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Abstract

By solving the density matrix equations in the steady state, we have derived analytical expressions for
the absorption, dispersion, and group index of a five-level cascade-type atomic system as functions of
laser intensity and frequency, spontaneously generated coherence (SGC), and relative phase of applied
fields. The influences of SGC and relative phase on absorption, dispersion, and group index of this
system under electromagnetically induced transparency (EIT) are studied. It is shown that the three
EIT windows of system become deeper and narrower as the strength of SGC increases. These lead to an
increase in the slope and the amplitude of the dispersion curves at three EIT windows. As a result, the
amplitude of the group index at these three EIT windows also becomes larger when the strength of
SGCincreases. In particular, the group index can easily be switched between negative and positive
values i.e., the light propagation can easily be converted between superluminal to subluminal modes
by adjusting the strength of SGC, relative phase or the coupling laser intensity.

1. Introduction

The coherent interaction between an atom with laser fields can produce many quantum interference
phenomena in an atomic system which can significantly change the optical properties of the atomic medium.
Among them, electromagnetically induced transparency (EIT) [ 1] has attracted considerable attention due to its
interesting applications in quantum and nonlinear optics as well as in modern photonic devices [2]. In addition
to suppressed absorption, the dispersion of the medium is also considerably modified in the transparency
frequency region, and hence the group index is easily controlled by the parameters of the applied laser fields [3].
Over the past few decades, the EIT and its applications have been widely studied in three-level atomic systems,
including lambda-type, V-type, and cascade-type schemes [2]. Recently, studies of EIT have been interested in
multi-level atomic systems due to they can generate multiple transparency frequencies [4, 5], which can be
applied to modern photonic devices operating at multiple frequencies or multiple channels [2].

In addition to the EIT effect, there is another kind of quantum interference between spontaneous emission
channels in the atomic system which can generate an additional atomic coherence, commonly known as
spontaneously generated coherence (SGC) [6], and demonstrated experimentally [7]. The SGC can also modify
remarkably the optical properties of the atomic medium. The control of absorption and dispersion according to
SGCin the three-level atomic systems including lambda-type [8], cascade-type [9] and Vee-type [10]
configurations are investigated. It showed that the SGC does not devastate EIT effect, however, the absorption
peak on both sides of EIT window becomes larger and the linewidth of absorption profile becomes narrower
than the case of the SGC absents. At the same time, the slope of the normal dispersion curve is also steeper in the
presence of SGC. This can lead to slower light velocity or subluminal light propagation [11, 12], the transition
from optical bistability (OB) to optical multistability (OM) [13], giant Kerr nonlinearity without absorption
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[14], enhanced population inversion [15], increasing entanglement in a double quantum dot structure [16], and
controlling optical switching and optical soliton [17, 18].

Recent research interest in EIT has been focused on multi-level atomic systems since they can generate
multi-EIT windows simultaneously [2]. As demonstrated by McGloin [19], a N-level atomic system excited by
N-1 laser fields can obtain N-2 EIT windows. Besides creating the multi-EIT windows, the effect of SGC in
multi-level atomic systems have also been realized in several configurations such as four-level N-type system
[20,21], four-level Y-type system [22, 23], double- A type four-level system [24] and five-level K-type atomic
system [25]. Besides the above numerical studies, there are also some theoretical models of EIT and SGC which
are presented in the analytical form [12, 26—29]. Such analytical models show more explicitly the dependence of
the atomic optical properties on the laser parameters, therefore the analytical investigations also become easier
than those of numerical simulations.

Another simple way to achieve multi-frequency transparency is to use only one pump laser field to couple
simultaneously several closely spacing hyperfine levels in atomic system. This way was first experimental
demonstrated for ®°Rb five-level cascade atomic system by Wang et al [30], and obtained three EIT windows on
the absorption profile of *>Rb atom. Analytical models of this system have also presented [31, 32] and have
shown good agreement with the experimental results [33]. Such analytical models have been applied very
successfully for the study of Kerr nonlinearity [34], optical bistability [35], group velocity [36, 37], and optical
nano-fibers for guiding entangled beams [38]. However, present works of this five-level cascade EIT system still
lack the presence of polarization and phase of laser fields.

