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Colossal Kerr nonlinearity 
without absorption in a five‑level 
atomic medium
Nguyen Huy Bang  & Le Van Doai *

In this work, we present an analytical method to achieve giant Kerr nonlinearity without absorption 
in a five‑level atomic medium. By using iterative perturbation technique on density matrix equations, 
we have derived the analytical expressions of nonlinear susceptibility and Kerr nonlinear coefficient in 
the presence of spontaneously generated coherence (SGC) and relative phase between applied laser 
fields. It shows that, this five‑level atomic medium exhibits multiple electromagnetically induced 
transparency (EIT) at three different frequencies, at the same time, the Kerr nonlinear coefficient 
is enhanced around three transparent spectral regions; in each such EIT region appears a pair of 
positive–negative peaks of Kerr nonlinear coefficient. In particular, these nonlinear peaks are moved 
to the center of the EIT windows via SGC. This means that the Kerr nonlinear coefficient is enhanced 
with completely suppressed absorption at different transparency frequencies. Furthermore, the 
magnitude and the sign of the Kerr nonlinear coefficient are easily controlled according to the SGC 
strength, the coupling laser intensity, and the relative phase between applied laser fields. Such a 
giant nonlinear medium can be useful for photonic devices working in the resonant frequency region 
without absorption. As a typical application, this giant Kerr nonlinear material has been applied to 
an interferometer for the formation of optical bistability, and showed the appearance of OB at the 
resonant frequency with significantly reduced threshold intensity and OB width.

As we known that, Kerr nonlinear materials play a very important role in photonic devices such as optical bista-
bility, optical switches, optical memory, logic gates, four-wave mixing, optical solitions, etc.,1. However, most 
optical materials exhibit extremely weak nonlinearity, necessitating high-intensity light sources to induce non-
linear optical phenomena. Of course, in the atomic resonance region the nonlinearity can significantly enhanced, 
but the light signal is also strongly absorbed by the atomic medium. Therefore, the search for large nonlinear 
materials is essential to be able to observe nonlinear optical effects with low intensity lights. In the past decades, 
the discovery of electromagnetically induced transparency (EIT)2 has yielded an excellent method to obtain 
the giant Kerr nonlinearity of the atomic medium in the vicinity of atomic resonance frequency with reduced 
 absorption3,4. Indeed, Wang et al.4 have theoretically and experimentally demonstrated the giant enhancement of 
Kerr nonlinear coefficient in a three-level atomic medium under EIT condition. They then used this EIT material 
to create the OB effect with very low threshold  intensity5. In addition, in the presence of EIT the magnitude and 
the sign of the Kerr nonlinearity can be changed by adjusting the intensity or the frequency of the laser  beams4,6, 
so that the nonlinear optical phenomena are also easily manipulated by the external  fields7.

