M is defined as the set of all 
feasible combinations of predictors in this investigation. 

With these preliminary considerations, one comes at an obvious 
approach of contrasting two distinct models, which is as follows: 
Calculating the ratio of the posterior model probability of the alternative 

Fig. 7. Sensitivity levels of scenarios in randomness.  

Fig. 8. Distribution of response variables.  
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model, Mk, to the posterior model probability of the null model, Ml, is all 
that has to be done. This results in 

p(Mk|X)
p(Ml|X)

=
p(X|Mk)

p(X|Ml)
×

p(Mk)

p(Ml)
= BF10 ×

p(Mk)

p(Ml)
(28)  

where BF10 is the Bayes factor, the ratio on the right hand side is the 
prior model odds, and the ratio on the left hand side is posterior model 
odds. Each of the models that we are taking into consideration is of the 
form 

λ = β0 +
∑m

i=1
βiXi + ε = Xβ + ε (29)  

where X is a n x (m + 1) matrix containing the observed data on m 
predictors. The n vector λ contains the observed data on the dependent 
variable. We give ε a normal distribution with a mean of zero and a 
variance of σ2, and we suppose that the ε′s in different circumstances are 
independent. The (m + 1) individual parameters β and σ2 are assumed to 
be unknown. 

The Bayes Information Criterion (BIC) is utilized by the Bayesian 
Model Averaging (BMA) algorithm to organize the models from lowest 
to highest corresponding to their model parameters. The frequency of 
occurrence of each input parameter and its location within the ideal 
models, as well as their weighted factors, will reveal the level of influ
ence on the structure’s ultimate resistance. 

This paper employs a typical steel frame construction to investigate a 
numerical model with 63 members corresponding to 408 random vari
ables for each simulation (i.e., there are 408 sets of input data of X). To 
facilitate the process of selecting optimal models, we divide the structure 
into six main groups based on the shaped steels used for Beams and 
Columns (W12×87C, W12×87B, W12×53B, W12×120C, W12×26B, 
and W10×60C), with each group containing six input parameters (E, Fy, 
H, B, tf, tw), and a set of load variables (L). Thus, we are left with thirty- 

seven sets of predictors in order to locate the optimal models using the 
BMA technique. The R programming language is utilized to identify 
probable models that might be used to understand the ultimate resis
tance of a structure with minimal input parameter variables. 

The BMA method identifies 340 potential models, of which five are 
selected as the best based on evaluation according to BIC criteria, 
determination factor (R2), and the number of variables needed to predict 
results (see Table 8). Notably, the variables are related to the material’s 
intensity and the flange thickness of the shaped steels, which occur with 
a probability of one hundred percent in any possible model. This 
conclusion corresponds with the findings of the sensitivity analysis and 
the Pearson correlation coefficient. In addition, the BMA method gives 
proof of the structural components that are most susceptible to the 
structural steel frame’s strength. Model 1 is considered the best model 
based on the smallest BIC index, and it only requires five input variables 
to explain approximately 21.9% of the steel frame; nevertheless, its 
posterior probability is just about 1.9%. Other models’ capacity to 
explain the steel frame’s resistance is approximately 0.5% to 1% 
stronger than Model 1, despite the fact that these models require more 
predictors (6–7 variables) than Model 1 (5 variables). Importantly, we 
have the results of the BMA analysis, which is utilized to identify the 
components or members that have the largest impact on the steel 
frame’s ultimate strength. 

According to the detailed results in Table 8, the yield stress of the 
W12×53 shaped steel beams and the W12×87 corner columns is 
remarkable. In the predicted models, their expected linear regression 
coefficients are 1.52e-3 with a standard deviation of 1.2e-4 and 1.11e-3 
with a standard deviation of 1.35e-4, respectively. The flange thick
nesses of the steel frame’s outer side beams W12×53 and corner col
umns W12×87 are worth considering for the influence of geometrical 
characteristics. Their expected linear regression coefficients are 1.46e-2 
and 7.82e-3, with standard deviations of 2.53e-3 and 1.99e-3, respec
tively. Finally, the expected linear regression coefficient for the load 

Fig. 9. Pearson correlation coefficient of any two variables.  
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factor is 9.27e-7, with a standard deviation of 1.99e-7. These numbers 
are exceedingly minor compared to the effects of material and geometry 
factors, but they should still be taken into account because they show up 
100% in models that estimate steel frame resistance, especially the self- 
weight of construction components and accessories. 