In this work, we further develop the analytical model to control the optical properties of the five-level
cascade atomic system by the polarization and phase of applied laser fields. By solving the density matrix
equations in the steady state, we derive analytical expressions for the absorption, dispersion and group index of
the five-level cascade-type atomic system as functions of laser intensity and frequency, spontaneously generated
coherence and relative phase. The influences of the SGC and relative phase on absorption, dispersion and group
index under electromagnetically induced transparency are considered. Our analytical model may be used for
experimental verification of the SGC effect in the five-level cascade atomic system and may be developed to study
the dependence of polarization and phase of laser fields on nonlinear optical effects such as Kerr effect, optical
bistability, pulse propagation and optical switching, etc.

2. Theoretical model

The five-level cascade-type system interacting two probe and coupling laser fields is illustrated in figure 1. The
probe laser E, with frequency w,, applies the transition |1) < 12), while the coupling laser E, with frequency w,
couples simultaneously three transitions [2) < 13),12) < [4) and 12) <> |5). The spontaneous decay rate from the
state 12) to the ground state [1) is denoted by I'y, while I';, ' and T, are the spontaneous decay rate from the
states |3), 14) and I5) to the state 12), respectively. The frequency detunings of the probe and coupling lasers from
the relevant atomic transitions are respectively defined by:

Ap = Wp — W Ac = We — W32 (1)

The Rabi frequencies of probe and coupling fields are:

Q, = dy, - Ey/hand Q. = dy, - E./ 1, )
with dj; is the electric dipole moment between the states li) and ).

In the case of the two dipole moments are nonorthogonal, the angle 6 between the two dipole moments d;;
and ds, is determined by:
dy.ds

|da1||d3|
is called as the quantum interference parameter resulting from the cross-coupling between spontaneous
emission paths [2) — 1) and 13) — 12). Thus, the parameter p represents the strength of the quantum
interference by spontaneous emission processes. When the two dipole moments are orthogonal to each other,
i.e., p =0, the SGC disappears. When the two dipole moments are parallel to each, p = 1, the SGC is maximal. So,
the interference parameter p can be adjusted by controlling the alignments of two dipole moments.

The dynamical evolution of the system including spontaneous emission is governed by the Liouville
equation:

p= cosf = (3)

p= *é[H, ol + Ap, 4)
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Figure 1. The five-level cascade-type atomic system interacts with probe and coupling laser fields.

where H is the total Hamiltonian which can be written as:

> K ,
H =73 hwii) (il — Tp(|2> (1] e7i@t+9) 4 c.c)
i=1

2‘(|3> (2] azpe @t t@) 4 14) (2| age @t A) 4 |5) (2] asye i @) + ¢.0), (5)

with ¢, and ¢ are the phase of the probe and coupling fields, respectively; as, = ds,/ds;, as; = dap/ds;, and
asy = dsp/ds; characterize the coupling strengths between the state 12) with three closely-spacing states 13), 14)
and |5), respectively.

In the presence of the SGC, the relaxation operator Ap of this five-level system is determined by [39]:

Ap=—TiS"S p + pSi'S; — 257 p 81") — In(Sy'Syp + 0SSy — 28,0 S))
—I3(S5'S5p + pS5S5 — 285 S5) — Tu(SSSip + pSiSy — 2S,p S)
DS Sy p + pS'Sy — 28,0 81) — LSSy p + pS5ST — 287 p S7)
—Ds(8' S50 + pS°S5 — 2850 87) — Tn(S5'S; p + pS5°S; — 257 p S5)

—Tu(S Sy p + pSI Sy — 2S5 p Si7) — LSy ST p + pSFST — 2570 S)) (6)
Here, symmetric and antisymmetric superpositions of the dipole momentsas S;” = |1) (2| = p;,
Si = 12)(11 = pyp Sy = 12) (31 = pp3r Sy = 13) (21 = 3 S5 = 12) (4] = 50, S5 = 14) (2] = iy,
Si = 12) (5] = pr5 Si = 15) (2| = ps,, withpjjisa5 x 5 matrix in which the matrix element is in the ith row

and the jth column is equal to 1, and the rest is zero; cross-damping rates between the superpositions are defined
as Iy = py LIy, Iy = py L5, Iy = py Iy and T = F?;.After performing matrix calculations, we find
the relaxation operator Ap as follows:

Ap =
szzrl _plzrl + 2P24Q1 + 2P23F21 + 2ﬂ25F41 _p13F2 —Pl4r3 —915F4
_p21F1 + 2p4zr13 + 2/032F12 + zf)szrhl _szzn + 2/)33FZ + 2/)44F3 + 2ﬂ55F4 _p23(rl + FZ) —;024(F1 + F_%) _pzs(rl + Ei)
—p5 L2 —p0+ 1) —2p30 —py G+ D) —p G+ T, (7)
—pu s —pp(@ + T3 @+ D) =20, —pe@+ L)
_p51F4 _psz(FI + 1) _953(F4 + 1) _954(F4 +13) _2955F4