Besides, current interests are focused on multi-level atomic media with multiple transparency frequencies 
occurring at different atomic transitions, and hence the Kerr nonlinearity can also be enhanced at various trans-
parency  frequencies8–12. In general, to achieve multi-window EIT it is necessary to use several coupling laser fields 
(along with a probe laser field)13. More simply, we can use a single coupling laser field to excite several closely 
spaced hyperfine levels. In particular, the five-level cascade-type configuration of the 85Rb atom is considered a 
typical model for multi-EIT generation of hyperfine levels. Wang et al.14 experimentally observed EIT spectrum 
of five-level cascade-type 85Rb atom, revealing three EIT windows. Theoretically, we have presented an analytical 
method for electromagnetically induced transparency in this five-level atomic  system15 and subsequently devel-
oped the model to study the enhancement of Kerr  nonlinearity16–20. It is demonstrated that the Kerr nonlinearity 
is basically modified and greatly enhanced around three frequency regions corresponding to three EIT windows. 
Furthermore, the magnitude and the sign of the Kerr nonlinear coefficient can be controlled by adjusting the 
intensity and the frequency of the applied laser fields. These analytical models have been employed to generate 
multi-frequency OB  effect21 and to fit the experimental EIT spectra of multi-level atomic  systems22,23.
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Despite the giant nonlinearity exhibited by EIT materials near transparent spectral region (called as EIT 
window), the nonlinear coefficient is still zero at the center of the EIT window (where absorption is zero)4,16. To 
address this limitation, several  studies24–26 have utilized spontaneously generated coherence (SGC) to shift the 
enhanced nonlinear peaks towards the center of the EIT window, enabling maximum nonlinearity with com-
pletely suppressed absorption. This approach allows nonlinear optical effects to occur with single photon. As we 
know that, SGC is the quantum interference effect arising from the spontaneous emission processes in atomic 
or molecular system with nonorthogonality of electric dipole moments induced by coherent light  fields27. It also 
profoundly modifies the optical response of the atomic medium without destroying the EIT  effect28. The influence 
of SGC on the optical properties of three-level atomic systems has been basically investigated for absorption and 
 dispersion28,29, group  velocity30,31, optical  bistability32,33 and pulse  propagation34. It was shown that the SGC can 
be used as a “knob” to control the optical properties of the atomic medium. Moreover, the responses of the atomic 
system with SGC are highly sensitive to the relative phase of the applied laser  fields30,32. Regarding the nonlinear 
optical property, Niu et al.24 first derived expressions for the Kerr nonlinearity of three-level atomic systems in the 
presence of SGC and achieved giant Kerr nonlinearity with zero absorption via SGC. In addition, with the pres-
ence of the SGC effect, the magnitude of Kerr nonlinear coefficient also depends on the relative phase between 
the applied laser  fields35. However, these studies only achieve Kerr nonlinearity enhancement at one transparent 
spectral region, resulting in only one pair of negative–positive values of the nonlinear coefficient emerging in 
the EIT window at the resonance frequency. Very recently, the influence of SGC on the linear optical properties 
including absorption, dispersion and group index in the five-level atomic system has also  presented36. It showed 
that all three EIT windows of system become deeper and narrower as the SGC strength increases, leading to an 
increase in the slope and the amplitude of the dispersion and group index curves. However, there is still a lack of 
a Kerr nonlinear model of a multi-level atomic system in the presence of SCG and laser phase that can achieve 
giant Kerr nonlinearities at many resonant frequencies with suppressed absorption.

In this work, using an iterative method we derive the density matrix solutions up to third-order perturba-
tion, and the expression for Kerr nonlinear coefficient of the five-level atomic system under SGC and the relative 
phase. We then investigate the influence of SGC and relative phase on Kerr nonlinearity to achieve giant Kerr 
nonlinearity at multiple light frequencies with zero absorption, which can be useful for photonic devices working 
at low intensity lights. As a typical application, we apply this material to an interferometer for the formation of 
optical bistability at the atomic resonance frequency.

Theoretical model
Figure 1 shows a five-level atomic diagram of cascade-type configuration that excited by a probe laser field and 
only one coupling laser field. The weak probe laser field is applied to the transition |1⟩ ↔|2⟩, while the intense 
coupling laser field is coupled simultaneously three transitions |2⟩ ↔|3⟩, |2⟩ ↔|4⟩ and |2⟩ ↔|5⟩. The spontane-
ous decay rates of the upper level |i⟩ to the lower level |k⟩ are denoted by 2γi. We define �p = d21Ep/2� and 
�c = d32Ec/2� are Rabi frequency of the probe and coupling fields, respectively, with dik represents the dipole 
moment of the |i⟩ ↔|k⟩ transition. The coupling strengths between the level |2⟩ with three hyperfine levels 
|3⟩, |4⟩ and |5⟩ are given by a32 = d32/d32 , a42 = d42/d32 , and a52 = d52/d32 . The frequency detunings of the 
probe and coupling lasers from the atomic resonant frequencies are respectively defined as �p = ω21 − ωp and 
�c = ω32 − ωc . Let φp and φc be the phase of the probe and coupling fields, then φ = φp–φc is the relative phase 
between the probe and coupling fields.