Fig. 10 depicts the occurrence probability of predictors in models 
that forecast the maximum load factor of the steel frame. The results 
demonstrate that the influence of uncertainty in elastic modulus values 
has negligible effect on steel frame behavior. Only the elastic modulus of 
W12×87 shaped steel columns is relevant since it occurs in the models at 
about 39% of the total. The elastic modulus of W12×26 shaped steel 
beams emerges in the models at only about 0.1%, whereas the rest of the 
members have no meaningful influence. The uncertainty of the yield 
stress value is notable in comparison to the elastic modulus value. The 
yield strength of steel beams W12×53 and steel columns W12×87 ap
pears in the predicted models at 100%, whereas steel columns in 
W12×120 appear at 39.3%, upper floor steel columns W10×60, and 
steel beams in between W12×87 appear at 1.1% and 1.4%, respectively. 
The yield strength of the W12×26 transverse beams, in particular, does 
not show in the predicted models. For the structural cross-sectional 
height, the influence of the height of the W12×53 steel beams appears 
to be approximately 14.5%, 11.1% for the W12×26 beams, and 9% for 
the W12×87 beams. The rest does not appear in the models. Variation in 
member flange width has insignificant effect on steel frame behavior. Its 
occurrence in the models is predicted to be exceedingly small, approx
imately 4.8% for W12×53 beams, 2.2% for W12×87 columns, and the 

remainder is negligible. Meanwhile, flange thickness uncertainties are 
obvious as they feature prominently in the predicted models. The flange 
thickness parameters of W12×53 beams and W12×87 columns appear 
in the models 100% of the time, 54.9% for W12×26 beams, 32.4% for 
W10×60 columns, 35.2% for W12×87 beams, and 23.6% for W12×120 
columns. The influence of uncertainty in web thickness of members is 
likewise negligible. Only steel columns W10×60 and W12×85 occur in 
the predicted models with probabilities of 5.4% and 2.3%, respectively. 
The remaining elements are nearly nonexistent. 

Consequently, the results of the analysis of the multi-variable linear 
regression models according to the BMA method for a typical steel frame 
indicate that in the design of steel frame structures, the geometrical and 
material properties of the structures’ outer boundary beams and steel 
columns at structural corners should be given special consideration. 
Inaccurate calculations to limit mistakes when assessing the self-weight 
of components and accessories prior to their incorporation into the 
design must also be addressed since they pose a danger of over
estimating the structure’s load-carrying capacity. In addition, it is 
required to pay special attention to checking the placements of these 
components during maintenance work in order to make an acceptable 
correct assessment of the steel frames’ operating capacity instead of 
being time-consuming to check the whole components of the structure. 

5. Conclusions 

This study proposes a probability model, the so-called SPAAP, based 

Table 8 
Five best models of prediction.  