Using the dipole and rotating wave approximations [39], the density-matrix motion equations can be derived
from equations (4)—(7) as:

. i
Ps5 = EQEQSZ(Psz = P35) — 2ps551%, (3

3
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. i

Paa = EQca42(P4z = P2a) — 2pul15
. i
P33 = EQcaaz(Psz = P23) = 2p331

, i i i i
P = EQP(pﬂ - P — EQca32(P32 — pP3) — EQcﬂ42(P42 = Pa) — EQcasz(Pn = P2s)
= 2p5lh + 295515 + 2p4,15 + 2p551,

P11 = éQp(Plz = pa) + 2pp L,
Psq = [—1(61 + 62) — Iy + 13)] psy + ;;Qcomp52 - %Qcaszpu,
Ps3 = [—i0; — (In + L] ps5 + éQCQSZPSZ - %Qcaszpzs,
psy = [1(Ac — 62) — (G + Tl ps, + ;;Qppm + éQcaSZP% + ;;Qca42/’54 + ;_'Qcasz(Pss = P
ps1 = [i(Ac + Ap — 6) — Ll ps; + %Qppsz - %Qcaszpzp
Py = [I(Ac + 6) — (T + D)lpy, + %QPP41 + ;;Qca32p43 + éQcQSZPst + éQcﬂ42(P44 = Pn)
Py = LA+ Ap + o) — BGlp, + %Qpp42 - éQc‘szzp
Pz = [—i6r — (I + D)l pys — éQca42P23 + éﬂcﬂszpw
i = e = @G+ Doy + Sy + S Qasa(py — pr) + 20ty + +asa
o = (A + B) = Tilpyy + 205, — S0

, . i i i i
P = [1Ap — Llpy + EQP(Pzz — P — 5“3ZQCP31 - Eﬂcﬂ4zp41 - 596“52.051

+ 2pe™ (VN2 + pp VI + psy YL,

where 6, and 6, are the frequency gaps between the levels |4) - 13) and I5) - 13), respectively. The terms

€

(10)

(11
(12)

13)

(14)

(15)

(16)

17)

(18)

(19)

(20)

21

(22)

2pe® L ps,, 2pe®IiT5 py, and 2pe’®|/TiL ps, in equation (22) represent spontaneously generated coherence

(SGC), with @ = ¢, — ¢, is relative phase between probe and coupling fields.

Now, we analytically solve the density matrix equations under the steady-state condition by setting the time

derivatives to zero. From equations (8)—(10) and (12), we find the terms pss, p44, p33 and p,,, as follows:

i
595052(/)52 = P2s)

Pss = oT, d

i
EQca42(P42 = P24)

Paa = T »

i
EQcaﬁ(pSZ = P23)

P33 = o g

i
EQP(le = P12)
P = o0 ’

From equations (16), (18) and (21), we derive the terms ps;, p4, and ps as:

i
—Qeas;py; — V5105
_ 2
Psy = ] >
-0
P4

(23)

249

(25)

(26)

27)
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i
EQc(szm — Va1Py

Pay = i >
PR
i
EQc%zpzl — V31P31
Pz = i ’
P
Performing some simple transformations, we obtain:
i Qeas [ i |
—Qeasn(ps, — py) = ;232 —Qeaz(py — pr) — (P31 + M3013) |
2 , L2 i
i QC[LQ [ i ]
_Qca42(f)42 — Pyy) = Q— _Qca42(P21 — p12) — (a1py + Mapd) |5
2 , L2 |
i Qcasz [ i i
5956152(1052 = pys) = Q— EQcasz(le = p1) — (51051 + N5015) |
p L i

From equations (23)—(26) and combining with equations (30)—(32), we have:

—Qfﬂ;z(le — P) — 21'(23(1322(731p31 + M3P013) 4 Qchaaz(Pm = P12
00, an ’

iQcasn(ps; — py) =

_Qiafz(le — Pa) — ZiQf“zfz(Mlpu + Y14014) i QpQcasn(py — p1)
400, 4T ’

1Qcasn(py — pp) =

_Qsasaz(pﬂ — P — Zigfatszz(’YSlpsl + Y15015) + QPQCQSZ(pzl = P12
40, 40 ’

iQcas; (Pss - Pzz) =
Substituting equations (33)—(35) into equations (20), (17) and (15), we obtain:
iQca
(8Ll ys1 + 20002 — BQabys)py = — CT”(mfafz — D2 (py — p1p)