The evolution of the atomic states in the applied laser fields obeys the Liouville equation as follows:

Figure 1.  Schematic diagram of five-level cascade-type atomic system.
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where H is the total Hamiltonian which can be written in the interaction picture as:

In the presence of the SGC, the relaxation operator �ρ is given  by37:

here, S+2 = |2��1| , S−2 = |1��2| , S+3 = |3��2| , S−2 = |2��3| , S+4 = |4��2| , S−4 = |2��4| and S+5 = |5��2| , S−5 = |2��5| 
are symmetric and antisymmetric superpositions of the dipole moments, respectively; and ρ is a 5 × 5 matrix in 
which the matrix element in the ith row and the jth column is equal to 1, and the rest is  zero36.

From Eqs. (1)–(3), the density matrix equations involving the SGC and the relative phase can be derived 
under the dipole and rotating-wave approximations as:
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where γ21 = γ2 + i�p , γ31 = γ3 + i(�p +�c) , γ41 = γ4 + i(�p +�c + δ1) , γ51 = γ5 + i(�p +�c − δ2) , 
γ32 = γ2 + γ3 + i�c , γ42 = γ2 + γ4 + i(�c + δ1) and γ52 = γ2 + γ5 + i(�c − δ2) , with δ1 and δ2 are the fre-
quency gaps between the hyperfine levels |4⟩-|3⟩ and |5⟩-|3⟩, respectively. The terms 2p√γ2γ3ρ32 , 2p

√
γ2γ4ρ42 

and  2p√γ2γ5ρ52 represent the quantum interference resulting from the cross-coupling between the spontaneous 
emission paths |1⟩ ↔|2⟩ and (|2⟩ ↔|3⟩, |2⟩ ↔|4⟩ and |2⟩ ↔|5⟩) that called as spontaneously generated coherence 
(SGC); p = �d21.�d32/
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represents the strength of SGC. If the two dipole moments are parallel, p = 1, and SGC is maximum. Whereas, if 
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Now, we solve the density-matrix equations in steady-state by using an iterative method that the density 

matrix elements can be written  as4:

here, ρ(0)
ik  is the initial value of density matrix when there is no external field, and ρ(r)

ik  is the rth term that is 
assumed to be proportional to the rth power of the interaction Hamiltonian. For simplicity, we choose the 
coupling field is resonant to the transition |2⟩ ↔|3⟩, i.e., Δc = 0. Under the condition that the coupling field 
is much stronger than the probe field, the zeroth-order solution is ρ(0)

11 ≈ 1 , with other elements being zero 
ρ
(0)
22 ≈ ρ

(0)
33 ≈ ρ

(0)
44 ≈ ρ

(0)
55 ≈ 0.

Under the weak-probe approximation we obtain the first-order solution of the density matrix elements as 
follows:

Using the iterative perturbation technique as in Ref.24 in which each successive approximation is calculated 
using the density matrix elements of one order less than the one being calculated, the matrix elements in the 
second order can be obtained as:

(4m)ρ11 + ρ22 + ρ33 + ρ44 + ρ55 = 1,

(4n)ρki = ρ∗
ik ,

(5)ρik = ρ
(0)
ik + ρ

(1)
ik + ρ

(2)
ik + ...+ ρ

(r)
ik ,

(6)ρ
(1)
21 = i�p

γ21 +�2
c

(

a232
γ31

+ a242
γ41

+ a252
γ51

) .

(7)ρ
(1)
31 = −�p�ca32

γ31

[

γ21 +�2
c

(

a232
γ31

+ a242
γ41

+ a252
γ51

)] .

(8)ρ
(1)
41 = −�p�ca42

γ41

[

γ21 +�2
c

(

a232
γ31

+ a242
γ41

+ a252
γ51

)] .

(9)ρ
(1)
51 = −�p�ca52

γ51

[

γ21 +�2
c

(

a232
γ31

+ a242
γ41

+ a252
γ51

)] .

(10)ρ
(2)
22 = i�p(ρ

(1)
12 − ρ

(1)
21 )

2γ2
.