Variable Prob. Expected value Standard deviation Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept 100 − 2.48E-01 5.93E-01 6.44E-02 − 7.67E-02 − 3.57E-02 − 1.38E-01 − 2.35E-01 
Elas_26 0.1 3.56E-10 1.62E-08 . . . . . 
Elas_53 0 0.00E+00 0.00E+00 . . . . . 
Elas_60 0 0.00E+00 0.00E+00 . . . . . 
Elas_87B 0 0.00E+00 0.00E+00 . . . . . 
Elas_87C 39 2.92E-07 4.10E-07 . . . . 7.68E-07 
Elas_120 0.7 1.95E-09 2.93E-08 . . . . . 
Yie_26 0 0.00E+00 0.00E+00 . . . . . 
Yie_53 100 1.52E-03 1.20E-04 1.52E-03 1.52E-03 1.52E-03 1.50E-03 1.52E-03 
Yie_60 1.1 1.84E-06 2.27E-05 . . . . . 
Yie_87B 1.4 1.88E-06 1.94E-05 . . . . . 
Yie_87C 100 1.11E-03 1.35E-04 1.11E-03 1.12E-03 1.10E-03 1.12E-03 1.11E-03 
Yie_120 39.3 9.57E-05 1.34E-04 . . . 2.50E-04 . 
Hei_26 11.1 − 4.01E-04 1.29E-03 . . . . . 
Hei_53 14.5 3.87E-04 1.06E-03 . . . . . 
Hei_60 0 0.00E+00 0.00E+00 . . . . . 
Hei_87B 9 1.79E-04 6.47E-04 . . . . . 
Hei_87C 0 0.00E+00 0.00E+00 . . . . . 
Hei_120 0 0.00E+00 0.00E+00 . . . . . 
Wid_26 0.8 1.37E-05 2.03E-04 . . . . . 
Wid_53 4.8 5.68E-05 2.96E-04 . . . . . 
Wid_60 0 0.00E+00 0.00E+00 . . . . . 
Wid_87B 0.6 2.94E-06 5.22E-05 . . . . . 
Wid_87C 2.2 2.01E-05 1.64E-04 . . . . . 
Wid_120 0 0.00E+00 0.00E+00 . . . . . 
Flan_26 54.9 7.62E-03 7.91E-03 . 1.36E-02 . 1.37E-02 1.43E-02 
Flan_53 100 1.46E-02 2.53E-03 1.48E-02 1.49E-02 1.45E-02 1.50E-02 1.46E-02 
Flan_60 32.4 1.94E-03 3.14E-03 . . 6.40E-03 . . 
Flan_87B 35.2 1.21E-03 1.84E-03 . . . . . 
Flan_87C 100 7.82E-03 1.99E-03 7.72E-03 7.89E-03 7.56E-03 7.89E-03 8.24E-03 
Flan_120 23.6 5.57E-04 1.12E-03 . . . . . 
Web_26 0 0.00E+00 0.00E+00 . . . . . 
Web_53 0 0.00E+00 0.00E+00 . . . . . 
Web_60 5.4 4.49E-04 2.16E-03 . . . . . 
Web_87B 0 0.00E+00 0.00E+00 . . . . . 
Web_87C 2.3 1.25E-04 9.89E-04 . . . . . 
Web_120 0 0.00E+00 0.00E+00 . . . . . 
Loads 100 9.27E-07 1.99E-07 9.40E-07 9.18E-07 9.31E-07 9.18E-07 9.23E-07 
Number of variables 5 6 6 7 7 
Determination factor (R2)  0.219 0.224 0.224 0.229 0.229 
Bayesian information criterion (BIC) − 2.13E+2 − 2.13E+2 − 2.12E+2 − 2.12E+2 − 2.12E+2 
Posterior probability  0.019 0.019 0.018 0.017 0.017  
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on non-intrusive MCS simulation combined with advanced nonlinear 
inelastic analysis to generate a random set of structural steel frame re
sponses. The statistical dataset of the stochastic response of a typical 
steel structure illustrated the efficiency of the proposed method. The 
conclusions of this study can be drawn as follows.  

- The stochastic analysis of the load carrying capability of the steel 
frame produces more accurate results than the deterministic anal
ysis. The findings of the stochastic analysis invariably converge to a 
value lower than about 3% indicating that the deterministic analysis 
results based on the nominal input parameters are less accurate. A 
stochastic analysis should be carried out during the practical design 
to define an appropriate safety factor instead of using the safety 
factor in the standards to aim at saving construction costs.  

- The LHS random variable generation technique associated with a 
refined plastic-hinge analysis algorithm is highly successful for 
approximate study of steel frame behavior due to the ability of 
convergence after about 350 repetitions. 

- The yield strength of the material has a major influence on the ul
timate resistance of the steel frame. In order to increase the load- 
carrying capacity of the steel structure’s frame, it is recommended 
to increase the yield strength of steel rather than other characteristic 
factors.  

- The beam members on the sides and columns at the corners of the 
lower levels are extremely sensitive to the steel frame’s response. 
Therefore, it is essential to pay careful attention to these input pa
rameters in the computational simulation and to make better de
cisions regarding the maintenance of steel frame components. 
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