+ LiQ2a5v13015 + 460732 a3205)

iQ.a
B3y + ZEBQ; - 1—‘193%22’?41)1041 == 5 -~ L% ag, — Fsgi)(ﬂzl — P
+ L% apapy + 4057 Qeanpy),
iQ.a
(8NiTyys2ys1 + 200 — GQadys1) ps, = —Tsz(m?asé — L) (01 — p1o)

+ L2adyispy5 + 4iLy52Qas0,),

Here,

(28)

(29)

(30)

(3D

(32)

(33)

(34

(35)

(36)

(37)

(33)

Y1 = iAp -y = i(A; + Ap) — Iy = i(A; + Ap + 6y — I3, Y1 = i(A; + Ap —6) — I,

Va2 = lAc -0+ 1), Va2 = I(Ac + 51) -0+ 13 and V52 = I(Ac - 62) — (I + T}). From
equations (36)—(38), we get:

N 1(A1py; + Arpyy)

P31 = A ’
N i(Bip, + Bap,)

Py = B ’
. (G, + Capyy)

Ps1 = C ’

where:
A = AsAf, — AAS,
A = AsoAis — AH A3 4 AsgAdy,
Ay = A A5 — AspAis — AsAd),
Asyy = 28Dy vs1 + 2D — 310 asy),
Azy = Qean(GQag, — DY),
Az = 2L%aHms,

(39)
(40)

(41)

(42a)
(42b)
(42¢)
(42d)
(42e)

(42f)

5
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Az = 8L y3 2 as:. (428)

B = B42132k21 - Bl4B1>Z, (43a)

By = ByBis — BfyBis — BuBJ, (43b)

B, = Bf21B42 — ByoBi4 — B4OBZ<21, (43¢c)

By = 2080wy + 208 — v Qad), (43d)
By = QeaniQaj, — Ffo))) (43e)

Biy = 2Li0%apvia (43f)

By = 8l deaq. (432)

C= C521C5*21 — C15Cf';, (44a)

G = CsoCis — C33Cis — CsoCayy (44b)

C, = C5,Csy — Cs0Cis — Cs50Cloy, (44c)
Cso1 = 2L(8Dys2ys1 + 2062, — 751 a3), (44d)
Cso = Qeas; (T as, — Fzﬂf;), (44e)

Gis = 2L% a5, (441)

Csy = 81115752 2 asy. (44¢)

with (*) denotes the complex conjugation.
Substituting equations (39)—(41) into equations (27)—(29), we have:

i iA1p,, + iA
Egcaﬂpﬂ _ %I(M)

A
Pz = i > (45)
—Q
P P
i iB + iB
L Qappy, — 741( 1P12 2P21)
2 B
p42 = i > (46)
—Q
) P

i iCip, + iC
EQCa52p21 _ 751(%)

Psy = > (47)
QP

i
2
Substituting equations (27)—(29) and equations (45)—(47) into equation (22), and using the initial conditions
P = 1, )~ p¥ ~ pD ~ p? a2 0, we find the solution of the density matrix p,, for the probe response of
the medium,

1
-;%m+@+ﬁ>

oy = , (48)
Y ORF — 05+ B + B
Where
a32A1 a42B1 a52C1 4.61.65 A1 B1 C]
F=— + + )— (— Dy + — D + —vs10u |, 49
1= ( A B C o, o b 2l A s (49)
Q. [ anA B 5C. 4.69] (A B C
k= 7(% + 24 %) - QZ [(7273151 + S mn + FZ%IF‘“)
- %(ﬂazrzl + apls + 6152F41)]- (50)
The susceptibility of the medium for the probe laser field that is related to p,; can be written as:
2Nd},
= (51
cohi, P21
The absorption and dispersion coefficients are given by:
wyIm
_ % ) (52)
¢
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Figure 2. Plots of the absorption (a) and the dispersion (b) versus the probe detuning at the different values of SGC, p = 0 (solid line),
p =0.7 (dashed line) and p = 1 (dash-dotted line). Other parameters are used as (2. = 10 MHz, A, = 0and 2, = 2 MHz.

n=14 20 (53)
where N is the density of atoms and € is the permittivity in a vacuum.
The group index 1, which is related to the linear dispersion by the following expression:
ng =n-+ w, ﬁ (54)
Ow,

3. Results and discussion

For the following theoretical investigations, we apply the analytical model to cold *’Rb atom (using MOT, for
example) [30] with the states 1), 12),13), 14) and I5) as 5S; /,(F = 3), 5P /2(F’=3), 5D5 /2(F”=3), 5D5 ,,(F/=4)
and 5Ds ,(F”=2), respectively. For these states 6, =9 MHz, §, =7.6 MHz,I', =3 MHz,I', =T =1,=0.5
MHz, dy; =1.52 X 1072° C.m, d3, = 1.61 x 107?° C.m, as,:a45:as, = 1:1.46:0.6 and the atomic density N= 10®
atoms/cm’. The experimental realization of the SGC effect under EIT of this **Rb atomic system can be found
in [40].