(11)ρ
(2)
32 = �p(ρ

(1)
31 − ρ

(1)
13 )

2iγ32
+ 2i�ca32γ3ρ

(2)
22 − i�pγ3(ρ

(1)
31 + ρ

(1)
13 )

2
[

γ3γ32 +�2
c a

2
32

] .

(12)ρ
(2)
42 = �p(ρ

(1)
41 − ρ

(1)
14 )

2iγ42
+ 2i�ca42γ4ρ

(2)
22 − i�pγ4(ρ

(1)
41 + ρ

(1)
14 )

2
[

γ4γ42 +�2
c a

2
42

] .

(13)ρ
(2)
52 = �p(ρ

(1)
51 − ρ

(1)
15 )

2iγ52
+ 2i�ca52γ5ρ

(2)
22 − i�pγ5(ρ

(1)
51 + ρ

(1)
15 )

2
[

γ5γ52 +�2
c a

2
52

] .



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1554  | https://doi.org/10.1038/s41598-023-51134-9

www.nature.com/scientificreports/

With the above procedure, the third-order matrix elements are derived as:
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where N is the density of atoms and ε0 is the permittivity in a vacuum. On the other hand, the susceptibility can 
be expressed in the  form4:
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We note that the expression (27) represents the self-Kerr nonlinear coefficient of the five-level atomic system 
in the presence of SGC and the relative phase. It is a universal formula that can be reduced to the three-level 
ladder  system24 by neglecting simultaneously coupling between the level |2⟩ with the levels |4⟩ and |5⟩ (when 
both levels |4⟩ and |5⟩ are far from the level |3⟩). This can be done by setting the coupling parameters a52 = 0, 
a42 = 0 in Eq. (23).

Results and discussion
The theoretical model can be applied to 85Rb atoms in which the levels |1⟩, |2⟩, |3⟩, |4⟩ and |5⟩ are chosen 
as  5S1/2(F = 3),  5P3/2(F′ = 3),  5D5/2(F′′ = 2),  5D5/2(F′′ = 4) and  5D5/2(F′′ = 3), respectively. The atomic parameters 
 are14,38: N =  108 atoms/cm3, δ1 = 9 MHz, δ2 = 7.6 MHz, γ2 = 3 MHz, γ3 = γ4 = γ5 = 0.5 MHz, d21 = 1.5 ×  10–29 C.m, 
and a32:a42:a52 = 1:1.46:0.6.

In order to verify the influence of the SGC on Kerr nonlinearity in this five-level atomic system, we plotted 
the Kerr nonlinear coefficient versus the probe detuning in the absence of SGC or p = 0 (dashed line) and pres-
ence of the SGC with p = 0.9 (solid line) as described in Fig. 2. Here, the dotted line is the absorption coefficient 
with three EIT windows at the positions Δp = 0, Δp = -9 MHz and Δp = 7.6  MHz15. Figure 2 shows that when p = 0, 
the Kerr nonlinearity (n2) is remarkably enhanced around three transparent windows in which there is a pair of 
positive–negative peaks of n2 emerges in each transparent  window16. However, at the enhanced nonlinear peaks, 
there is still strong probe absorption (see the dashed line). This situation was improved when the presence of 
the SGC with p = 0.9, the Kerr nonlinear peaks are moved to the center of three EIT windows. This means that 
the Kerr nonlinearity is enhanced with completely suppressed absorption at multiple different frequencies (see 
the solid line). This can be explained as follows: the SGC effect does not destroy EIT, however, the linewidth of 
the absorption line becomes narrower and the absorption peaks on both sides of each EIT window also become 
higher than those when SGC  absents36. These lead to the slope of the nonlinear dispersion curve is steeper and 
hence the nonlinear peaks are shifted to the center of the EIT windows. Such Kerr nonlinearity can be applied 
to photonic devices working at very low light intensities and ultrahigh sensitivities, such as optical bistability, 
all optical switching, slow light, diffraction grating and so on.

The shift of the Kerr nonlinear peaks as shown in Fig. 2, indicates that at a given probe frequency the non-
linearity of the medium is also changed when adjusting the interference parameter p. For example, in Fig. 3 
we plotted the Kerr nonlinear coefficient versus the strength of SGC p at different probe detunings which cor-
responds to the enhanced nonlinear peaks at the EIT windows, Δp = − 14 MHz (solid line), Δp = 9 MHz (dashed 
line) and Δp = 5 MHz (dash-dotted line). It is found that the magnitude and the sign of the Kerr nonlinearity are 
controlled according to the strength of SGC. The Kerr nonlinear coefficient varies from positive to negative, and 

(28)n2 =
3Re(χ(3))

4ε0n
2
0c

.

Figure 2.  Variations of the Kerr nonlinear coefficient versus the probe detuning in the absence of SGC (dashed 
line) and presence of SGC with p = 0.9 (solid line). The dotted line is the absorption coefficient with three EIT 
windows at the positions Δp = 0, Δp = -9 MHz and Δp = 7.6 MHz. Other parameters are taken as Ωc0 = 8 MHz, 
Δc = 0 and φ = 0.
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vice versa, when the parameter p increases gradually. For instance, the solid line in Fig. 3 corresponding to the 
selected probe frequency Δp = − 14 MHz, we can estimate the Kerr nonlinearity coefficient at several values of 
the parameter p as follows:  n2 ≈ 2.8 ×  10–6  cm2/W at p = 0,  n2 ≈ 6.2 ×  10–6  cm2/W at p = 0.5,  n2 ≈ 0 at p = 0.63, and 
 n2 ≈ − 5.1 ×  10–6  cm2/W at p = 0.75.

Figure 3.  Variations of the Kerr nonlinear coefficient versus the strength of SGC p at different probe detunings 
Δp = -14 MHz (solid line), Δp = 9 MHz (dashed line) and Δp = 5 MHz (dash-dotted line). Other parameters are 
taken as Ωc0 = 8 MHz, Δc = 0 and φ = 0.

Figure 4.  Variations of the Kerr nonlinear coefficient versus the coupling intensity Ωc0 for the SGC strength 
p = 0 (dashed line) and p = 0.9 (solid line). Other parameters are taken as Δp = Δc = 0 and φ = 0.
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In Fig. 4, we investigate the variation of the Kerr nonlinear coefficient with coupling laser intensity Ωc0 in 
two cases with and without SGC. It shows that, along with the shift of the nonlinear peaks toward the center of 
the EIT windows by SGC, the amplitude of the nonlinear coefficient in the presence of SGC is also larger than 
that without SGC. This characteristic is similar to linear dispersion in that the dispersion curve (linear as well as 
nonlinear) becomes steeper and higher in the presence of SGC because the EIT window is narrower and deeper 
than the case without  SGC28,36. In addition, when gradually increasing the coupling laser intensity, the Kerr 
nonlinear coefficient also quickly approaches zero in the absence of SGC, but in the case of SGC, it still retains a 
certain large value. We note that an increase in coupling laser intensity leads to an increase in the depth and the 
width of the EIT window, so that it changes the amplitude and the sign of the linear and nonlinear dispersion 
curves according to the Kramers–Kronig relation.

In order to see the dependence of the Kerr nonlinear coefficient on the relative phase in the presence of SGC 
with p = 0.9, we plotted the Kerr nonlinear coefficient versus the probe detuning when φ = 0 (solid line) and φ = π/2 
(dashed line) as displayed in Fig. 5a. At different relative phases, the amplitude of the nonlinear coefficient is 
also different. The variation of the Kerr nonlinear peak (at the probe frequency Δp = − 2 MHz) according to the 

Figure 5.  (a) Variations of the Kerr nonlinear coefficient versus the probe detuning when the relative phase 
φ = 0 (solid line) and φ = π/2 (dashed line). (b) Variation of the Kerr nonlinear coefficient versus the relative 
phase φ when the probe detuning Δp = − 2 MHz. Other parameters are taken as p = 0.9, Ωc0 = 8 MHz and Δc = 0.