In order to investigate the influence of SGC on absorption and dispersion, we fix the parameters of the
coupling and probe lasers at 2. = 10 MHz, A. = 0 (i.e., the coupling laser is resonant with the transition
12)«13)) and €2, = 2 MHz, and plot the absorption and dispersion coefficients versus the probe detuning for
different values of SGC: p = 0 (solid line), p = 0.7 (dashed line) and p = 1 (dash-dotted line) as shown in figure 2.
The solid line in figure 2(a) represents the EIT spectrum with three transparency windows at the positions A,
=0,A,=—-9MHzand A, =7.6 MHz [31]. The solid line in figure 2(b) shows the dispersion spectrum with
three normal dispersion curves corresponding to three EIT windows. As the parameter p increases, the
absorption profile becomes narrower and the absorption peaks on both sides of each EIT window also become
higher. These lead to the slope of the dispersion curves is steeper when the parameter p increases, as we can see in
figure 2(b). At the same time, the amplitude of dispersion curves is significantly increased as p increases from 0
tol.

Thus, absorption and dispersion are controlled according to SGC, so the group velocity of light can also be
manipulated versus SGC as shown in figures 3 and 4. In figure 3, we have plotted the group index versus the
probe detuning for the different values of SGC, p = 0 (solid line), p = 0.7 (dashed line), and p = 1 (dash-dotted
line). Used parameters in figure 3 are similar to those in figure 2. From figure 3 we can see that the large and
positive group index (subluminal light) appears at the frequency detunings A, = —9MHz, A, =0and A, =7.6
MHz corresponding to three EIT windows. Alternating these frequency detunings are those with large and
negative group index (superluminal light). The amplitude of the group index also becomes larger when the
parameter p increases to 1. In particular, the negative value of the group index is rapidly increased in frequency
regions having enhanced dispersion. This means that the group velocity is greatly reduced or accelerated
dramatically in the presence of SGC. To see this more clearly, in figure 4(a) we consider the variation of the group

7
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Figure 3. Plots of the group index versus the probe detuning at the different values of p = 0 (solid line), p = 0.7 (dashed line),and p =1
(dash-dotted line).

-3{ —— A,=12.5MHz R
— — A= 9MHz "-\\
-+ = Ay=-4MHz N
o Ap=-13MHz
0 0.2 0.4 0.6 0.8 1 ) 02 0.4 06 08 1
P p

Figure 4. Plots of the group index versus the parameter p at the different values of the probe detuning: variations of amplitude (a) and
sign (b) of group index when the parameter p increases from 0 to 1.

index concerning the parameter p at different probe detunings A, = —13 MHz (dotted line) and A, = 9 MHz
(dashed line) corresponding to the group index negative peaks, while at A, = —4 MHz (dash-dotted line) and
Ap, = 12.5 MHz (solid line) corresponding to the group index positive peaks in figure 3. Here, other parameters
are similar to those in figure 2. It shows that the amplitude of the group index increases (both positive and
negative values) as the interference parameter p increases from 0 to 1. Especially, at frequency detunings A,

= —4 MHz (dash-dotted line) and A, = 12.5 MHz (solid line), the amplitude of the group index is remarkably
enhanced.

In addition, figure 4(b) shows that the interference parameter p can be used as a ‘knob’ to change the sign of
group index between positive to negative values. Here, we have plotted the group index with respect to the
parameter p at different probe detunings A, = —14.5 MHz (dash-dotted line), A, = —1 MHz (dashed line) and
A, = 11 MHz (solid line) which corresponds to the negative values of group index in figure 3. It is found that the
sign of the group index can be varied from negative to positive, or vice versa when adjusting the parameter p

8
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Figure 5. Plots of the group index versus the coupling Rabi frequency at three EIT windows A, =0 (a), A, = —9 MHz (b) and

A, =7.6 MHz(c), and in the presence of SGC with p = 0 (solid line), p = 0.7 (dashed line) and p = 1 (dash-dotted line). Other
parameters are used as A. = 0 and 2, = 2 MHz.

from 0 to 1. That is, the light propagation can change from superluminal to subluminal and vice versa by the
parameter p.