Figure 6.  Unidirectional ring cavity containing the five-level EIT medium of length L; EIp and ETp  are the 
incident and transmitted probe fields, respectively; Ec represents the coupling field which is noncirculating in 
the cavity.
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relative phase is plotted in Fig. 5b. Thus, the magnitude of the Kerr nonlinear coefficient is moderately modulated 
by the relative phase with a period of 2π.

As an example of application, we apply the colossal Kerr nonlinear material to an unidirectional ring cavity 
for the implementation of optical bistability, as shown in Fig. 6. In the unidirectional ring cavity, the probe field 
Ep is circulated in the cavity but nor the coupling field Ec. The incident probe field EIp enters through the beam 
splitter  P1, interacts with the Kerr nonlinear material of the length L, circulates in the cavity, and partially comes 
out of the beam splitter  P2 as ETp  . Part of the output intensity is refracted back into the medium plays the feedback 
which is essential for the generation of optical bistability.

The expression for the output-input intensity of OB via Kerr nonlinear coefficient n2 is given  by1:

where, λ is the wavelength of the probe light, Iin ∼
(

EIp

)2

 and Iout ∼
(

ETp

)2

 are incident and transmitted intensi-
ties of the probe light, n2 is determined from Eq. (28), and

is the round-trip phase of the probe light.
In Fig. 7a we plot the OB curves for different values of the strength of SGC p at two-photon resonance of the 

probe and coupling fields Δp = Δc = 0. From this figure, we can see that when p = 0, the OB effect does not appear 
because n2 is zero at Δp = 0, as depicted in Fig. 7b. However, when increasing the parameter p, the OB also gradu-
ally appears due to n2 grows with the increase of the parameter p (see Fig. 7b). At the same time, the threshold 
intensity and the width of OB are also significantly reduced (fast switching speed) when p = 0.9 due to the giant 
nonlinearity with zero absorption at Δp = 0 (see the solid line in Fig. 7a).

Conclusion
In conclusion, employing the iterative perturbation technique to find solutions of density matrix elements up to 
the third-order perturbation, we derived the analytical expressions of nonlinear susceptibility and Kerr nonlinear 
coefficient in the five-level ladder-type atomic medium including spontaneously generated coherence (SGC) 
and relative phase between the probe and coupling laser fields. Our findings demonstrate that in the presence 
of SGC (with p = 0.9), the giant enhanced Kerr nonlinearity is achieved at atomic resonance frequencies with 
completely suppressed absorption. Additionally, the magnitude and the sign of the Kerr nonlinearity can be 
effectively controlled by adjusting the SGC strength and coupling laser intensity. Moreover, the magnitude of 
the Kerr nonlinear coefficient is modulated by the relative phase with a period of 2π. Along with the shift of the 
nonlinear peaks toward the center of the EIT windows by SGC, the amplitude of the nonlinear coefficient in the 
presence of SGC is also larger than that without SGC. The medium of such giant Kerr nonlinearity is applied to 
the interferometer for the formation of optical bistability, and showed that the OB appears in the resonant fre-
quency region with the threshold intensity and the width being significantly reduced. Furthermore, our analytical 

(29)Iout =
[

1

2
+ 1

2
cos

(

2πL

�
n2Iout + φ

)]

Iin,

(30)φ = 2πL

�
n0 + ϕp,

Figure 7.  (a) Curves of the input–output intensity for different values of the strength of SGC, p = 0 (dotted 
line), p = 0.5 (dash-dotted line), p = 0.7 (dashed line) and p = 0.9 (solid line). (b) Variation of the Kerr nonlinear 
coefficient versus the strength of SGC p at Δp = Δc = 0. Other parameters are taken as Ωc0 = 8 MHz and φ = 0.
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model is also essential for the experimental observation of the Kerr nonlinear coefficient under spontaneously 
generated coherence. The experimental setups to study the EIT effect and Kerr nonlinearity of this model can 
be referred to some  works39,40.

Data availability
All the data generated/analyzed during the current study available from the corresponding author on reason-
able request.
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