In figure 5 we consider variations of group index respective to the coupling Rabi frequency at three EIT
windows A, =0 (a), A, = —9MHz (b) and A, = 7.6 MHz (c) with different values of SGC: p = 0 (solid line),
p=0.7 (dashed line) and p = 1 (dash-dotted line). It shows that at a given probe frequency, the amplitude and
sign of the group index are also varied with coupling Rabi frequency, i.e., the group index changes from positive
to negative and vice versa when increasing coupling Rabi frequency from 0 to 10 MHz. Specifically, in the
resonant frequency region A, = 0 (figure 5(a)) the atomic medium exhibits anomalous dispersion when {2. = 0
and hence the group index is negative; gradually increasing the coupling Rabi frequency, the EIT window is
formed and the transparency depth increases, so that the medium is changed from anomalous dispersion to
normal dispersion and the group index also changes from negative to positive values; then, the group index
decreases as the coupling Rabi frequency further increases because the slope of the dispersion curve decreases as
the EIT window becomes wider. At the far-resonant frequency regions A, = —9 MHz (figure 5(b)) and A, = 7.6
MHz (figure 5(c)) the medium is normal dispersion when (2. = 0 and thus the group index is positive; in the
presence of a coupling laser field of small intensity, the EIT has not yet been formed, but the medium is
converted to anomalous dispersion and thus the group index is negative; gradually increasing the coupling Rabi
frequency, the EIT window is formed and the transparency depth increases, so the medium is also changed from
anomalous dispersion to normal dispersion, and the group index also changes from negative to positive.
Furthermore, we also find that the group index amplitude in the resonant frequency region is much larger than
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Figure 6. Variations of absorption and dispersion (a), and group index (b) versus relative phase at probe detuning A, = 3 MHz in the
presence (solid line) and absence (dash line) of SGC (p = 1 and p = 0) and other parameters of the laser fields as (2. = 10 MHz and
A.=0.

that in the far-resonant frequency regions because the slope of the dispersion curve in the resonant region is
better than that in the far resonant regions. In addition, in the presence of SGC with p = 1, the amplitude of
group index is enhanced by several orders of magnitude compared to the case without SGC (p = 0). This
investigation allows us to choose the optimal parameter of coupling Rabi frequency to achieve the desired group
index with positive or negative value.

Finally, we investigate the variations of absorption, dispersion, and group index with respect to the relative
phase as depicted in figure 6 in the presence or absence of SGC (p = 1 or p = 0). From the figure we can see that in
the absence of SGC (p = 0) the response of the atomic medium does not depend on the relative phase of the laser
fields, so the absorption and dispersion coefficients, and group index do not change with relative phase. In
contrast, the presence of SGC leads to a phase-sensitive dependence of the optical properties, as we can see in
figure 6(a) that at a certain frequency detuning of the probe beam (e.g., in this case A, = 3 MHz), by adjusting
the relative phase, the probe beam absorption can be varied from transparent mode to maximum absorption
mode and hence the dispersion is also changed from anomalous dispersion (corresponding to maximum
absorption) to normal dispersion (corresponding to transparency). As a consequence, the group refractive index
also changes in amplitude and sign with relative phase (see figure 6(b)). That is, we can also use the relative phase
asa ‘knob’ to tune the propagation regime of the probe light from superluminal to subluminal and vice versa.

4. Conclusion

The influence of spontaneously generated coherence and relative phase on absorption, dispersion, and group
index in a five-level cascade-type atomic system is studied under EIT condition. It showed that the SGC affected
all three EIT windows of the system. Specifically, the absorption peaks on both sides of each EIT window are
enhanced, while the width of the absorption profile is narrowed when the parameter p increases from 0 to 1. And
hence, the slope and the amplitude of the dispersion curves are also significantly increased. As a result, the group
index at three EIT windows becomes larger when the SGC strength increases. For this system, in many different
frequency ranges the group index can easily be switched between negative and positive values by adjusting the
strength of SGC, the relative phase and the coupling laser intensity, i.e., the light propagation can easily be
converted between superluminal to subluminal modes. Our analytical model of this five-level system can be
useful for experimental observation or related studies such as Kerr nonlinearity, optical bistability, pulse
propagation and optical switching with transparent multi-frequency.
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